
Raven: Accelerating Execution of Iterative Data Analytics by
Reusing Results of Previous Equivalent Versions

Sadeem Alsudais, Avinash Kumar, and Chen Li
Department of Computer Science, UC Irvine, CA 92697, USA

{salsudai,avinask1,chenli}@ics.uci.edu

ABSTRACT
Using GUI-based work�ows for data analysis is an iterative process.
During each iteration, an analyst makes changes to the work�ow
to improve it, generating a new version each time. The results pro-
duced by executing these versions are materialized to help users
refer to them in the future. In many cases, a new version of the
work�ow, when submitted for execution, produces a result equiv-
alent to that of a previous one. Identifying such equivalence can
save computational resources and time by reusing the materialized
result. One way to optimize the performance of executing a new
version is to compare the current version with a previous one and
test if they produce the same results using a work�ow version
equivalence veri�er. As the number of versions grows, this testing
can become a computational bottleneck. In this paper, we present
Raven, an optimization framework to accelerate the execution of a
new version request by detecting and reusing the results of previous
equivalent versions with the help of a version equivalence veri�er.
Raven ranks and prunes the set of prior versions to quickly identify
those that may produce an equivalent result to the version execu-
tion request. Additionally, when the veri�er performs computation
to verify the equivalence of a version pair, there may be a signi�-
cant overlap with previously tested version pairs. Raven identi�es
and avoids such repeated computations by extending the veri�er to
reuse previous knowledge of equivalence tests. We evaluated the
e�ectiveness of Raven compared to baselines on real work�ows
and datasets.

CCS CONCEPTS
• Theory of computation ! Semantics and reasoning.

KEYWORDS
work�ow version control, iterative data analysis, semantic opti-
mization, work�ow equivalence veri�cation

ACM Reference Format:
Sadeem Alsudais, Avinash Kumar, and Chen Li. 2023. Raven: Accelerating
Execution of Iterative Data Analytics by Reusing Results of Previous Equiv-
alent Versions. In Workshop on Human-In-the-Loop Data Analytics (HILDA
’23), June 18, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3597465.3605219

HILDA ’23, June 18, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0216-7/23/06.
https://doi.org/10.1145/3597465.3605219

1 INTRODUCTION
GUI-based big data processing work�ow platforms are popular for
e�ciently processing and analyzing large volumes of data with user-
friendly interfaces, making them accessible to individuals of varying
technical expertise [16]. A data�ow is represented as a Directed
Acyclic Graph (DAG), where each node corresponds to an operator
that incorporates the processing logic, and the links represent the
data �ow between the operators. Operators without incoming edges
retrieve data from various sources, such as datastores or �les, while
operators without outgoing edges serve as sinks, representing the
�nal output of the task from its upstream operators.

Tweets word
search project join

WC

states

UDF project

filter limit SP

join filter project TB

users

id, text
coordinate

id, text,
coordinate,

dist
loc=CA coordinate,

loc

compute
dist

(a) Version 1: An initial construction of the work�ow with a word-
cloud result,⇠ , a sca�erplot result (% , and a table result)⌫.

Tweets word
search project join

WC

states

UDF project

filter order limit SP

join agg project TB

users

id,
text, user

coordinate
id, user

coordinate,
dist

dist

coordinate,
loc, count

compute
dist

group on
loc,

count

(b) Version 2: A re�ned version of the work�ow to get the count of
users who posted tweets about the topic from di�erent locations.

Tweets word
search project join

WC

states

UDF

projectfilter limit SP

join project TB
users

id, text
coordinate

id, text,
coordinate,

dist

coordinate,
loc

compute
dist

filter

loc=CA

(c) Version 3: A re�ned version to optimize the performance by push-
ing the �lter operator past the join operator.

Figure 1: Example of a work�ow for analyzing tweets that
discuss popular wild�res, and the work�ow’s evolution in
three versions. Orange operators are modi�ed, green operators
are added, and a red cross indicates a deleted operator.

When an analyst employs work�ows for data analytics, she
starts with a basic work�ow and iteratively revises it based on
the observed execution results as part of the iterative process of
data analytics [8, 27]. She may edit the operators and links in the
work�ow during each iteration, producing a new version of the
work�ow. Figure 1 shows an overview of a work�ow for analyzing
tweets related to popular wild�res and the tweets’ distance from
the center of the wild�re. The work�ow includes three sinks, each

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3597465.3605219
https://doi.org/10.1145/3597465.3605219
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597465.3605219&domain=pdf&date_stamp=2023-07-21

HILDA ’23, June 18, 2023, Sea�le, WA, USA Alsudais and Kumar, et al.

producing di�erent results based on the logic of its upstream op-
erators. The example illustrates the work�ow’s evolution in three
di�erent versions.
Motivation.As an analyst iteratively re�nes a work�ow, many ver-
sions can be created. For example, one deployment of Texera [19],
a collaborative data processing system, recorded a total of 2, 424
executions of di�erent work�ow versions for one work�ow [3].
Tracking the versions of a work�ow and the outcomes of their
executions has gained interest recently [5, 26]. One observation in
many applications is that versions of the same work�ow frequently
produce the same results [15, 29]. In other words, given an instance
of input sources, the versions produce the same sink results. For
instance, there is an overlap in 45% of the daily tasks performed by
Microsoft’s analytics clusters [15]. 27% of 9, 486 work�ows from
Ant Financial to detect fraud transactions share common compu-
tation, and 6% of them is equivalent [29]. In the running example,
the modi�cations applied to version 1b to transform it into ver-
sion 1c resulted in each sink producing the same results as the
corresponding sinks in version 1a.

The execution of a work�ow can be time-consuming and re-
source intensive due to the large amounts of input data and the
work�ow’s complex operators such as advanced machine learning
techniques and User-de�ned functions (UDF) [16]. One way to save
time and resources is to reuse the results of previously executed
versions of the same work�ow by identifying those that produce
equivalent results. In particular, when a user submits a new ver-
sion execution request, we want to compare the version with a
prior executed version. If the two versions are equivalent, then the
new version does not need to be executed, and we can reuse the
materialized result of the prior one.
Limitations of existing works. To reuse previous results to an-
swer a new execution request, a body of existing work [9, 15] relies
on identifying the exact match between the work�ow versions. One
limitation of these works is that they cannot identify reuse oppor-
tunities from versions when their DAGs’ have di�erent structures,
e.g., the work�ow version 1a and version 1c in the running example
are semantically equivalent, i.e., their sinks produce the same re-
sults, but their DAGs have di�erent structures. Other works take a
semantic approach by analyzing the work�ows’ predicates [22, 27]
to identify redundant and overlapping tuples between multiple jobs.
However, these works cannot identify the exact equivalence of the
results of the two work�ows. Thus we want to study the following:

P������ S��������. Given a set of results from executions of
previous versions of a work�ow and an execution request of a new
version, �nd a subset of prior versions, which include sinks that
produce equivalent results to those in the execution request’s version.

Our approach and challenges. The problem of testing the equiv-
alence of two queries has been studied for SQL [7], Spark pro-
grams [10] or work�ow versions [23]. We can leverage these ver-
i�ers, and a naive solution to the “result reuse” problem stated
above is to iteratively check every past version to see if it produces
results equivalent to the new one by passing the pair to a veri�er.
While this approach is straightforward, it is not e�cient when the
number of versions increases, leading to many pairwise tests before
�nding an equivalent one. We want a framework that can rank

and prune the set of previous versions based on their semantic
equivalence or inequivalence compared to the new version’s exe-
cution request. When the veri�er checks to see if two work�ow
versions are equivalent, it does so by following an internal proce-
dure. Since the tested pairs share similar structures, there may be a
lot of computational overlap with previously-tested version pairs.
To save computational resources and time, we want to identify and
avoid such repeated computations. To address these challenges, we
propose a novel framework called Raven, which accelerates the
execution of a work�ow version by detecting previously-stored
semantically equivalent results from previous versions. We make
the following contributions in this paper:

(1) We propose a framework and a novel technique to let the op-
timizer identify and reuse the materialized result of previous
equivalent versions of a work�ow using Veer (§3).

(2) We propose two approaches to ranking the versions and
choosing those with a high rank to be tested for equivalence
with a given execution request (§4.1).

(3) We extend Veer by adding optimization techniques that allow
it to reuse computations (needed to do the veri�cation) from
historical equivalence tests (§4.2).

(4) We evaluate the execution speedup of Raven against a base-
line on a real-world workload (§ 5).

1.1 Related Work
There is extensive research on reusing stored results to answer an
execution request, as summarized in the following surveys [1, 6, 12].
Exact expression matching. Compared to general materializa-
tion reuse methods, exact pattern matching is a more speci�c and
syntax-based approach, commonly used in systems with high work-
loads [15, 24, 28]. Raven di�ers as it employs an approach by identi-
fying semantic equivalence and is not limited to exact DAG match.
Reusing intermediate results. Several works reuse intermediate
results found in iterative pipelines [14, 17, 21]. Restore [9] caches
map-reduce and intermediate jobs, while Recycler [20] uses a graph
to recycle �ne-grained partial query results. Nectar [11] caches sub-
computations that are likely to be reused. Raven aims to identify
previous equivalent versions with respect to the �nal results even
when there are changes.
Semantic reuse. Prior works such as Eva [27], Acorn [22], and
the work by LeFevre [18] proposed methods to semantically reuse
previous results, using techniques such as UDF signatures and pred-
icate overlap detection. These methods focus on detecting predicate
equivalence and overlap rather than �nal result equivalence.
Equivalence veri�cation. Some works verify the equivalence of
SQL queries under certain assumptions [7, 30]. These solutions
cannot reason about UDF semantics, making them unsuitable for
detecting work�ow version equivalence. Veer [23] addresses this
limitation by verifying the equivalence of two work�ow versions
with UDFs, and Raven leverages it in its solution.

2 BACKGROUND
In this section, we give an overview of work�ows and their edit
operations, discuss equivalence veri�ers, and show how a work�ow

Raven: Accelerating Execution of Iterative Data Analytics HILDA ’23, June 18, 2023, Sea�le, WA, USA

version equivalence veri�er (Veer) uses these equivalence veri�ers
in its solution.
Data processing work�ows and their edit operations. A work-
�ow is a directed-acyclic graph (DAG) of operators, each with a
computation function and properties. Source operators have no
incoming links, while sink operators have no outgoing links and
produce �nal results. Work�ows may have multiple sources and
sinks. Some of the sinks can have their results materialized as views.

A work�ow undergoes many edits over time, resulting in di�er-
ent versions [E1, . . . , E=]. The versions are created through a series
of edit operations, including adding or deleting an operator or link,
or modifying an operator’s properties. These edit operations are
combined to form a transformation that can be applied to a work-
�ow version to create a new version. A work�ow edit mapping (M)
aligns operators and links between di�erent versions to produce a
transformation from one version to the other. Unmapped operators
and links are considered to be deleted or inserted accordingly.
Equivalence veri�er (EV). An EV takes a pair of SQL queries and
returns True when the pair produces the same result [7, 30] under
a speci�c table semantics. Proving the equivalence of two SQL
queries, in general, is undecidable [2], and an EV may require the
pair to meet certain restrictions in order to test their equivalence.
Work�ow version equivalence veri�er (Veer). Proving the
equivalence of two work�ows can be challenging due to the se-
mantic richness of their operators, which can include complex
data processing tasks, such as UDFs or machine learning opera-
tions [8, 27]. Our recent study [23] introduces Veer, a work�ow
version equivalence veri�er that leverages the changes between
the pair to prove their equivalence using EVs as a black box.

Veer takes two work�ow versions as input, a transformation
that contains the edit operations converting one version to the
other, and an EV. It uses the EV to verify the equivalence of the
two versions by decomposing the pair into multiple portions called
“windows,” each of which includes local changes and satis�es the
EV’s restrictions. Each window is then provided to the EV to verify
if the pair of portions in the window are equivalent. For simplicity,
we refer to this step as “testing the equivalence of the window,” as
illustrated in Figure 2. In this way, Veer identi�es which sinks in
the two versions produce equivalent results. Next we give formal
de�nitions of Veer’s concepts.

...
...

?

?

? EV

?

Veer

...
... ...

...
... ...

...
... ...

Figure 2: Veer: a work�ow version equivalence veri�er.

De�nition 2.1 (Window, covering window, and valid window [23]).
Consider two work�ow versions % and & with a set of edits X =
{21 . . . 2=} from % to & and a corresponding mapping M from % to
& . A window, denoted as l , is a pair of sub-DAGs l (%) and l (&),
wherel (%) (respectivelyl (&)) is a connected induced sub-DAG of

% (respectively &). Each pair of operators/links under the mapping
M should be either both inl or both outsidel . A covering window,
denoted as l⇠ , is a window to cover a set of changes ⇠ ✓ X . A
window is valid w.r.t. an EV if it satis�es the EV’s restrictions.

De�nition 2.2 (Equivalence of the two sub-DAGs in a window [23]).
The two sub-DAGs l (%) and l (&) of a window l are equivalent,
denoted as “l (%) ⌘ l (&),” if they are equivalent as two stand-alone
DAG’s without considering the constraints from their upstream
operators.

De�nition 2.3 (Decomposition [23]). For a version pair % and &
with a set of edit operations X = {21 . . . 2=} from % to & , a decom-
position, denoted as \ , is a set of windows {l1, . . . ,l<} such that:

• Each edit is in one and only one of the windows;
• All the windows are disjoint;
• The union of the windows is the version pair.

3 RAVEN: OVERVIEW
Figure 3 presents an overview of the steps involved in the opti-
mization lifecycle to accelerate the execution of a work�ow version
DAG by Raven. Given an execution request for the work�ow ver-
sion E= (called the “current version”), the optimizer searches for a
“prior version” E? 2 [E1, . . . , E=�1], which has sinks equivalent to
the corresponding sinks in E= . It takes the following steps.
Step 1. Ranking the prior versions. Raven ranks the previous
versions in the order of their likelihood of being equivalent to the
current one. To do this, we propose two approaches. One uses the
edit mapping between the pairwise of E= and every other prior ver-
sion E? . Another approach is to organize the versions of a work�ow
in a hierarchy and model the versions in a lightweight represen-
tation to speed up the traversal search of the prior versions. In
this way, we avoid testing the equivalence with every past version.
Raven chooses a prior version with the highest rank to test its
equivalence with the current one.

version
execution

request

workflow
plan

Execution Engine

Workflow Optimizer
(Raven)

...

...
versions

Veer

1. rank the versions

2. test
 equivalence

choose one

Figure 3: Overview of Raven’s framework.

Step 2: Testing the equivalence of the version pair. Raven uses
Veer to test the equivalence of the pair of versions. Veer adopts a
procedure based on an edit mapping between the pair to return a set
of equivalent sinks. When we invoke Veer multiple times to do the
equivalence testing by passing multiple pairwise versions with a
lot of commonalities in their structural DAG, some of the steps can
be redundant. Raven extends Veer to avoid repeated computation
by performing memoization and checkpointing.

HILDA ’23, June 18, 2023, Sea�le, WA, USA Alsudais and Kumar, et al.

We repeat the above steps till all the sinks in the current work�ow
version have been answered using prior versions, or there are no
more previous versions left to check.

4 REUSE-AWARE OPTIMIZATION
In this section, we propose two ideas to optimize the performance
of work�ow version execution in Raven. Firstly, we discuss how
Raven ranks versions to select the one with the highest score for
equivalence testing with the current version (Section 4.1). Secondly,
we highlight the issue where, even if the versions are ranked in
the correct order, not all equivalent sinks may be found in the �rst
chosen version, leading to additional pairs being pushed to Veer.
This can result in repeated computations in Veer’s internals. To
address this, Raven extends Veer to reuse previous computations
from other evaluations of previous pairs (Section 4.2).

4.1 Ranking Versions for Equivalence Check
4.1.1 Ranking by using an edit mapping. A naive way to rank the
versions is to choose those with the fewest edits compared to the
current version. The intuition is that with a smaller number of edits,
Veer needs to do fewer decompositions, and we can get the answer
faster. To �nd the edits for each pair of the current version and a
prior one, we iterate over every prior version DAG and pass the pair
to a Graph Edit Distance (GED) algorithm, which returns the set of
edit operations needed to transform one graph to the other [4]. We
then rank the versions based on the number of di�erences, giving
a higher score to those with fewer edits.

The following example shows that using the minimum edit dis-
tance for ranking may not necessarily rank the equivalent version
higher than an inequivalent one,

Example 4.1. Consider the following three versions:

E1 = {%A> 942C (0;;) ! �8;C4A (064 > 24) ! �66A (count by age)}.
E2 = {%A> 942C (0;;) ! �66A (count by age)}.

E3 = {�8;C4A (064 > 24) ! %A> 942C (0;;) ! �66A (count by age)}.
Consider a mapping for transforming E1 to E3, which involves sub-
stituting Project in E1 with Filter in E3 and substituting Filter in E1
with Project in E3 yielding two edits. The mapping to transform E2
to E3 is done by adding a Filter operator, yielding a single edit oper-
ation. Given the ranking proposed above, the algorithm chooses E2
as it has fewer di�erences with E3 i.e., 1 compared to the di�erences
between the pair (E1, E3) i.e., 2. However, E2 . E3 while E1 ⌘ E3.

While this approach helps us quickly get an answer if a prior
and the current version pair are equivalent or not, running the GED
algorithm from scratch every time for every version pair can be
computationally expensive due to its #%-hard complexity [4].

4.1.2 Ranking by using a view representation. The method pre-
sented earlier focuses on ranking versions but does not consider
the actual stored results of sinks, i.e., views. To e�ciently identify
reusable views across di�erent versions, we need a lightweight
�ngerprint representation that models the semantics of the sinks’
results. We organize the sinks in a hierarchy to facilitate traver-
sal for �nding reusable views and avoid inspecting versions that
include sinks that are guaranteed to be not equivalent to the exe-
cution request. We model the result of a sink as a tuple () , Æ(, Æ$),

where) is a First-Order-Logic (FOL) formula indicating the exis-
tence of a tuple in the table, and Æ(and Æ$ are the lists of �elds in
the table and the �elds on which the table is ordered, respectively.
By using (Æ(, Æ$), we can quickly identify and eliminate views that
are not equivalent to the sinks in the execution request, without
considering the complexity of determining a tuple’s existence and
its cardinality [7, 18] represented by) in this paper.
Representation construction. To construct the view represen-
tation, we follow the same techniques in existing literature [7, 30]
by using prede�ned transformations for each operator. Operators
inherit the representation from their upstream/parent operator and
update the �elds based on their internal logic.

We leverage the knowledge of the changes made to the previous
version and build the representation incrementally by propagat-
ing the di�erence starting from a changed operator closest to the
source. This requires tracking and storing transformation results
on every operator, not just in the sink. We can choose between
constructing the representation from scratch or propagating the
delta considering factors such as how far the changes are from the
sinks and the size of the work�ow.
View organization in a V2-structure.We organize the sinks in
the versions in a hierarchy “V2”, which stands for “versioned views”.
A node includes the view representation and includes physical
pointers to where the sinks that have the same representation
(not necessarily equivalent) are grouped. An edge between two
nodes means the result of the child node is a subset of the result
of the parent node (when ignoring the) �eld). A subset result
can be detected by running two tests, one for each �eld in the
representation, as discussed below.

De�nition 4.2 (V2 Node Subsumption Test). Given a node E and
a child node D, we say D is a proper subset of node E , denoted as“
D ⇢ E ,” when Æ$E is a subset of Æ$D and Æ(D is a subset of Æ(E .

The intuition is that the set of projected columns in E includes
all of the elements in the set of projected columns in D, and the
ordering �elds in E are more general than in D. The structure may
have multiple root nodes. Figure 4 shows a sample V2-structure to
organize the sinks in the running example. Each node has a physical
pointer to the saved results of the sinks in this node.

====

symbol -- field
name

i -- id
t -- text

c -- coordinate
d -- dist
l -- loc

n -- count

u -- user

Figure 4: A sample V2-structure to organize the saved results
of sinks from the �rst two versions in the running example.

V2-structure traversal and maintenance. We use the task of
�nding an equivalent view for the word cloud sink in E3 of the
running example to explain the traversal and maintenance of the
hierarchy. Given a new work�ow execution request E3, we �rst
construct the view representation of theword cloud sink, Æ(= [8, C, 2]

Raven: Accelerating Execution of Iterative Data Analytics HILDA ’23, June 18, 2023, Sea�le, WA, USA

and Æ$ = []. After that, we traverse the hierarchy in a depth-�rst-
search manner. Starting from a root node, we simultaneously run
two tests, one to ask if the list Æ(in the node contains the one in
the current version, and the other is to ask if the list Æ$ in the word
cloud sink contains the one in the node. Both tests must return
True; otherwise, we stop traversing the children of that node.

In this example, one of the tests on the �rst node in Figure 4
returns False. Therefore, we continue the search by inspecting a
sibling node. When both tests return True, we further test if both
(Æ(, Æ$) in the node are the same as those in the current version. If
the two representations are not the same, we expand the search to
test the child nodes. In this example, both tests return True when
testing the second node and their representations are not the same,
so we consider the child nodes and follow the same procedure.
In this example, the test on the child node shows that the two
representations are the same. If the two representations are the
same, we retrieve the physical pointers to the versions the node
points to. We iterate through every version on the list and push
it to Veer with the current version to test their equivalence until
we �nd one that includes sinks equivalent to the current version.
Additionally, we add a new pointer to point to the current version.

When all of the sibling nodes are traversed and none of them are
expanded to test their child nodes, we insert a new node containing
the current version’s sink representation and a physical pointer to
its result. We do the same for every sink in the version. The bene�t
of this lightweight representation resulted in pushing only one pair
to Veer, instead of iterating over every past version.

4.2 Reusing Past Equivalence Tests in Windows
Recall that Veer breaks the versions into smaller windows and
checks the equivalence of each window by passing it to an EV.
Veer reported that the time taken to verify a window by the EV
takes on average 87% of the total time [23] Veer takes. Some of
these windows may have been checked in previous iterations when
testing other pairs. Therefore, memoizing the results of previous
windows’ equivalence checks can help improve the performance.

In this section, we explore two methods for optimizing Veer’s
performance by extending it to reuse information about previously
tested windows. The �rst method groups windows into equivalence
classes and the second involves “chopping” a version pair into a
smaller portion and excluding the chopped portion in the decom-
position process based on the knowledge that it has already been
veri�ed in previous computations that it is equivalent.

4.2.1 Grouping windows in equivalence classes. We explain the
details of extending Veer to group windows into equivalence classes.
An equivalence class is a set of elements, each of which is a sub-
DAG from a window that have been proven equivalent by Veer.
When an analyst submits an execution request for a second version,
Raven pushes the two versions to Veer. For each window, Veer
checks if the sub-DAGs were seen before by checking a map, where
the key is the sub-DAG and the value is the sub-DAG’s equivalence
class. The map check yields the following possible cases.

1. None of the two sub-DAGswere tested before:Veer pushes
the window to the EV to test their equivalence. If the EV proves the
two sub-DAGs in the window are equivalent, then Veer uses this
knowledge to group them in the same equivalence class. The newly

created equivalence class is assigned an identifying label. On the
other hand, if the EV proves the two sub-DAGs are not equivalent,
then each sub-DAG will be assigned a new equivalence class label.

2. One sub-DAG only was tested before: Veer pushes the
pair to the EV. For the unseen sub-DAG, we assign it the same
equivalence class as the other one if the EV proves the pair is
equivalent. Otherwise, we give it a new equivalence class.

3. Both sub-DAGs were tested before: Veer checks if the pair
is in the same equivalence class by checking the value of their
equivalence class using their key. If so, it marks their equivalence,
and there is no need to push the pair to the EV. Otherwise, ev-
ery sub-DAG is in a di�erent equivalence class. Then we check
a memoization matrix as explained in Figure 6. If the two equiva-
lence classes were checked before, it means they are not equivalent.
Otherwise, we push the pair to the EV. If the EV says they are
equivalent, we merge the two classes and update the sub-DAGs’
pointers in the map to point to the newly merged class.

Finally, for the cases where a sub-DAG was never seen before,
we insert a new entry in the map with the sub-DAG as the key
and the value being a pointer to the sub-DAG’s equivalence class.
Figure 5 illustrates an example of three equivalent windows from
four di�erent versions. When modifying Veer to use equivalence
classes, it only pushes the �rst two windows but not the third, thus
it can save computation.

filter aggr
age,

count
dept, sal,

age

project

project aggr
age,

count
sal >10K

filter

filter aggr
age,

count
sal >10K

filter aggr
age,

count
sal >10K

sal >10K

dept, sal,
age

Figure 5: Example to show three
di�erent windows belonging to the
same equivalence class.

EC 1 2 3
1

2

3 ...

1

0

0 0 1

0

0

1

0

...

Figure 6: A sample 2-
D matrix for storing
the equivalence tests be-
tween a pair of equiv-
alence classes. A cell
initially is 0 and is
changed to 1 when the
two classes are tested.

4.2.2 Checkpointing previous decompositions. While the previous
discussion solved the problem of avoiding repeated checks on the
EV, we still need to do the decomposition from scratch. This re-
peated computation can be avoided, as shown in the example in
Figure 7. Suppose we test the equivalence of the �rst two versions,
and we know the two sub-DAGs in a window l1 were equivalent.
Suppose Raven ranks E1 higher and selects this version �rst to test
its equivalence to the current request E3. Instead of computing the
edit distance between the two versions (E1, E3) from scratch, we
can exploit the sequence of deltas recorded by the analysts when
performing the edits. Knowing the accumulative edits allows us to
identify the fact that the portion until the end of the window was
proven equivalent in a previous test. Thus, we extend Veer to let
it checkpoint and cut the portion that was tested before and only
perform the decomposition on the parts after the checkpoint.

5 PRELIMINARY EXPERIMENTS
In this section, we report our experimental results of evaluating
the e�ectiveness of Raven.

HILDA ’23, June 18, 2023, Sea�le, WA, USA Alsudais and Kumar, et al.

filter aggr
age,

count
dept, sal,

age

project

filter aggr
age,

count
sal >10K

project

filter aggr
age,

count
sal >10K

sal >10K

filter

age <40dept, sal,
age

checkpoint

?

Figure 7: Example to show reusing the knowledge of a previ-
ous equivalence test to place a marker and ignore a portion
of the pair when performing a new equivalence test.
5.1 Experimental Setup
Real workload. We analyzed a total of 179 real-world pipelines
from a deployment of Texera [19]. Among the work�ows, 81% had
deterministic sources and operators, and we focused on these work-
�ows. Among these work�ows, 8% consisted of 8 operators, and
another 8% had 12 operators. 76% of the work�ows contained a UDF
operator. Additionally, 33% of the work�ows consisted of 3 di�erent
versions, while 19% had 35 versions. 58% of the versions had a single
edit, while 22% had two edits. We also observed that the UDF oper-
ator was changed in 17% of the cases. From these work�ows, we
selected four as a representative subset excluding those with non-
deterministic data sources. We created similar work�ows, which
are presented as, 1 . . ., 4 in Table 1. We used IMDB [13] (⇡ 3⌧⌫)
and Twitter [25] (⇡ 0.5⌧⌫) datasets. All versions included UDF
operators. The average time it took to execute a version without
reuse is 1.9 minutes.

Table 1: Workloads used in the experiments.
Work
�ow# Description # of

operators
of
sinks

of
versions

% of
equivalent
sinks

, 1 IMDB ratio of non-original
to original movie titles 13 3 3 55

, 2 IMDB all movies of directors
with certain criteria 26 3 3 55

, 3 Tobacco Twitter analysis 18 1 5 60
, 4 Wild�re Twitter analysis 12 3 12 16

Implementation. We evaluated our solution against the Recy-
cler [20] baseline, which compares a work�ow query DAG with
previously executed work�ow DAGs by examining their structures
for equality. We extended Recycler to be able to match a few non-
relational operators, whose semantics can be abstracted to simple
APIs, such as h�, � , i [18], where “A is the set of attributes, F is
the set of �lters previously applied to the input, and K is the current
grouping of the input, which captures the keys of the data.” We im-
plemented a basic Raven, denoted Ravenb, which is a basic approach
that iterates over past versions without ranking them and uses a
veri�er without enabling reusing previous tests. We implemented
Ravena, which is advanced Raven and included ranking past ver-
sions and reusing previous equivalence tests. We implemented the
Veer [23] veri�er and used Equitas [30] as its EV. We implemented
the baseline and Raven using Java8 and Scala in Texera [19]. The
system ran on a single node of a MacBook Pro running the MacOS
Monterey operating system with a 2.2GHz Intel Core i7 CPU, 16GB
DDR3 RAM, and a 256GB SSD.

5.2 Performance of Identifying Reuse and
Execution Speedup

Figure 8 shows the results of evaluating the e�ectiveness of Raven
in identifying semantic equivalence of work�ows with UDF com-
pared to the baseline. Recycler successfully identi�ed 25% of the
equivalent cases, while both Ravenb and Ravena successfully iden-
ti�ed 60% of the equivalent cases. Recycler failed to rewrite any
of the work�ow versions to reuse the identi�ed equivalent results,
yielding a speedup of 1. On the other hand, Ravenb and Ravena
were able to rewrite the work�ows to reuse the results for 40% of
the equivalent sinks, yielding a speedup of up to 322 using Ravenb
and 747 using Ravena for, 3. The inability to rewrite a work�ow
version to reuse the identi�ed equivalent sinks, in some cases, is due
to the following: the work�ow version DAGmay include a sink that
is not identi�ed as equivalent, and its output depends on executing
all of the operators in the DAG. To overcome this limitation, storing
intermediate results could be a potential solution. Overall, Ravena
outperformed Ravenb by achieving a higher speedup, thanks to the
utilization of ranking and reusing tests of other windows by group-
ing them in equivalence classes. None of the three approaches could
reason about the semantics of, 4 because, 4 involved changes
made to an ML model that were not supported by the approaches.

0.1

1

10

100

1000

W1 W2 W3 W4
X

Ex
ec
ut
io
n
sp
ee
du
p
(X
)

Workflow

Recycler
Ravenb
Ravena

(a) Execution speedup.

0

50

100

150

200

250

W1 W2 W3 W4

Ti
m
e
(m
s)

Workflow

Ranking
Ravenb

Calling Veer

(b) Time taken to identify reuse.
Figure 8: E�ectiveness of Raven. An “X” indicates the work�ow
was not supported by the solution.

Figure 8b shows the overhead of the three approaches. The time
it took Recycler to match a DAGwith previous DAGs was negligible
due to the small size of historically seen queries, so we do not report
its overhead in Figure 8b. Ravenb and Ravena had more overhead
than Recycler because they needed to invoke Veer multiple times.
The overhead of Ravena is less than Ravenb because it used the
equivalence class concept and the ranking approach to optimize
and reduce the time spent on Veer.

6 CONCLUSION
In this paper, we proposed Raven, a novel optimization technique
that uses stored results from previously executed versions to answer
a given version execution request after testing their equivalence.We
showed how Raven uses an equivalence veri�er in its modules. We
proposed ranking the versions and utilizing previously conducted
equivalence tests on work�ow versions or portions of the versions
to minimize redundant computations. We empirically evaluated the
e�ectiveness of Raven, which achieved up to 747 times speedup,
compared to other baselines.

ACKNOWLEDGMENTS
This work is supported by a graduate fellowship from King Saud
University and is supported by NSF under the award III 2107150.

Raven: Accelerating Execution of Iterative Data Analytics HILDA ’23, June 18, 2023, Sea�le, WA, USA

REFERENCES
[1] Serge Abiteboul and Oliver M. Duschka. 1998. Complexity of Answering

Queries Using Materialized Views. In Proceedings of the Seventeenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 1-3, 1998,
Seattle, Washington, USA, Alberto O. Mendelzon and Jan Paredaens (Eds.). ACM
Press, 254–263. https://doi.org/10.1145/275487.275516

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases:
The Logical Level (1st ed.). Addison-Wesley Longman Publishing Co., Inc., USA.

[3] Sadeem Alsudais. 2022. Drove: Tracking Execution Results of Work�ows on
Large Data. In Proceedings of the VLDB 2022 PhDWorkshop co-located with the 48th
International Conference on Very Large Databases (VLDB 2022), Sydney, Australia,
September 5, 2022 (CEUR Workshop Proceedings), Zhifeng Bao and Timos K. Sellis
(Eds.), Vol. 3186. CEUR-WS.org. http://ceur-ws.org/Vol-3186/paper_10.pdf

[4] David B. Blumenthal, Nicolas Boria, Johann Gamper, Sébastien Bougleux, and
Luc Brun. 2020. Comparing heuristics for graph edit distance computation. VLDB
J. 29, 1 (2020), 419–458. https://doi.org/10.1007/s00778-019-00544-1

[5] Andrew Chen, Andy Chow, Aaron Davidson, Arjun DCunha, Ali Ghodsi, Sue Ann
Hong, Andy Konwinski, ClemensMewald, SiddharthMurching, Tomas Nykodym,
Paul Ogilvie, Mani Parkhe, Avesh Singh, Fen Xie, Matei Zaharia, Richard Zang,
Juntai Zheng, and Corey Zumar. 2020. Developments in ML�ow: A System to
Accelerate the Machine Learning Lifecycle. In DEEM@SIGMOD’20.

[6] Rada Chirkova, Chen Li, and Jia Li. 2006. Answering queries using materialized
views with minimum size. VLDB J. 15, 3 (2006), 191–210.

[7] Shumo Chu, Brendan Murphy, Jared Roesch, Alvin Cheung, and Dan Suciu. 2018.
Axiomatic Foundations and Algorithms for Deciding Semantic Equivalences of
SQL Queries. VLDB’18 (2018).

[8] Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Zoi Kaoudi, Tilmann Rabl, and
Volker Markl. 2022. Materialization and Reuse Optimizations for Production
Data Science Pipelines. In SIGMOD ’22: International Conference on Management
of Data, Philadelphia, PA, USA, June 12 - 17, 2022. ACM, 1962–1976. https:
//doi.org/10.1145/3514221.3526186

[9] Iman Elghandour and Ashraf Aboulnaga. 2012. ReStore: Reusing Results of
MapReduce Jobs. VLDB’12 (2012).

[10] Shelly Grossman, Sara Cohen, Shachar Itzhaky, Noam Rinetzky, and Mooly Sagiv.
2017. Verifying Equivalence of Spark Programs. In CAV’17.

[11] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath, Yuan
Yu, and Li Zhuang. 2010. Nectar: Automatic Management of Data and Computa-
tion in Datacenters. In 9th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2010, October 4-6, 2010, Vancouver, BC, Canada, Proceedings,
Remzi H. Arpaci-Dusseau and Brad Chen (Eds.). USENIX Association, 75–88.
http://www.usenix.org/events/osdi10/tech/full_papers/Gunda.pdf

[12] Alon Y. Halevy. 2001. Answering Queries Using Views: A Survey. The VLDB
Journal 10, 4 (Dec. 2001), 270–294. https://doi.org/10.1007/s007780100054

[13] IMDB Datasets Website. https://www.imdb.com/interfaces/
[14] Milena Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo Goncalves. 2009.

An architecture for recycling intermediates in a column-store. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, Ugur Çetintemel,
Stanley B. Zdonik, Donald Kossmann, and Nesime Tatbul (Eds.). ACM, 309–320.
https://doi.org/10.1145/1559845.1559879

[15] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Patel. 2018. Select-
ing Subexpressions to Materialize at Datacenter Scale. Proc. VLDB Endow. 11, 7
(2018), 800–812. https://doi.org/10.14778/3192965.3192971

[16] Avinash Kumar, Zuozhi Wang, Shengquan Ni, and Chen Li. 2020. Amber: A
Debuggable Data�ow System Based on the Actor Model. Proc. VLDB Endow. 13,

5 (2020), 740–753. https://doi.org/10.14778/3377369.3377381
[17] Mayuresh Kunjir, Brandon Fain, Kamesh Munagala, and Shivnath Babu. 2017.

ROBUS: Fair Cache Allocation for Data-parallel Workloads. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu, Wenchao Zhou, Rada
Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 219–234. https://doi.org/10.
1145/3035918.3064018

[18] Je� LeFevre, Jagan Sankaranarayanan, Hakan Hacigümüs, Jun’ichi Tatemura,
Neoklis Polyzotis, and Michael J. Carey. 2014. Opportunistic physical design
for big data analytics. In International Conference on Management of Data, SIG-
MOD 2014, Snowbird, UT, USA, June 22-27, 2014, Curtis E. Dyreson, Feifei Li, and
M. Tamer Özsu (Eds.). ACM, 851–862. https://doi.org/10.1145/2588555.2610512

[19] Xiaozhen Liu, Zuozhi Wang, Shengquan Ni, Sadeem Alsudais, Yicong Huang,
Avinash Kumar, and Chen Li. 2022. Demonstration of Collaborative and Interac-
tive Work�ow-Based Data Analytics in Texera. Proc. VLDB Endow. 15, 12 (2022),
3738–3741. https://www.vldb.org/pvldb/vol15/p3738-liu.pdf

[20] Fabian Nagel, Peter A. Boncz, and Stratis Viglas. 2013. Recycling in pipelined
query evaluation. In ICDE’13.

[21] Luis Leopoldo Perez and Christopher M. Jermaine. 2014. History-aware query
optimization with materialized intermediate views. In IEEE 30th International
Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4,
2014, Isabel F. Cruz, Elena Ferrari, Yufei Tao, Elisa Bertino, and Goce Trajcevski
(Eds.). IEEE Computer Society, 520–531. https://doi.org/10.1109/ICDE.2014.
6816678

[22] Lana Ramjit, Matteo Interlandi, Eugene Wu, and Ravi Netravali. 2019. Acorn: Ag-
gressive Result Caching in Distributed Data Processing Frameworks. In Proceed-
ings of the ACM Symposium on Cloud Computing, SoCC 2019, Santa Cruz, CA, USA,
November 20-23, 2019. ACM, 206–219. https://doi.org/10.1145/3357223.3362702

[23] Veer: Verifying Equivalence of Work�ow Versions in Iterative Data Analytics
(Technical Report). https://sadeemsaleh.github.io/Veer__Extended_.pdf.

[24] Yasin N. Silva, Per-Åke Larson, and Jingren Zhou. 2012. Exploiting Common
Subexpressions for Cloud Query Processing. In IEEE 28th International Conference
on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1-5
April, 2012, Anastasios Kementsietsidis and Marcos Antonio Vaz Salles (Eds.).
IEEE Computer Society, 1337–1348. https://doi.org/10.1109/ICDE.2012.106

[25] Twitter API v1.1. https://developer.twitter.com/en/docs/twitter-api/v1/tweets/
�lter-realtime/overview

[26] Simon Woodman, Hugo Hiden, Paul Watson, and Paolo Missier. 2011. Achieving
reproducibility by combining provenance with service and work�ow versioning.
In WORKS’11.

[27] Zhuangdi Xu, Gaurav Tarlok Kakkar, Joy Arulraj, and Umakishore Ramachandran.
2022. EVA: A Symbolic Approach to Accelerating Exploratory Video Analytics
with Materialized Views. In SIGMOD ’22: International Conference on Management
of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary Ives, Angela Bonifati,
and Amr El Abbadi (Eds.). ACM, 602–616. https://doi.org/10.1145/3514221.
3526142

[28] Jingren Zhou, Per-Åke Larson, Johann Christoph Freytag, and Wolfgang Lehner.
2007. E�cient exploitation of similar subexpressions for query processing. In
SIGMOD’07.

[29] Qi Zhou, Joy Arulraj, Shamkant B. Navathe, William Harris, and Jinpeng Wu.
2022. SPES: A Symbolic Approach to Proving Query Equivalence Under Bag
Semantics. (2022), 2735–2748. https://doi.org/10.1109/ICDE53745.2022.00250

[30] Qi Zhou, Joy Arulraj, Shamkant B. Navathe, William Harris, and Dong Xu. 2019.
Automated Veri�cation of Query Equivalence Using Satis�ability Modulo Theo-
ries. VLDB’19 (2019).

https://doi.org/10.1145/275487.275516
http://ceur-ws.org/Vol-3186/paper_10.pdf
https://doi.org/10.1007/s00778-019-00544-1
https://doi.org/10.1145/3514221.3526186
https://doi.org/10.1145/3514221.3526186
http://www.usenix.org/events/osdi10/tech/full_papers/Gunda.pdf
https://doi.org/10.1007/s007780100054
https://www.imdb.com/interfaces/
https://doi.org/10.1145/1559845.1559879
https://doi.org/10.14778/3192965.3192971
https://doi.org/10.14778/3377369.3377381
https://doi.org/10.1145/3035918.3064018
https://doi.org/10.1145/3035918.3064018
https://doi.org/10.1145/2588555.2610512
https://www.vldb.org/pvldb/vol15/p3738-liu.pdf
https://doi.org/10.1109/ICDE.2014.6816678
https://doi.org/10.1109/ICDE.2014.6816678
https://doi.org/10.1145/3357223.3362702
https://sadeemsaleh.github.io/Veer__Extended_.pdf
https://doi.org/10.1109/ICDE.2012.106
https://developer.twitter.com/en/docs/twitter-api/v1/tweets/filter-realtime/overview
https://developer.twitter.com/en/docs/twitter-api/v1/tweets/filter-realtime/overview
https://doi.org/10.1145/3514221.3526142
https://doi.org/10.1145/3514221.3526142
https://doi.org/10.1109/ICDE53745.2022.00250

	Abstract
	1 Introduction
	1.1 Related Work

	2 Background
	3 Raven: Overview
	4 Reuse-aware Optimization
	4.1 Ranking Versions for Equivalence Check
	4.2 Reusing Past Equivalence Tests in Windows

	5 Preliminary Experiments
	5.1 Experimental Setup
	5.2 Performance of Identifying Reuse and Execution Speedup

	6 Conclusion
	Acknowledgments
	References

