)
e Raven: Accelerating Execution of Iterative Data Analytics by

Reusing Results of Previous Equivalent Versions

Sadeem Alsudais, Avinash Kumar, and Chen Li
Department of Computer Science, UC Irvine, CA 92697, USA
{salsudai,avinask1,chenli}@ics.uci.edu

ABSTRACT

Using GUI-based workflows for data analysis is an iterative process.
During each iteration, an analyst makes changes to the workflow
to improve it, generating a new version each time. The results pro-
duced by executing these versions are materialized to help users
refer to them in the future. In many cases, a new version of the
workflow, when submitted for execution, produces a result equiv-
alent to that of a previous one. Identifying such equivalence can
save computational resources and time by reusing the materialized
result. One way to optimize the performance of executing a new
version is to compare the current version with a previous one and
test if they produce the same results using a workflow version
equivalence verifier. As the number of versions grows, this testing
can become a computational bottleneck. In this paper, we present
Raven, an optimization framework to accelerate the execution of a
new version request by detecting and reusing the results of previous
equivalent versions with the help of a version equivalence verifier.
Raven ranks and prunes the set of prior versions to quickly identify
those that may produce an equivalent result to the version execu-
tion request. Additionally, when the verifier performs computation
to verify the equivalence of a version pair, there may be a signifi-
cant overlap with previously tested version pairs. Raven identifies
and avoids such repeated computations by extending the verifier to
reuse previous knowledge of equivalence tests. We evaluated the
effectiveness of Raven compared to baselines on real workflows
and datasets.

CCS CONCEPTS

« Theory of computation — Semantics and reasoning,.

KEYWORDS

workflow version control, iterative data analysis, semantic opti-
mization, workflow equivalence verification

ACM Reference Format:

Sadeem Alsudais, Avinash Kumar, and Chen Li. 2023. Raven: Accelerating
Execution of Iterative Data Analytics by Reusing Results of Previous Equiv-
alent Versions. In Workshop on Human-In-the-Loop Data Analytics (HILDA
’23), June 18, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3597465.3605219

This work is licensed under a Creative Commons Attribution International 4.0 License.

HILDA °23, June 18, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0216-7/23/06.
https://doi.org/10.1145/3597465.3605219

1 INTRODUCTION

GUI-based big data processing workflow platforms are popular for
efficiently processing and analyzing large volumes of data with user-
friendly interfaces, making them accessible to individuals of varying
technical expertise [16]. A dataflow is represented as a Directed
Acyclic Graph (DAG), where each node corresponds to an operator
that incorporates the processing logic, and the links represent the
data flow between the operators. Operators without incoming edges
retrieve data from various sources, such as datastores or files, while
operators without outgoing edges serve as sinks, representing the
final output of the task from its upstream operators.

ext

id, e
coordinate

, Text,
rdinate,

dist coordi
dist

loc=CA coordinate,

loc
(a) Version 1: An initial construction of the workflow with a word-
cloud result WC, a scatterplot result SP, and a table result TB.

order @ SP
M projectf dist
id,

text, user
coordin

(s |

(b) Version 2: A refined version of the workflow to get the count of
users who posted tweets about the topic from different locations.

id, text
coordinate

project;

compute id,;user
dist coordinate,
dist

agg ~»project—> TB

group on coordinate,
loc, loc, count

count

project @ SP 4

id, fext,
coordinate,
ist

compute
dist
o
loc=CA4

(c) Version 3: A refined version to optimize the performance by push-
ing the filter operator past the join operator.

project—> TB

coordinate,
loc

Figure 1: Example of a workflow for analyzing tweets that
discuss popular wildfires, and the workflow’s evolution in
three versions. Orange operators are modified, green operators
are added, and a red cross indicates a deleted operator.

When an analyst employs workflows for data analytics, she
starts with a basic workflow and iteratively revises it based on
the observed execution results as part of the iterative process of
data analytics [8, 27]. She may edit the operators and links in the
workflow during each iteration, producing a new version of the
workflow. Figure 1 shows an overview of a workflow for analyzing
tweets related to popular wildfires and the tweets’ distance from
the center of the wildfire. The workflow includes three sinks, each

https://doi.org/10.1145/3597465.3605219
https://doi.org/10.1145/3597465.3605219
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597465.3605219&domain=pdf&date_stamp=2023-07-21

HILDA °23, June 18, 2023, Seattle, WA, USA

producing different results based on the logic of its upstream op-
erators. The example illustrates the workflow’s evolution in three
different versions.

Motivation. As an analyst iteratively refines a workflow, many ver-
sions can be created. For example, one deployment of Texera [19],
a collaborative data processing system, recorded a total of 2,424
executions of different workflow versions for one workflow [3].
Tracking the versions of a workflow and the outcomes of their
executions has gained interest recently [5, 26]. One observation in
many applications is that versions of the same workflow frequently
produce the same results [15, 29]. In other words, given an instance
of input sources, the versions produce the same sink results. For
instance, there is an overlap in 45% of the daily tasks performed by
Microsoft’s analytics clusters [15]. 27% of 9, 486 workflows from
Ant Financial to detect fraud transactions share common compu-
tation, and 6% of them is equivalent [29]. In the running example,
the modifications applied to version 1b to transform it into ver-
sion 1c resulted in each sink producing the same results as the
corresponding sinks in version 1a.

The execution of a workflow can be time-consuming and re-
source intensive due to the large amounts of input data and the
workflow’s complex operators such as advanced machine learning
techniques and User-defined functions (UDF) [16]. One way to save
time and resources is to reuse the results of previously executed
versions of the same workflow by identifying those that produce
equivalent results. In particular, when a user submits a new ver-
sion execution request, we want to compare the version with a
prior executed version. If the two versions are equivalent, then the
new version does not need to be executed, and we can reuse the
materialized result of the prior one.

Limitations of existing works. To reuse previous results to an-
swer a new execution request, a body of existing work [9, 15] relies
on identifying the exact match between the workflow versions. One
limitation of these works is that they cannot identify reuse oppor-
tunities from versions when their DAGs’ have different structures,
e.g., the workflow version 1a and version 1c in the running example
are semantically equivalent, i.e., their sinks produce the same re-
sults, but their DAGs have different structures. Other works take a
semantic approach by analyzing the workflows’ predicates [22, 27]
to identify redundant and overlapping tuples between multiple jobs.
However, these works cannot identify the exact equivalence of the
results of the two workflows. Thus we want to study the following:

PROBLEM STATEMENT. Given a set of results from executions of
previous versions of a workflow and an execution request of a new
version, find a subset of prior versions, which include sinks that
produce equivalent results to those in the execution request’s version.

Our approach and challenges. The problem of testing the equiv-
alence of two queries has been studied for SQL [7], Spark pro-
grams [10] or workflow versions [23]. We can leverage these ver-
ifiers, and a naive solution to the “result reuse” problem stated
above is to iteratively check every past version to see if it produces
results equivalent to the new one by passing the pair to a verifier.
While this approach is straightforward, it is not efficient when the
number of versions increases, leading to many pairwise tests before
finding an equivalent one. We want a framework that can rank

Alsudais and Kumar, et al.

and prune the set of previous versions based on their semantic
equivalence or inequivalence compared to the new version’s exe-
cution request. When the verifier checks to see if two workflow
versions are equivalent, it does so by following an internal proce-
dure. Since the tested pairs share similar structures, there may be a
lot of computational overlap with previously-tested version pairs.
To save computational resources and time, we want to identify and
avoid such repeated computations. To address these challenges, we
propose a novel framework called Raven, which accelerates the
execution of a workflow version by detecting previously-stored
semantically equivalent results from previous versions. We make
the following contributions in this paper:

(1) We propose a framework and a novel technique to let the op-
timizer identify and reuse the materialized result of previous
equivalent versions of a workflow using Veer (§3).

(2) We propose two approaches to ranking the versions and
choosing those with a high rank to be tested for equivalence
with a given execution request (§4.1).

(3) We extend Veer by adding optimization techniques that allow
it to reuse computations (needed to do the verification) from
historical equivalence tests (§4.2).

(4) We evaluate the execution speedup of Raven against a base-
line on a real-world workload (§ 5).

1.1 Related Work

There is extensive research on reusing stored results to answer an
execution request, as summarized in the following surveys [1, 6, 12].
Exact expression matching. Compared to general materializa-
tion reuse methods, exact pattern matching is a more specific and
syntax-based approach, commonly used in systems with high work-
loads [15, 24, 28]. Raven differs as it employs an approach by identi-
fying semantic equivalence and is not limited to exact DAG match.
Reusing intermediate results. Several works reuse intermediate
results found in iterative pipelines [14, 17, 21]. Restore [9] caches
map-reduce and intermediate jobs, while Recycler [20] uses a graph
to recycle fine-grained partial query results. Nectar [11] caches sub-
computations that are likely to be reused. Raven aims to identify
previous equivalent versions with respect to the final results even
when there are changes.

Semantic reuse. Prior works such as Eva [27], Acorn [22], and
the work by LeFevre [18] proposed methods to semantically reuse
previous results, using techniques such as UDF signatures and pred-
icate overlap detection. These methods focus on detecting predicate
equivalence and overlap rather than final result equivalence.
Equivalence verification. Some works verify the equivalence of
SQL queries under certain assumptions [7, 30]. These solutions
cannot reason about UDF semantics, making them unsuitable for
detecting workflow version equivalence. Veer [23] addresses this
limitation by verifying the equivalence of two workflow versions
with UDFs, and Raven leverages it in its solution.

2 BACKGROUND

In this section, we give an overview of workflows and their edit
operations, discuss equivalence verifiers, and show how a workflow

Raven: Accelerating Execution of Iterative Data Analytics

version equivalence verifier (Veer) uses these equivalence verifiers
in its solution.

Data processing workflows and their edit operations. A work-
flow is a directed-acyclic graph (DAG) of operators, each with a
computation function and properties. Source operators have no
incoming links, while sink operators have no outgoing links and
produce final results. Workflows may have multiple sources and
sinks. Some of the sinks can have their results materialized as views.
A workflow undergoes many edits over time, resulting in differ-
ent versions [v1, .. .,v]. The versions are created through a series
of edit operations, including adding or deleting an operator or link,
or modifying an operator’s properties. These edit operations are
combined to form a transformation that can be applied to a work-
flow version to create a new version. A workflow edit mapping (M)
aligns operators and links between different versions to produce a
transformation from one version to the other. Unmapped operators
and links are considered to be deleted or inserted accordingly.

Equivalence verifier (EV). An EV takes a pair of SQL queries and
returns True when the pair produces the same result [7, 30] under
a specific table semantics. Proving the equivalence of two SQL
queries, in general, is undecidable [2], and an EV may require the
pair to meet certain restrictions in order to test their equivalence.

Workflow version equivalence verifier (Veer). Proving the
equivalence of two workflows can be challenging due to the se-
mantic richness of their operators, which can include complex
data processing tasks, such as UDFs or machine learning opera-
tions [8, 27]. Our recent study [23] introduces Veer, a workflow
version equivalence verifier that leverages the changes between
the pair to prove their equivalence using EVs as a black box.

Veer takes two workflow versions as input, a transformation
that contains the edit operations converting one version to the
other, and an EV. It uses the EV to verify the equivalence of the
two versions by decomposing the pair into multiple portions called
“windows,” each of which includes local changes and satisfies the
EV’s restrictions. Each window is then provided to the EV to verify
if the pair of portions in the window are equivalent. For simplicity,
we refer to this step as “testing the equivalence of the window,” as
illustrated in Figure 2. In this way, Veer identifies which sinks in
the two versions produce equivalent results. Next we give formal
definitions of Veer’s concepts.

Figure 2: Veer: a workflow version equivalence verifier.

Definition 2.1 (Window, covering window, and valid window [23]).
Consider two workflow versions P and Q with a set of edits § =
{c1...cp} from P to Q and a corresponding mapping M from P to
Q. A window, denoted as w, is a pair of sub-DAGs w(P) and «(Q),
where o (P) (respectively v (Q)) is a connected induced sub-DAG of

HILDA °23, June 18, 2023, Seattle, WA, USA

P (respectively Q). Each pair of operators/links under the mapping
M should be either both in w or both outside w. A covering window,
denoted as w¢, is a window to cover a set of changes C C 4. A
window is valid w.r.t. an EV if it satisfies the EV’s restrictions.

Definition 2.2 (Equivalence of the two sub-DAGs in a window [23]).
The two sub-DAGs w(P) and w(Q) of a window w are equivalent,
denoted as “w(P) = w(Q), if they are equivalent as two stand-alone
DAG’s without considering the constraints from their upstream
operators.

Definition 2.3 (Decomposition [23]). For a version pair P and Q
with a set of edit operations § = {c;1 ...cp} from P to Q, a decom-
position, denoted as 6, is a set of windows {wj, ..., @wm} such that:

e Each edit is in one and only one of the windows;
o All the windows are disjoint;
o The union of the windows is the version pair.

3 RAVEN: OVERVIEW

Figure 3 presents an overview of the steps involved in the opti-
mization lifecycle to accelerate the execution of a workflow version
DAG by Raven. Given an execution request for the workflow ver-
sion vy, (called the “current version”), the optimizer searches for a
“prior version” up € [01,...,0p-1], which has sinks equivalent to
the corresponding sinks in v,,. It takes the following steps.

Step 1. Ranking the prior versions. Raven ranks the previous
versions in the order of their likelihood of being equivalent to the
current one. To do this, we propose two approaches. One uses the
edit mapping between the pairwise of v, and every other prior ver-
sion vy. Another approach is to organize the versions of a workflow
in a hierarchy and model the versions in a lightweight represen-
tation to speed up the traversal search of the prior versions. In
this way, we avoid testing the equivalence with every past version.
Raven chooses a prior version with the highest rank to test its
equivalence with the current one.

2} (\

(o) version 1. rank the versions
& execution 9
choIse one Up CD
workflow

AN
||l versions
request
2. test
plan . Uity —
equivalence = ¢ || Veer
[Execution Engine]

Workflow Optimizer
(Raven)

\ /

Figure 3: Overview of Raven’s framework.

Step 2: Testing the equivalence of the version pair. Raven uses
Veer to test the equivalence of the pair of versions. Veer adopts a
procedure based on an edit mapping between the pair to return a set
of equivalent sinks. When we invoke Veer multiple times to do the
equivalence testing by passing multiple pairwise versions with a
lot of commonalities in their structural DAG, some of the steps can
be redundant. Raven extends Veer to avoid repeated computation
by performing memoization and checkpointing.

HILDA °23, June 18, 2023, Seattle, WA, USA

We repeat the above steps till all the sinks in the current workflow
version have been answered using prior versions, or there are no
more previous versions left to check.

4 REUSE-AWARE OPTIMIZATION

In this section, we propose two ideas to optimize the performance
of workflow version execution in Raven. Firstly, we discuss how
Raven ranks versions to select the one with the highest score for
equivalence testing with the current version (Section 4.1). Secondly,
we highlight the issue where, even if the versions are ranked in
the correct order, not all equivalent sinks may be found in the first
chosen version, leading to additional pairs being pushed to Veer.
This can result in repeated computations in Veer’s internals. To
address this, Raven extends Veer to reuse previous computations
from other evaluations of previous pairs (Section 4.2).

4.1 Ranking Versions for Equivalence Check

4.1.1 Ranking by using an edit mapping. A naive way to rank the
versions is to choose those with the fewest edits compared to the
current version. The intuition is that with a smaller number of edits,
Veer needs to do fewer decompositions, and we can get the answer
faster. To find the edits for each pair of the current version and a
prior one, we iterate over every prior version DAG and pass the pair
to a Graph Edit Distance (GED) algorithm, which returns the set of
edit operations needed to transform one graph to the other [4]. We
then rank the versions based on the number of differences, giving
a higher score to those with fewer edits.

The following example shows that using the minimum edit dis-
tance for ranking may not necessarily rank the equivalent version
higher than an inequivalent one,

Example 4.1. Consider the following three versions:
v1 = {Project(all) — Filter(age > 24) — Aggr(count by age)}.
vp = {Project(all) — Aggr(count by age)}.
v3 = {Filter(age > 24) — Project(all) — Aggr(count by age)}.
Consider a mapping for transforming v; to v3, which involves sub-
stituting Project in v1 with Filter in v3 and substituting Filter in v;
with Project in v3 yielding two edits. The mapping to transform v
to v3 is done by adding a Filter operator, yielding a single edit oper-
ation. Given the ranking proposed above, the algorithm chooses v

as it has fewer differences with v3 i.e., 1 compared to the differences
between the pair (v1,0v3) i.e., 2. However, vy # v3 while v; = vs.

While this approach helps us quickly get an answer if a prior
and the current version pair are equivalent or not, running the GED
algorithm from scratch every time for every version pair can be
computationally expensive due to its NP-hard complexity [4].

4.1.2 Ranking by using a view representation. The method pre-
sented earlier focuses on ranking versions but does not consider
the actual stored results of sinks, i.e., views. To efficiently identify
reusable views across different versions, we need a lightweight
fingerprint representation that models the semantics of the sinks’
results. We organize the sinks in a hierarchy to facilitate traver-
sal for finding reusable views and avoid inspecting versions that
include sinks that are guaranteed to be not equivalent to the exe-
cution request. We model the result of a sink as a tuple (T, S, 5)

Alsudais and Kumar, et al.

where T is a First-Order-Logic (FOL) formula indicating the exis-
tence of a tuple in the table, and S and O are the lists of fields in
the table and the fields on which the table is ordered, respectively.
By using (§ 5) we can quickly identify and eliminate views that
are not equivalent to the sinks in the execution request, without
considering the complexity of determining a tuple’s existence and
its cardinality [7, 18] represented by T in this paper.

Representation construction. To construct the view represen-
tation, we follow the same techniques in existing literature [7, 30]
by using predefined transformations for each operator. Operators
inherit the representation from their upstream/parent operator and
update the fields based on their internal logic.

We leverage the knowledge of the changes made to the previous

version and build the representation incrementally by propagat-
ing the difference starting from a changed operator closest to the
source. This requires tracking and storing transformation results
on every operator, not just in the sink. We can choose between
constructing the representation from scratch or propagating the
delta considering factors such as how far the changes are from the
sinks and the size of the workflow.
View organization in a V2-structure. We organize the sinks in
the versions in a hierarchy “V2”, which stands for “versioned views”.
A node includes the view representation and includes physical
pointers to where the sinks that have the same representation
(not necessarily equivalent) are grouped. An edge between two
nodes means the result of the child node is a subset of the result
of the parent node (when ignoring the T field). A subset result
can be detected by running two tests, one for each field in the
representation, as discussed below.

Definition 4.2 (V2 Node Subsumption Test). Given a node v and
a child node u, we say u is a proper subset of node v, denoted as“
u C v, when Oy, is a subset of O, and S, is a subset of S,,.

The intuition is that the set of projected columns in v includes
all of the elements in the set of projected columns in u, and the
ordering fields in v are more general than in u. The structure may
have multiple root nodes. Figure 4 shows a sample V2-structure to
organize the sinks in the running example. Each node has a physical
pointer to the saved results of the sinks in this node.

n -- count

Figure 4: A sample V2-structure to organize the saved results
of sinks from the first two versions in the running example.

V2-structure traversal and maintenance. We use the task of
finding an equivalent view for the word cloud sink in v3 of the
running example to explain the traversal and maintenance of the
hierarchy. Given a new workflow execution request v3, we first
construct the view representation of the word cloud sink, S= [i,t,¢]

Raven: Accelerating Execution of Iterative Data Analytics

and O = []. After that, we traverse the hierarchy in a depth-first-
search manner. Starting from a root node, we simultaneously run
two tests, one to ask if the list S in the node contains the one in
the current version, and the other is to ask if the list O in the word
cloud sink contains the one in the node. Both tests must return
True; otherwise, we stop traversing the children of that node.

In this example, one of the tests on the first node in Figure 4
returns False. Therefore, we continue the search by inspecting a
sibling node. When both tests return True, we further test if both
(§ 5) in the node are the same as those in the current version. If
the two representations are not the same, we expand the search to
test the child nodes. In this example, both tests return True when
testing the second node and their representations are not the same,
so we consider the child nodes and follow the same procedure.
In this example, the test on the child node shows that the two
representations are the same. If the two representations are the
same, we retrieve the physical pointers to the versions the node
points to. We iterate through every version on the list and push
it to Veer with the current version to test their equivalence until
we find one that includes sinks equivalent to the current version.
Additionally, we add a new pointer to point to the current version.

When all of the sibling nodes are traversed and none of them are
expanded to test their child nodes, we insert a new node containing
the current version’s sink representation and a physical pointer to
its result. We do the same for every sink in the version. The benefit
of this lightweight representation resulted in pushing only one pair
to Veer, instead of iterating over every past version.

4.2 Reusing Past Equivalence Tests in Windows

Recall that Veer breaks the versions into smaller windows and
checks the equivalence of each window by passing it to an EV.
Veer reported that the time taken to verify a window by the EV
takes on average 87% of the total time [23] Veer takes. Some of
these windows may have been checked in previous iterations when
testing other pairs. Therefore, memoizing the results of previous
windows’ equivalence checks can help improve the performance.

In this section, we explore two methods for optimizing Veer’s
performance by extending it to reuse information about previously
tested windows. The first method groups windows into equivalence
classes and the second involves “chopping” a version pair into a
smaller portion and excluding the chopped portion in the decom-
position process based on the knowledge that it has already been
verified in previous computations that it is equivalent.

4.2.1 Grouping windows in equivalence classes. We explain the
details of extending Veer to group windows into equivalence classes.
An equivalence class is a set of elements, each of which is a sub-
DAG from a window that have been proven equivalent by Veer.
When an analyst submits an execution request for a second version,
Raven pushes the two versions to Veer. For each window, Veer
checks if the sub-DAGs were seen before by checking a map, where
the key is the sub-DAG and the value is the sub-DAG’s equivalence
class. The map check yields the following possible cases.

1. None of the two sub-DAGs were tested before: Veer pushes
the window to the EV to test their equivalence. If the EV proves the
two sub-DAGs in the window are equivalent, then Veer uses this
knowledge to group them in the same equivalence class. The newly

HILDA °23, June 18, 2023, Seattle, WA, USA

created equivalence class is assigned an identifying label. On the
other hand, if the EV proves the two sub-DAGs are not equivalent,
then each sub-DAG will be assigned a new equivalence class label.

2. One sub-DAG only was tested before: Veer pushes the
pair to the EV. For the unseen sub-DAG, we assign it the same
equivalence class as the other one if the EV proves the pair is
equivalent. Otherwise, we give it a new equivalence class.

3. Both sub-DAGs were tested before: Veer checks if the pair
is in the same equivalence class by checking the value of their
equivalence class using their key. If so, it marks their equivalence,
and there is no need to push the pair to the EV. Otherwise, ev-
ery sub-DAG is in a different equivalence class. Then we check
a memoization matrix as explained in Figure 6. If the two equiva-
lence classes were checked before, it means they are not equivalent.
Otherwise, we push the pair to the EV. If the EV says they are
equivalent, we merge the two classes and update the sub-DAGs’
pointers in the map to point to the newly merged class.

Finally, for the cases where a sub-DAG was never seen before,
we insert a new entry in the map with the sub-DAG as the key
and the value being a pointer to the sub-DAG’s equivalence class.
Figure 5 illustrates an example of three equivalent windows from
four different versions. When modifying Veer to use equivalence
classes, it only pushes the first two windows but not the third, thus
it can save computation.

A e e O A B SR

U1 sal STOK T2, 1/1f0]o

Qﬂ\miccl*@H& r 2011 0

U2~ seprsal, sal=10k 3|lofof1].
age | _comt. M2

Q Figure 6: A sample 2-
filter —>project . .

U3) R D matrix for storing

sal >10K dept, sal, age, .
8¢_____count the equivalence tests be-

tween a pair of equiv-
alence classes. A cell
initially is 0 and is
changed to 1 when the
two classes are tested.

U4 sal STOK age.
coun.

Figure 5: Example to show three
different windows belonging to the
same equivalence class.

4.2.2 Checkpointing previous decompositions. While the previous
discussion solved the problem of avoiding repeated checks on the
EV, we still need to do the decomposition from scratch. This re-
peated computation can be avoided, as shown in the example in
Figure 7. Suppose we test the equivalence of the first two versions,
and we know the two sub-DAGs in a window w1 were equivalent.
Suppose Raven ranks v; higher and selects this version first to test
its equivalence to the current request v3. Instead of computing the
edit distance between the two versions (v1,v3) from scratch, we
can exploit the sequence of deltas recorded by the analysts when
performing the edits. Knowing the accumulative edits allows us to
identify the fact that the portion until the end of the window was
proven equivalent in a previous test. Thus, we extend Veer to let
it checkpoint and cut the portion that was tested before and only
perform the decomposition on the parts after the checkpoint.

5 PRELIMINARY EXPERIMENTS

In this section, we report our experimental results of evaluating
the effectiveness of Raven.

HILDA °23, June 18, 2023, Seattle, WA, USA

B e Cuy

sal >]10K 48€ checkpoint
count

|

age,
count

‘> filter 4@

age <40

depi7sal, ¢/ S70K — age,
age sal =10 count

Figure 7: Example to show reusing the knowledge of a previ-
ous equivalence test to place a marker and ignore a portion
of the pair when performing a new equivalence test.

5.1 Experimental Setup

Real workload. We analyzed a total of 179 real-world pipelines
from a deployment of Texera [19]. Among the workflows, 81% had
deterministic sources and operators, and we focused on these work-
flows. Among these workflows, 8% consisted of 8 operators, and
another 8% had 12 operators. 76% of the workflows contained a UDF
operator. Additionally, 33% of the workflows consisted of 3 different
versions, while 19% had 35 versions. 58% of the versions had a single
edit, while 22% had two edits. We also observed that the UDF oper-
ator was changed in 17% of the cases. From these workflows, we
selected four as a representative subset excluding those with non-
deterministic data sources. We created similar workflows, which
are presented as W1... W4 in Table 1. We used IMDB [13] (~ 3GB)
and Twitter [25] (= 0.5GB) datasets. All versions included UDF
operators. The average time it took to execute a version without
reuse is 1.9 minutes.
Table 1: Workloads used in the experiments.

Work L. #of #of | #of % Of:
Description . . equivalent

flow# operators | sinks | versions | .

sinks

w1 IMDB 1.'at10 of n_ontonglnal 13 3 3 55
to original movie titles

w2 IMDB all movies qf directors 2% 5 5 55
with certain criteria

w3 Tobacco Twitter analysis 18 1 5 60

w4 Wildfire Twitter analysis 12 3 12 16

Implementation. We evaluated our solution against the Recy-
cler [20] baseline, which compares a workflow query DAG with
previously executed workflow DAGs by examining their structures
for equality. We extended Recycler to be able to match a few non-
relational operators, whose semantics can be abstracted to simple
APIs, such as (A, F, K) [18], where “A is the set of attributes, F is
the set of filters previously applied to the input, and K is the current
grouping of the input, which captures the keys of the data” We im-
plemented a basic Raven, denoted Raveny, which is a basic approach
that iterates over past versions without ranking them and uses a
verifier without enabling reusing previous tests. We implemented
Raven,, which is advanced Raven and included ranking past ver-
sions and reusing previous equivalence tests. We implemented the
Veer [23] verifier and used Equitas [30] as its EV. We implemented
the baseline and Raven using Java8 and Scala in Texera [19]. The
system ran on a single node of a MacBook Pro running the MacOS
Monterey operating system with a 2.2GHz Intel Core i7 CPU, 16GB
DDR3 RAM, and a 256GB SSD.

Alsudais and Kumar, et al.

5.2 Performance of Identifying Reuse and
Execution Speedup

Figure 8 shows the results of evaluating the effectiveness of Raven
in identifying semantic equivalence of workflows with UDF com-
pared to the baseline. Recycler successfully identified 25% of the
equivalent cases, while both Raveny, and Raven, successfully iden-
tified 60% of the equivalent cases. Recycler failed to rewrite any
of the workflow versions to reuse the identified equivalent results,
yielding a speedup of 1. On the other hand, Raven}, and Raven,
were able to rewrite the workflows to reuse the results for 40% of
the equivalent sinks, yielding a speedup of up to 322 using Raveny,
and 747 using Raven, for W3. The inability to rewrite a workflow
version to reuse the identified equivalent sinks, in some cases, is due
to the following: the workflow version DAG may include a sink that
is not identified as equivalent, and its output depends on executing
all of the operators in the DAG. To overcome this limitation, storing
intermediate results could be a potential solution. Overall, Raven,
outperformed Raveny, by achieving a higher speedup, thanks to the
utilization of ranking and reusing tests of other windows by group-
ing them in equivalence classes. None of the three approaches could
reason about the semantics of W4 because W4 involved changes
made to an ML model that were not supported by the approaches.

250 — T

"Recycler mm— Ranking' [—
= Raven, == Raven,,
1000 200 - Calling Veer =——
g -

3 100 2150 -
g E
o o
§ 10 Eto0 - 1
3
3
8 °[q ﬂ 7
0.1 0 .
wi wa

wi V\ﬁorkﬂow ws w4 w2 Wc;rkilty\‘/{l3
(a) Execution speedup. (b) Time taken to identify reuse.
Figure 8: Effectiveness of Raven. An “X” indicates the workflow

was not supported by the solution.

Figure 8b shows the overhead of the three approaches. The time
it took Recycler to match a DAG with previous DAGs was negligible
due to the small size of historically seen queries, so we do not report
its overhead in Figure 8b. Raveny, and Raven, had more overhead
than Recycler because they needed to invoke Veer multiple times.
The overhead of Raven, is less than Raveny, because it used the
equivalence class concept and the ranking approach to optimize
and reduce the time spent on Veer.

6 CONCLUSION

In this paper, we proposed Raven, a novel optimization technique
that uses stored results from previously executed versions to answer
a given version execution request after testing their equivalence. We
showed how Raven uses an equivalence verifier in its modules. We
proposed ranking the versions and utilizing previously conducted
equivalence tests on workflow versions or portions of the versions
to minimize redundant computations. We empirically evaluated the
effectiveness of Raven, which achieved up to 747 times speedup,
compared to other baselines.

ACKNOWLEDGMENTS

This work is supported by a graduate fellowship from King Saud
University and is supported by NSF under the award IIT 2107150.

Raven: Accelerating Execution of Iterative Data Analytics

REFERENCES

[1] Serge Abiteboul and Oliver M. Duschka. 1998.

3

[4

[10

(11

[12

[13
[14

[15

[16

= =

=

]

]

Complexity of Answering
Queries Using Materialized Views. In Proceedings of the Seventeenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 1-3, 1998,
Seattle, Washington, USA, Alberto O. Mendelzon and Jan Paredaens (Eds.). ACM
Press, 254-263. https://doi.org/10.1145/275487.275516

Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases:
The Logical Level (1st ed.). Addison-Wesley Longman Publishing Co., Inc., USA.
Sadeem Alsudais. 2022. Drove: Tracking Execution Results of Workflows on
Large Data. In Proceedings of the VLDB 2022 PhD Workshop co-located with the 48th
International Conference on Very Large Databases (VLDB 2022), Sydney, Australia,
September 5, 2022 (CEUR Workshop Proceedings), Zhifeng Bao and Timos K. Sellis
(Eds.), Vol. 3186. CEUR-WS.org. http://ceur-ws.org/Vol-3186/paper_10.pdf
David B. Blumenthal, Nicolas Boria, Johann Gamper, Sébastien Bougleux, and
Luc Brun. 2020. Comparing heuristics for graph edit distance computation. VLDB
7.29,1(2020), 419-458. https://doi.org/10.1007/s00778-019-00544-1

Andrew Chen, Andy Chow, Aaron Davidson, Arjun DCunha, Ali Ghodsi, Sue Ann
Hong, Andy Konwinski, Clemens Mewald, Siddharth Murching, Tomas Nykodym,
Paul Ogilvie, Mani Parkhe, Avesh Singh, Fen Xie, Matei Zaharia, Richard Zang,
Juntai Zheng, and Corey Zumar. 2020. Developments in MLflow: A System to
Accelerate the Machine Learning Lifecycle. In DEEM@SIGMOD 20.

Rada Chirkova, Chen Li, and Jia Li. 2006. Answering queries using materialized
views with minimum size. VLDB . 15, 3 (2006), 191-210.

Shumo Chu, Brendan Murphy, Jared Roesch, Alvin Cheung, and Dan Suciu. 2018.
Axiomatic Foundations and Algorithms for Deciding Semantic Equivalences of
SQL Queries. VLDB’18 (2018).

Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Zoi Kaoudi, Tilmann Rabl, and
Volker Markl. 2022. Materialization and Reuse Optimizations for Production
Data Science Pipelines. In SIGMOD °22: International Conference on Management
of Data, Philadelphia, PA, USA, June 12 - 17, 2022. ACM, 1962-1976. https:
//doi.org/10.1145/3514221.3526186

Iman Elghandour and Ashraf Aboulnaga. 2012. ReStore: Reusing Results of
MapReduce Jobs. VLDB’12 (2012).

Shelly Grossman, Sara Cohen, Shachar Itzhaky, Noam Rinetzky, and Mooly Sagiv.
2017. Verifying Equivalence of Spark Programs. In CAV’17.

Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath, Yuan
Yu, and Li Zhuang. 2010. Nectar: Automatic Management of Data and Computa-
tion in Datacenters. In 9th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2010, October 4-6, 2010, Vancouver, BC, Canada, Proceedings,
Remzi H. Arpaci-Dusseau and Brad Chen (Eds.). USENIX Association, 75-88.
http://www.usenix.org/events/osdil0/tech/full_papers/Gunda.pdf

Alon Y. Halevy. 2001. Answering Queries Using Views: A Survey. The VLDB
Journal 10, 4 (Dec. 2001), 270-294. https://doi.org/10.1007/s007780100054
IMDB Datasets Website. https://www.imdb.com/interfaces/

Milena Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo Goncalves. 2009.
An architecture for recycling intermediates in a column-store. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, Ugur Cetintemel,
Stanley B. Zdonik, Donald Kossmann, and Nesime Tatbul (Eds.). ACM, 309-320.
https://doi.org/10.1145/1559845.1559879

Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Patel. 2018. Select-
ing Subexpressions to Materialize at Datacenter Scale. Proc. VLDB Endow. 11, 7
(2018), 800-812. https://doi.org/10.14778/3192965.3192971

Avinash Kumar, Zuozhi Wang, Shengquan Ni, and Chen Li. 2020. Amber: A
Debuggable Dataflow System Based on the Actor Model. Proc. VLDB Endow. 13,

(18]

=
2

[20

[21

[22

(28]

[30

HILDA °23, June 18, 2023, Seattle, WA, USA

5 (2020), 740-753. https://doi.org/10.14778/3377369.3377381

Mayuresh Kunjir, Brandon Fain, Kamesh Munagala, and Shivnath Babu. 2017.
ROBUS: Fair Cache Allocation for Data-parallel Workloads. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu, Wenchao Zhou, Rada
Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 219-234. https://doi.org/10.
1145/3035918.3064018

Jeff LeFevre, Jagan Sankaranarayanan, Hakan Hacigiimiis, Jun’ichi Tatemura,
Neoklis Polyzotis, and Michael J. Carey. 2014. Opportunistic physical design
for big data analytics. In International Conference on Management of Data, SIG-
MOD 2014, Snowbird, UT, USA, June 22-27, 2014, Curtis E. Dyreson, Feifei Li, and
M. Tamer Ozsu (Eds.). ACM, 851-862. https://doi.org/10.1145/2588555.2610512
Xiaozhen Liu, Zuozhi Wang, Shengquan Ni, Sadeem Alsudais, Yicong Huang,
Avinash Kumar, and Chen Li. 2022. Demonstration of Collaborative and Interac-
tive Workflow-Based Data Analytics in Texera. Proc. VLDB Endow. 15, 12 (2022),
3738-3741. https://www.vldb.org/pvldb/vol15/p3738-liu.pdf

Fabian Nagel, Peter A. Boncz, and Stratis Viglas. 2013. Recycling in pipelined
query evaluation. In ICDE’13.

Luis Leopoldo Perez and Christopher M. Jermaine. 2014. History-aware query
optimization with materialized intermediate views. In IEEE 30th International
Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4,

2014, Isabel F. Cruz, Elena Ferrari, Yufei Tao, Elisa Bertino, and Goce Trajcevski
(Eds.). IEEE Computer Society, 520-531. https://doi.org/10.1109/ICDE.2014.

6816678

Lana Ramjit, Matteo Interlandi, Eugene Wu, and Ravi Netravali. 2019. Acorn: Ag-
gressive Result Caching in Distributed Data Processing Frameworks. In Proceed-
ings of the ACM Symposium on Cloud Computing, SoCC 2019, Santa Cruz, CA, USA,
November 20-23, 2019. ACM, 206-219. https://doi.org/10.1145/3357223.3362702
Veer: Verifying Equivalence of Workflow Versions in Iterative Data Analytics
(Technical Report). https://sadeemsaleh.github.io/Veer__Extended_.pdf.

Yasin N. Silva, Per-Ake Larson, and Jingren Zhou. 2012. Exploiting Common
Subexpressions for Cloud Query Processing. In IEEE 28th International Conference
on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1-5
April, 2012, Anastasios Kementsietsidis and Marcos Antonio Vaz Salles (Eds.).
IEEE Computer Society, 1337-1348. https://doi.org/10.1109/ICDE.2012.106
Twitter APIv1.1. https://developer.twitter.com/en/docs/twitter-api/v1/tweets/
filter-realtime/overview

Simon Woodman, Hugo Hiden, Paul Watson, and Paolo Missier. 2011. Achieving
reproducibility by combining provenance with service and workflow versioning.
In WORKS’11.

Zhuangdi Xu, Gaurav Tarlok Kakkar, Joy Arulraj, and Umakishore Ramachandran.
2022. EVA: A Symbolic Approach to Accelerating Exploratory Video Analytics
with Materialized Views. In SIGMOD °22: International Conference on Management
of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary Ives, Angela Bonifati,
and Amr El Abbadi (Eds.). ACM, 602-616. https://doi.org/10.1145/3514221.
3526142

Jingren Zhou, Per-Ake Larson, Johann Christoph Freytag, and Wolfgang Lehner.
2007. Efficient exploitation of similar subexpressions for query processing. In
SIGMOD’07.

Qi Zhou, Joy Arulraj, Shamkant B. Navathe, William Harris, and Jinpeng Wu.
2022. SPES: A Symbolic Approach to Proving Query Equivalence Under Bag
Semantics. (2022), 2735-2748. https://doi.org/10.1109/ICDE53745.2022.00250
Qi Zhou, Joy Arulraj, Shamkant B. Navathe, William Harris, and Dong Xu. 2019.
Automated Verification of Query Equivalence Using Satisfiability Modulo Theo-
ries. VLDB’19 (2019).

https://doi.org/10.1145/275487.275516
http://ceur-ws.org/Vol-3186/paper_10.pdf
https://doi.org/10.1007/s00778-019-00544-1
https://doi.org/10.1145/3514221.3526186
https://doi.org/10.1145/3514221.3526186
http://www.usenix.org/events/osdi10/tech/full_papers/Gunda.pdf
https://doi.org/10.1007/s007780100054
https://www.imdb.com/interfaces/
https://doi.org/10.1145/1559845.1559879
https://doi.org/10.14778/3192965.3192971
https://doi.org/10.14778/3377369.3377381
https://doi.org/10.1145/3035918.3064018
https://doi.org/10.1145/3035918.3064018
https://doi.org/10.1145/2588555.2610512
https://www.vldb.org/pvldb/vol15/p3738-liu.pdf
https://doi.org/10.1109/ICDE.2014.6816678
https://doi.org/10.1109/ICDE.2014.6816678
https://doi.org/10.1145/3357223.3362702
https://sadeemsaleh.github.io/Veer__Extended_.pdf
https://doi.org/10.1109/ICDE.2012.106
https://developer.twitter.com/en/docs/twitter-api/v1/tweets/filter-realtime/overview
https://developer.twitter.com/en/docs/twitter-api/v1/tweets/filter-realtime/overview
https://doi.org/10.1145/3514221.3526142
https://doi.org/10.1145/3514221.3526142
https://doi.org/10.1109/ICDE53745.2022.00250

	Abstract
	1 Introduction
	1.1 Related Work

	2 Background
	3 Raven: Overview
	4 Reuse-aware Optimization
	4.1 Ranking Versions for Equivalence Check
	4.2 Reusing Past Equivalence Tests in Windows

	5 Preliminary Experiments
	5.1 Experimental Setup
	5.2 Performance of Identifying Reuse and Execution Speedup

	6 Conclusion
	Acknowledgments
	References

