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Abstract

While industrial demand response has become a prominent strategy for power-intensive
chemical plants to remain cost-competitive, the financially incentivized provision of load
reduction capacities, also called interruptible load, to the power grid is still a less explored
topic. Here, a major challenge lies in dealing with the uncertainty that one does not know
when load reduction will be requested. In this work, a scheduling model for a continuous
industrial process providing interruptible load is developed, where we apply an adjustable
robust optimization approach to address the uncertainty. The main difference to previous
works is that we incorporate both continuous and binary recourse variables. When applied
in our computational case study, the proposed model achieves significant cost savings
when compared with a model that only considers continuous recourse.
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1. Introduction

In recent years, there have been significant advances in industrial demand response (DR)
(Zhang and Grossmann, 2016), which has enabled large industrial consumers of
electricity, such as power-intensive chemical plants, to reduce their operating costs by
altering their power usage in response to varying electricity prices. DR is also beneficial
to the power grid as it helps maintain grid stability, and a particularly effective way to do
so is through the provision of interruptible load, which constitutes a form of ancillary
services (Dowling et al., 2017). Here, economic incentives are offered to electricity
consumers for committing load reduction capacities (that is, interruptible load) up to the
agreed amount when requested by the grid operator.

The major challenge in providing interruptible load is that load reduction demand is not
known in advance, but one must still guarantee dispatch upon request. Disregarding this
uncertainty may jeopardize plant safety or lead to situations in which it is no longer
possible to satisfy all product demand. Zhang et al. (2015) capture the uncertainty using
a tailored uncertainty set and apply robust optimization (Ben-Tal et al., 2009) to this
scheduling problem. However, they only model the static case where no recourse is
considered, which leads to very conservative solutions. Zhang et al. (2016) address this
shortcoming by incorporating continuous recourse decisions using affine decision rules
to show significant increases in cost savings enabled by flexible recourse. Yet the
proposed approach still cannot realize the full potential of interruptible load since it does
not consider discrete recourse and hence does not allow, for example, full plant shutdowns
when load reduction is required, which is what is often done in practice. In this work, we
extend the previous framework to also include binary recourse decisions.
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2. Problem statement

Consider a power-intensive continuously operated plant that manufactures a set of
products. To satisfy demand, the products can be produced in the plant or purchased at a
higher expense. The plant consumes electricity whose varying price is assumed to be
known over the scheduling horizon. In addition, the plant can cut costs by providing
interruptible load to the grid. To this end, the plant makes a commitment to reduce its
electricity consumption at the grid operator’s request. Load reduction may not always be
requested but the plant earns revenue regardless. We assume that no additional payment
is made to the plant when load reduction is requested; this assumption can be tweaked
depending on the electricity market with no major changes to the model.

Given the plant model parameters (as discussed in Section 3) and a scheduling horizon,
the goal is to determine the production schedule that is feasible for all possible realizations
of load reduction while minimizing the total operating cost. Note that recourse variables,
e.g., production rates and purchase amounts, depend on the realization of the uncertainty.

3. Deterministic model formulation

The model presented here is based on formulations developed in previous works (Mitra
et al., 2012; Zhang et al., 2015) and is a direct extension of the model used in Zhang et
al. 2016. Hence, only a brief description of the various constraints is provided.

3.1. High-level formulation
The structure of the deterministic model can be broadly expressed as follows:

minimize Net operating cost (1a)
subjectto Feasible regions of operating modes (1b)
Transition constraints (10
Mass balance constraints (1d)
Initial conditions (1e)

The objective function is the cost of electricity plus the cost of additional products
purchased minus the revenue from providing interruptible load. We assume that the plant
can operate in different operating modes whose feasible regions are given in the form of
polytopes. One such example of a plant with two products, P1 and P2, is shown in Fig. 1.
Here, Region 1 could denote the off mode where no products are produced. Transition
constraints are used to enforce feasible mode switching. Fig. 2 shows an example of
requirements from the transition constraints. For instance, the process shown needs to
stay in the off mode for at least 8 h before it can switch to the startup mode. Mass balance
constraints ensure demand is satisfied through production or purchase; the remaining
products are stored. Initial conditions are required for the problem to be well-defined.

3.2. Interruptible load constraints
As mentioned previously, the grid operator can request load reduction (no greater than
the agreed amount) from the IL provider and the plant needs to alter its production
schedule to cater to that request. These alterations in production schedule are modeled by
introducing variables of the form:
PDpye = PDpyiy + PD,yyy YVmeEM,i€l,teT, (2a)
Vmt = Ime + Ime _vaM't €T, (2b)
where T denotes the set of time periods and PD,,;, is the production rate of product i in
mode m in time period t. The nominal production rate is denoted by PD,y;;, and PD,,;;
is the deviation from the nominal value when load reduction is requested. The binary
variable ¥,,,; equals 1 if the plant operates in mode m in time period t; J,,; is its nominal
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value while ¥,,; is a discrete recourse variable that can take the values -1, 0, or 1,
depending on the amount of load reduction requested. The decrease in power
consumption associated with the decrease in production or, in some cases, a process
shutdown must be at least as much as the amount of load reduction requested (LR;). This
is modeled as the following constraint:

z OmVme + ZZVmLPDmLt < —LR; VtEeT, (3)

where we assume that the electrlclty consumptlon is a linear function of production rates
with a constant §,,, and coefficient y,,,; for the selected operating mode.

Pl
Fig. 1: Example for feasible operating Fig. 2: Example for possible transitions
regions of a process with three operating between operating modes and corresponding
modes. operational constraints.

4. Multistage robust formulation with mixed-integer recourse

4.1. Uncertainty set
We adopt a “budget of uncertainty” approach (Bertsimas and Sim, 2004; Zhang et al.,
2015) to formulate the following uncertainty set W for the load reduction demand:

t
W={WEIR{|T|:<OSWksl Vk=1,...,t,Zwk=1}> VteT}, 4)

where w; is the normalized requested load reduction, i.e., LR; = IL;w;, IL; is the amount
of interruptible load provided, and I} is a budget parameter limiting the cumulative load
reduction required up to time t. The choice of I; can be based on historical data or the
electricity market rules. Note that I; must be a monotonically increasing parameter. We
now write Eq. (3) in terms of the normalized load reduction:

D I W) + > VPP W) < —will, VEET. (5)
m m i

4.2. Adjustable robust formulation with mixed-integer decision rules
The overall adjustable robust optimization problem can be formulated as follows:
minimize Net operating cost at w = 0 or worst-case net operating cost
subjectto Egs. (1b)—(1e), (2),(5) VweW, (6)
where we either minimize the net operating cost in the nominal or in the worst case. Here,
the deviation variables PD ¢, Jme, €tc., serve as the recourse variables and are hence
functions of the uncertain parameters w. Following the concept of lifted uncertainty
(Bertsimas and Georghiou, 2018) and the derivation for multistage problems in Feng et
al. 2021, we implement (potentially discontinuous) piecewise linear decisions rules for
the continuous variables and piecewise constant decision rules for the binary variables.
As an example, the decision rules for PD,,;; and J,,, have the following form:
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¢ Ky
PDpye = Z Z(anit,k W + X W) YVmeM,ielteT,  (7a)
t'=t-C k=1
t Ky
e = D Y P W VYmeMteT, (7b)
t'=t-7 k=1

where w and W are the auxiliary lifted uncertain parameters, K; is the number of
breakpoints associated with w, that define the piecewise structures of the decision rules,
and { determines how many uncertain parameters from previous time periods are
considered in the decision rules. The coefficients X, X, and ¥ define the decision rules
and are to be optimized. Problem (6) is a semi-infinite program, which we solve using the
reformulation approach that leverages linear programming duality (Yanikoglu et al.,
2019). For the sake of brevity, we refer the reader to Feng et al., 2021 for more details
including the full reformulation, which results in a mixed-integer linear program (MILP).

5. Case study

In this section, the proposed robust model with mixed-integer recourse is applied to an
illustrative example. All models were implemented in Julia v1.7 using the modeling
environment JuMP v0.22.3 and solved to 1% optimality gap using Gurobi v9.5.1 on an
Intel Core 17-8700 machine at 3.20 GHz with 8 GB RAM.

In this case study, a single-product plant is considered, and the scheduling problem is
solved over a time horizon of 48 hours with hourly time discretization. The plant can
operate in three different modes: off, startup, and on. Table 1 shows the details of the
polytopes (which here are simple ranges) that characterize the operating modes and the
electricity consumption in each operating mode. Table 2 shows the possible mode
transitions and the respective minimum stay times. Fig. 3 shows the electricity prices and
revenue from providing interruptible load over the time horizon. The plant is operating in
the on mode at the start and it is assumed that no mode switching has occurred in the eight
time periods prior to the beginning of the scheduling horizon.

The initial inventory is 1,000 kg. The minimum and maximum inventory levels are 0 and
5,000 kg, respectively, for all time points. At the end of the time horizon, the minimum
inventory level is set to 1,000 kg. The cost of purchasing additional products is $3/kg. If
interruptible load is provided in a time period, then the provided amount must be between
200 and 5,000 kWh. We assume that the budget parameter [; increases every 8 time
periods by 1, i.e., maximum load reduction can only be requested once during the first 8
h, twice during the first 16 h, etc., and at most six times during all 48 h.

Table 1: Polytope equations, fixed (J,,) and unit (¥,,) electricity consumption for each operating
mode (product indices have been omitted).

Operating mode Polytope 0., [KWh] Ym [kWh/kg]
Off 0<PD,; <0 0 0
Startup 5<PD,; <5 0 60
On 100 < PD,,,; <160 1,200 20

5.1. Advantages of discrete recourse

We solve the problem for different {, which controls the amount of past information used
in the decision rules. The flexibility in the solution increases with ¢, but it also increases
the model size and hence the computational intensity. Table 3 compares the costs between
the continuous recourse only case and the mixed-integer recourse case. The results show
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significant cost reductions, of up to 14%, for mixed-integer recourse case over continuous
recourse case. In Figs. 4 and 5, we see that the nominal electricity consumption profiles
in both cases are very similar. This implies that a major factor in the cost reduction is the
additional interruptible load provided in the mixed-integer recourse case. Figs. 5 and 7
show that this additional interruptible load is provided in time periods 27 and 48, where
process shutdown is a feasible recourse action. This is also reflected in the time period 48
of Fig. 7, where the nominal and recourse production amounts add up to zero, indicating
a process shutdown in the worst-case uncertainty realization.

Table 2: Possible transitions

between operating modes and

minimum stay times.

Transition Minimum
from mode m | stay time in
to mode m’ m' [h]
Off — startup 4
Startup — on 6
On — off 8

200

Price [$/MWh]

—— Electricity price

Interruptible load price
1

study

7000 .Pruvldad interruptible
load

Norminal electricity
consumption

6000

5000

price

——Electricity price
Interruptible load |

4000

3000

2000

1000

o ! n T

Price [$/MWh]

Electricity Consumption [kWh]

T
0 6 12 18 24

30

Time [h]

Fig. 4: Nominal electricity consumption and
interruptible load provided with continuous

recourse only and ¢ = 47.

Electricity Consumption [kWh]

12

7000
6000
5000
4000
3000
2000

1000

18

24

Time h1
Fig. 3: Electricity and interruptible load prices for case

30

36

42

[ .Provldad interruptible
load

Nominal electricity
consumption

—— Electricity price
Interruptible load

price

- 240

- 200

- 160

H 120

40

12

18

T
24

30
Time [h]

Fig. 5: Nominal electricity consumption and
interruptible load provided with mixed-

integer recourse and { = 47.

3600

800 | Demand Inventory Level
M Purchase Recourse 3200
= goo |- | Production Recourse —
2 Nominal Purchase 2800 B
= Nominal Production X
w400 =
g 2400
2 200 [ ] 3
z _ 2000 @
5 0 1600 2
o 2
° 12 c
g 20 00 g
£ 400 | 800 £
400
-600 [
o

o 6 12 18 24

Time [h]

30

Fig. 6: Nominal and worst-case recourse
product flows and nominal inventory profile
for the case with continuous recourse only

and { = 47.

is requested.

¢

47

Continuous
recourse only
(Cnominal $)

b
3,214.1

36

a2

48

In and Out Flows [kg]

-200

-a00

-600

3600

Demand
I Purchase Recourse
I Production Recourse

Nominal Purchase

Nominal Production

[—— Inventory Level

3200
2800

2400
I 2000
1600

1200

—800 |
0

J=47.

Table 3: Net operating cost (C) in $ for cases with different . Here, C"°™" is the cost
when no load reduction is requested and "¢ is the worst-case cost when load reduction

Mixed-integer
recourse
(Cnominal’ $)
2,755.3

6

12

18

24

30

36

42

48

Time [h]

800

400

48

Price [$/MWh]

Inventory Level [kg]

Continuous
recourse only
c"s,9)
3,266.3

Fig. 7: Nominal and worst-case recourse
product flows and nominal inventory profile
for the case with mixed-integer recourse and

Mixed-integer
recourse
(B3]
2,917.8



3202 J. S. Jagana et al.

23 3,214.1 2,755.3 3,266.3 2,917.8
11 3,214.1 2,810.4 3,282.7 2,999.8

5.2. Computation time

The computation times required to solve the models are shown in Table 4. As expected,
considering mixed-integer recourse is computationally significantly more expensive.
Adjusting the parameter { can help reduce the solution time but may give a solution with
higher objective value. Clearly, a trade-off exists between computational performance
and solution quality. In the example considered, setting { = 23 provides a solution of the
same quality as ¢ = 47 in much shorter time.

Table 4: Computation times for cases with different .

{ Continuous recourse only Mixed-integer recourse
47 90 s 3,626 s

23 32s 1,228 s

11 10s 253s

6. Conclusion

In this work, we developed a multistage robust optimization model for the scheduling of
power-intensive plants that also participate in the interruptible load market. Piecewise
linear/constant decision rules are used to determine the recourse actions necessary in both
continuous and discrete variables. When applied to an illustrative example, the proposed
model achieves significant cost savings compared to the formulation that only considers
continuous recourse. The flexibility that mixed-integer recourse provides comes at a
substantial computational cost. However, our model provides a way of exploring this
trade-off by setting the amount of past information allowed to be considered in the
decision rules. By doing so, we find that the problem can often be solved in much less
time with little sacrifice on the solution quality.
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