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Abstract 
While industrial demand response has become a prominent strategy for power-intensive 
chemical plants to remain cost-competitive, the financially incentivized provision of load 
reduction capacities, also called interruptible load, to the power grid is still a less explored 
topic. Here, a major challenge lies in dealing with the uncertainty that one does not know 
when load reduction will be requested. In this work, a scheduling model for a continuous 
industrial process providing interruptible load is developed, where we apply an adjustable 
robust optimization approach to address the uncertainty. The main difference to previous 
works is that we incorporate both continuous and binary recourse variables. When applied 
in our computational case study, the proposed model achieves significant cost savings 
when compared with a model that only considers continuous recourse. 
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1. Introduction 
In recent years, there have been significant advances in industrial demand response (DR) 
(Zhang and Grossmann, 2016), which has enabled large industrial consumers of 
electricity, such as power-intensive chemical plants, to reduce their operating costs by 
altering their power usage in response to varying electricity prices. DR is also beneficial 
to the power grid as it helps maintain grid stability, and a particularly effective way to do 
so is through the provision of interruptible load, which constitutes a form of ancillary 
services (Dowling et al., 2017). Here, economic incentives are offered to electricity 
consumers for committing load reduction capacities (that is, interruptible load) up to the 
agreed amount when requested by the grid operator. 
The major challenge in providing interruptible load is that load reduction demand is not 
known in advance, but one must still guarantee dispatch upon request. Disregarding this 
uncertainty may jeopardize plant safety or lead to situations in which it is no longer 
possible to satisfy all product demand. Zhang et al. (2015) capture the uncertainty using 
a tailored uncertainty set and apply robust optimization (Ben-Tal et al., 2009) to this 
scheduling problem. However, they only model the static case where no recourse is 
considered, which leads to very conservative solutions. Zhang et al. (2016) address this 
shortcoming by incorporating continuous recourse decisions using affine decision rules 
to show significant increases in cost savings enabled by flexible recourse. Yet the 
proposed approach still cannot realize the full potential of interruptible load since it does 
not consider discrete recourse and hence does not allow, for example, full plant shutdowns 
when load reduction is required, which is what is often done in practice. In this work, we 
extend the previous framework to also include binary recourse decisions. 
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2. Problem statement 
Consider a power-intensive continuously operated plant that manufactures a set of 
products. To satisfy demand, the products can be produced in the plant or purchased at a 
higher expense. The plant consumes electricity whose varying price is assumed to be 
known over the scheduling horizon. In addition, the plant can cut costs by providing 
interruptible load to the grid. To this end, the plant makes a commitment to reduce its 
electricity consumption at the grid operator’s request. Load reduction may not always be 
requested but the plant earns revenue regardless. We assume that no additional payment 
is made to the plant when load reduction is requested; this assumption can be tweaked 
depending on the electricity market with no major changes to the model.  
Given the plant model parameters (as discussed in Section 3) and a scheduling horizon, 
the goal is to determine the production schedule that is feasible for all possible realizations 
of load reduction while minimizing the total operating cost. Note that recourse variables, 
e.g., production rates and purchase amounts, depend on the realization of the uncertainty.  

3. Deterministic model formulation 
The model presented here is based on formulations developed in previous works (Mitra 
et al., 2012; Zhang et al., 2015) and is a direct extension of the model used in Zhang et 
al. 2016. Hence, only a brief description of the various constraints is provided.  
3.1. High-level formulation 
The structure of the deterministic model can be broadly expressed as follows: 

minimize 𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (1a) 
subject to 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (1b) 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (1c) 
 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (1d) 
 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (1e) 

The objective function is the cost of electricity plus the cost of additional products 
purchased minus the revenue from providing interruptible load. We assume that the plant 
can operate in different operating modes whose feasible regions are given in the form of 
polytopes. One such example of a plant with two products, P1 and P2, is shown in Fig. 1. 
Here, Region 1 could denote the off mode where no products are produced. Transition 
constraints are used to enforce feasible mode switching. Fig. 2 shows an example of 
requirements from the transition constraints. For instance, the process shown needs to 
stay in the off mode for at least 8 h before it can switch to the startup mode. Mass balance 
constraints ensure demand is satisfied through production or purchase; the remaining 
products are stored. Initial conditions are required for the problem to be well-defined.  
3.2. Interruptible load constraints 
As mentioned previously, the grid operator can request load reduction (no greater than 
the agreed amount) from the IL provider and the plant needs to alter its production 
schedule to cater to that request. These alterations in production schedule are modeled by 
introducing variables of the form: 

𝑃𝑃𝑃𝑃����𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑃𝑃𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚 ∀ 𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇, (2a) 
                                  𝑦𝑦�𝑚𝑚𝑚𝑚 = 𝑦𝑦�𝑚𝑚𝑚𝑚 + 𝑦𝑦�𝑚𝑚𝑚𝑚  ∀ 𝑚𝑚 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇, (2b) 

where 𝑇𝑇 denotes the set of time periods and 𝑃𝑃𝑃𝑃����𝑚𝑚𝑚𝑚𝑚𝑚 is the production rate of product 𝑖𝑖 in 
mode 𝑚𝑚 in time period 𝑡𝑡. The nominal production rate is denoted by 𝑃𝑃𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚, and 𝑃𝑃𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚  
is the deviation from the nominal value when load reduction is requested. The binary 
variable 𝑦𝑦�𝑚𝑚𝑚𝑚 equals 1 if the plant operates in mode 𝑚𝑚 in time period 𝑡𝑡; 𝑦𝑦�𝑚𝑚𝑚𝑚 is its nominal 
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value while 𝑦𝑦�𝑚𝑚𝑚𝑚 is a discrete recourse variable that can take the values -1, 0, or 1, 
depending on the amount of load reduction requested. The decrease in power 
consumption associated with the decrease in production or, in some cases, a process 
shutdown must be at least as much as the amount of load reduction requested (𝐿𝐿𝑅𝑅𝑡𝑡). This 
is modeled as the following constraint: 

�𝛿𝛿𝑚𝑚𝑦𝑦�𝑚𝑚𝑚𝑚
𝑚𝑚

+ ��𝛾𝛾𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑚𝑚

≤  −𝐿𝐿𝑅𝑅𝑡𝑡    ∀ 𝑡𝑡 ∈ 𝑇𝑇, (3) 

where we assume that the electricity consumption is a linear function of production rates 
with a constant 𝛿𝛿𝑚𝑚 and coefficient 𝛾𝛾𝑚𝑚𝑚𝑚 for the selected operating mode. 

  
Fig. 1: Example for feasible operating 
regions of a process with three operating 
modes. 

Fig. 2: Example for possible transitions 
between operating modes and corresponding 
operational constraints. 

4. Multistage robust formulation with mixed-integer recourse 
4.1. Uncertainty set 
We adopt a “budget of uncertainty” approach (Bertsimas and Sim, 2004; Zhang et al., 
2015) to formulate the following uncertainty set 𝑊𝑊 for the load reduction demand: 

𝑊𝑊 = �𝑤𝑤 ∈ ℝ|𝑇𝑇|:� 0 ≤ 𝑤𝑤𝑘𝑘 ≤ 1  ∀𝑘𝑘 = 1, … , 𝑡𝑡,�𝑤𝑤𝑘𝑘

𝑡𝑡

𝑘𝑘=1

= 𝛤𝛤𝑡𝑡�   ∀ 𝑡𝑡 ∈ 𝑇𝑇� , (4) 

where 𝑤𝑤𝑡𝑡 is the normalized requested load reduction, i.e., 𝐿𝐿𝑅𝑅𝑡𝑡 = 𝐼𝐼𝐿𝐿𝑡𝑡𝑤𝑤𝑡𝑡, 𝐼𝐼𝐿𝐿𝑡𝑡 is the amount 
of interruptible load provided, and 𝛤𝛤𝑡𝑡 is a budget parameter limiting the cumulative load 
reduction required up to time 𝑡𝑡. The choice of 𝛤𝛤𝑡𝑡 can be based on historical data or the 
electricity market rules. Note that 𝛤𝛤𝑡𝑡 must be a monotonically increasing parameter. We 
now write Eq. (3) in terms of the normalized load reduction: 

�𝛿𝛿𝑚𝑚𝑦𝑦�𝑚𝑚𝑚𝑚(𝑤𝑤)
𝑚𝑚

+ ��𝛾𝛾𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖

(𝑤𝑤)
𝑚𝑚

≤  −𝑤𝑤𝑡𝑡𝐼𝐼𝐿𝐿𝑡𝑡    ∀ 𝑡𝑡 ∈ 𝑇𝑇. (5) 

4.2. Adjustable robust formulation with mixed-integer decision rules 
The overall adjustable robust optimization problem can be formulated as follows: 

minimize Net operating cost at  𝑤𝑤 = 0 or worst-case net operating cost  
subject to Eqs. (1b)−(1e), (2), (5)  ∀ 𝑤𝑤 ∈ 𝑊𝑊, (6) 

where we either minimize the net operating cost in the nominal or in the worst case. Here, 
the deviation variables 𝑃𝑃𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦�𝑚𝑚𝑚𝑚, etc., serve as the recourse variables and are hence 
functions of the uncertain parameters 𝑤𝑤. Following the concept of lifted uncertainty 
(Bertsimas and Georghiou, 2018) and the derivation for multistage problems in Feng et 
al. 2021, we implement (potentially discontinuous) piecewise linear decisions rules for 
the continuous variables and piecewise constant decision rules for the binary variables. 
As an example, the decision rules for 𝑃𝑃𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑦𝑦�𝑚𝑚𝑚𝑚 have the following form: 

with interruptible load
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𝑃𝑃𝑃𝑃�𝑚𝑚𝑚𝑚𝑚𝑚 = � ��𝑋𝑋�𝑚𝑚𝑚𝑚𝑡𝑡′𝑘𝑘
𝑡𝑡  𝑤𝑤�𝑡𝑡′𝑘𝑘 + 𝑋𝑋�𝑚𝑚𝑚𝑚𝑡𝑡′𝑘𝑘

𝑡𝑡  𝑤𝑤�𝑡𝑡′𝑘𝑘�

𝐾𝐾𝑡𝑡′

𝑘𝑘=1

𝑡𝑡

𝑡𝑡′=𝑡𝑡−𝜁𝜁�

    ∀ 𝑚𝑚 ∈ 𝑀𝑀, 𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇, (7𝑎𝑎) 

𝑦𝑦�𝑚𝑚𝑚𝑚 = � �𝑌𝑌�𝑚𝑚𝑡𝑡′𝑘𝑘
𝑡𝑡  𝑤𝑤�𝑡𝑡′𝑘𝑘

𝐾𝐾𝑡𝑡′

𝑘𝑘=1

𝑡𝑡

𝑡𝑡′=𝑡𝑡−𝜁𝜁�

                     ∀ 𝑚𝑚 ∈ 𝑀𝑀, 𝑡𝑡 ∈ 𝑇𝑇, (7𝑏𝑏) 

where 𝑤𝑤�  and 𝑤𝑤�  are the auxiliary lifted uncertain parameters, 𝐾𝐾𝑡𝑡 is the number of 
breakpoints associated with 𝑤𝑤𝑡𝑡 that define the piecewise structures of the decision rules, 
and 𝜁𝜁  ̅ determines how many uncertain parameters from previous time periods are 
considered in the decision rules. The coefficients 𝑋𝑋�, 𝑋𝑋�, and 𝑌𝑌�  define the decision rules 
and are to be optimized. Problem (6) is a semi-infinite program, which we solve using the 
reformulation approach that leverages linear programming duality (Yanıkoğlu et al., 
2019). For the sake of brevity, we refer the reader to Feng et al., 2021 for more details 
including the full reformulation, which results in a mixed-integer linear program (MILP). 

5. Case study 
In this section, the proposed robust model with mixed-integer recourse is applied to an 
illustrative example. All models were implemented in Julia v1.7 using the modeling 
environment JuMP v0.22.3 and solved to 1% optimality gap using Gurobi v9.5.1 on an 
Intel Core i7-8700 machine at 3.20 GHz with 8 GB RAM. 
In this case study, a single-product plant is considered, and the scheduling problem is 
solved over a time horizon of 48 hours with hourly time discretization. The plant can 
operate in three different modes: off, startup, and on. Table 1 shows the details of the 
polytopes (which here are simple ranges) that characterize the operating modes and the 
electricity consumption in each operating mode. Table 2 shows the possible mode 
transitions and the respective minimum stay times. Fig. 3 shows the electricity prices and 
revenue from providing interruptible load over the time horizon. The plant is operating in 
the on mode at the start and it is assumed that no mode switching has occurred in the eight 
time periods prior to the beginning of the scheduling horizon.  
The initial inventory is 1,000 kg. The minimum and maximum inventory levels are 0 and 
5,000 kg, respectively, for all time points. At the end of the time horizon, the minimum 
inventory level is set to 1,000 kg. The cost of purchasing additional products is $3/kg. If 
interruptible load is provided in a time period, then the provided amount must be between 
200 and 5,000 kWh. We assume that the budget parameter 𝛤𝛤𝑡𝑡 increases every 8 time 
periods by 1, i.e., maximum load reduction can only be requested once during the first 8 
h, twice during the first 16 h, etc., and at most six times during all 48 h. 

Table 1: Polytope equations, fixed (𝛿𝛿𝑚𝑚) and unit (𝛾𝛾𝑚𝑚) electricity consumption for each operating 
mode (product indices have been omitted). 

5.1. Advantages of discrete recourse 
We solve the problem for different 𝜁𝜁 ,̅ which controls the amount of past information used 
in the decision rules. The flexibility in the solution increases with 𝜁𝜁 ,̅ but it also increases 
the model size and hence the computational intensity. Table 3 compares the costs between 
the continuous recourse only case and the mixed-integer recourse case. The results show 

Operating mode Polytope 𝜹𝜹𝒎𝒎 [kWh] 𝜸𝜸𝒎𝒎 [kWh/kg] 
Off 0 ≤ 𝑃𝑃𝐷𝐷𝑚𝑚𝑚𝑚 ≤ 0 0 0 

Startup 5 ≤ 𝑃𝑃𝐷𝐷𝑚𝑚𝑚𝑚 ≤ 5 0 60 
On 100 ≤ 𝑃𝑃𝐷𝐷𝑚𝑚𝑚𝑚 ≤ 160 1,200 20 
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significant cost reductions, of up to 14%, for mixed-integer recourse case over continuous 
recourse case. In Figs. 4 and 5, we see that the nominal electricity consumption profiles 
in both cases are very similar. This implies that a major factor in the cost reduction is the 
additional interruptible load provided in the mixed-integer recourse case. Figs. 5 and 7 
show that this additional interruptible load is provided in time periods 27 and 48, where 
process shutdown is a feasible recourse action. This is also reflected in the time period 48 
of Fig. 7, where the nominal and recourse production amounts add up to zero, indicating 
a process shutdown in the worst-case uncertainty realization. 

Table 2: Possible transitions 
between operating modes and 
minimum stay times. 

Transition 
from mode 𝒎𝒎 
to mode 𝒎𝒎′ 

Minimum 
stay time in 
𝒎𝒎′ [h] 

Off → startup 4 
Startup → on 6 

On → off 8 Fig. 3: Electricity and interruptible load prices for case 
study  

Table 3: Net operating cost (𝐶𝐶) in $ for cases with different 𝜁̅𝜁. Here, 𝐶𝐶nominal is the cost 
when no load reduction is requested and 𝐶𝐶wc is the worst-case cost when load reduction 
is requested. 

 
Fig. 4: Nominal electricity consumption and 
interruptible load provided with continuous 
recourse only and 𝜁𝜁̅ = 47. 

 
Fig. 5: Nominal electricity consumption and 
interruptible load provided with mixed-
integer recourse and 𝜁𝜁̅ = 47. 

 
Fig. 6: Nominal and worst-case recourse 
product flows and nominal inventory profile 
for the case with continuous recourse only 
and 𝜁𝜁̅ = 47. 

 
Fig. 7: Nominal and worst-case recourse 
product flows and nominal inventory profile 
for the case with mixed-integer recourse and 
𝜁𝜁̅ = 47. 

𝜻𝜻� Continuous 
recourse only 
(𝑪𝑪𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧, $) 

Mixed-integer 
recourse 

(𝑪𝑪𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧, $) 

Continuous 
recourse only 

(𝑪𝑪𝐰𝐰𝐰𝐰, $) 

Mixed-integer 
recourse 
(𝑪𝑪𝐰𝐰𝐰𝐰, $) 

47 3,214.1 2,755.3 3,266.3 2,917.8 

Mixed-integer recourse in industrial demand response scheduling 
with interruptible load
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5.2. Computation time 
The computation times required to solve the models are shown in Table 4. As expected, 
considering mixed-integer recourse is computationally significantly more expensive. 
Adjusting the parameter 𝜁𝜁  ̅can help reduce the solution time but may give a solution with 
higher objective value. Clearly, a trade-off exists between computational performance 
and solution quality. In the example considered, setting 𝜁𝜁̅ = 23 provides a solution of the 
same quality as  𝜁𝜁̅ = 47 in much shorter time. 
Table 4: Computation times for cases with different 𝜁𝜁 .̅ 

𝜻𝜻� Continuous recourse only Mixed-integer recourse 
47 90 s 3,626 s 
23 32 s 1,228 s 
11 10 s 253 s 

6. Conclusion 
In this work, we developed a multistage robust optimization model for the scheduling of 
power-intensive plants that also participate in the interruptible load market. Piecewise 
linear/constant decision rules are used to determine the recourse actions necessary in both 
continuous and discrete variables. When applied to an illustrative example, the proposed 
model achieves significant cost savings compared to the formulation that only considers 
continuous recourse. The flexibility that mixed-integer recourse provides comes at a 
substantial computational cost. However, our model provides a way of exploring this 
trade-off by setting the amount of past information allowed to be considered in the 
decision rules. By doing so, we find that the problem can often be solved in much less 
time with little sacrifice on the solution quality. 

7. Acknowledgements 
The authors gratefully acknowledge the financial support from the National Science 
Foundation under Grant No. 2215526. 

References 
Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization (Vol. 28). Princeton 

University Press. 
Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35-53. 
Dowling, A.W., Kumar, R., and Zavala, V. M. 2017. A multi-scale optimization framework for 

electricity market participation. Applied Energy, 190, 147-164. 
Feng, W., Feng, Y., and Zhang, Q., 2021. Multistage robust mixed-integer optimization under 

endogenous uncertainty. European Journal of Operational Research, 294(2), 460-475. 
Mitra, S., Grossmann, I.E., Pinto, J.M., & Arora, N. (2012). Optimal production planning under 

time-sensitive electricity prices for continuous power-intensive processes. Computers & 
Chemical Engineering, 38, 171-184. 

Yanıkoğlu, İ., Gorissen, B. L., & den Hertog, D. (2019). A survey of adjustable robust 
optimization. European Journal of Operational Research, 277(3), 799-813. 

Zhang, Q. and Grossmann, I.E., 2016. Enterprise-wide optimization for industrial demand side 
management: Fundamentals, advances, and perspectives. Chemical Engineering Research & 
Design, 116, 114-131. 

23 3,214.1 2,755.3 3,266.3 2,917.8 
11 3,214.1 2,810.4 3,282.7 2,999.8 

3202



Zhang, Q., Grossmann, I.E., Heuberger, C.F., Sundaramoorthy, A. and Pinto, J.M., 2015. Air 
separation with cryogenic energy storage: optimal scheduling considering electric energy and 
reserve markets. AIChE Journal, 61(5), 1547-1558. 

Zhang, Q., Morari, M.F., Grossmann, I.E., Sundaramoorthy, A., and Pinto, J.M., 2016. An 
adjustable robust optimization approach to scheduling of continuous industrial processes 
providing interruptible load. Computers & Chemical Engineering, 86, 106-119. 

 

Mixed-integer recourse in industrial demand response scheduling 
with interruptible load

3203




