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Abstract. Collaborative Problem Solving (CPS) is a socio-cognitive process that
is interactive, interdependent, and temporal. As individuals interact with each
other, information is added to the common ground, or the current state of a group’s
shared understanding, which in turn influences individuals’ subsequent responses
to the common ground. Therefore, to model CPS processes, especially in a context
where the order of events is hypothesized to be meaningful, it is important to
account for the ordered aspect. In this study, we present Ordered Network Analysis
(ONA), a method that can not only model the ordered aspect of CPS, but also
supports visual and statistical comparison of ONA networks. To demonstrate the
analytical affordances and interpretable visualizations of ONA, we analyzed the
collaborative discourse data of air defense warfare teams. We found that ONA was
able to capture the qualitative differences between the control and experimental
condition that cannot be captured using unordered models, and also tested that
such differences were statistically different.
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1 Introduction

Collaborative Problem Solving (CPS) is often conceptualized as a process of construct-
ing shared cognitive space through social interactions [8, 9]. Studies have found that
successful CPS involves a large degree of mutual engagement, joint decision making,
and discussions [12]. To model such socio-cognitive processes, the modeling approaches
undertaken must not only account for the fact that events at any point in time are influ-
enced by prior actions, but also that individuals make connections to the things their
collaborators say and do [18]. However, current modeling approaches tend to either
underrepresent or even neglect the interactive and temporal nature of CPS by treating
collaborations as a set of isolated events, or overrepresent the inferdependence between
CPS activities by assuming all events being equally related to each other.

In respond to such challenges, we introduce Ordered Network Analysis (ONA) in this
study. ONA constructs directed network models of CPS by accounting for not only the
interactive, interdependent, and temporal nature of collaborations, but also the order of
events unfolding over time in CPS processes. We argue that ONA has three affordances
for modeling CPS. First, ONA can model the order of events in CPS by tracking both
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what units of analysis respond with and what they respond 7o as they interact with
others in the group, and represent such connections in directed network models. Second,
ONA supports comparison of network models at both the individual unit level and the
aggregated group level. This enables the assessment of individual performance in group
context and also statistical testing of differences between groups. Third, to facilitate the
interpretation of analytical results, ONA visualizes models in network graphs that are
intuitive to read and mathematically consistent with the model’s summary statistics.

In what follows, we first discuss outstanding challenges in existing approaches for
modeling CPS. Next, we describe ONA analytical procedures in detail and the rationale
of ONA visualization design. Lastly, we demonstrate ONA using an example from a well-
studied dataset documenting CPS in a context where the order of events is hypothesized
to be meaningful. We conclude this paper with a discussion of contributions that ONA
makes to Quantitative Ethnography (QE) research on CPS.

2 Background

2.1 Collaborative Problem Solving

Working in numerous domains involves groups of people collaboratively solve complex
or ill-formed problems, CPS is increasingly emphasized in educational curricula and
assessment frameworks [6]. In educational contexts, students’ proficiency in CPS can
be measured by the extent to which students respond to requests and initiate actions
to advance the group goals [2]. In military contexts where tasks are often cognitively
demanding and have high stakes, for example, intensive interactions are needed between
team members to solve problems that might outpace the capabilities of any one individual
[17]. Regardless of context, CPS is fundamentally socio-cognitive that both cognitive
engagement and social interactions are needed to solve problems [8, 10, 18].

As a result, there are three key features that models of CPS need to account for:
interactivity, temporality, and interdependence [18]. First, CPS is interactive because
team members solve problems by interacting with each other rather than independently.
Second, CPS has an important temporal dimension because events at any point in time
are influenced by prior actions that are within some recent temporal context [11]. For
example, when one team member asks a question, other team members are likely to
respond soon after; and each response may address not only the original question but
also any prior responses to it. Third, CPS is interdependent because the contributions of a
given individual are related to and influenced by the contributions of others. For example,
Clark [3] argues that information is added to the common ground, or the current state
of a group’s shared understanding, as individuals interact with each other, which in turn
influences individuals’ subsequent responses to the common ground. This directional
relationship from the common ground fo response indicates that the order in which
events unfold in CPS may reveal important differences in individuals’ contributions to
the collaborative processes.

2.2 Existing Approaches to Modeling Collaborative Problem Solving

Currently, there exist different approaches that can be used to model CPS by accounting
for interdependence, including the order of events. Sequential models and temporal
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models are two prevalent classes [19]. Figure 1 shows four common approaches that fall
into these two classes. To illustrate the characteristics of the four approaches and how
they differ from each other, considering the excerpt in Fig. 1 as an example, in which
one commander and two coordinators who are on a navy ship are discussing whether
a track’s behavior is threatening. Each of them has a defined role to monitor ships and
aircraft on radar, so that the team can collectively make an assessment as to whether its
behavior is threatening.

Approach 1 Approach 2
Weak sequential Strong sequential
A B D] A B> ci> D]
Approach 3 Approach 4
Unordered temporal Ordered temporal

A B ¢ HD] A B c D]

Line | Role Utterance Code

A Commander Can I get an update on Track 13? SEEKING INFORMATION
B Coordinator 1 Track 13 descended to 12,000 feet altitude. TRACK BEHAVIOR

C Coordinator 2 Track 13 is a possible F-4. DETECT?IDENTIFY

D Commander Issue a Level 2 warning to Track 13. DETERRENT ORDERS

Fig. 1. Four common approaches to modeling CPS by accounting for the order of events.

In this excerpt, the Commander asks for an update on a track that is potentially threat-
ening in line A and receives two relevant but different responses from two Coordinators
in lines B and C. Coordinator 1 describes the track’s behavior (a change in altitude that
could signal preparation for an attack), and Coordinator 2 identifies that the track may
be a fighter plane. Based on this information, the Commander decides to issue a warning
in line D. That is, the commander’s order in line D is a response to both Coordinators’
contributions in lines B and C—and by extension, the commander’s question in line A—
which form the common ground for line D. Using this simplified example, we describe
the affordances and limitations of the four main approaches to modeling collaborative
interdependence.

Approach 1 represents sequential models that treat CPS processes as events that are
weakly connected, such as Lag Sequential Analysis (LSA), where the sequential depen-
dency is computed only between an event and its immediately preceding event. Such
methods neglect the interdependent nature of collaboration and very limited temporal
context is taken into account during modeling [4]. For example, the warning issued by
Commander in line D is only considered as a response to its immediate precedent event
line C in which Coordinator 2 identified what type of aircraft the track might be. In
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fact, the deterrent order issued in line D is because the track is likely a fighter plane (as
indicated in line C) and its behavior is potentially threatening (as indicated in line B).
Such conservative consideration of sequence undercounts the influence that Coordinator
1 has on the deterrent order.

Approach 2 is also a sequential method, but one that considers sequences of longer
length. For example, Sequential Pattern Mining (SPM) is a common technique for the
identification of frequent sequential patterns that emphasizes the specific local order
of events. In SPM, every event is considered as a response to the immediately preced-
ing event. This provides the most fine-grained information about the order of events.
However, as Swiecki and colleagues [19] demonstrated, the micro-sequences that SPM
produces are less effective predictors of collaborative performance than co-temporal
models even in contexts where order is hypothesized to matter. In other words, SPM
may overrepresent connections that are not meaningful. Although Approach 2 can count
what is undercounted in Approach 1, i.e., the connection between A and B and between
B and C, the example also shows that specific micro-sequences may introduce noise.
For example, qualitative interpretation of the exchange in Fig. 1 would not change if the
order of lines B and C were reversed, but SPM and other strong-sequential techniques
will treat the sequences ABCD and ACBD as meaningfully different.

Approach 3 represents co-temporal methods, such as epistemic network analysis
(ENA), that model the co-occurrence of Codes in common ground with Codes in the
response [15]. ENA is sensitive to the order of events in the data, meaning changing the
order of events changes which events are present in a given window, and thus changes
the results of the model [19]. However, the order from common ground fo response is
not modeled in ENA. For example, an ENA model would not show that the warning the
Commander issued in line D is a response to the common ground formed by lines A,
B, and C; it would only show that there is a connection from D to each of A, B, and C.
‘When the order of the connections is not modeled, the fact that the Commander issued
a warning after gathering information from two Commanders can only be ascertained
from qualitative triangulation. Consequently, it is difficult to compare how different
Commanders might respond differently to similar situations.

In cases where the directionality of the connections from the common ground to
response is hypothesized to be meaningful, techniques in Approach 4 can be applied.
To our knowledge, the only extant technique that models CPS in this way is directed
epistemic network analysis (AENA), a prototype technique presented at ICQE21 [5].
As Fig. 1 shows, the only difference between Approach 3 and Approach 4 is that the
connection between common ground and response is unordered in Approach 3, and
it is ordered in Approach 4. Adding such directionality makes it possible to model
the influence of information from the common ground on individuals’ response. For
example, in line D where the Commander responded with DETERRENT ORDERS to the
common ground formed by lines A, B, and C reveals important information about how the
Commander’s decision making is informed by his own question and the responses of the
Coordinators. Compared to Approach 2 where ordered information is overcounted, and
compared to Approaches 1 and 3 where ordered information is undercounted, Approach
4 is a relatively balanced approach to model CPS processes, especially in cases where
the specific local order of collaborative discourse moves may be less important than
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their local co-temporality. For example, in ill-formed problem-solving scenarios where
discussions do not strictly follow prescribed orders, such as in the example in Fig. 1,
it may make little difference whether in a brief span of time the group talks about
SEEKING INFORMATION, TRACK BEHAVIOR, and then DETECT/IDENTIFY, or any of the
other possible ordering of those topics.

2.3 Remaining Challenges and Proposed Solution

As a proof of concept, dENA provided empirical evidence that besides modeling the
interactive, interdependent, and temporal aspects of CPS, accounting for the order of
events co-temporally can reveal additional insights about CPS that otherwise remain
unknown in the model. Despite its thorough theoretical foundation, there are still two
unsolved analytical challenges.

1. dENA does not support statistical comparison of networks. While visual comparison
is supported by superimposing network graphs with isomorphic nodes to show graph-
ical differences, there is no statistical method to test whether the differences between
groups are significant. This severely limits the kinds of analyses that researchers can
conduct.

2. dENA network spaces contain redundant information that negatively affects both the
interpretability of the visualizations and model fit. Each unit of analysis is represented
by a combination of two vectors: one representing what the unit responding fo, the
other representing responding with. These two vectors contain the same information
because one is the transpose of the other. Including such redundant information in
modeling leads to less-than-optimal models.

In the following section, we introduce ONA and explain how it addresses the chal-
lenges with existing unordered and ordered co-temporal models (ENA and dENA,
respectively), and we demonstrate the technique by analyzing a well-studied dataset
for which there are published findings on CPS for [5, 18, 19].

3 Methods: Ordered Network Analysis

3.1 Dataset

We analyzed discourse data collected from U.S. Navy air defense warfare teams engaging
in training scenarios. Each team’s goal was to detect and identify tracks with uncertain
identities, then make an assessment as to the tracks’ threatening level. Based on these
assessments, teams decide to issue a warning or engage them in combat. Each team
consisted of two commanders and four support roles. The teams were divided into two
conditions with eight teams in each condition. The conditions differed regarding the
technological support and training provided to the commanders on each team. Com-
manders in the experimental conditions had access to more advanced technologies and
additional trainings compared to commanders in the control conditions.
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The transcripts were segmented into lines corresponding to turns of talk, for a total
of 12,027 lines. Our units of analysis were the individual team members across dif-
ferent training scenarios. In total, the analysis included 94 individuals. In light of the
experimental design, we grouped individuals according to their experimental condition
and their duties on the team: command or support. We focused the analysis on the 29
individuals who held command roles—16 in the experimental condition and 13 in the
control—because the experiment was designed to affect their performance directly.
We analyzed the transcripts using the codes in Table 1, which were developed by
[18] using a grounded approach. All codes were validated at a kappa threshold of 0.65
and a rho threshold of 0.05 using the nCoderR package [7].

Table 1. Qualitative codes, definitions, and examples

Code Definition Example
DETECT/IDENTIFY Talk about radar detection of a NEW BEARING, BEARING
track or the identification of a 078 APQ120
track, (e.g., vessel type) CORRELATES TRACK 7036
POSSIBLE F-4
TRACK BEHAVIOR Talk about kinematic data about a | TRACK NUMBER 7021
track or a track’s location DROP IN
ALTITUDE TO 18
THOUSAND FEET

SEEKING INFORMATION

Asking questions regarding
track behavior, identification, or
status

WE’VE UPGRADED
THEM TO LEVEL 7 RIGHT?

DETERRENT ORDERS Giving orders meant to warn or CONDUCT LEVEL 2
deter tracks WARNING ON 7037
DEFENSIVE ORDERS Giving orders to prepare defenses | COVER 7016 WITH BIRDS

or engage hostile tracks

3.2 ONA Analytical Procedures

The ONA algorithm begins by accumulating connections for each unit of analysis using
coded and segmented data. For each unit, the ONA algorithm uses a moving window to
identify connections formed from a current line of data (e.g., turn of talk), or response, to
the preceding lines within the window, or common ground. We chose a moving window
length of five for this data based on prior analyses of the same dataset [16].

During connection accumulation, ONA accounts for the order in which the connec-
tions occur by constructing an asymmetric adjacency matrix for each unit: that is, the
number of connections from code A to code B may be different than the number of
connections from B to A.

This method was also implemented in dENA [5], however, in dENA, this single
asymmetric adjacency matrix is copied and transposed, such that each unit of analysis is
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thus represented by two accumulated asymmetric adjacency matrices: one representing
its ground connections, i.e., what the unit responded to; the other representing its response
connections, i.e., what the unit responded with.

In ONA, each unitis represented by the original asymmetric adjacency matrix, which
contains the same information as the two matrices used in dENA, but represents that
information in a more parsimonious fashion. ONA transforms this single matrix into a
single high dimensional asymmetric adjacency vector. Each unit is thus represented by a
single high dimensional vector (as opposed to two high-dimensional vectors in dENA),
which results in a more succinct network space and allows flexibility in dimensional
reduction and statistical comparison, as described below.

The asymmetric adjacency vectors for all units are then normalized and centered and
the algorithm performs a dimensional reduction. ONA currently implements singular
value decomposition (SVD) and a means rotation (MR)! similar to the dimensional
reductions in ENA.2 In contrast, in dENA, some dimensional reductions (including SVD
and MR) produce degenerate solutions when applied to the full set of high-dimensional
vectors because each unit is represented by two vectors, one of which is the transpose
of the other.? As a result, in dENA users had to choose to rotate by either the ground
vectors or response vectors when applying SVD. To our knowledge, dENA has not yet
provided users with recommendations on when to choose ground or response matrices to
apply SVD or other dimensional reductions. Moreover, as a result of this mathematical
limitation, dENA models suffer from low goodness-of-fit.

In contrast, by representing each unit’s directed connections with a single vector,
the dimensional reductions in ONA produce models with higher goodness-of-fit that are
easier to interpret.

The dimensional reduction process results in an ONA score for each unit of analysis
in the lower-dimensional space. The ONA scores are visualized by plotting them in the
lower dimensional space resulting from the dimensional reduction. For each unit, its
ONA score is represented as a point in the network space as shown in Fig. 2. Unlike
the paired vectors (ground and response) used to represent units in dENA, the ONA
scores are single points and thus can be used to conduct statistical tests or as predictors
in regression models.

The ONA algorithm co-registers units’ directed network graphs and projected points
in the low-dimensional space.* As a result, the network graph visualizations meaning-
fully reflect the mathematical properties of the projected points that represent each net-
work in the projected space. For each unit, its graph shows the strength and directionality

I MR is a dimensional reduction that can be applied when the units are divided into two discrete
groups. The resulting space highlights the differences between groups (if any) by constructing
a dimensional reduction that places the means of the groups as close as possible to the x-axis
of the space. MR is frequently used in ENA analyses [1].

2 Because each unit is represented by a single, high-dimensional adjacency vector, ONA can use
any dimensional reduction technique that can be used with ENA.

3 The mathematical proof that including vectors and their transpose cause degenerate solutions
under SVD and other rotations is beyond the scope of this paper; however, we are happy to
provide it upon request.

4 The mathematical details of co-registration are beyond the scope of this paper and can be found
in the work of Bowman et al. [1].
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of the connections it made. Network nodes in ONA are positioned in the space using
the same optimization routine used in ENA [1]: the algorithm minimizes the distance
between the ONA scores and the centroids of the corresponding networks. As a result,
the ONA metric space can be interpreted based on the locations of the nodes. Units with
ONA points on the right side of the space have more frequent connections between the
codes on the right side of the space. Similarly, units with points on the left have more
frequent connections between the codes on the left side of the space.

3.3 ONA Visualization Design

Building on the graphic design principles used in ENA visualizations [20], in ONA, the
node size is proportional to the number of occurrences of that code as a response to other
codes in the data, with larger nodes indicating more responses. The color and saturation
of the circle within each node is proportional to the number of self-connections for that
code: that is, when a code appears in both the response and ground of a given window.
Colored circles that are larger and more saturated reflect codes with more frequent self-
connections. For example, Fig. 2 suggests that roughly 40% responses made with code
A were responding to code A.

OB

™o C

Fig. 2. Sample unit’s ONA network. The overall size of the nodes represents the relative response
strength with each code. The red dot in the middle of code A represents self-connections. Thicker
and more saturated triangles represent stronger connections. The chevrons on the triangles indicate
the order from common ground to response. The network is summarized by an ONA score, shown
as a point. (Color figure online)

The directed connections in ONA are represented by edges between nodes, visual-
izing as a pair of triangles. Note that unlike most ordered network visualizations, which
use arrows or spearheads to indicate directionality, ONA uses a “broadcast” model,
where the source of a connection (ground) is placed at the apex of the triangle and the
destination of a connection (response) is placed at its base. To facilitate interpretation,
the dark chevrons place inside the triangles indicates the directionality of the connection
from ground to response.

For example, in Fig. 2, between codes A and B, the thicker and more saturated
triangle with a chevron on it represents the unit’s response with code A to code B. In
other words, code B is in the common ground that code A is a response to. Similarly, the
thinner and less saturated triangle between A and B represents the unit’s response with
code A to code B. The dark chevron pointing towards A from B helps viewers identify
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that A is more often a response to B than the other way around. Between any pair of
codes, if there is a bidirectional connection, the chevron only appears on the side with
stronger connections. This helps viewers differentiate heavier edges in cases such as
between codes B and C, where the connection strengths from both directions are similar.
When the connection strengths are identical between two codes, the chevron will appear
on both edges.

Taken together, ONA visualizations emphasize what the units of analysis respond
with, rather than what they respond to. In other words, ONA visually emphasizes the
units of analysis’ active choice of reactions to what already happened in the common
ground. To achieve such visual emphasis, we make sure that all the design elements (e.g.,
nodes, edges) and their attributes (e.g., size, saturation) in the visualizations consistently
emphasize response strength. This is achieved by 1) using node size to represent the
relative frequency of a code being present in a response, 2) using edge thickness and
saturation to represent the relative frequency of a code being a response to the code it is
connected to, and 3) using the chevron to represent the order of information flow from
ground fo response.

4 Results

In this section, we present the results of applying ONA to analyze the U.S. Navy air
defense warfare teams discourse data that there are published findings for [5, 18, 19].
We compare ONA results against qualitative analysis results and ENA results, we found
that ONA was able to capture qualitative differences between groups that were not shown
in ENA model.

4.1 Qualitative Results

Qualitative analysis revealed both similarities and differences of the teams’ CPS activ-
ities in the control and experimental conditions. In both conditions, teams were highly
interactive, and individuals responded to and built upon the contributions of others as
they pass information, make decisions, and take actions. However, commanders in the
control and experimental conditions contributed to their teams in different ways. Specif-
ically, in the experimental condition, since commanders in this condition had access to
more advanced support system and were trained with additional curriculum materials,
they did not need to acquire information verbally or hold it in their memory, so they were
able to focus less on processing the tactical situation and more on contributing to and
acting on that situation, such as issuing warnings in time. In contrast, commanders in
the control condition, who only had access to standard technology support, often needed
to clarify the tactical situation by asking questions. Consequently, they were often less
able to take timely and appropriate actions toward tracks due to the increased burden of
information management.

The following two excerpts illustrate such differences. The first excerpt is from a
conversation between commanders and support roles from the control condition.
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Line Speaker Utterance Code

6241 CO TAO CO, LET’S GO AHEAD AND ISSUE A DETECT IDENTIFY
THREAT LEVEL FOR THE PUMAS 13, 14, 15

6242 EWS TAO, EW TRACK 012 IDENTIFIED AS F-4 DETECT IDENTIFY

6243 TAO LEVEL 4, AYE

6244 TAO SAY AGAIN TRACK NUMBER F-4? SEEKING INFORMATION

6245 EWS 14. CORRECTION 12, BEARING 094 TRACK BEHAVIOR

6246 TAO TAO, AYE

In line 6241, the CO asks the TAO to DETECT IDENTIFY the threat posed by the
Puma helicopters. The TAO (line 6243) classifies the tracks as “level 4” threats, meaning
that they are potentially hostile tracks that the team should monitor. Notice, however,
between when the CO asks for a threat assessment and the TAO replies, the EWS (line
6242) reports another contact identified as an F-4 jet. The TAO then has to SEEKING
INFORMATION by asking the EWS (line 6244) to repeat the information because they
were busy making the threat assessment. The EWS repeats the track number of the F-4
and also adds additional information about TRACK BEHAVIOR (line 6245). The TAO
acknowledges this message in line 6246.

As this excerpt shows, the members of this team were able to quickly distinguish sim-
ilar sounding information (e.g., 14, level 4, F-4, 94). However, the commander (i.e., TAO)
were often receiving new input while they were communicating decisions based on previ-
ous information. This means that they frequently had to request clarification by SEEKING
INFORMATION from supporting members of the team to maintain an understanding of
the tactical situation.

The next excerpt is from a conversation between commanders and support roles from
the experimental condition. Typically, tracks are detected and reported by the supporting
members of the team such as in the control condition, but the availability of the decision
support system enabled the commander in the experimental condition to access this
information directly, as the following excerpt illustrates.

Line | Speaker | Utterance Code

9773 | CO OK 07 IS MOVING TOWARDS US SO WE’VE TRACK BEHAVIOR
GOT TO COVER WITH GUNS OR BULLDOGS ON | DEFENSIVE ORDERS
07

9774 | EWS NEGATIVE

9775 | TAO TIC GO OUT WITH LEVEL ONE QUERY ON DEFENSIVE ORDERS
07 AND COVER WITH BULLDOGS DETERRENT ORDERS

The CO reports the detection of track 7, letting the team know its TRACK BEHAVIOR
(line 9733). In the same turn of talk, the CO issues DEFENSIVE ORDERS to “cover with
guns or bulldogs [anti-ship missiles] on 07”. After adding an order to issue a level
1 warning to the track, the TAO passes the CO’s orders to the TIC (line 9775). Thus,
commanders on this team are reacting to the developing tactical situation by contributing
new information about the TRACK BEHAVIOR (line 9733) and immediately responding
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to it with early actions from the detect-engage sequence: warning the track and covering
it with weapons (lines 9733 and 97753).

As this excerpt shows, commanders in the experimental condition did not only con-
tribute to their teams’ understanding of the emerging tactical situation by passing infor-
mation about tracks, also responded to these situations in a timely manner with appro-
priate decisions and actions. Although there were multiple simultaneous conversations
that team members were participating it, but unlike the previous example, this did not
lead to confusion because the commanders were not getting critical information only
from the team.

4.2 ONA Results

Individual Unit Network. We first compared the individual network of one comman-
der from the control condition (red, top) and another commander from the experimental
condition (blue, bottom) as shown in Fig. 3.

Seeking Informationo

> y
Detect Identify ‘
o

2
. >
Track Behavior . Deterrent Orders
. Defensive Orders
Seeking Information

Detect Identify
o < ¢

. o
Track Behavior Deterrent Orders

o Defensive Orders

Fig. 3. Individual unit network for a commander from the control condition (red, top), and another
commander from the experimental condition (blue, bottom). (Color figure online)

Both networks have strong connections between SEEKING INFORMATION and TRACK
BEHAVIOR, as indicated by the relatively thicker and darker edges. However, ONA is able
to show that the difference between how the two commanders made connections between
TRACK BEHAVIOR and SEEKING INFORMATION was the order of the connections rather
than their relative frequency. Such directional difference cannot be shown using ENA
where the order of events is not accounted for. As the chevron indicates, in the net-
work of the commander from the control condition, SEEKING INFORMATION is more
commonly a response to TRACK BEHAVIOR. In the network of the commander in the
experimental condition, TRACK BEHAVIOR is more commonly a response to SEEKING
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INFORMATION. This difference in order is consistent with the qualitative findings. In the
experimental condition, commanders were able to contribute to their teams’ understand-
ing of the emerging tactical situation by passing information about tracks supplied by the
technological support system to which they had access to. Therefore, they were able to
respond with TRACK BEHAVIOR when other team members SEEKING INFORMATION. In
the control condition, due to the lack of support from the advanced technologies, SEEK-
ING INFORMATION was the behavior commanders often initiated to ask for clarifications
about TRACK BEHAVIOR.

Additionally, in the network for the commander in the experimental condition, there
are two strong connections pointing towards DETERRENT ORDERS, one is from SEEKING
INFORMATION, the other is from DETECT IDENTIFY. This means that orders to prepare
defenses or engage hostile tracks are often issued after seeking information. In other
words, the commander from the experimental condition was better able to use informa-
tion to guide productive action, such as issuing orders, than the commander from the
control condition.

Taken together, the SEEKING INFORMATION behavior in the experimental condition
served as acommon ground for commanders to respond to with productive actions such as
issuing warnings through DEFENSIVE ORDERS and DETERRENT ORDERS. However, in the
control condition, SEEKING INFORMATION was the behavior commanders initiated as a
response to ask clarification questions about TRACK BEHAVIOR. In summary, compared
to commanders in the control conditions, commanders in the experimental condition
were thus better able to manage complex situations, ensuring that potentially hostile
tracks were not lost from the tactical picture.

Group Comparison. Besides individual unit networks, we also compared the two con-
ditions’ aggregated mean ONA networks, as shown in Fig. 4 left. To illustrate the
insights that ONA revealed about the group differences that otherwise remain unknown
in unordered models such as ENA, we included an ENA network comparing the same
groups, as shown in Fig. 4 right.

Secking Information

Seeking Information °

,‘ '
Detect Identify . ._l >4
b 1

3 .
o <
Track Behavior © Deterrent Orders

Track Behavior Deterrent Orders

| @ Defensive Orders Detect Identify Defensive Orders

Fig. 4. Difference networks showing the most salient differences between the commanders in the
control condition (red) and experimental condition (blue). Each edge is color-coded to indicate
which of the two networks contains the stronger connection. Points represent ONA points (left)
and ENA points (right), which summarize an individual unit network as a single point in the
projection space. For example, the two individual networks shown in Fig. 3 are annotated in the
network space in Fig. 4 using one red circle and one blue circle. (Color figure online)
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Visual Comparison. By investigating ONA and ENA networks visually, we found that
ONA contributed new insights to our interpretation of this dataset from two perspectives.
First, for connections that have similar strength but differ in order, ONA preserved such
directed connections while ENA counteracted it.

For example, in the ENA network, the connection between SEEKING INFORMATION
and DETERRENT ORDERS is very weak, almost nonexistent. This means that there is
very little or no difference in terms of how frequent those two codes co-occurred in the
control and experimental conditions. However, recall that the qualitative results show
that commanders in the control condition often had to request clarification by SEEKING
INFORMATION from supporting members of the team to maintain an understanding of the
tactical situation. In contrast, commanders in the experimental condition often responded
to team members’ SEEKING INFORMATION request in a timely manner with productive
actions such as DETERRENT ORDERS. In other words, the differences in terms of how the
two conditions made connections with SEEKING INFORMATION and DETERRENT ORDERS
is not frequency, but order. ONA was able to capture such differences, representing by
the chevron pointing from DETERRENT ORDERS to SEEKING INFORMATION.

Second, the common ground and response metaphor that ONA has helped differenti-
ate the role of the same code in different connections. For example, ENA network shows
that TRACK BEHAVIOR co-occurred frequently with SEEKING INFORMATION in the con-
trol group, as indicated by the corresponding red edge; and co-occurred frequently with
DETERRENT ORDERS in the experimental group, as indicated by the corresponding blue
edge. ONA makes it clear that the role TRACK BEHAVIOR acted in the two conditions
is different. In the control condition, TRACK BEHAVIOR acted as the common ground
for SEEKING INFORMATION, as indicated by the chevron pointing from TRACK BEHAV-
IOR to SEEKING INFORMATION. This means that after being shared with information
about TRACK BEHAVIOR, commanders in this group often needed to SEEKING additional
INFORMATION from other members. On the other hand, in the experimental condition,
TRACK BEHAVIOR acted as a response to DETERRENT ORDERS. This means that after
warnings being issued through DETERRENT ORDERS, TRACK BEHAVIOR information is
presented to commanders to ensure that potentially hostile tracks were not lost from the
tactical picture. The different role that TRACK BEHAVIOR has can be used as one of the
aspects to characterize networks of different conditions.

Statistical Comparison. Since each unit’s network is summarized as an ONA point in
the projection space, we can compare the distribution of the projected ONA points for
commanders in the control and experimental condition. Since most points in red locate
on the upper right side, the points in blue locate on the left lower side of the space, we
assume that the two groups are different with respect to their positions on both the first
and second dimension. To test whether these differences were statistically significant,
we conducted two sample t test between distributions of the projected points in ONA
space for commanders in the two conditions. We found a significant difference between
the experimental group (mean = —0.24, SD = 0.28) at the alpha = 0.05 level from
the control (mean = 0.07, SD = 0.31) on the first dimension, as well as a significant
difference between the control (mean = 0.24, SD = 0.08) and experimental (mean =
—0.08, SD = 0.16) point distributions on the second dimension. However, in ENA,
significant difference was only found on the second dimension between the control
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(mean = 0.32, SD = 0.17) and the experimental (mean = —0.05, SD = 0.20), with a
smaller effective size compared to ONA (Cohen’s d = 2.67 in ONA, Cohen’s d = 1.69
in ENA).

Taken together, ONA was not only able to visually represent network differences
between groups, but also allow researchers to make statistical claims about such differ-
ences. Similar comparison had also been conducted in the previous dENA study using
the same dataset visually by investigating the difference network [5]. However, dENA
was not able to further test if such differences observed visually are statistically different.
Besides the test we demonstrated above, researchers can also conduct other statistical
analysis such as using ONA points as predictors in regression analysis.

5 Discussion

In this study, we presented Ordered Network Analysis as a solution to model CPS by
accounting for not only the interactive, interdependent, and temporal nature of collabora-
tions, but also the order of events unfolding over time in CPS processes. We demonstrated
the three major analytical and visual affordances of ONA. First, ONA can model both
what units of analysis respond with and what they respond to as they interact with oth-
ers in the group. Second, ONA supports the comparison of network models at both the
individual unit level and the aggregated group level. This allows researchers to make
statistical claims about how different individuals or groups respond to certain common
ground differently. Third, through the co-registration process and the intentional visual
design, ONA network visualizations are not only mathematically consistent with its
summary statistics, but also intuitive to read.

5.1 Comparison of Methods

To extend the discussion in Sect. 2.2 where we reviewed extant CPS modeling
approaches, in Table 2. We compare three QE approaches (i.e., ENA, dENA, ONA)
by comparing their affordances. In summary, given its analytical and visual advance-
ments, we suggest that ONA is preferable to dENA in all cases. When modeling weak
sequential or temporally ordered data, we suggest that ONA should be used instead of
ENA or other sequential methods such as SPM. For readers to make methodological
choices for their CPS modeling, Table 2 serves as a brief summary rather than a metic-
ulous description of the three approaches. We recommend that readers should refer to
additional literature such as [1, 5, 14, 15] for more in-depth description.
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Table 2. Different affordances of ENA, dENA, and ONA

Affordances ENA dENA ONA

Connection Symmetrical Asymmetrical Asymmetrical

matrix

Summary ENA points Vectors ONA points

statistics

Rotations Singular Value Singular Value Singular Value
Decomposition, Decomposition Decomposition,
Means Rotation, Means Rotation
hENA? hENA

Node positions Deterministic Deterministic Deterministic

Comparison of Statistical, visual Visual Statistical, visual

networks

Goodness of fit High Moderate High

Best for Temporal ONA is preferrable to Weak sequential or
unordered data dENA in all cases temporal ordered data

5.2 Limitations and Conclusions

Although the ONA analysis in this study was only conducted using a single dataset, the
data we used was only meant to provide an example of how ONA can model CPS by
accounting for the order of events. Given its analytical and visual flexibility, we argue that
ONA can not only be applied to model CPS processes, but also broadly in any research
questions in situations where patterns of directed associations in data are hypothesized
to be meaningful. In future work, we are interested in applying ONA in QE research in
different domains.
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