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Abstract—Researchers are embracing deep learning in vari-
ous interdisciplinary research domains, recognizing undeniable
benefits offered by deep neural networks. However, in order to
meet the substantial computational demands for processing deep
learning models, researchers extensively rely on cloud servers.
Nevertheless, the shared nature of cloud servers encourages
research labs and facilities to establish private clouds, ensuring
exclusive access to computational resources and safeguarding
data privacy. Creating a private cloud from bare metal presents
challenges with existing provisioning solutions. These solutions
not only come with a set of complex installation and configuration
steps but are also limited to a constrained local Ethernet broad-
cast domain for network loading, which may pose unforeseen
difficulties and risks for researchers who do not specialize in
computing. To address these issues, this paper introduces EL2W,
Extended Layer 2 services to Wide area networks (WAN), a novel
approach we developed following Infrastructure-as-Code (IaC)
principles. EL2W aims to help automate the system installation
procedure by reducing the repetitive configurations and setups
using Infrastructure-as-Code based scripts and codes. In addi-
tion, EL2W can securely expand an Ethernet network’s logical
and functional extent beyond the current physical limitations of
Ethernet layer 2 networks. We describe the implementation and
architecture of a remote bare metal provisioning system built
upon secure extended layer 2 networks. Experimental results
demonstrate the capability of EL2W for establishing a secure
layer 2 connection to provide essential bare metal provisioning
services, as well as the effectiveness of a local proxy cache server
to reduce the operating system loading time.

Index Terms—bare metal, remote provisioning, extended layer
2 services, PXE boot, Infrastructure-as-Code

I. INTRODUCTION

Deep learning research has made significant inroads into
numerous interdisciplinary domains. Specialized hardware
such as GPUs are essential to provide enormous computing
power for processing deep neural networks. Although cloud
servers such as community clusters provide the required
computational resources, researchers may require exclusive or
privileged access to computing resources, which cannot be
easily satisfied with cloud servers. Additionally, labs with data
security and privacy concerns may prefer to host their own data
storage services and physically isolate the data from the public
network. As a result, labs and facilities are looking towards a
private cloud dedicated to themselves. However, bootstrapping
the private cloud from bare metal can be troublesome for re-
searchers from disciplines other than computing, such as civil

engineering and mechanical engineering. To bootstrap physical
servers or virtual machines, existing solutions for bare metal
loading such as OpenStack [1] and MAAS [2] have certain
limitations, including sophisticated installation processes and a
local network connection requirement. The inability to extend
the layer 2 services required for loading physical bare metals
also limits the functionality of the services.

There are commercial and academic research efforts that
seek to provide an efficient provisioning solution for bare
metal systems. Popular bare metal provisioning projects pro-
vided by the open-source community and the commercial
world include but are not limited to, Cobbler [3], Open-
Stack Ironic [1], Foreman [4], MAAS [2], and Razor [5].
A comprehensive comparison was provided by Chandrasekar
and Gibson [6] in a study that compared six bare metal
provisioning frameworks. These frameworks generally entail a
sophisticated setup process and require the servers to be on the
same physical network and bare metal installation images to
be present on the local network. Other research also proposed
several systems and solutions. Mohan and others proposed M2
[7], Malleable Metal as a Service, a diskless booting approach
for provisioning bare metal systems.

These proposed frameworks and systems all aimed to pro-
vide an automated and rapid provisioning approach. However,
to the best of our knowledge, we have identified the following
needs and gaps from the existing solutions:

Simplified Services and Installation. The existing methods
we have investigated all include complex installation and
deployment processes. To illustrate, the OpenStack Ironic
Service [1] has three major components and can be configured
to communicate with up to six other OpenStack services
[8]. High-level administrative skills are often needed when
deploying such systems. A simplified installation mechanism
is needed to quickly set up a provisioning service to boot and
load local infrastructures for people to bootstrap bare metal
systems with less effort.

Remote and Distributed. Second, related work by Mohan
[7] and Daly [9] have proposed systems that support a diskless
booting environment. The required layer 2 services are pro-
vided from local area networks (LAN). As a result, Mohan’s
and Daly’s methods do not support bare metal provisioning
beyond the local Ethernet broadcast domain. The physical lim-



itation of the layer 2 network results in a gap in provisioning
layer 2 services over distributed broadcast domains. The gap
can be further identified as the absence of a secure means to
control the process of provisioning, publishing, and accessing
layer 2 services in extended layer 2 networks. Additionally,
the gap can also be recognized as the lack of mechanisms
that would support the creation of new layer 2 services in a
distributed Ethernet broadcast domain.

Rapid and Secure. In addition, other studies that include
Mao [10], and Hao [11] suggested that the VM startup time is
crucial for cloud elasticity. Omote [12] further stated that the
same concept could also be extended to bare metal systems
or instances. Therefore, methods to reduce the OS’s initial
deployment time become crucial in a distributed network
architecture. Regarding security, if the remote connection
between the bare metal servers and the provisioning service
provider is not encrypted, unexpected miscellaneous services
and resources may have the opportunity to communicate with
bare metal systems during loading and potentially introduce
cybersecurity risks. Consequently, fast and secure OS boot-
strapping is critical for provisioning bare metal systems.

To address these needs and gaps, we propose EL2W, a
straightforward, shareable, and secure approach for remotely
provisioning bare metal systems or VMs from a trusted central
source. The EL2W implementation fulfills the gaps as follows:

1) To achieve a simplified service and its installation
process, we implemented the EL2W with only the essential
services required for bare metal provisioning. In addition, the
design of EL2W follows the Infrastructure as Code (IaC) [13]
principle. We implemented EL2W using IaC tools to provide
an automatic and simplified service deployment process. The
adoption of IaC using Vagrant [14] results in a straightforward
manner of deploying (vagrant up) and removing (vagrant
destroy) our provisioning service with very few configurations.

2) To enable remote layer 2 connections across the extended
Ethernet broadcast domain, we introduced the use of a local
HTTP proxy server with a service that we named EL2W ports.
We used EL2W ports for remote access to DHCP, BOOTP, and
other required layer 2 and layer 3 services for establishing
local infrastructures.

3) To ensure secure layer 2 connections over WAN, we
implemented VXLAN tunnels over IPsec connections using
a combination of Open vSwitch (OVS) [15] and strongSwan
[16]. Furthermore, we enabled a two-factor Duo authentication
[17] to protect the exchange of protected information during
Infrastructure-as-Code based setup in the EL2W system.

4) To accelerate the OS booting process, we deployed an
HTTP proxy server to provide a local cache for OS installation
packages. By doing so, instead of downloading from a remote
repository, the packages could be retrieved from a local cache
server once the cache is populated. Test results indicate that
caching can largely reduce OS boot and load time.

EL2W simplifies the creation of a secure cloud infrastruc-
ture and a secure wide-area Ethernet broadcast domain over
which secure layer 2 services could be provided to remote
clients. In this work, we used the implemented EL2W to

provide a boot service for remote provisioning bare machines
and VMs over an extended Ethernet broadcast domain.

The implementation of this work is used for remotely
establishing a secured lab-scale private cloud for the VISER
(VIsual Structural Expertise Replicator) project. VISER is
built on the prior work from the ARIO project (Automated
Reconnaissance Image Organizer) [18], [19]. VISER and
ARIO aim to offer a post-disaster visual data classification
service for large collections of image data management for
civil engineers. The work described in this paper also relates
to the M.S. thesis of co-author Kaushal [20], who implemented
the remote booting concept separately.

The rest of this paper is structured as follows: section II
summarizes and analyzes related work on bare metal provi-
sioning and securely expanding an Ethernet broadcast domain.
Section III depicts the architectural design and implementation
details of EL2W. Section IV describes the use of EL2W for
remotely provisioning bare metal systems or VMs. Sections
IV and V discuss experimental results and lessons learned.
Finally, conclusions are discussed in section VI.

II. RELATED WORK

For the work described in this paper, we first investigated
existing bare metal provisioning solutions and sought methods
to extend layer 2 services beyond the local Ethernet domain.

A. Bare Metal Provisioning

We first looked into provisioning solutions offered from the
commercial and open-source world.

OpenStack Ironic [1] manages systems using IPMI and
provides a loading service that integrates with other Open-
Stack modules (e.g., Neutron for networking and Glance
for VM image management). Likewise, Cobbler [3] offers
provisioning along with other functions such as DNS and
DHCP management, and configuration management orches-
tration. Furthermore, we investigated Foreman [4], which uses
smart proxies with plugins as an abstraction layer to access
remote services such as DNS, Puppet, DHCP, and TFTP.
However, OpenStack, Cobbler, and Foreman all have sophis-
ticated setup processes. For example, the main installation
command for Foreman, foreman-installer, features over one
thousand (1,151) command line options, 74 of which have
additional ”no” selective options 1. We also examined MAAS
(metal-as-a-service) [2]. MAAS operates on a data center scale
using a tiered architecture and parallels the provisioning of
deployment services across many MAAS service providers on
a rack level. Although MAAS has a simpler installation and
operations model, it does not facilitate the extension of an
Ethernet broadcast domain to a distant network to provide
layer 2 services. An evaluation was made by Chandrasekar
and Gibson [6] to compare Emulab, Ironic, Crowbar, Razor,
Cobbler, and MaaS across 14 different criteria, including the
difficulty of installation and difficulty of maintenance.

We also found a web-accessible service boot.netboot.xyz
[21] that can be chain loaded from iPXE during the boot

1Identified by running foreman-install –full-help



process, which provides a comprehensive menu of loadable
OS and utility images.

Other recent related research work also proposed different
bare metal provisioning systems. Mohan and others [7] pre-
sented a system named M2, Malleable Metal as a Service. M2
aimed to provision bare metal systems by replacing the target
OS image downloading step with a local Ceph storage and
exposed iSCSI targets. M2 also used iPXE to implement OS
chain loading Omete and others [12] described another system
called BMcast, an OS deployment system that implemented
background copy and copy-on-read of boot images to reduce
the instances’ startup time.

We found that these bare metal provisioning systems have
complex installation and operation procedures and require a
high degree of skill and training to install, configure, maintain,
customize, operate, and debug. These shortcomings can lead
to poor cybersecurity, auditability, and reproducibility of the
system installation, significantly increasing the complexity of
installing, configuring, maintaining, and using these systems.

III. ARCHITECTURE AND IMPLEMENTATION

A. EL2W Ports

Our system uses Linux virtual network adapters to create
local EL2W ports to provide a gateway to remote layer 2
services. We can assign names to the ports to reflect the
service available through an EL2W port. For example, an
EL2W port named boot could be the communication channel’s
attachment point for a boot service provided from a remote
Ethernet network. EL2W ports can be used by a process or
can be attached to a Linux network bridge or virtual machines
to expand the broadcast domain and provide access to other
internal or external system network adapters.

Our EL2W port approach is novel in the following ways:
1) EL2W ports introduce the concept of publishing and

unpublishing layer 2 services to control access and allow the
sequential staging of access to running services.

2) We use Infrastructure-as-Code (IaC) techniques to allow
users to easily create, customize, audit, and reproduce their
EL2W infrastructure.

3) We allow for extended Ethernet broadcast domains over a
WAN to provide a platform that could be used for developing
and testing new layer 3 protocols. The platform can be
independent of legacy IP awareness within the new protocol.

4) We use a hub and spoke approach for the EL2W system
that can automatically use spoke level caching on a single
spoke via Squid proxy cache software [22] of information
downloaded through a central EL2W hub over HTTP that
could be used to speed up recurring actions (e.g., loading many
nodes in a cluster).

EL2W ports can be used to create, export, and publish a
layer 2 service on an EL2W hub through an EL2W spoke on
the Ethernet broadcast domain attached to the EL2W spoke.

B. Architecture of EL2W Hub and Spoke

A conceptual overview of our EL2W system is shown in
Figure 1. An EL2W hub Sun is connected via secured IPsec-

based VXLAN tunnels to EL2W spokes Venus, Earth, and
Mars using Open vSwitch (OVS) virtual switches on the hub
and spoke nodes. The role of a central EL2W hub is to provide
services while the remote EL2W spokes are to provide remote
intermediate ”jump hosts” to act as a local gateway to access
services on the central EL2W hub. External bare metal systems
or virtual machine instances can join an extended Ethernet
broadcast domain through the spoke to access layer 2 or layer 3
services on the central EL2W hub by attaching to the external
(or internal) network interfaces that are connected to the OVS
virtual switch on the service spoke.

Fig. 1. EL2W Service Overview

Figure 2 shows the architecture of an EL2W hub, Sun.
The hub Sun can be quickly constructed on demand using
Vagrant [14] with a Vagrantfile and configuration scripts.
We used an Ubuntu server with VirtualBox and Vagrant to
establish a baseline VM for the EL2W hub and completed the
node installation using the scripts we developed to load and
configure the EL2W hub. The IaC approach allows a complete
reproducibility of the EL2W hub and allows others to use the
same Vagrantfile and infrastructure creation scripts to create
and customize their own EL2W hub.

Starting from the bottom of Figure 2, other than the external
interface managed for Vagrant access, Sun’s external interfaces
are assigned to the firewall zone Public: one interface is
bridged to the server’s physical interface with a publicly
accessible external IP address, and a second interface is
assigned the hub Sun’s IPsec IP address H with a unique
subnet (that differs from the public IP address subnet) that
is attached to the VirtualBox internal network. This allows
Layer 3 (IP) UDP/TCP port access for IPsec, VXLAN, ssh,
and rsync configured with Duo 2-factor authentication (2FA)
(in our implementation). The internal virtual Linux interface
boot, which is used as an EL2W port interface, is associated
with a separate firewall zone for interface boot with open ports
for the Layer 3 services used by the boot service, which are:
DHCP, DNS, HTTP, NFS, Squid, and TFTP.

Above the firewall in Figure 2, take the leftmost link as an
example, an EL2W spoke’s IPsec address (X) and an EL2W
hub IPsec address (H) formulate an IPsec tunnel pair (X|H) to
create separate IPsec connections. StrongSwan [16] is used to
create IPsec connections among all EL2W hosts. A VXLAN
tunnel with an assigned ID (VNID A) can then be established



over the IPsec link between the EL2W hub and spokes. This
can be combined with the IPsec tunnel pair (A, X|H) to
differentiate EL2W spoke’s links on the hub.

Fig. 2. EL2W Service Hub (Sun)

To provide connectivity and a common Ethernet broadcast
domain between the EL2W hub and EL2W spokes, we use
an OpenVSwitch (OVS) virtual switch to link the interfaces.
To provide a communication path from the OVS switch to
services, the additional named virtual interfaces (etherate and
boot in Figure 2) can be attached to layer 2 services such as
dnsmasq or Etherate [23]. Moreover, if a layer 3 IP address
is associated with the named virtual interface, then layer 3
services can be accessed on the service hub over the secure
IPsec channel from a separate EL2W IP address domain (such
as 192.7.7.0/24). This IP address space can be controlled using
routing and firewall rules. Moreover, the EL2W hub can be
placed behind a firewall to provide an additional layer of
network defense. In this work, we used a pfSense firewall
[24] with a virtual external IP address to manage incoming
traffic to the EL2W hub server.

On the EL2W Hub, we created two different services: a
Boot service for remote provisioning bare metal systems or
VMs via iPXE, and an Etherate service based on the Etherate
software tool developed by Bensley et al. [23] that provides
an endpoint for testing the Ethernet link from EL2W spokes2.
The Boot service is built on a combination of layer 2 and layer
3 services including dnsmasq (offering DHCP, TFTP, iPXE),
NFS, PHP, and Squid. Note that since the etherate interface
provides access only to a layer 2 service, no IP address nor IP
firewall zone is assigned. In order to use a local HTTP proxy
for downloading necessary packages when loading operating
systems, we modified the iPXE code [25] with a patch from
Chirossel [26]. During the hub setup procedure, the hub
generates the IPsec Certificate Authority (CA) certificates and
private keys for the spokes. Subsequently, during the spoke
setup process, the certificate and corresponding private keys
are transmitted from the hub to the spoke via rsync, which

2We modified the Etherate software tool to work around problems we
experienced when using Etherate to test the layer 2 links.

is configured with Duo 2FA. The employment of Duo 2FA
introduces an additional layer of security by mandating user
confirmation through the Duo application on a smartphone
during the key transfer process. After an EL2W hub is estab-
lished, EL2W spokes can be quickly created using Vagrant in
the same manner as the creation of the EL2W hub. Figure 3
shows the architecture of an EL2W spoke, Mars.

Fig. 3. EL2W Service Spoke (Mars)

From the top of Figure 3, a firewall on the spoke provides
layer 3 protection for the Public zone and the boot internal
network interface. Similar to the EL2W hub, a spoke has
a VirtualBox adapter for local access managed by Vagrant;
a VirtualBox internal network for connecting bare VMs or
a bridged adapter for connecting bare metal systems; and
another VirtualBox internal network with the EL2W spoke’s
IPsec endpoint IP address. Below the firewall, an IPsec con-
nection is established with the IPsec link X|H. The spoke
needs the public IP address of the EL2W hub and a unique
IPsec IP address to establish an IPsec connection. Then, a
VXLAN connection with pre-configured VNID A can be set
up with the EL2W hub to create a layer 2 tunnel (A, X|H) to
pass Ethernet frames. An Etherate client on the newly created
VXLAN port can be used to access the Etherate service on
the EL2W hub to test the connectivity of the layer 2 tunnel.
To provide local DNS services (which we use to manage the
resolution of local IP addresses for spoke or hub hostnames),
a local dnsmasq service runs on the spoke.

The role of an EL2W spoke includes a proxy server and
a jump host. As a proxy server, the spoke serves as an
intermediary to access the services provided by the EL2W
hub. As a jump host, the spoke provides limited secure access
to the extended Ethernet broadcast domain accessible via the
EL2W port and the layer 3 services protected by firewalls on
the EL2W spokes and hubs.

IV. USING EL2W TO REMOTELY LOAD AN OS

This section describes a use case we implemented using
the EL2W system for remote provisioning bare metal systems
(including bare VMs). We illustrate this capability through the



example of a remote booting and loading service exported
from an EL2W hub through an EL2W spoke to the bare-
metal systems (physical servers or VMs) connected to the
same Ethernet broadcast domain of the EL2W spoke.

This example is motivated by the need to simplify the
provisioning of bare metal systems or virtual machines within
a laboratory or at a location where the availability of skilled
personnel is limited. This would be essential if a system is
corrupted or compromised and needs to be rebuilt quickly from
a known source for packages. This example is also motivated
by a use case in which many local systems need to be loaded.
As described previously in this paper, the gaps that make this
difficult today without the use of our EL2W system are: 1) the
level of necessary skill or knowledge of system administration;
2) the need for a controlled central hub for providing instal-
lation images and configuration that could be leveraged for
higher-level services; and 3) the need for reproducibility and
simplifying the reconstruction of compromised infrastructure.

A. Setting Up an EL2W System

To create and publish a remote boot and loading service,
we first create an EL2W hub using the hub’s Vagrantfile and
configuration scripts. With an EL2W hub established, we can
then use a spoke Vagrantfile and configuration scripts to create
one or more EL2W spokes that use secure IPsec links to the
EL2W hub and published EL2W ports accessible through the
spokes. The example we describe in this section needed and
used only one spoke.

There are three configuration scripts that built the services
on the base virtual box images: el2w create is used to create
the named EL2W endpoint and boot service installs, config-
ures, and publishes the remote booting and loading service.
The third script etherate service is used to start the Etherate
testing service on the EL2W hub. The etherate service script
only executes on the EL2W hub while the other two scripts
will run on both hub and spokes.

The parameters of the el2w create script include the role
(hub or spoke), the IPsec adapter name and address, the
VXLAN adapter name, connection name, and VNID, and the
spoke endpoint name.

The boot service script then creates the Boot service. The
parameters include the role (hub or spoke), EL2W service port
name, OVS bridge name, a private IP address for boot service,
IP address for a local squid proxy, and local, boot, and root
DNS addresses. This script installs necessary software pack-
ages, creates configuration files, configures the OVS bridge,
modifies the interface MTU (Maximum Transmission Units)
size, and starts the DHCP, iPXE, TFTP, HTTP, and Squid
processes. The script also retrieves and prepares OS images
for remote provisioning, configures the firewall rules, copies
the kickstart files for automated installation, configures and
starts the NFS service, and publishes the layer 2 Boot service.

The etherate service script sets up the Etherate test service
for the EL2W hub. The script accepts the parameters describ-
ing the role (hub or spoke) and the name of the OVS bridge
to which the EL2W Etherate service will be attached.

TABLE I
EL2W HUB AND SPOKE BUILD TIMING RESULTS (IN MIN.)

Role Build Time Server Specs

Hub 22.67± 1.57
2 × Intel(R) Xeon(R) E5-2643

32GB RAM + 2TB HDD

Spoke 7.74± 0.16
Intel(R) Core(TM) i7-6700
16GB RAM + 500GB SSD

The time spent on setting up an EL2W Hub and Spoke
using vagrant up (with VirtualBox) was recorded. We used
two timing test scripts for running without human interaction,
calculating the average time and the sample standard deviation
(SD). Table I shows the server specs and the timing results.
The results are collected and calculated from 10 trials. We
used one Vagrantfile for the hub and one for the spoke
with internal parameters. The Vagrantfile was configured to
create a base Rocky 8 VM, update the OS, install basic
security, set up network adapters, and perform the initial
firewall configuration. A local directory, which contains the
configuration scripts and files needed for the second stage of
installing the hub and spokes, is mounted into the VM. The
same Vagrantfile and configuration scripts were used across
each trial as a control variable.

All the experiments were conducted in the same network
environment, whereas the download speed is still considered
an independent variable. Therefore, when building the EL2W
hub, to reduce the timing variance caused by downloading
large OS images from a remote repository, the ISO files for
the OS distributions were also downloaded beforehand and
mounted via the Vagrantfile. Furthermore, to eliminate the
need for user interaction during the loading process, when
setting up the EL2W spoke, the hub’s authentications were
disabled in the configurations to bypass the Duo manual
confirmation step.

The EL2W hub’s server is a Dell PowerEdge R620 1U rack
server with 2 Intel Xeon E5-2643 CPUs, 32 GB RAM, and
2 TB HDD storage. Meanwhile, the EL2W spoke Mars is
on a Dell OptiPlex 7040 desktop PC with an Intel Core i7-
6700 CPU, 16 GB RAM, and 500 GB NVMe SSD. The hub
and spoke servers use Ubuntu 20.04.5 as the host operating
system. In addition, VirtualBox 6.1.42 and Vagrant 2.3.4 are
installed on both hub and spoke’s host machines. The structural
network speed limitation to the hub was 1 Gbps (limited to a 1
Gbps NIC on the pfSense firewall), and the limit to the spoke
was 200 Mbps (ISP limitation). Under these conditions, the
average time for setting up the EL2W hub was 22.67 minutes,
with a sample standard deviation of 1.57 minutes. The average
completion time for building the Mars spoke was 7.74 minutes,
with a 0.16 minutes sample standard deviation.

B. Example: Establishing a Boot Service

Once the EL2W hub Sun is up and running, we can then
establish an EL2W service spoke (i.e., Mars) using vagrant
up with a parameterized Vagrantfile and private Duo keys for
rsync to communicate with the EL2W hub.



To access the boot service provided by an EL2W spoke, a
virtual machine running on the same hardware as the EL2W
spoke, or an external bare metal system can be attached to an
external switch or connected to an Ethernet port on the spoke
that is also attached to a network adapter on the EL2W spoke
virtual machine (within the same Ethernet broadcast domain).
This provides a network path to access the EL2W services
from bare metal systems or VMs. The internal network adapter
on the EL2W spoke is connected to the OVS virtual switch
on the spoke to provide a layer 2 path to the EL2W hub.

The process of establishing an EL2W spoke uses the service
scripts el2w create and boot service. As a part of building the
layer 2 path, a connectivity test service using Etherate [23] is
running on the EL2W spoke to verify the path is functioning
before building the boot service on the EL2W spoke.

To use the remote boot service, a bare system is configured
to perform a network boot (supported by both BIOS and UEFI
systems). The initial DHCP request is satisfied by the dnsmasq
server running on the remote EL2W hub (Sun) (which also
provides the IP address with the DHCP response for the Mars
spoke dnsmasq DNS service), boot parameters, and a PXE
boot script that is sent to the bare system. The PXE script
displays several loading options to the user. We currently
provide CentOS 7, CentOS 8, Rocky, TrueNAS, FreeNAS,
and pfSense, as shown in Figure 4.

Fig. 4. EL2W Boot Service Boot Options iPXE Menu

The PXE script sent to the bare system is chain loaded using
two stages. The first stage uses a PXE script embedded into
the first undionly.pxe (ipxe.efi for UEFI systems) executable
built automatically via IaC on the EL2W hub. This patched
iPXE we used supports HTTP proxies which allow the remote
systems to exploit the Squid cache on a single EL2W spoke
to improve performance for subsequent OS loads from HTTP.
The first PXE script sets the HTTP proxy address in the PXE
environment and then requests a PHP script on the EL2W hub
that creates a secondary PXE script. The PXE code generated
and returned to the bare system from the EL2W hub builds
the menu presented to the user. The menu shown in Figure
4 allows the user to select a loading region and an OS to
be provisioned on the system. The PXE script leverages the
iPXE option variables user-class to set the loading region
(Mars, Earth, or Venus), http-proxy to set the Squid cache
HTTP proxy address, and vendor-class to convey the system
architecture (BIOS or UEFI).

This approach returns the user-selected parameters to the
EL2W hub via a PXE imgfetch command and invokes another
PHP script (if needed) to set up the DHCP and iPXE options
required to boot bare systems from a specific NFS volume
for FreeBSD-based OSes from the EL2W hub. Rocky and
CentOS booting is simpler and only requires an image load
from a remote repository. We also created a local copy of
the distribution media for CentOS and Rocky on the hub that
could be distributed via HTTP from the EL2W hub. Since
the images and packages for CentOS and Rocky are remotely
retrieved using HTTP, they can be stored as the Squid cache
on a single EL2W spoke to speed up subsequent loadings.

In this work, the EL2W spoke machine was located approx-
imately a 1.3-mile driving distance from the hub server, and
the spoke machine was connected to a different network than
the hub. After the EL2W infrastructure is built and set up, we
can test the remote provisioning functionality the EL2W Boot
service provides. VirtualBox VMs are created on a Windows
laptop as bare VMs for measuring BIOS PXE boot. The
Windows laptop has an Intel Core i7-12700H, 64 GB RAM,
and a 2 TB PCIe 4.0 SSD. The bare metal for measuring
UEFI is a Dell OptiPlex 7010 desktop PC with an Intel Core
i7-3770, 16 GB RAM, and 256 GB SATA SSD. The bare
VMs are connected to the spoke via a bridge network adapter
in VirtualBox, and the bare metal desktop is connected via the
onboard Ethernet port. Both bare systems are connected to the
spoke via a 1 Gbps connection, and the physical Ethernet port
is the same bridge adapter defined in the Vagrantfile while
setting up the EL2W spoke. During our development, we
tested both UEFI and BIOS in VirtualBox. The measurements
shown in Table II for VM loading are for BIOS only.

The time in minutes needed to load CentOS 7 and Rocky
in different scenarios is shown in Table II. For each OS and
platform scenario, the timing results of the different methods
were collected from three independent trials, and the average
and sample standard deviation (Avg.±SD) of the timing results
were calculated. Different methods were used when loading
CentOS 7 and Rocky for comparing direct HTTP downloading
from the hub and Squid cache on the spoke. As for HTTP
methods, we measured the provisioning time using direct
downloads from a remote public repository (HTTP (Remote)
for loading CentOS 7) and the EL2W hub’s HTTP server
(HTTP (Hub) for loading Rocky). Using an HTTP server on
the EL2W hub to self-host the OS images can not only isolate
the loading process but also enables the capability for loading
and booting customized OS images for specialized internal
use. After the first load, the files will be cached using Squid
on the spoke for subsequent bare system provisioning. The
CentOS 7 and Rocky provisioning process was configured
for the measurements to eliminate user interaction during the
loading process. To remotely load TrueNAS, which is based
on FreeBSD, the EL2W hub exported the TrueNAS file root
directory through NFS. By selecting from the iPXE menu,
the TrueNAS root directory was mounted to the client via
the extended NFS service from Spoke’s boot port. Then, a
pxeboot file from the TrueNAS boot directory was loaded first.



The pxeboot file then finished the rest of the TrueNAS loading
using the NFS-mounted directory. The loading process of Tru-
eNAS was not fully automated and required user interactions.

TABLE II
EL2W REMOTE OS LOADING TIMING RESULT (IN MIN.)

OS Method BM (UEFI) VM (BIOS)

CentOS 7
HTTP (Remote) 5.84± 0.28 4.71± 0.12

Spoke Squid 4.79± 0.03 3.7± 0.19

Rocky
HTTP (Hub) 5.46± 0.21 4.43± 0.08

Spoke Squid 4.78± 0.03 4.09± 0.07

TrueNAS Hub NFS Share 27.57± 0.05 28.46± 1.04

The loading time for CentOS 7 and Rocky started from
selecting the OS from the iPXE menu (shown in Figure 4)
to the time when the OS login page appears. Using HTTP
(Remote) method (first access to the OS DVD image from a
site remote from the hub), the time needed for provisioning
CentOS 7 on an actual physical bare metal (BM) and bare
virtual machine (VM) was 5.84±0.28 minutes and 4.71±0.12
minutes, respectively. Using the cached data from the Squid
cache, the time was reduced to 4.79 ± 0.03 minutes for bare
metal and 3.7±0.19 minutes for bare VM. As for Rocky, using
the hub’s HTTP server (with the OS DVD image already on
the hub) required 5.46 ± 0.21 minutes to provision a bare
metal system and 4.43±0.08 minutes to provision bare VMs.
Using the spoke’s Squid cached data to load Rocky on a bare
metal system took 4.78 ± 0.03 minutes, while on bare VMs,
the time was 4.09±0.07 minutes. The results show an overall
time reduction of approximately 15% from using the spoke
Squid cache after the first load that didn’t use the Squid cache.
The TrueNAS provisioning time started at the same phase but
ended at the “TrueNAS installation succeeded” prompt. As a
result, the remote loading of TrueNAS on bare metal and bare
virtual machines used 27.57± 0.05 minutes and 28.46± 1.04
minutes, respectively.

Our experiments and measurements showed that it was
possible to remotely load a CentOS 7, Rocky, or TrueNAS
(based on FreeBSD) based OS from a remote server using our
EL2W approach. As shown in Table II, it required a reasonably
short time to load CentOS 7 and Rocky remotely. Moreover,
we found that using a local Squid cache on the spoke could
significantly reduce the time needed to load CentOS 7 and
Rocky. The difference in time between loading BM versus
a VM for CentOS 7 and Rocky could possibly be due to
the differences in computer hardware used for the bare metal
system and the laptop used for the VM. The BM system has an
older processor than the laptop used for the VM and a SATA
connection to the drive compared to a PCIe connection for
the laptop. We did not investigate the underlying performance
differences between loading a BM versus a VM, all the timing
results were collected from loading one single bare metal with
one operating system at a time to control variables. The hub
and spoke architecture design theoretically supports multiple
spokes existing at different physical locations at the same time.
However, this will require sufficient bandwidth to support the

network traffic of multi-connections. In this work, the viability
and scalability of our EL2W was not investigated.

In co-author Kaushal’s implementation of the concept (de-
scribed in her thesis [20]), the efficiency of a Squid cache was
demonstrated by mimicking delays corresponding to different
regions across the globe. Kaushal compared the system aver-
age loading time of 11 consecutive runs using the framework
with and without a Squid cache. The result indicated that
without Squid, the loading time increased linearly with the
imposed network delays increasing from 0 ms to 67 ms (using
NetEm). Whereas, with a Squid cache, the time required to
load the system stayed similar despite the different delays. As
the network diameter increased, Kaushal witnessed a much
more significant reduction in loading time as subsequent loads
can exploit the spoke squid cache. Thus, if multiple bare
systems are loaded with CentOS 7, the successive loads will
require much less time with less traffic to the EL2W hub than
without a Squid cache after the first load.

After the bare systems are loaded, they are provided with an
private IP address (192.7.7.0/24). The node can then securely
access hosts across the EL2W network within the private IP
space. IP addresses for external destinations are routed to the
EL2W hub through the private IP space and protected by an
outward-facing firewall on the EL2W hub. Any other external
firewalls (such as pfSense) can be set up in front of the EL2W
hub to provide another layer of protection.

V. DISCUSSION AND LESSONS LEARNED

Building this infrastructure based on IaC principles took
considerable effort on several fronts. In this section, we inter-
pret our knowledge gained and our findings while conducting
the experiments.

A. System Reproduction and Maintenance

First, reproducibility is essential. The Vagrantfiles and
scripts must work every time, and configuration issues (such
as IP masquerading and SELinux policies) often require inves-
tigation and resolution. The concern about this IaC approach
is that with many ”moving parts” required to make this work,
as the software packages on which the EL2W system relies are
upgraded, some functionality will inevitably stop working and
need to be updated. The IaC approach’s benefit is that by using
software revision control, we can track these changes over time
and see what has changed as the infrastructure evolves.

B. VXLAN over IPsec Performance

During the experiments, we discovered that the combined
use of IPsec and VXLAN was causing packet fragmentation
issues. To address this, during the establishment of the boot
service, we had to manually change the MTU size of the boot
interface on the EL2W hub.

During our experiments, we found that the interfaces’
default MTU sizes were 1,450 bytes, and using the tracepath
command measured the PMTU size between the spoke and
hub IPsec tunnel to be 1,438 bytes. During our tests, we even-
tually changed the MTU size of the VXLAN interface (boot)



to 1,388 bytes on both EL2W’s spoke and hub to achieve
the spoke’s connected network bandwidth (212 Mbits/sec,
measured using iperf3 [27]).

C. NFS over WAN Performance

Furthermore, we also explored the long FreeBSD-based sys-
tem provisioning time. We found that NFS performance was
affected by the round-trip time (RTT) between the NFS client
and server [28]. The FreeBSD-based system provisioning
process uses NFSv3 to transfer the kernel and other package
files. We observed that during the FreeBSD-based OS loading
process, the client would send an acknowledgment back to the
server for each packet sent from the NFS server to the bare
system. In our experiments, the average RTT calculated from
1000 pings between the EL2W hub and spoke was 24.338 ms.

We tested one method to boost NFS performance over a
high RTT connection: increasing the read ahead kb value of
the NFS client [29] in Linux. To experiment, we mounted a
shared directory on the hub to the spoke via NFSv3 using the
UDP protocol. We increased the pre-fetch file size from the
default of 128kb to 153600kb, and the NFS transfer speed
from hub to spoke increased from 8.1 MB/s to 17.8 MB/s.

VI. CONCLUSION

This paper described the design and implementation of
EL2W, a system we built using Infrastructure-as-Code tools
and principles. EL2W provides a secure extended layer-2
Ethernet broadcast domain that can be used for a remote
booting service on a small scale such as university research
labs. We demonstrated the usability of our approach with
examples of remote booting and loading operating systems
on both bare virtual machines and actual physical bare metal
machines. Our work provides the basis for aiding efforts to
provision systems that form the foundation of a private small-
scaled distributed computing infrastructure.
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