
A Cautionary Note on Building Multi-tenant
Cloud-FPGA as a Secure Infrastructure

Yukui Luo, Yuheng Zhang, Shijin Duan, and Xiaolin Xu
Department of Electrical and Computer Engineering

Northeastern University, Boston, MA, USA

Abstract—Security concerns have been raised for multi-tenant
cloud-FPGA in many recent works. While these existing works
focused on studying the security of diverse cloud-FPGA ap-
plications, such as Advanced Encryption Standard (AES), the
vulnerabilities associated with the inherent FPGA components
are so far under-explored. For the first time, we investigate the
robustness of a commonly used communication protocol for data
exchange, Advanced eXtensible Interface (AXI), against fault
injection attacks in a multi-tenant cloud-FPGA environment.
We build an experimental setup with a commodity FPGA
development kit and launch fault injection attacks on the shared
power distribution network (PDN). To study the in-depth effects
of such attacks, we characterize the voltage glitches of different
attack patterns in a non-invasive manner, i.e., using electron
magnetic measurement. We also mimic the real-world data
transmissions using two crafted datasets with different statistical
characteristics. The experimental results demonstrate the unique
security vulnerabilities of the current AXI protocol in the context
of a multi-tenant cloud-FPGA. Last, we discuss potential defense
strategies against these vulnerabilities.

Index Terms—Security, Cloud-FPGA, Fault Injection, Com-
munication Protocol, Memory

I. INTRODUCTION

Field-programmable Gate Arrays (FPGA) based accelerator
has become an emerging solution for compute-intensive ap-
plications. In recent years, virtualization techniques have been
proposed to fully exploit the flexibility and computing effi-
ciency of FPGA hardware. For example, Khawaja et al. [14]
propose a scheme that enables multiple users to share an
FPGA chip. Although supporting higher resource utilization
and flexibility, the multi-tenant cloud-FPGAs also faces unique
security challenges, e.g., a malicious cloud-FPGA user can use
the co-tenancy to snoop the sensitive information or inject
faults into the applications of other users. As an example,
Giechaskiel et al. [11] demonstrate a crosstalk-based side-
channel on the FPGA long-wires, with which a malicious
FPGA user can deduce the secret information transmitted over
an adjacent long-wire. Similarly, the voltage fluctuation on
the power distribution network (PDN) is demonstrated as a
such side-channel, with which the adversary can extract the
secret of a victim application like a neural network model
architecture [25]. Besides, fault injection is found as another
threat against multi-tenant cloud-FPGA security, in which the
PDN of an FPGA chip can be manipulated to inject faults into
the applications [10], [16].

While most existing works focus on investigating the secu-
rity of diverse cloud-FPGA applications, few of them consider

an important question: is the current FPGA hardware architec-
ture suitable for a multi-tenant cloud context, i.e., are there any
vulnerabilities associated with the FPGA hardware resources.
Intuitively, like any circuit applications, these internal FPGA
components are also vulnerable to similar attacks. Moreover,
the reliability of inherent FPGA components (e.g., data trans-
mission interface) plays an important role in the security
and reliability of any FPGA application. For example, Rakin
et al. [24] demonstrate that the data transmission channel
between the on-chip and off-chip memories, if manipulated,
can inject faults into the on-chip applications. Using deep
neural network (DNN) models as the victim applications, they
demonstrate that properly injected faults will make a DNN
model inference accuracy close to random guess. Since the
cloud-FPGAs are mainly built for compute-intensive tasks like
DNN acceleration, their hardware implementations are usually
configured to maximize the circuit execution speed or data
throughput, and thus are highly vulnerable to fault injection
attacks. However, without corresponding specific protection
scheme for these inherent FPGA components, it is challenging
to detect and prevent these attacks at run-time.

This paper, for the first time, investigates the impact of
PDN-induced fault injection attacks on the data transmission
interface of the multi-tenant cloud-FPGA. Without loss of
generality, we adopt the Advanced eXtensible Interface (AXI)
as a case study for the following reasons. As an emerging
communication protocol in modern FPGAs, AXI provides
high-speed and high-bandwidth interconnection between dif-
ferent IPs, micro-controllers, and kernels [6] on single-user
FPGAs. These facts motivate us to rethink the security of
these commonly used protocols for new infrastructures like
the multi-tenant cloud-FPGA, such as, should we assume that
these inherent FPGA components are still secure by default?

The contributions of this work are summarized as follows:
• For the first time, we investigate the inherent vulnera-

bilities associated with FPGA components in the context
of multi-tenant cloud-FPGA. We build a prototype plat-
form and conduct fine-grained and comprehensive fault
injection attacks to study such unique vulnerabilities.

• We report that like any FPGA application, the commu-
nication protocol (or data transmission interface) of an
FPGA is also vulnerable to fault injection attacks but with
unique characteristics. We conduct analysis on the attack
results and provide unique statistical patterns.

• We discuss the discovered vulnerabilities and envision the

1

20
22

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 F

ie
ld

-P
ro

gr
am

m
ab

le
 T

ec
hn

ol
og

y
(IC

FP
T)

 |
 9

78
-1

-6
65

4-
53

36
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
FP

T5
66

56
.2

02
2.

99
74

23
0

Authorized licensed use limited to: Northeastern University. Downloaded on August 20,2023 at 03:32:39 UTC from IEEE Xplore. Restrictions apply.

potential defense strategies. Specifically, we review the
existing defense solutions from recent works and discuss
their applicability to protect the inherent FPGA modules.

II. BACKGROUND AND RELATED WORK

A. Threat Model and Related Attacks
Without loss of generality, we adopt the representative threat

model of multi-tenant cloud-FPGA in other recent works
[11], [25]. In this threat model, the adversarial and victim
users share the hardware resources of a cloud-FPGA, and
they can execute their circuit applications simultaneously and
independently. Specifically, the adversary can aggressively
overload the power supply of an FPGA using power-hungry
circuits, such as ring-oscillator (RO), to introduce transient
voltage glitches in the power distribution network (PDN). As
a result, the victim’s FPGA applications will become unstable
and execute incorrectly. Such PDN-induced fault injection
attack has been validated in both Intel and Xilinx FPGAs [12],
[22] to compromise different FPGA applications. For example,
Mahmoud et al. [21] used the PDN-based fault injection to
corrupt the entropy of the true random number generator.
Boutros et al. [10] and Rakin et al. [24] used the PDN-induced
fault to manipulate the accuracy of a DNN model inference.

These many related works, although demonstrating suc-
cessful attacks against diverse FPGA applications, have not
explored the security of FPGA hardware modules under such
PDN-induced power attacks. Practically, a circuit application
in multi-tenant cloud-FPGA may employ many auxiliary hard-
ware components, such as multiple communication protocols
like standard AXI, AXI-Lite, AXI-Stream, first-in-first-out
(FIFO), and other simple direct connections. Although it is
visible that all circuitry components on the FPGA will have
vulnerabilities to such power attacks, there is no work that
has explored and quantified such security issues. To fill this
research gap, we use the standard AXI and AXI-Lite protocol
as a case study in this work. The reason that we choose these
communication protocols is because they are widely used in-
herent components in modern FPGAs, which are developed to
connect user IP and external hardware components with high
universality and efficiency. For example, the AXI protocols are
adopted as a interface standard in the state-of-the-art Xilinx
Versal FPGA’s adaptable Network-on-Chip (NoC).

B. AXI Communication Protocol
As an interface designated for high-frequency and high-

bandwidth systems [6], the AXI protocol is adopted by Xilinx
to bridge the interconnection between different IP modules [3],
[5]. AXI protocol uses AXI manager (AXI-M) and subordinate
(AXI-S) interfaces to support the data or instruction exchange
between the processing engine (PE) and external memory to
enable high-speed FPGA development. There are five chan-
nels between AXI-M and AXI-S, namely write/read address
(AW/AR) channels, write/read (W/R) data channels, and write
response (B) channel [6]. In detail, the data transmission over
the AXI protocol is initiated by the AW/AR channel. The
typical handshaking signals for the transmitter (i.e., source)

BRAM
(Burst length * size)

PS

DRAM
Source

Receiver
Malicious circuit

Data flow
DRAM
BRAM

്

Receiver Source

Buffer IP

Shared power supply via power distribution network

Fig. 1: Experimental setup overview.

and receiver of the AXI include VALID and READY [6]. For
example, the source (manager/subordinate) side generates a
“VALID” signal to inform the receiver (subordinate/manager)
side if the data is ready. Then, the receiver side starts to
fetch the data and uses a “READY” signal to acknowledge
the source for the next burst. In the W/R data channels, a
“LAST” signal denotes the end of one burst transmission.

III. PDN-INDUCED POWER ATTACK ON AXI
To closely investigate the impact of injected fault by power

attacks on AXI, we build a multi-tenant FPGA prototype on
an Ultra96-V2 board [9], which has an Ultrascale + chip–
ZU3EG and 2GB DDR4 on-board memory. We choose this
evaluation kit since it integrates all common SoC-FPGA com-
ponents, such as an SRAM FPGA, an ARM processor, DRAM
controller/buses, and peripheral I/Os. Specifically, the FPGA
device we used is built on TSMC 16nm low-power FinFET
process, and its high-end version–VU9P is widely deployed
in AWS F1 [2] and Alibaba Cloud F3 [1]. Therefore, this
experimental setup enables us to: (1) study the impact of power
attacks on the state-of-the-art FPGA fabrication technology
node; (2) have a physically accessible platform to conduct a
fine-grained and non-invasive investigation; (3) emulate the
setup of a practical cloud-FPGA.

We use PYNQ [7] to bridge the FPGA evaluation board with
the host PC and use Python programs to control the data flow
between FPGA and the on-board memory. We analyze prac-
tical compute-intensive FPGA applications and find that most
of them use the on-chip communication protocol to exchange
a large amount of data between the on-chip and off-chip
memories. For example, the deep learning implementations
on FPGAs utilize buffer IPs to load the input data and model
weight parameters for the processing engine (PE). We emulate
these real-world setups, using on-chip BRAM to serve as the
buffer IP to handle the data loading process.

A. Experimental System Overview
We show the experimental system in Fig. 1, which is built on

a generic AXI-based data transmission channel. Specifically,
the processing system (PS) side utilizes the DRAM controller
to enable direct memory access (DMA), and the BRAM-based
buffer IP uses AXI protocol to communicate with the off-chip

2
Authorized licensed use limited to: Northeastern University. Downloaded on August 20,2023 at 03:32:39 UTC from IEEE Xplore. Restrictions apply.

Release
scheduled
attack

Data
transmission
(D2B)

BRAM
Data transmission in a burst

…

RO grid

START

LUT
START

Grid cell

101010100000000

Attack schedule block (A-block)

Attack
period

Rest
period

Attack
pattern
(C10)

…

RVALID
Attack scheduling machine

AXI protocol

Fig. 2: Attacking diagram overview. An attack scheduling
machine is used to trigger attacks on the data transmission.

memory (i.e., DRAM). The experimental setup handles two
data transmission processes: DRAM to BRAM (D2B) data
reading process and BRAM to DRAM (B2D) data written-
back process. As illustrated in the bottom of Fig. 1, our
experiment launches attacks during the D2B data transmission
process, i.e., the data received by the BRAM will include
faulty values. To facilitate quantitative attack analysis, we
control the BRAM to write back these data to DRAM for
comparison using the B2D channel, from which we can easily
tell the difference between the original and fault injected data.
We further build an attacking scheduling machine to enable
fine-grained control of the malicious circuit, as detailed below.

1) Attack scheduling machine.: The AXI data transmission
protocol is burst-based [4], i.e., the source side data is not
always valid during transmission. Thus, it is meaningless to
launch attacks if the transmission is idle for analysis purposes.
To mitigate this issue, we synchronize the PDN-induced
attacks with the data transmission using an attack scheduling
machine (Fig. 2), to disable the malicious circuit (RO grid)
if the source data is invalid. In addition, we simplify the
triggering system by applying the data read-valid (RVALID)
signal in the AXI-S. This signal can enforce the attack to
be only triggered during the valid D2B data transmission.
Leveraging this setup, we can learn how the PDN-induced fault
injection affects the data transmission over AXI, i.e., by simply
comparing the original DRAM data with the data written back
from BRAM, as illustrated in the bottom of Fig. 1.

To facilitate fine-grained attacks for quantitative analysis,
we execute the attack scheduling machine at the same clock
frequency as the AXI interface. Specifically, we divide a
single burst transmission into several attack blocks (A-block
in Fig. 2), and each block is composed of “attack period” and
“rest period”. The “attack period” consists of different attack
patterns such as “1”, “10”, and “100”, in which “1” and “0”
can enable and disable the malicious circuit, respectively. Fig.
2 illustrates a consecutive (C) attack pattern “10”, denoted as
“C10”. The “Rest period” is composed of consecutive “0”s,
which controls the time period without any attacks. Since the

attack scheduling machine is synchronized with AXI-based
data transmission, every single bit in the A-block determines
whether a corresponding data transmission is under attack
(“1”) or not (“0”).

2) Malicious circuit.: Without loss of generality, we follow
other related works to launch the PDN-induced fault injection
on the AXI communication protocol [12], [13], [16], [17],
[23]. Specifically, we instantiate a number of ring-oscillator
(RO) as the malicious circuit, namely RO grid that shares
the FPGA with the AXI data transmission setup, as shown
in Fig. 1. Note that there are also other design options for the
malicious circuit to satisfy different requirements, e.g., bypass-
ing the checking of cloud deployment [17]. Since this paper
focuses on investigating the FPGA communication protocols
against PDN-induced power attacks, exploring novel malicious
circuits is not our focus. In practice, a malicious cloud-FPGA
user will explore different strategies to guide the PDN-induced
fault injection attacks, i.e., random or side-channel based [12].
In our design, these ROs are jointly controlled by a “START”
signal that is provided by the attack scheduling machine, as
illustrated in Fig. 2.

B. Testing Data Generation

As a case study, we set the burst size of the buffer IP as
32-bit and the burst length as 256 (each burst has 256 data
transmissions and each transmission handles 32-bit = 4-Byte
data), and execute the IP buffer at 300MHz. We mimic the
data transmission of real-world FPGA applications using two
15MB datasets with different statistical characteristics. Specif-
ically, the first is a “random” dataset, with data values of 32-bit
floating-point format and following uniform distribution. The
second dataset is generated with 8-bit Gray code, and each
value is reused four times to formulate a 32-bit data, rep-
resenting the transmission of more regulated data structures.
Note that we do not set up 32-bit Gray code dataset, which
has 232 numbers and cannot be exhaustively tested. Instead,
we adopt a wheel encoder to generate the testing dataset to
make all data have the same possibility to be attacked, i.e., the
traversal of Gray code data is cycled. Therefore, each dataset
will consume 15,360 (= 15MB/32bits/256) transmissions to
finish the D2B or B2D transaction.

C. PDN-induced Voltage Glitch Characterization

Before evaluating the impact of PDN-induced fault injection
attacks, we first utilize a Lecroy oscilloscope [8] to capture
the voltage glitches caused by different attacking patterns.
Since it is infeasible to directly measure the internal voltage
glitches on PDN without introducing noise and bias, we use an
electromagnetic (EM) probe with a sampling rate of 10GHz, to
trace the energy radiation of the FPGA chip in a non-invasive
manner. The experimental setup is shown in Fig. 3a. Although
the energy radiation captured by the EM probe may not fully
represent the voltage fluctuation in the chip, it provides us
a highly accurate trace for attack activation, as well as the
strength and timing characteristics of different attack patterns.

3
Authorized licensed use limited to: Northeastern University. Downloaded on August 20,2023 at 03:32:39 UTC from IEEE Xplore. Restrictions apply.

濩瀂濿瀇濴濺濸澳濺濿濼瀇濶濻濸瀆澳
濶濴瀃瀇瀈瀅濸濷澳濵瀌澳濘濠澳
瀃瀅瀂濵濸

(a) EM trace-based voltage glitch measurement.

0 1 0 1 0

0 1 1 0 0

0 1 0 0 1 0 0

0 1 0 0 0 1 0 0 0

A
m

pl
itu

de
 (V

)

-0.8

0.8

(b) Voltage glitches of different attack patterns.

Fig. 3: PDN-induced voltage glitch characterization.

Our evaluation applies each attack pattern twice to observe
the corresponding voltage glitches. For example, the “C10”
represents the attack pattern “consecutive 10”, and we repeat-
edly apply it twice, like using “1010”. Similarly, we apply
three other attack patterns “C1”, “C100”, and “C1000”, and
their timing diagrams are plotted in Fig. 3b. The corresponding
EM trace of each attack pattern is shown at the bottom of
Fig. 3b. From these measurements, we observe the following
characteristics: (1) For each attack pattern, the first “1” can
activate the malicious circuit and incur a significant voltage
drop on the PDN, which is then quickly recovered to the
normal level. (2) For these applied attack patterns, the voltage
drop usually takes 3 to 4 ns to reach the lowest level (at around
the 10th ns). (3) The attack pattern with more consecutive
“1s” (e.g., “C1”), does not incur more voltage drop than
others but slows down the voltage recovery. Also, the time
interval between each activation of the malicious circuit plays
an important role in the PDN-induced power attacks. This
is due to the power management circuit, which can quickly
replenish the capacitor-based power bank when the malicious
circuit is deactivated.

D. Fault Attack Result Analysis

a) Fault types: We observe two types of faults from the
experimental results. We define the first type as unrecoverable

fault, in which the transmitted data are received as incorrect
on the receiver side, even after deactivating the RO grid. We
find that such unrecoverable fault is caused by frequently
triggering the malicious circuits within a short time duration,
which possibly incurs system error or denial of service of
the FPGA, as also reported in other works [12], [19]. We
define the second type as recoverable fault, in which the
receiver only receives incorrect values if the corresponding
data transmission is attacked. Technically, a such recoverable
fault is more stealthy since the adversary can accurately control
the moments to inject faults, which is our focus in this paper.
As an empirical configuration, we set the “rest period” (in Fig.
2) as 75% of the A-block size to avoid unrecoverable fault.

b) Attack results analysis: To conduct a comprehensive
attack analysis, we apply A-blocks with different “attack
periods” to reconfigure the type and frequency of each attack
pattern. For example, considering the data transmission has
a burst length of 256 as indicated in Sec.III-B, then for
an attack schedule with 4 A-blocks, each A-block covers
attacks on 256/4 = 64 data transmissions. If adopting attack
pattern “C10” and “attack period” equals to 25% of an A-
block (to avoid the unrecoverable fault), the attack pattern
“10” will be applied for 8 times. As a result, the A-block is
64h’AAAA 0000 0000 0000, in which each bit determines
whether to attack a data transmission.

We change the number of A-blocks from 1 to 8 to mimic
different scenarios and plot the results in Fig. 4. We define
an attack as successful if the integrity of corresponding data
transmission is corrupted. We have two observations from the
experimental results: (1) Comparing Fig. 4a and Fig. 4b (or
Fig. 4c and 4d), we find attack pattern “C1” achieves higher
attack success rate than “C10” in both datasets. (2) Comparing
Fig. 4a and Fig. 4c (or Fig. 4b and Fig. 4d), we find the same
attack pattern achieves similar attacking statistics on different
datasets. Moreover, the dataset derived from Gray codes are
more robust than the random dataset against the fault injection
attacks. Here, we make an intuitive interpretation that Gray
codes can tolerate more voltage-drop impact because only 1
bit is changed between each two adjacent data transmissions,
which may enhance the integrity of each other. In general,
using attack pattern “C1” and 3 A-block achieves the highest
attack success rate, i.e., 23% in the random dataset and still
14% in the Gray code dataset.

Fine-grained fault analysis: From Fig. 3b, we learn that the
root cause of PDN-induced fault injection is a timing violation
introduced by the voltage glitch directly that changes the
data transmission speed (or propagation delay) of the victim
circuits. For example, if a specific bit-line transmits 1-0-1 over
three consecutive clock cycles, the PDN-induced fault could be
injected on the second bit, which can be incorrectly sampled
as the adjacent “1” by the receiver side. In contrast, if a bit-line
transmits constant values (e.g., all-1), the PDN-induced fault
injection is less likely to happen. These results are also in
accordance with the fault injection-induced “data duplication”
in [24], i.e., two similar and consecutive data packages are
less likely to be injected with faults due to the high similarity

4
Authorized licensed use limited to: Northeastern University. Downloaded on August 20,2023 at 03:32:39 UTC from IEEE Xplore. Restrictions apply.

Successful Attack Total Attacku s A k T A c

1 2 3 4 5 6 7 8
Number of A-block per burst

100
101
102
103
104
105
106

N
um

be
r o

f a
tta

ck

(a) Random dataset under “C1”.

1 2 3 4 5 6 7 8
Number of A-block per burst

100
101
102
103
104
105
106

N
um

be
r o

f a
tta

ck

(b) Random dataset under “C10”.

1 2 3 4 5 6 7 8
Number of A-block per burst

100
101
102
103
104
105
106

N
um

be
r o

f a
tta

ck

(c) Gray code dataset under “C1”.

1 2 3 4 5 6 7 8
Number of A-block per burst

100
101
102
103
104
105
106

N
um

be
r o

f a
tta

ck

(d) Gray code dataset under “C10”.

Fig. 4: The fault injection results under different attack patterns.

that naturally enhances their integrity.

3130 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0
Data bus index

0

5

10

To
ta

l n
um

be
r o

f f
au

lt

104

(a) Bit-wise fault in the random dataset

3130 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0
Data bus index

0

5

10

To
ta

l n
um

be
r o

f f
au

lt

104

(b) Bit-wise fault in the Gray code dataset

Fig. 5: Fine-grained fault analysis over two testing datasets.

We use the experimental results with the highest attack suc-
cess rate as a case study to explore the bit-level fault injected
by the PDN-induced attacks on 32-bit data, and the results
of both random and Gray code-based datasets are shown in
Fig. 5a and Fig. 5b. From these results, we find that: (1)
Physical placement and routing of the victim impacts the fault
injection results. Considering that the values in the random
dataset follow uniform distribution, thus each bit should have
the same possibility of being corrupted. However, as shown
in Fig. 5a, some specific bits are easier to be compromised
in the random dataset. Therefore, we deduce the vulnerability
difference should be caused by the physical placement and
routing of these wires, i.e., the location and length of different
wires make some of them more vulnerable to timing violations.
This phenomenon is observed in the attacking result of the
Gray code dataset as well, i.e., the lower bits are more
vulnerable since we use the identical placement and routing
configuration for both datasets. (2) The data structure also
plays an important role in the fault injection attack. In Fig.
5b, each 8-bit data on the Gray code dataset shows a similar
statistical distribution after fault injection, despite the attack
success rate decreased along the data bit index. This is because
we generate the 32-bit Gray code dataset by repeating each 8-

bit data 4 times (see Sec. III-B). (3) The flipping-frequency of a
specific bit-index determines its vulnerability to fault injection
attacks. In Fig. 5b, we find the bit indexes 0, 8, 16, and 24
are easier to be attacked, due to the higher data flipping-
frequencies in these indexes. For example, these bits closer
to LSB are flipped more frequently across consecutive data
transmissions. To further validate this, we cyclically shift the
Gray code dataset and apply the same attacks, and find the
indexes of vulnerable bits also shift accordingly with the data,
which affirms our conclusion.

IV. DISCUSSION

Multiple recent works have proposed protection schemes
against secret-snooping or PDN-based fault injection attacks in
a multi-tenant cloud-FPGA context. As a rough classification,
they can be categorized as three different strategies:

Obfuscation strategy: Krautter et al. [15] proposed to obfus-
cate the side-channel leakages in a multi-tenant FPGA, which
can effectively prohibit the application of correlation power
analysis (CPA) of AES against the key extraction. Similarly,
Luo et al. [18] proposed using obfuscation to mitigate the
crosstalk-induced side-channel on FPGA long-wires. However,
these strategies are either designated for specific security appli-
cations and against side-channel attacks, the faults can still be
injected even after employing these obfuscation mechanisms.

Monitoring strategy: Some recent works [17], [20] proposed
using on-chip sensors to monitor the voltage/delay fluctuation
as a defense. However, from our exploration in Sec. III-D, the
successful recoverable fault attack requires carefully crafted
attack patterns, i.e., an appropriate rest period is very important
in avoiding the shutdown and unrecoverable fault. From this
perspective, these attacks inducing recoverable fault are more
stealthy, and the their attacking frequency is low. Thus, the
monitoring strategy may not capture such attacks, but could
only be used as an indirect defense solution.

Dynamic frequency scaling strategy: Leveraging the moni-
toring scheme, Luo et al. [20] introduced a dynamic frequency
scaling (DFS) framework, which can passively adjust the
frequency of victim applications at run-time. Specifically, this
method target executing a victim applications at a lower clock
frequency, in order to improve its tolerance to the timing
violations from fault injections. A critical issue of this method
is the performance loss caused by frequency scaling/reduction.

5
Authorized licensed use limited to: Northeastern University. Downloaded on August 20,2023 at 03:32:39 UTC from IEEE Xplore. Restrictions apply.

Envisioned defense solution: As an emerging infrastructure
designated for high-performance, the data exchange between
the FPGA on-chip module (e.g., BRAM) and the external
device (e.g., DRAM), rendering the data transmission interface
or communication interface like AXI a tie-breaker of the
entire computing infrastructure. Moreover, considering that
most applications outsourced to cloud-FPGAs are compute-
intensive, i.e., of high frequency and throughput, thus, the cor-
responding defense strategies should also be compatible with
the high-performance communication protocols. We envision
the following expected characteristics in the potential defense
solutions, from a protocol-hardware co-design perspective, to
secure data transmission interfaces like AXI without introduc-
ing high-performance loss. Note that these design requirements
should be generally considered to any other FPGA components
towards building a secure multi-tenant infrastructure.

From the protocol perspective, we should first consider
the security of the controlling signals (e.g., data requests).
Since if carrying faulty information, these controlling signals
will directly incur faulty data transmission process or even
unrecoverable faults like crash, as reported in our observation
(Sec. III-D). Besides, due to the unpredictable behavior of
an adversary, it is uncertain when and how the faults will be
injected. Therefore, a generic defense strategy should consider
employing integrity checking and error correction, e.g., using
redundant transmission. For example, we can modify the hand-
shaking protocol by sending redundant controlling signals,
e.g., sending two data requests and comparing them to check
the integrity. This strategy is feasible for the following reasons:
(1) The data request frequency is usually lower than the data
streaming; (2) The randomness of fault injection makes it
less possible for the adversary to introduce exactly identical
faults to consecutive data requests transmissions, even on the
data requests of smaller sizes. Similarly, from the hardware
perspective, we should prioritize the integrity protection of
the controlling modules like the finite state machine, such
as introducing self-monitoring mechanisms. Moreover, any
defense strategy incurring a large hardware overhead should be
adequately addressed. For example, we can protect the most
security-critical and application-specific data transmission to
balance the overhead and robustness.

V. CONCLUSION

This paper investigates the vulnerabilities associated with
the internal hardware modules of an FPGA in the multi-tenant
and cloud environment. Our study uses the commonly used
AXI communication interface and PDN-induced power attacks
as a case study. We conduct comprehensive and fine-grained
analysis using different test datasets and attacking patterns,
and the experimental results demonstrate unique vulnerabilities
associated with the AXI protocol-based data transmission.
Although this work uses AXI as a case study to explore
the inherent vulnerabilities of FPGA hardware modules, its
conclusion can be generally applied to other FPGA-specific
hardware resources, highlighting the importance of exploring
defense solutions for this emerging infrastructure.

REFERENCES

[1] Create an f3 instance. https://www.alibabacloud.com/help/en/elastic-co
mpute-service/latest/create-an-f3-instance.

[2] Developer preview – ec2 instances (f1) with programmable hard-
ware. https://aws.amazon.com/cn/blogs/aws/developer-preview-ec2-inst
ances-f1-with-programmable-hardware/.

[3] “Axi video direct memory access v6.3,” 2017.
[4] “Vivado design suite axi referenc guide,” 2017.
[5] “Axi block ram (bram) controller v4.1,” 2019.
[6] “Introduction to amba axi,” 2021, https://developer.arm.com/document

ation/102202/latest/.
[7] “Pynq: Python productivity,” 2021, http://www.pynq.io/.
[8] “Teledyne LeCroy - Oscilloscope,” 2021, https://teledynelecroy.com/o

scilloscope/.
[9] “Ultra96-v2 single board computer hardware user’s guide,” 2021,

https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-
board-families/ultra96-v2/.

[10] A. Boutros, M. Hall, N. Papernot, and V. Betz, “Neighbors from hell:
Voltage attacks against deep learning accelerators on multi-tenant fpgas,”
in 2020 International Conference on Field-Programmable Technology.

[11] I. Giechaskiel, K. B. Rasmussen, and K. Eguro, “Leaky wires: Infor-
mation leakage and covert communication between fpga long wires,”
in Proceedings of the 2018 on Asia Conference on Computer and
Communications Security. ACM, 2018, pp. 15–27.

[12] D. R. Gnad, F. Oboril, and M. B. Tahoori, “Voltage drop-based fault
attacks on fpgas using valid bitstreams,” in 2017 27th International
Conference on Field Programmable Logic and Applications (FPL).
IEEE, 2017, pp. 1–7.

[13] C. Jin, V. Gohil, R. Karri, and J. Rajendran, “Security of cloud fpgas:
A survey,” arXiv preprint arXiv:2005.04867, 2020.

[14] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. J.
Rossbach, “Sharing, protection, and compatibility for reconfigurable
fabric with amorphos,” in 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), 2018, pp. 107–127.

[15] J. Krautter, D. R. Gnad, F. Schellenberg, A. Moradi, and M. B. Tahoori,
“Active fences against voltage-based side channels in multi-tenant fp-
gas,” in 2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 2019, pp. 1–8.

[16] J. Krautter, D. R. Gnad, and M. B. Tahoori, “Fpgahammer: remote
voltage fault attacks on shared fpgas, suitable for dfa on aes,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2018.

[17] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch,
“Fpgadefender: Malicious self-oscillator scanning for xilinx ultrascale+
fpgas,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 13, no. 3, pp. 1–31, 2020.

[18] Y. Luo, S. Duan, and X. Xu, “Fpgapro: A defense framework against
crosstalk-induced secret leakage in fpga,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), pp. 1–31, 2021.

[19] Y. Luo, C. Gongye, S. Ren, Y. Fei, and X. Xu, “Stealthy-shutdown:
Practical remote power attacks in multi-tenant fpgas,” in IEEE 38th
International Conference on Computer Design (ICCD), 2020.

[20] Y. Luo and X. Xu, “A quantitative defense framework against power
attacks on multi-tenant fpga,” in 2020 IEEE/ACM International Confer-
ence On Computer Aided Design (ICCAD). IEEE, 2020, pp. 1–4.

[21] D. Mahmoud and M. Stojilović, “Timing violation induced faults in
multi-tenant fpgas,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2019, pp. 1745–1750.

[22] G. Provelengios, D. Holcomb, and R. Tessier, “Characterizing power
distribution attacks in multi-user fpga environments,” in 2019 29th In-
ternational Conference on Field Programmable Logic and Applications
(FPL). IEEE, 2019, pp. 194–201.

[23] G. Provelengios, D. Holcomb, and R. Tessier, “Characterizing power
distribution attacks in multi-user fpga environments,” in FPL. IEEE,
2019.

[24] A. S. Rakin, Y. Luo, X. Xu, and D. Fan, “Deep-dup: An adversarial
weight duplication attack framework to crush deep neural network in
multi-tenant fpga,” arXiv preprint arXiv:2011.03006, 2020.

[25] S. Tian, S. Moini, A. Wolnikowski, D. Holcomb, R. Tessier, and
J. Szefer, “Remote power attacks on the versatile tensor accelerator in
multi-tenant fpgas,” in Proceedings of the International Symposium on
Field-Programmable Custom Computing Machines, May 2021.

6
Authorized licensed use limited to: Northeastern University. Downloaded on August 20,2023 at 03:32:39 UTC from IEEE Xplore. Restrictions apply.

