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ABSTRACT

A massive amount of research on graph representation learning
has been carried out to learn dense features as graph embedding for
information networks, thereby capturing the semantics in complex
networks and benefiting a variety of downstream tasks. Most of the
existing studies focus on structural properties, such as distances
and neighborhood proximity between nodes. However, real-world
information networks are dominated by the low-degree nodes be-
cause they are not only sparse but also subject to the Power law
form. Due to the sparsity, proximity-based methods are incapable of
deriving satisfactory representations for these tail nodes. To address
this challenge, we propose a novel approach, Content-Preserving
Locality-Sensitive Hashing (CP-LSH), by incorporating the content
information for representation learning. Specifically, we aim at pre-
serving LSH-based content similarity between nodes to leverage the
knowledge from popular nodes to long-tail nodes. We also propose
a novel hashing trick to reduce the redundant space consumption
so that CP-LSH is capable of tackling industry-scale data. Exten-
sive offline experiments have been conducted on three large-scale
public datasets. We also deploy CP-LSH to real-world recommenda-
tion systems in one of the largest e-commerce platforms for online
experiments. Experimental results demonstrate that CP-LSH out-
performs competitive baseline methods in node classification and
link prediction tasks. Besides, the results of online experiments
also indicate that CP-LSH is practical and robust for real-world
production systems.
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Figure 1: An item graph with the
long-tail phenomenon based on
user browsing logs. The nodes
with the same color have simi-
lar concepts.

1 INTRODUCTION

Graph representation learning is one of the most widely studied
techniques in graph mining. Specifically, node representation learn-
ing aims at deriving a representation for each node in a given
network, thereby further streaming node representations as graph
embedding to various machine learning downstream tasks, such as
recommendation systems [1, 42], natural language processing [35],
knowledge bases [26, 39] and social network analysis [32]. As a
result, node representation learning has drawn a lot of attention
from both research and industrial communities.

Among existing studies on node representation learning, most
of them focus on learning representations from graph structural
properties. Deepwalk[32] and node2vec[14] learn similar repre-
sentations for nodes that share common neighbors. However, al-
though learning from structural properties works for small and
dense graphs, existing approaches are unsatisfactory in practical ap-
plications because of the sparsity issues. Precisely, most real-world
networks tend to be subject to the Power law so that a majority of
the nodes would have low degrees and extremely sparse structural
information as the long-tail phenomenon [9]. For example, Figure 1
shows an item graph with the long-tail phenomenon based on user
behaviors in their browsing logs of one of the largest e-commerce
and wholesale platforms in the world. Node “iphone12” and node
“iphone12 mini” both indicate similar concepts about the product
iPhone12 while “iphone12 mini” is lately on sale by a different seller.
Since the item “iphone12 mini” is just online for a short time, it
is only associated with only few user behaviors and limited con-
nected edges. For this example, Figure 2 visualizes 2-dimensional
representations learned by DeepWalk [32]. The representations of
“iphone12” and “iphonel2 mini” with similar concepts have a huge

Figure 2: Large gaps be-
tween nodes referring the
same entity. The node IDs
are same as Figure 1.

*This work was done prior to joining Amazon.
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gap because the structural information about these low-degree
nodes is too sparse to be captured by conventional methods.

There has been active research on attributed network embed-
ding which better incorporates node attributes to learn better node
representations [5, 11, 18, 19, 31, 38, 40]. They are able to achieve
better results since node attributes provide auxiliary information
related to their labels. However, most of them conduct matrix fac-
torization for representation learning, and each node has to be
represented by individual representations, which is usually not
affordable either for training purpose or parameter size. Inspired
by the success of neural networks, graph neural networks (GNNs)
make another family that produces node representations through
label propagation or message passing[8, 15-17, 20, 21, 28, 34, 37].
Based on GNNs, some argue that the dependency between node
labels should be explicitly modeled to improve node representation
learning[33, 34]. These methods are able to achieve satisfactory re-
sults on node related tasks, while a main drawback is the scalability.
While some works try to make GNN training more efficient [3, 43],
due to the inevitable layer-wise filtering, we still need to manage a
huge number of parameters for industry scale networks (e.g., bil-
lions of items in e-commerce networks) if each node is represented
by an individual latent vector. Apart from training phase challenges,
it is hard as well, for GNNs to make real-time inferences to conduct
downstream tasks, such as recommendation.

To address these issues, we propose a novel unified framework,
content-preserving locality-sensitive hashing (CP-LSH), to address
the structural sparsity issue and effectively reduce parameters. To
deal with structural sparsity, we leverage content information, such
as properties and text descriptions, to complement structural infor-
mation. By associating long-tail nodes with their content-similar
popular nodes, the structure information of popular nodes can be
shared by long-tail nodes. LSH [7, 12] guarantees that the more
similar the properties of two nodes are, the more parameters these
two nodes share. To reduce the parameters, we leverage the hash-
ing trick to map the individual embedding between nodes into a
global parameter dictionary, and reformulate the gradient descent
mechanism of the training phase to support updating the global
embedding dictionary. Offline experimental results show that our
model outperforms our competitors in a number of tasks even if
there are fewer parameters in our model. We also deploy our model
on one of the inner-shop personalized recommendation services to
process the industrial data. Different from recommending top items
from the complete item set, inner-shop item recommendation is to
recommend top related items listed by the shop that the customer
is currently browsing. Thus, the representation quality of long-tail
nodes is even more crucial under this setting. The experimental
results prove our method to be both effective and scalable.

2 PROPOSED APPROACH

Figure 3 illustrates the overall architecture of our proposed frame-
work, content-preserving locality-sensitive hashing (CP-LSH). To
improve the long-tail node embedding learning process, we build
connections between these long-tail nodes and central nodes ac-
cording to content similarity. After building connections between
popular and unpopular nodes, an asymmetric graph representation
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Figure 3: Overview of CP-LSH. Hashing makes nodes share
representations, while graph representation learning up-
dates the representations.

learning model is guided by structural learning to preserve the orig-
inal graph structure, thereby deriving effective and robust graph
representations.

2.1 Content-preserving LSH (CP-LSH)

To alleviate the structural sparsity from the universal power-law
distribution and compress the model size, CP-LSH incorporates
content information to complement the structural information.
Specifically, we utilize locality-sensitive hashing (LSH) [6, 12, 22, 41]
to extract content-preserving features for nodes with their contents.
LSH aims to have a hash function that could encode similar inputs
into the same bucket called collision. The structural knowledge of
those popular nodes can be further leveraged to long-tail nodes,
thereby improving the overall quality of graph representations.
Meanwhile, we implicitly compress model parameters because the
number of LSH buckets is much smaller than the number of nodes.

As the input of CP-LSH, the content features of each node will be
considered as a continuous vector in a d-dimensional space so that
the similarity © (p, q) between the content features of two nodes
p.q€ R? can be measured by the cosine similarity. Inspired by [2],
we define a CP-LSH hash function hy, (p) for the content features
p with a random unit-length vector u as:

1)

where u € R, |u| = 1; Sgn(-) is the signum function that extracts
the sign of a real number. Instinctively, the hash function divides
the content feature space into two half-spaces as two buckets with
a random hyperplane to decide the hash output. Here we define
collision as the situation of being in the same bucket for the content
features of two nodes p and g. When the random unit vector u is
drawn from a normal distribution, the expected collision probability
of hy, (+) can be formally derived as:

hy (p) = Sgn (u-p),

_ arccos© (p, q)

Pr(hy (p) = hu ()] =1 2

/s

To enrich the representation capability, we further employ the
technique of AND-construction [24] to amplify the usage of CP-LSH
hash functions. Precisely, we expand the hash function with k ran-
dom unit-length vectors {u;},i € {1,2,...k} as h(p) = {hy;(p)},
where the output of the expanded hash function becomes a k-
dimensional signum vector; each unit vector u; provides a basis
hash function hy, (-) as mentioned in Eq. (1); k is a predefined model
hyperparameter. Therefore, the collision of the expanded hash func-
tion can be further defined as the situation of being the same buckets
over all basis hash functions. Formally, the expected collision prob-
ability of the expanded hash function with k basis hash functions
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hash function family. See details in the text below.
can be written as:

k

©

Pr[h (p) = h(q)] = [1 - OO @)
/s

where p and g are the content features of two nodes.

Hash Function Family. Based on the expanded CP-LSH hash
functions, we establish m different hash functions to form a hash

®)

function family {h(j Vje{Le .., m}}, where the outputs of each

hash function can be treated as the k-bit binary digits of an integer
as the hash bucket index. In Figure 4. We demonstrate the hashing
procedure by highlighting two of the nodes. {h1, ha, h3} is the hash
function family. Each node is hashed 3 times and the final repre-
sentations are aggregated from 3 representations. "iPhone 12" and
"iPhone 12 Phone Case" in this example are hashed to the same
buckets in 2 groups out of 3.

2.2 Representation via Hash Function Family

To derive the node representations, we propose to transform CP-
LSH hash indices introduced in Section 2.1 into a continuous embed-
ding vector for each node, thereby benefiting model optimization
and downstream machine learning applications. Instead of associ-
ating each node with a unique representation, we learn continuous
representations for hash indices derived by CP-LSH hash functions
so that these representations can be shared by nodes with identical
hash indices and similar contents.

In order to explicitly model asymmetric proximity, we map each
CP-LSH bucket (i.e., each individual hash index) in the hash fugction

family {h(j )} to two vectors, including a source vector s{ and

a target vector tij to encode the outgoing and incoming edges.
Specifically, for node u with content features e, the source vector
$u and target vector f, of u can be computed as follows:
1 m = 1 m =
2 ) 2 )
m hU) e, m h() e,

Jj=1 Jj=1

where the - operation is the dot product. Conducting the dot prod-
uct is essentially hashing the nodes to different buckets, thus n() -ey
indicates the bucket number corresponding to the j-th hash func-
() ()
KO e, hU) e,
with the bucket number in the source and target embedding tables.
The hashing process repeats m times. To encode the structural roles

Su = ty =

tion. Consequently, s and t indicate the embeddings

of nodes in the graph, where 1 < j <mand 0 <i < 2k — 1 are the
indices of hash functions and buckets.

2.3 Learning Objective

To derive satisfactory node representations, we follow previous
studies [14, 32, 35, 42] to predict the neighbor nodes by the simi-
larity between the source and target vectors. More specifically, the
probability of having the target node v as a neighbor for the source
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node u can be computed as:
exp (Su - fo)

Ynev exp (su - t_;l)’
where V is the node set of the graph. However, directly optimizing
Eq. (4) is time-consuming for large-scale graphs because it requires
calculating and add up the inner products with all other nodes
in the graph for all examples. To address this issue, we adopt the
Skip-Gram with Negative Sampling (SGNS) method [30] to mitigate
the computational costs. Formally, we sample edges from the graph
and optimize the following objective for each sampled edge (u, v)
as a positive training example:

P(v|u)= (4)

®)

where o(x) = 1/(1 + exp(—x)) is the sigmoid function; n is drawn
from a uniform distribution of all nodes V. For every positive ex-
ample (u, v), we randomly sample k nodes {t,, | 1 <i < k} in the
network to form k negative training examples (u, t,,). The global
objective can then be computed as:

D 20w o)(logo(5y - i) +k - Envy[log o(=55 - fn)]),

logo (S - t) + k - Epwy [logo (=si, - in) ]

where ¢ (u,v) counts positive training samples for the edge (u, v).

3 EXPERIMENTS

Datasets. We evaluate on three prevalent benchmark datasets. (1)
Citeseer-M10 [25] is a citation network with 10,310 nodes in 10
classes and 5,923 edges. (2) DBLP [36] is also a citation network
with 30,422 nodes in 4 classes and 41,206 edges. (3) Wiki [4] is a
dataset of 2,405 documents in 19 classes. There are a total number
of 17,981 links between document pairs.

Experimental Setup. For Citeseer-M10 and DBLP, the content
information of each node is the paper title. We average the word
embedding vectors derived by the Skip-Gram model [29] to trans-
form discrete texts into continuous feature vectors. For Wiki, we
conduct SVD decomposition on the TF-IDF matrix to get the con-
tent features. The content embeddings fed into our LSH functions
are all of 40 dimensions for each node.

For learning CP-LSH, the learning rate is set to 0.001. We set
m = 6 and k = 10 for Citeseer-M10, m = 8 and k = 11 for DBLP,
and m = 5 and k = 9 for Wiki. For fair comparisons, the dimension
of node embeddings for all methods tested is set to 80.

As competitive baselines, we compare CP-LSH with three node
embedding methods (DeepWalk (DW) [32], LINE [35], APP [42]),
two document embedding methods (Doc2Vec (D2V) [23], SVD [13]).
For attributed network embedding methods, we pick two most
representative ones (TADW [40], TriDNR [31]) as their perfor-
mance stands out in the class and they have the potential to be
adapted to billion-scale. Note that GNNs struggle when learning on
billion-scale graphs, and their performance link prediction is not
highlighted in the literature since full adjacency matrix has been
exposed during training. We found that CP-LSH is able to achieve
comparable performance against GNNs on node classification under
the inductive setting.

3.1 Experimental Results

Node Classification. We concatenate the input vectors of LSH
functions and the output vectors of Skip-Gram in our algorithm
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Figure 5: Micro-F1 scores for the node classification task. Tail
stands for tail nodes with top 20% low degrees.

as features to predict the labels. The results are the average of 10-
fold cross validation. In our experiments, we adopt linear SVM in
LIBLINEAR [10] as the supervised classification model.

Figure 5 shows node classification performance over different ra-
tios of training data for overall and tail nodes. CP-LSH outperforms
all the competitors on the three datasets. CP-LSH only consumes
53.86%, 59.59%, and 63.7% of memory space, compared to graph em-
bedding baselines, in DBLP, Citeseer-M10, and Wiki, respectively.
It is worth mentioning that CP-LSH is able to achieve comparable
performance against GraphSAGE on DBLP (77.32% vs. 73.81%) and
Citeseer (73.01% vs. 78.24%) [27, 34] even with less parameters to
represent the nodes. Moreover, CP-LSH obtains more significant
improvements for tail nodes, which are usual in natural graphs.
Link Prediction. We also conduct experiments on the link pre-
diction task to verify whether CP-LSH is able to preserve pairwise
similarity. We remove a specified proportion of edges from the origi-
nal network and use the rest to learn the representations. The edges
removed are considered positive examples in the test set. For each
positive example, we sample three negative examples from node
pairs without an edge. Here we adopt inner product as the operator
to measure the similarity between two nodes for link prediction.

Figure 6 (a)(b)(c) show the AUC scores for all methods with
different proportions of training edges. The experimental results ex-
hibit that CP-LSH outperforms all the competitors. Content-based
embedding methods usually suffer from the weak capability to cap-
ture structural relationships between node pairs. It also reflects the
advantage of CP-LSH that incorporates content features into a pre-
vious structure-based algorithm framework. Besides, node relations
learned from content features efficiently supplement the sparse
structure information in the network, making CP-LSH preserve
pairwise similarity better with even fewer model parameters.
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Figure 6: (a, b, ¢): AUC scores of CP-LSH and competitors on
the 3 datasets. (d): CTR of Online Recommendation.

Real-world Online Recommendation We also evaluate our
method with real-world online experiments in one of the largest
commercial platforms. The platform constructs a large-scale item
graph from user click logs with more than 80 million nodes and
12 billion edges. Based on representation similarity between a can-
didate item and items in the footprint of a user, we expose the
top 6 items within the shop’s item set to the customers when they
visit that shop, thereby exploring whether CP-LSH can improve the
quality of the representation for the marginal items in the network.
Figure 6d shows the experimental results of an A/B test within the
same traffic flow on the platform using representations learned by
CP-LSH and DeepWalk. The daily click-through rate (CTR) with
CP-LSH is significantly and steadily better than one with DeepWalk.

4 CONCLUSION

Most previous work on graph embedding only focuses on the struc-
tural properties of the graph, whereas the common Power-Law phe-
nomenon leads to a structural sparsity. As a result, merely learning
the representation through the proximity to the neighbors could
lead to poor quality of long-tail nodes. In addition, it is hard for them
to scale up. We propose a unified framework, CP-LSH, based on Lo-
cality Sensitive Hashing (LSH) that addresses the structural sparsity
issue and effectively reduces the total count of parameters in the
meantime. Specifically, we improve the quality of the embedding
of long-tail nodes by associating them to the high-degree nodes
with similar content via shared hashing outputs. The hashing trick
in our method can also reduce the redundant space consumption
caused by content-homogeneous nodes so that it can be scaled up
to data of industrial volume. Our method outperforms competitors
on most of the settings even if our model is more lightweight. The
online experiment on a real-world large-scale commercial platform
proves our method is effective and highly scalable.
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