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Abstract—We consider the design problem of a strategic

quantizer over a noisy channel, extending the classical work on

channel-optimized quantization to strategic settings where the

encoder and the decoder have misaligned objectives. Building on

our recent work on strategic quantization over noiseless channels,

we employ a random channel index assignment mapping, as done

in prior work on classical channel-optimized quantizer design

literature, combined with a dynamic programming approach

to optimize quantization boundaries. Our analysis and numer-

ical results demonstrate several interesting aspects of channel-

optimized strategic quantization which do not appear in its

classical (nonstrategic) counterpart. The codes are available at:

https://tinyurl.com/ssp2023dpnoise.

Index Terms—Quantization, joint source-channel coding, game

theory, dynamic programming

I. INTRODUCTION

This paper is concerned with the quantizer design problem
for the setting where two agents (the encoder and the decoder)
with misaligned objectives communicate over a memoryless
noisy channel. The classical (non-strategic) counterparts of this
problem have been investigated thoroughly in the literature,
see e.g., [1]–[8]. We here carry out the analysis to strategic
communication cases, see e.g., [9]–[11] where the encoder
and the decoder have different objectives, as opposed to the
classical communication paradigm where the encoder and the
decoder form a team with identical objectives.

This problem can also be solved using gradient descent
based methods, as we have analyzed in [12], [13]. However,
the quantizer might be only locally optimal. Building on
our recent work on strategic quantizer design over a perfect
(noiseless) communication channel [11], and inspired by the
prior literature on classical (nonstrategic) channel-optimized
quantization via dynamic programming (DP) [8], we ana-
lyze and design the channel-optimized quantizer for strategic
settings, used in conjunction with random index assignment.
Our main computational design tool is dynamic programming,
which was first used to implement a quantizer in [14].

The problem setting has a plethora of applications in en-
gineering as well as Economics. This class of problems, i.e.,
“information design,” also known as “Bayesian Persuasion,”
is an active research area in Economics. For an engineering
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CAREER #2048042.

application, consider the Internet of Things, where agents with
misaligned objectives communicate over rate-limited commu-
nication channels with delay constraints.

II. PROBLEM FORMULATION

Consider the following quantization problem: an encoder
observes a realization of the source X 2 X with a probability
distribution µ and maps it to a message Z 2 Z , where Z

is a set of discrete messages with a cardinality constraint
|Z|  M using a non-injective mapping Q : X ! Z . An
index mapping ⇡ : [1 : M ] ! [1 : M ] is chosen uniformly at
random and is applied to the message Z. The message ⇡(Z)
is transmitted over a noisy channel with transition probability
matrix p(zj |zi). After receiving the message Z 0, the decoder
applies a mapping � : Z ! Y on the message Z 0 and takes
an action Y = �(Z 0). The encoder and the decoder minimize
their respective objectives DE = E⇡{E{⌘E(X,Y )|⇡}} and
DD = E⇡{E{⌘D(X,Y )|⇡}}, which are misaligned (⌘E 6=
⌘D). The encoder designs Q ex-ante, i.e., without the knowl-
edge of the realization of X , using only the objectives ⌘E and
⌘D, the statistics of the source µ(·), and the channel parameters
(transition probability matrix p(zj |zi)). The objectives (⌘E and
⌘D), the shared prior (µ), the index assignment (⇡), the channel
transition probability matrix (p(zj |zi)), and the mapping (Q)
are known to the encoder and the decoder. The problem is to
design Q for the equilibrium, i.e., the encoder minimizes its
distortion if used with a corresponding decoder that minimizes
its own distortion. We consider the Stackelberg equilibrium as
indicated by the problem formulation. The problem statement
is presented in the box, and the communication setting is given
in Figure 1.

III. MAIN RESULTS

A. Analysis

Let X take values from the source alphabet X 2 [a, b]. The
set X is divided into mutually exclusive and exhaustive sets
V1,V2, . . . ,VM . The message

zi = ⇡(Q(x)), x 2 Vm

where Q(x) = zm 8x 2 Vm, ⇡ is a bijective index mapping ⇡ :
{1, . . . ,M} ! {1, . . . ,M}, ⇡(zm) = zi is transmitted over
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Problem. Using random index assignment for a given noisy channel with rate R and bit error rate perr, scalar source

X 2 [a, b] points with a given probability distribution µ, find the decision boundaries q = [x0, x1, . . . , xM ] and actions

y(q) = [y1, . . . , yM ] as a function of boundaries that satisfy:

q⇤ = argmin
q

MX

m=1

E⇡{E{⌘E(x, y⇤m(q))|⇡, x 2 [xm�1, xm)}},

where actions y⇤m(q) = argmin
ym2Y

E⇡{E {⌘D(x, ym)|⇡, x 2 [xm�1, xm)}} 8m 2 [1 : M ], and the rate satisfies logM  R.

Fig. 1. Communication diagram

a noisy channel and received as zj with probability p(zj |zi).
The decoder receives the message and takes the action

y = �(zj),

which includes applying the inverse mapping ⇡�1 first. We
make the following “monotonicity” assumption.

Assumption 1. Vm is convex for all m 2 [1 : M ].

Under assumption 1, Vm is an interval since X is a scalar,

Vm = [xm�1, xm)

where xm�1 < xm, x0 = a, xM = b. The encoder chooses the
boundary decision levels q = [x0, x1, . . . , xM ]. The decoder
determines its actions y = [y1, . . . , yM ] as the best response
to q to minimize its cost DD = E⇡{E{⌘D(X,Y )|⇡}} for
m 2 [1 : M ] as follows

y⇤m = argmin
ym2Y

MX

m=1

E⇡{E{⌘D(x, ym)|⇡, x 2 Vm}}.

The average symbol error probability of the channel is

perr =
1

M

MX

i=1

MX

j=1,j 6=i

p(zj |zi).

Let c1 , perr/(M � 1), c2 , 1 � Mc1. The integrals
expressed throughout this paper are defined over the set Vi

unless specified otherwise. The probability that the receiver
receives the noisy message ẑ = zj if zi was transmitted using
⇡(Q(x)) = zi is p(zj |zi), the channel transition probability.

The end-to-end distortion given an index assignment ⇡ is

E{⌘s|⇡} =
MX

i=1

Z MX

j=1

⌘s(x, yj)p(zj |zi)dµ.

The average distortion over all possible index assignments is

Ds =
MX

i=1

Z MX

j=1

⌘s(x, yj)E⇡(p(zj |zi))dµ = Ij 6=i + Ij=i

where Ik,j 6=i and Ik,j=i are defined as follows:

Ij 6=i =
MX

i=1

Z MX

j=1,j 6=i

⌘s(x, yj)E⇡(p(zj |zi))dµ

= c1

MX

i=1

Z MX

j=1,j 6=i

⌘s(x, yj)dµ,

Ij=i =
MX

i=1

Z
⌘s(x, yi)E⇡(p(zi|zi))dµ

= .(1� perr)
MX

i=1

Z
⌘s(x, yi)dµ.

We next express the terms in a way that can be approached
via dynamic programming:

Ij 6=i = c1

MX

i=1

Z ✓ MX

j=1

⌘s(x, yj)� ⌘s(x, yi)

◆
dµ.

We assume 0 < perr < M�1
M so that c1, c2 > 0. The average

distortion and optimum decoder reconstruction for i 2 [1 : M ],

Ds =
MX

i=1

✓
c1E{⌘s(x, yi)}+ c2

Z
⌘s(x, yi)dµ

◆
,

yi = argmin
y2Y

✓
c1E{⌘D(x, yi)}+ c2

Z
⌘D(x, yi)dµ

◆
.

The average distortion can be written including the distortion
in the noiseless setting (without random index assignment) as

Ds =
MX

i=1

c1E{⌘s(x, yi)}+ c2Ds, Ds =
MX

i=1

Z
⌘s(x, yi)dµ.

(1)
Since the problem is Stackelberg in nature, with the encoder
(leader) choosing the quantization decision levels q first,
followed by the decoder (follower) choosing the quantization
representative levels as a function of the decision levels y(q),
it allows a gradient descent based solution optimizing the
quantization decision levels. We have analyzed the gradient
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descent based solution for both noiseless and noisy settings in
[12], [13] respectively, where we also extend the noisy setting
further to 2-dimensional quantization with scalar reconstruc-
tion. We show in [12] that a strategic version of Lloyd-Max
where the encoder and decoder iteratively try to optimize their
distortion in response to the other may not converge to even
a locally optimal solution. While gradient descent can be a
solution method to this problem, in Figure 2 in [12] we see
that unlike classical quantization, the strategic version can
have multiple local minima even when used in conjunction
with log-concave sources on a noiseless channel. In Figure 2,
we show the number of locally optimal quantizers with rate
for a non-strategic ⌘E = (x � y)2 (increases with bit error
rate) and a strategic quantizer ⌘E = (x3

� y)2 for a Gaussian
source with MSE decoder ⌘D = (x � y)2 for both cases. To
mitigate the issue of local optima, in this paper we approach
the problem with a different solution method by using dynamic
programming which gives us the globally optimal solution. We
discretize the source in order to make the algorithm tractable
for DP. The condition c1, c2 > 0 is not required for a gradient
based solution since it minimizes the average distortion as a
whole, while it is required for a DP based algorithm since
the terms in the summation over the quantization regions are
individually minimized.

(a) ⌘E = (x� y)2 (b) ⌘E = (x3
� y)2

Fig. 2. Number of local optima quantizers with ⌘D = (x� y)2 for (a), (b).

B. Dynamic Programming Algorithm

While our analysis holds for general source alphabets,
for making the dynamic programming algorithm tractable,
the source has to be purely discrete. In case it is not, we
approximate it by uniformly quantizing [a, b] to N points to
obtain an ordered ascending set of N points, i.e.,

X = {a+ (1 + 2t)�}, t = 0, . . . , N � 1

where � = (b� a)/(2N) with the probability mass function

P (t) =

Z xt+�

xt��
dµ, t 2 [0 : N � 1].

We carry out the analysis in a continuous setting. For the
discrete setting, the integrals in the equations transform into
summations over xt 2 Vi. We define the following terms:

1) The encoder and decoder costs for source interval [↵,�)
for a given action y for s 2 {E,D}:

Cs(↵,�, y) = c1E{⌘s(x, y)}+ c2

Z �

↵
⌘s(xt, y)dµ.

2) The decoder’s optimal action for the interval [↵,�):

(↵,�) = argmin
y2Y

CD(↵,�, y).

3) Costs for the source interval [↵,�) in conjunction with
the optimal action for s 2 {E,D}:

✏s(↵,�) = Cs(↵,�,(↵,�)).

4) Equilibrium costs associated with the m level optimal
strategic quantizer for [x0,�) for s 2 {E,D}, where
q = [x0, . . . , xm], a = x0 < . . . < xm = �:

Dm(x0,�) = min
q

mX

i=1

✏s(xi�1, xi).

5) The set of all non-empty convex subsets of X :

S = {[↵,�) : ↵,� 2 X ,↵ < �}.

The encoder minimizes DE with the choice of the quantizer
decision levels q⇤ = [x⇤

0, . . . , x
⇤
M ], and the decoder chooses

the representative levels y⇤m to minimize its distortion DD,

q⇤ = argmin
q

MX

i=1

Z MX

j=1

⌘E(x, y
⇤
j )E⇡(p(zj |zi))dµ,

y⇤m = argmin
y

MX

i=1

Z
⌘D(x, y)E⇡(p(zj |zi))dµ.

The encoder’s distortion in quantizing the interval [↵,�)
with one representation level, ✏E(↵,�), is computed for each
[↵,�) 2 S . We set the 1�level distortion D1(x0,�) =
✏(x0,�),� 2 X\x0. The m�level distortion for an interval
[x0,�) 2 S due to quantizing the interval with m representa-
tive levels can be written in terms of the 1�level distortions,

Dm(x0,�) = min
x0,...,xm2X

a=x0<x1<...<xm=�

mX

i=1

D1(xi�1, xi).

The optimization for m�level quantization of [x0,�) can be
written as the sum of (m � 1) level quantization of [x0,↵)
and 1�level quantization of [↵,�) as the Bellman equations,

Dm(x0,�) = Dm�1(x0, rm�1(x0,�) +D1(rm�1(x0,�),�)

rm�1(x0, xm) , argmin
↵2X

{Dm�1(x0,↵) +D1(↵,�)}.

Dynamic programming requires a forward and a back-
ward pass. During the forward pass, we compute and store
rm�1(x0,�) and Dm(x0,�) for each pair (m,�),m 2 [2 :
M ],� 2 X\x0 recursively starting from m = 2 using the
pre-computed values of D1(↵,�). In the backward pass, we
set x⇤

0 = a, x⇤
M = b and compute optimal decision (x⇤

m) and
representative levels (y⇤m) recursively as

x⇤
m�1 = rm�1(x

⇤
0, x

⇤
m), m = M, . . . , 2,

y⇤m = (x⇤
m�1, x

⇤
m), m = [1 : M ].

Remark 1. The required accuracy can be achieved when the

source is discretized by increasing N .

Remark 2. The worst-case complexity of the DP algorithm in

terms of the three parameters N,M, |Y| is O(N3
|Y|+N2M).
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C. Special Distortion Functions

If the distortion functions are of the specific form

⌘E(x, y) = (f(x)� y)2, ⌘D(x, y) = (x� y)2

where f(·) is any (Borel) measurable function, then the
analysis simplifies as follows. Using (1), the average encoder
distortion over all possible index assignments

DE = c1

MX

i=1

(f2 � 2yif1 + y2i ) + c2DE ,

where we denote E{f(x)} and E{f2(x)} as f1 and f2 respec-
tively. The terms CE(↵,�, y) and DE(n,m) then simplify as

CE = c1(�2yif1 + y2i ) + c2

Z
(f(x)� y)2dµ,

Dm(x0,�) = min
q

mX

j=1

✏E(xj�1, xj) +mc1f2.

The actions associated with Vi are given by minimizing Ji(y)
using the KKT optimality condition, @Ji/@y = 0,

Ji(y) = c1(y � E{x})2 + c2

Z
(x� y)2dµ,

yi = argmin
y2Y

Ji(y) =
c1E{x}+ c2

R
xdµ

c1 + c2
R
dµ

.

(a) Encoder distortion (b) Decoder distortion

Fig. 3. ⌘E = (x3 � y)2, ⌘D = (x� y)2

IV. NUMERICAL RESULTS

We consider a source uniformly distributed on [0, 1], i.e.,
X ⇠ U(0, 1), and a binary symmetric channel with crossover
probability pb 

1
2 , which yields

perr = 1� (1� pb)
logM .

We take the decoder distortion measure as ⌘D(x, y) = (x �

y)2, and consider two different cases of encoder distortion,
⌘1E(x, y) = (x3

� y)2 and ⌘2E(x, y) = (x2
� y)2.

We plot the encoder and the decoder distortions associated
with ⌘D in conjunction with ⌘1E and ⌘2E in Figures 3 and
4 respectively. One surprising aspect of these results is that
the encoder distortion may be increasing with rate at high
resolution. This is due to the strategic aspect of the problem,
i.e., at high resolution, the encoder is forced to be more
revealing than its optimal choice. The impact of channel noise

can be seen in the rate threshold, i.e., the cutoff rate, the
smallest R0 for which R > R0 implies D(R) � D(R0).
Numerical results shown in Figures 3 and 4 suggest that as
pb increases, the cutoff rate R0 gets smaller. This observation
indicates that in the high-rate regime, the optimal strategic
encoder might choose not to utilize the channel rate fully. We
plot the obtained quantizers in Figure 5. The numerical results
depicted below suggest that the encoder is less revealing with
increasing pb. While due to space constraints, we only present
the results for a Uniform source here, that for a Gaussian
source, as well as the codes that produced these results are
available at https://tinyurl.com/ssp2023dpnoise.

(a) Encoder distortion (b) Decoder distortion

Fig. 4. ⌘E = (x2 � y)2, ⌘D = (x� y)2

(a) ⌘E = (x3
� y)2 (b) ⌘E = (x2

� y)2

Fig. 5. Quantizers for M = 4 with ⌘D = (x� y)2 for (a), (b).

Remark 3. Note that our findings apply to any general distor-

tion measure. We take the decoder’s measure as MSE, the most

commonly used distortion metric. The choice of the encoder’s

distortion measure (⌘E 6= ⌘D due to problem formulation)

is arbitrary; however, some measures yield non-interesting

solutions such as nonrevealing (encoder does not send any

information) or fully-revealing (the problem simplifies to non-

strategic quantization). Hence we chose a measure that yields

results that demonstrate the interesting aspects of strategic

quantization.

V. CONCLUSIONS

In this paper, we extended our DP-based strategic quantizer
design approach to the problem of strategic quantization
with channel noise. Our analysis and the obtained numerical
results have uncovered several aspects of the optimal strategic
quantizers in this noisy channel setting that are not observed
in its classical (nonstrategic) counterpart.
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