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Abstract—This paper is concerned with the quantization
setting where the encoder and the decoder have misaligned
objectives. While the unconstrained variation of this problem
has been well-studied under the theme of information design
problems in Economics, the problem becomes more appealing
and relevant to engineering applications with a constraint on the
cardinality of the message space. We first motivate the problem
via a toy example demonstrating the intricacies of the strategic
variation of the quantization problem, explicitly showing that
the quantization resolution can change the nature of optimal
encoding policy and the iterative optimization of the decoder
and the encoder mappings may not converge to a local optimum
solution, in sharp contrast with the classical quantization problem
that admits the Lloyd-Max method as a local optimum solution.
As a remedy, we develop a gradient-descent based solution. We
analyze the poor local optimal optima issues associated with
the optimization method and show that even for well-behaving
sources, such as Gaussian, there are multiple local minima,
depending on the distortion measures chosen, in sharp contrast
with the classical quantization. We finally present numerical
results obtained via the proposed algorithm that suggest their
validity and demonstrate features of the strategic version of
the quantization problem that differentiate it from its classical
counterpart.

I. INTRODUCTION

Consider the following problem: an encoder observes a
realization of a source X 2 X with a probability distribution
µ and sends a message Z 2 Z using a non-injective mapping
Q : X ! Z , with |Z|  M . After receiving the message
Z, the decoder takes action Y 2 Y . The costs that the
encoder and the decoder minimize are DE , ⌘E(X,Y ) and
DD , E{⌘D(X,Y )}, with ⌘E 6= ⌘D (misaligned objectives).
The encoder designs Q ex-ante, i.e., without the knowledge
of the realization of X , using only the functions ⌘E and ⌘D,
and the statistics of the source, µ(·). The functions (⌘E and
⌘D), the shared prior (µ), and the mapping (Q) are known to
the encoder and the decoder. The problem is to design Q. We
call this setup strategic quantization, which is the focus of this
paper.

The setting without the quantization aspect (in a practical
sense, if M is asymptotically large) is known in the Eco-
nomics literature as the information design, or the Bayesian
persuasion problem [1], [2]. These problems analyze how
a communication system designer (sender) can use the in-
formation to influence the action taken by a receiver. This
framework has proven beneficial in analyzing a variety of
real-life applications, such as the design of transcripts when

schools compete to improve their students’ job prospects
[3] and voter mobilization and gerrymandering [4], as well
as various engineering applications, including in modeling
misinformation spread over social networks [5] and privacy-
constrained information processing [6], and many more [7].
For an excellent survey of the related literature in Economics,
see [8], [9].

The following scenario constitutes an engineering example
of the setting studied here. Consider two smart cars from
different brands, such as Tesla and Honda, where Tesla (as
the decoder) asks Honda (the encoder), for information about
the traffic ahead to decide whether it should change its route.
However, Tesla and Honda have different goals that are known
to both. Tesla wants to accurately estimate the true traffic
condition, but Honda wants to make Tesla do something
else, like changing its route. In this scenario, Honda will
not necessarily fully reveal the traffic information, because
its goal is not the same as Tesla’s. To make Tesla use the
transmitted information, Honda has to make sure that Tesla
benefits from following its information, that is, the Tesla’s cost
in using Honda’s information is smaller than that in ignoring
it. Assuming a fixed-rate communication channel between
them, how would these cars communicate? Our analysis in
this paper provides a theoretical framework for such class of
communication problems.

The strategic quantization problem, as described above, was
discussed in a few contemporary economics and computer
science studies. In [10], authors analyze the problem via a
computation lens and report approximate results on this prob-
lem, relating to another problem they solved conclusively. In
one of their main results, the algorithmic complexity of finding
the optimum strategic quantizer was shown to be NP-hard.
In a recent working paper, Aybaş and Türkel [11] analyzed
this problem using the methods in [2] and provided several
theoretical properties of strategic quantization. A byproduct
of their analysis yields a constructive method for deriving
optimal quantizers based on a search over possible posterior
distributions over their feasible set. Our objective here is to
leverage the rich collection of results in quantization theory,
e.g., the comprehensive survey of results by Gray and Neuhoff
[12], to study the same problem via the engineering lens.

We note in passing that quantizers also arise as equilibrium
strategies endogenously, i.e., without an external constraint,
in a related but distinctly different class of signaling games,
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namely the cheap talk [13], [14] In [13], the encoder chooses
the mapping from the realization of the source X to message
Z after observing it, ex-post, as different source realizations
indicate optimality of different mappings for the encoder.
The encoder’s lack of commitment power in the cheap talk
setting makes the notion of equilibrium a Nash equilibrium
since both agents form a strategy that is the best response to
each other’s mapping. However, in our strategic quantization
problem (and the information design problems in general as
in [1], [2]), the encoder designs Q ex-ante, before seeing the
source realization, and committed to the designed Q afterward.
This commitment is known to the decoder and establishes a
form of trust between the sender and the receiver, resulting in
possibly higher payoffs for both agents. This difference also
manifests itself in the notion of equilibrium we are seeking
here since the encoder does not necessarily form the best
response to the decoder due to its commitment to Q1.

II. MODEL

The set X is divided into mutually exclusive and exhaustive
sets V1,V2, . . . ,VM . The action of the decoder ym can be
written as a quantization operator

ym = Q(x) 8x 2 Vm

for all m 2 [1 : M ]. Throughout this paper, we make the
following “monotonicity" assumption on the sets {Vm}.

Assumption 1: Vm is convex for all m 2 [1 : M ].
Remark 1: Assumption 1 is the first of the two regularity

conditions commonly employed in the classical quantization
literature, cf. [16]. Note that the second regularity condition,
ym 2 Vm, is not included in Assumption 1.
In the Economics parlance, Assumption 1 is referred as the
“monotonicity" condition. In [17], [18] sufficient conditions
on ⌘E and ⌘D for the monotonicity of optimal encoder
strategies are characterized within the unconstrained (without
quantization) variation of the same problem. We note that here
we have the quantization constraint in the problem formulation
as an exogenous constraint on the message set, hence it is not
clear apriori whether the results [17], [18] would be applicable
here. Under Assumption 1, Vm is an interval, i.e.,

Vm = [xm�1, xm)

where a = x0 < x1 < . . . < xM = b. The encoder chooses
the boundary indices q = [x0, x1, . . . , xM ]. The decoder
determines its actions y = [y1, . . . , yM ] as a best response
to q to minimize its cost DD = E{⌘D(x, y)} as follows

y⇤m = argmin
ym2Y

E{⌘D(x, ym)|x 2 Vm} 8m 2 [1 : M ]

Hence, the decoder chooses the actions {ym} knowing the set
of decision sets {Vm}. The encoder computes what the de-

1These issues are well understood in the Economics literature, see, e.g.,
[15] for an excellent survey. However, we emphasize them here for a reader
with an engineering background; see [7] for a detailed discussion through the
engineering lens.

coder would choose as y given {Vm}, and hence optimizes its
own cost E{⌘E(x, y)} over the choice of {Vm} accordingly:

{V⇤
m} = argmin

{Vm}

MX

m=1

E{⌘E(x, y⇤m({Vm})|x 2 Vm}

or due to Assumption 1 equivalently over the choice of q:

q⇤ = argmin
q

MX

m=1

E{⌘E(x, y⇤m(q))|x 2 [xm�1, xm)}

Remark 2: A key consideration here is that the encoder is
committed to its choice of q, it cannot determine q as the
best response to y. Hence, while the decoder can optimize
its action y as the best response to q, the encoder cannot
choose q as the best response to y, but that to a function
of itself, i.e., the best response to y(q). This aspect of the
problem introduces a hierarchy in the game play (the encoder
plays first, and the decoder responds, which is referred to as
the “Stackelberg equilibrium" in the computer science and
control literature, and more formally constitutes an instance
of subgame perfect Bayesian Nash equilibrium) and naturally
is not a Nash equilibrium since q may not be the best
response to y. In cheap talk [13], Nash equilibria are sought
after and the equilibria achieving strategies happen to be non-
injective mappings, i.e., quantizers, without an exogenous rate
constraint. It is essential to note the substantial difference
between the problem formulation in this paper and the cheap
talk literature [13].

III. INTERESTING ASPECTS OF STRATEGIC
QUANTIZATION

In this subsection, we provide simple numerical examples
to demonstrate a few intricacies of the strategic quantization
problem that differentiate it from its classical analogue.

A. To reveal or not to reveal... or partially reveal?

As mentioned earlier, the classical quantization problem is a
team problem, i.e., the encoder and the decoder share identical
objectives. In strategic quantization, this is no longer the case.
Hence, depending on the misalignment between ⌘E and ⌘D,
the encoder might choose not to send any information to the
decoder (e.g., if they are too misaligned), which we refer to
as “non-revealing" policy following the convention in the Eco-
nomics literature. Alternatively, the strategic quantizer problem
might simplify to classical quantization with a common distor-
tion measure ⌘D, i.e., the encoder cannot utilize its information
design advantage to persuade the decoder to take a specific
action (referred to here as “fully-revealing" encoder policy).
Finally, the encoder might choose to employ a quantizer that
is not identical to the classical one, i.e., “partially-revealing"
policy. It is relatively straightforward to provide an example
for the first case; consider, e.g., ⌘E(x, y) = �⌘D(x, y), 8x, y
which makes the problem a zero-sum game, hence, the optimal
strategy for the encoder is not to send any information (see
also the analysis below). We demonstrate the latter cases via
a simple numerical example.
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Consider a setting where the decoder wants to reconstruct X
as closely as possible, while the encoder wants the decoder’s
construction to be as close as possible to X+↵

� , both in
the MSE sense. Can the encoder “persuade" the decoder by
carefully designing quantizer intervals V⇤

m? We prove the
following result, which is an extension of a result presented
in [18], in the Appendix:

Theorem 2: For ⌘E(x, y) = (x+ ↵� �y)2 and ⌘D(x, y) =
(x� y)2, the optimal strategic quantizer Q is:

Q(x) =

8
<

:

argminE{(X �Q(X))2}, for 0 < � < 2
arbitrary, for � = 0, 2
constant, otherwise

9
=

;.

Note that the first case corresponds to the fully-revealing be-
havior, while the second one corresponds to encoder distortion
remaining constant for all quantizers, and the third is non-
revealing.

Remark 3: This theorem highlights the difference between
the problem formulation here and that of [13] which considers
identical cost functions with � = 1. Our result indicates that
there is no game problem if these cost functions are used in
the Stackelberg setting, while in the Nash equilibrium setting
[13] , i.e., without the commitment power, the game nature of
the problem is well understood.

B. Quantizer resolution is binding

We next focus on the question: can the quantization con-
straint change the nature of optimal encoding policy in strate-
gic communication? For example, is there a case where for
M = 2 the encoder is non-revealing but for M = 3 the
encoder prefers to send a message? The answer is, perhaps
surprisingly, affirmative.

Consider a continuous source X ⇠ U [�1, 1] with the
distortion functions ⌘D(x, y) = (x� y)2 and

⌘E(x, y) =

(
(x3 � y)2, xy � 0

! 1, otherwise.

A fully non-revealing policy, i.e., the case of R = 0 (M = 1)
yields DE(0) =

R 1
�1(t

3)2 1
2 dt = 1/7.

We next consider M = 2. From symmetry, the optimal
encoding policy is simply setting the boundary at q1 = 0.
However, this yields y1 = �y2 = �1/2 and DE(1) = 1/7,
which is identical to DE(0). Hence, the optimal strategic
quantizer for M = 2 does not send any information to the
decoder, i.e., non-revealing.

We finally consider the case of M = 3. Similar to the
previous case, we parameterize V⇤

m as [�1, q], (q, 0], (0, 1]
(parameterizing V⇤

m as [�1, 0], (0, q], (q, 1] results in a solution
violating constraints) and express {ym} as a function of q,
which yields

y1 =
�1 + q

2
, y2 =

q

2
, y3 =

1

2
.

Fig. 1: Movement of the quantization boundaries through
Lloyd-Max iterations in the running example.

Substituting again {ym} in ⌘E(x, y):

J(q) =
1

2

✓Z q

�1
(t3 � y1)

2 dt+

Z 0

q
(t3 � y2)

2 dt

+

Z 1

0
(t3 � y3)

2 dt

◆
.

Enforcing the KKT conditions similar to (3), we obtain q =
�0.8090, 0.3090, 0.5. Since q  0, the possible solution is
q = �0.8090. The encoder is partially revealing here: in the
non-strategic case (⌘E = ⌘D = (x � y)2), the quantizer for
X ⇠ U [�1, 1] would have been a uniform quantizer. However,
here, the encoder uses a different quantizer, that is, the encoder
does not reveal information exactly as the decoder would want.

We note here that DE(3) = 0.1146 < 1/7 = DE(1) =
DE(0). Hence, at M = 2, the strategic quantizer does not
communicate any information while, at M = 3, in sharp
contrast to M = 2, uses the quantization channel fully
to send three messages, demonstrating that the quantization
constraint can change the nature of the optimum encoder
policy. Moreover, it shows that the operational rate-distortion
function DE(R) here is not a strictly decreasing function of
rate R, since DE(1) = DE(0), unlike its classical counterpart.

C. Failure of “Strategic Lloyd-Max"

In this subsection, we investigate whether a simple strategic
variation of the Lloyd-Max approach would yield a locally
optimal quantizer, as in the case of classical quantization.
Consider a continuous source X ⇠ U [�1, 1] quantized with
M = 3 messages where ⌘E(x, y) = (x3�y)2 and ⌘D(x, y) =
(x� y)2.

We initialize {ym} arbitrarily and find q1 and q2 that
minimize DE = E{(x3 � y)2}, as

q1 =

✓
y1 + y2

2

◆ 1
3

, q2 =

✓
y2 + y3

2

◆ 1
3

. (1)

We then find the decoder actions {ym}

y1 =

R q1
�1

1
2 t dtR q1

�1
1
2 dt

=
�1 + q1

2
, y2 =

R q2
q1

1
2 t dtR q2

q1
1
2 dt

=
q1 + q2

2
,

y3 =

R 1
q2

1
2 t dtR 1

q2
1
2 dt

=
q2 + 1

2
, (2)

and iterate between (1) and (2) until convergence. We note
that during these iterations, q1 and q2 move towards �1 and 1,
respectively, i.e., the boundaries move towards the endpoints
of the interval taken for quantization with each iteration as
demonstrated in Figure 1, hence the iterations converge to
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M = 1 solution which is non-revealing with DE = 1/7. We
next examine whether this solution is a local optimum.

Any admissible perturbation of with some 1 > ✏ > 0 of
q1 = �q2 = �1 would result in a M = 3 level quantizer
with decision boundaries q1 = �1 + ✏, q2 = 1 � ✏ with the
corresponding decoder actions y1 = �1 + ✏

2 , y2 = 0, y3 =
1� ✏

2 , yielding DE = 1/7�✏(1� ✏
2 )

2(1�✏)2 which is smaller
than that of the non-revealing solution (DE = 1/7), hence this
is not a locally optimal solution. This observation indicates that
the straightforward enforcement of optimality conditions may
not yield a locally optimal solution, which contrasts sharply
with the case in classical quantization. In other words, unlike
its classical counterpart, a trivial extension of the Lloyd-Max
algorithm adopted for strategic settings may not converge to
a locally optimum solution.

D. Multiple Local Minima

A well-known fact in classical quantization literature is that
for log-concave scalar sources, the local minima coincides
with the global one, hence Lloyd-Max is guaranteed to con-
verge to the globally optimal solution. Hence, a natural follow-
up question here pertains to whether a similar result holds in
the strategic realm. We deduce the answer to this question
via a numerical counter-example: Consider a Uniform scalar
source X ⇠ U [a, b] with ⌘E = (x3� y)2, ⌘D = (x� y)2. The
decoder actions y1, y2,

y1 =
a+ q

2
, y2 =

q + b

2
.

The cost function associated with two-level quantization of
X (q =

⇥
a q b

⇤
) and it’s derivative with respect to the

quantization decision level q,

J(q) =

Z q

a
(x3 � y1)

2dµ+

Z b

q
(x3 � y2)

2dµ,

@J

@q
= q3 � q

2
+

a+ b

4
(1� (b2 + a2)).

For a = �0.9, b = 1, q = �0.6859, 0.7265 satisfy @J
@q = 0, as

also demonstrated in Fig 2. Hence, the strategic problem can
indeed have multiple local minima even if used in conjunction
with log-concave sources.

IV. PROPOSED ALGORITHM

Having shown that a strategic variation of the Lloyd-Max
algorithm does not converge, we propose a gradient-descent
based solution. Due to the Stackelberg equilibrium nature of
the problem, the encoder (leader) decides the quantizer deci-
sion levels q first, and then the decoder (follower) determines
the quantizer reconstruction levels as a function of q, as y(q).
So the gradient descent approach involves optimizing q along
the direction of the gradients @DE

@qm
.

Starting with an initial set of quantizers q = q0, the re-
construction levels y(q), and the associated encoder distortion
DE are computed. Then, the following steps are executed until
convergence:

1) The gradients {@DE
@xm

} are computed.

Fig. 2: Local minima of the cost surface of the encoder
distortion for 2-level quantization, with decision boundary q,
of X ⇠ U [�0.9, 1] with ⌘E = (x3 � y)2, ⌘D = (x� y)2.

2) The decision levels q are updated if the resulting
quantizer adhered to the quantizer constraints and the
distortion is non-increasing with the update: xm ,
xm�4@DE

@xm
, where 4 is the gradient descent parameter;

else � is decreased repeatedly until the conditions are
satisfied.

3) The reconstruction levels y(q) are found.
4) The encoder distortion DE is computed.
Remark 4: The algorithm is guaranteed to converge to a

locally optimal solution under the assumptions in this paper.
We present below the derivation of gradients for an MMSE
decoder ⌘D = (x � y)2 with an encoder with distortion
measure ⌘E(x, y). The gradients of the encoder’s distortion
with respect to the quantizer decision levels are given as:

@DE

@xm
= ⌘E(xm, ym)

dµ(xm)

dx
� ⌘E(xm, ym+1)

dµ(xm)

dx

+
@ym
@xm

Z xm

xm�1

@⌘E(x, ym)

@ym
dµ

+
@ym+1

@xm

Z xm+1

xm

@⌘E(x, ym+1)

@ym+1
dµ,

since the reconstruction levels ym, ym+1 are the only ones
which depend on xm,

ym =

R xm

xm�1
xdµ

R xm

xm�1
dµ

, ym+1 =

R xm+1

xm
xdµ

R xm+1

xm
dµ

.

The gradients @ym

@xm
, @ym+1

@xm
are

@ym
@xm

=
dµ(xm)

dx

xm � ymR xm

xm�1
dµ

,

@ym+1

@xm
= �dµ(xm)

dx

xm � ym+1R xm+1

xm
dµ

.

The codes are available at: https://tinyurl.com/GDnoiseless.

V. NUMERICAL RESULTS

We consider three different encoder distortion measures: i)
⌘E = (x3�y)2, ii) ⌘E = (3x/2�y)2, and iii) ⌘E = (x+✓�y)2
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(a) ⌘E = (x3 � y)2 (b) ⌘E = (1.5x� y)2

Fig. 3: X ⇠ N (0, 1), ⌘D = (x� y)2

(a) Encoder distortion (b) Decoder distortion

Fig. 4: X ⇠ ✓ ⇠ N (0, 1), ⌘E = (x+ ✓ � y)2, ⌘D = (x� y)2

with ⌘D = (x�y)2 for all three settings. We consider a Gaus-
sian source X ⇠ N (0, 1) for cases 1 and 2, and a jointly Gaus-

sian source (X, ✓) ⇠ N
✓

0
0

�
,


�2
X ⇢
⇢ �2

✓

�◆
, 0  ⇢ < 1 for

case 3. Specifically, we present results for ⇢ = [0, 0.2, 0.5, 0.9].
We discretize ✓ for the third setting and compute a set of
quantizers each corresponding to a realization of ✓. We plot the
encoder and decoder distortions in Figures 3a, 3b, and 4. We
observe that the encoder’s distortion increases with correlation
as expected due to the strategic nature of the problem.

VI. CONCLUSION

In this paper, we have first formulated the strategic quanti-
zation problem and shown its features that differentiate it from
classical quantization. We have numerically demonstrated that
a strategic variation of Lloyd-Max may not converge to a local
optimum. Motivated by this observation, we have developed
gradient descent based solutions for the strategic quantiza-
tion problem. Numerical results obtained via the proposed
algorithm suggest several open theoretical questions about the
behavior of the operational distortion-rate curve of the optimal
strategic quantizers.
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APPENDIX

The decoder determines y = [y1, . . . , ym] as follows:

ym =

R xm

xm�1
xdµ

R xm

xm�1
dµ

.

The encoder’s distortion and its derivative with respect to xm:

J(q) =
MX

m=1

Z xm

xm�1

(x+ ↵� �ym)2dµ,

@J

@xm
=

dµ(xm)

dx
((xm + ↵� �ym)2 � (xm + ↵� �ym+1)

2)

� 2�
dym
dxm

xmZ

xm�1

(x+ ↵� �ym)dµ

� 2�
dym+1

dxm

xm+1Z

xm

(x+ ↵� �ym+1)dµ.

Enforcing the KKT conditions for optimality
@J

@xm
= 0, m 2 [1 : M ] (3)

we obtain, after some straightforward algebra, that the solu-
tions that satisfies (3) are � = 0, 2, or xm = (ym + ym+1)/2
(the other condition is ym+1 = ym which is not possible since
the actions are considered unique - if not, the corresponding
regions could be combined). This implies that the quantizer
is the same as the non-strategic quantizer if � 6= 0, 2, if the
encoder decides to send something.

The distortion for a non-informative quantizer:

Dnr =

Z b

a
(x+ ↵� �y)2dµ

The encoder’s distortion can be re-written in terms of the non-
revealing distortion and some other terms as

J = Dnr + �(� � 2)T, (4)

where T =

✓
MP

m=1

(
R xm
xm�1

xdµ)2

R xm
xm�1

dµ
�

(
MP

m=1

R xm
xm�1

xdµ)2

MP
m=1

R xm
xm�1

dµ

◆
. In order

for the quantizer to be informative (M > 1), the second term
has to be less than 0. This happens in three cases:

1) � < 0 and T < 0
2) 0 < � < 2 and T > 0
3) � > 2 and T < 0

From Cauchy-Schwarz inequality, we have that for real num-
bers u1, u2, . . . , un and positive real numbers v1, v2, . . . , vn:

(
nX

i=1

ui)
2/(

nX

i=1

vi) 
nX

i=1

u2
i

vi
.

Let ui =
R xm

xm�1
xdµ, vi =

R xm

xm�1
dµ. We get T > 0. This

implies that the only possibility is case 2 with 0 < � < 2, and
the encoder chooses a non-strategic quantizer (as we show
earlier that the only solution when � 6= 0, 2 is a non-strategic
encoder if the encoder sends some message). From (4), we
see that for � = 0, 2 the encoder distortion is the same as
non-revealing distortion regardless of the quantizer used.

The optimal policy for the encoder is to be fully revealing
for � 2 (0, 2), and the distortion remains the same for any M
level quantization when � = 0, 2, and non-revealing otherwise.
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