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Exploiting Partial FDD Reciprocity for Beam Based
Pilot Precoding and CSI Feedback in Deep Learning
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Abstract—Massive MIMO systems can achieve high spectrum
and energy efficiency in downlink (DL) based on accurate
estimate of channel state information (CSI). Existing works
have developed learning-based DL CSI estimation that lowers
uplink feedback overhead. One often overlooked problem is the
limited number of DL pilots available for CSI estimation. One
proposed solution leverages temporal CSI coherence by utilizing
past CSI estimates and only sending CSI-reference symbols (CSI-
RS) for partial arrays to preserve CSI recovery performance.
Exploiting CSI correlations, FDD channel reciprocity is helpful
to base stations with direct access to uplink CSI. In this work,
we propose a new learning-based feedback architecture and a
reconfigurable CSI-RS placement scheme to reduce DL CSI
training overhead and to improve encoding efficiency of CSI
feedback. Our results demonstrate superior performance in both
indoor and outdoor scenarios by the proposed framework for
CSI recovery at substantial reduction of computation power and
storage requirements at UEs.

Index Terms—CSI feedback, FDD reciprocity, pilot placement,
massive MIMO, deep learning

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology and
massive MIMO are vital to 5G and future generations of
wireless systems for improvement of spectrum and energy
efficiency. The power of massive MIMO hinges on accurate
downlink (DL) channel state information (CSI) at the bases-
tation gNodeB (gNB). Without the benefit of uplink/downlink
channel reciprocity in time-division duplxing (TDD) systems,
gNB of frequency-division duplexing (FDD) systems typically
relies on user equipment (UE) feedback to acquire DL CSI.
The extraordinarily large number of DL transmit antennas
envisioned in millimeter wave or terahertz bands in future
networks [1] places a tremendous amount of feedback burden
on uplink (UL) resources such as bandwidth and power. As
a result, CSI feedback reduction is crucial to widespread
deployment of massive MIMO technologies in FDD systems.
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Since CSI in most environments has limited delay spread
and can be viewed as sparse, CSI feedback by UEs can
take advantage of such low dimensionality for CSI feedback
compression. To extract CSI sparsity for improved feedback
efficiency, the work [2] first proposed a deep autoencoder
framework by deploying encoders and a decoder at UEs and
the serving base station, respectively, for CSI compression
and recovery. This and other related works have demonstrated
significant performance improvement of CSI recovery with the
use of deep learning autoencoder [3]-[5].

In addition to autoencoder for direct DL CSI feedback and
recovery, recent works leveraged correlated channel informa-
tion such as past CSI [6], [7], CSI of nearby UEs [8], and
UL CSI [9]-[11] to improve the recovery of DL CSI at base
stations. Specifically, physical insights considering slow tem-
poral variations of propagation scenarios, similar propagation
conditions of similarly located UEs, and similarity of UL/DL
radiowave paths reveal significant temporal, spatial, and spec-
tral CSI correlations respectively. More strikingly, UL CSI is
generally available at gNB in existing FDD wireless networks
and is easier to utilize in practice. In addition, FDD reciprocity
in magnitudes is not only shown from dats generated by CSI
models [10] but was also later verified in measurement [12].
Other related works also considered antenna array geometry
to exploit the UL/DL angular reciprocity to improve DL CSI
estimation in FDD wireless systems [13], [14]. The work [13]
exploited UL/DL angular reciprocity in designing an adaptive
dictionary learning for seeking the sparse representation of
DL CSIs for feedback. The reciprocity is also utilized for
directional training to enhance DL CSI estimation in [14].

Instead of CSI recovery, a related approach [15]-[18] is
to exploit FDD reciprocity and angular sparsity to directly
determine precoding matrix for reducing feedback overhead.
The authors [15] propose an AoD-adaptive subspace codebook
framework for efficiently quantizing and feeding back DL CSI.
The 5G (NR) supports Type I [16] and Type II [17] codebooks
corresponding to low- and high-resolution beams, respectively.
The optimum serving beam can be selected by feeding back a
predetermined codebook with the largest response between the
UE and gNB. Similarly, instead of feeding back predetermined
codebook, another idea in [18] is for UE to feed back
compressed singular vectors corresponding to the dominant
singular values for precoding matrix optimization.

Importantly, the estimation accuracy of DL CSI at UEs
depends on several factors such as channel fading proper-
ties and reference signal (RS) placement. Beyond feedback
overhead, the required resource pilot (i.e. CSI-RS) allocation



for CSI estimation also grows proportionally with the antenna
array size. More resource allocated to CSI-RS would improve
DL CSI estimation accuracy but degrade spectrum efficiency.
In practical systemsW such as [19], CSI-RS resources are
sparsely allocated on time-frequency physical resource grid. To
our best knowledge, only a few studies [20], [21] considered
the sparse CSI-RS availability in designing CSI feedback
mechanisms. The deep learning partial CSI feedback frame-
work proposed by [20] reduces RS resource overhead by
leveraging temporal CSI correlation. In the work of [21], the
gNB optimizes the DL pilot values (i.e., CSI-RS) based on UL
CSI without reducing the CSI-RS resources. However, such
implementation would require dynamic exchange of optimized
pilot values between the gNB and the UE and is incompatible
with the present use of predefined CSI-RS.

In this work, we aim to reduce DL CSI-RS overhead and
the UL feedback overhead while maintaining DL CSI recovery
accuracy at gNB by exploiting the available UL CSI. We
develop an efficient and reconfigurable deep learning beam
based CSI feedback framework by leveraging UL/DL angular
reciprocity for FDD wireless systems. Our contributions are
summarized as follows:

o The framework proposes a beam-space precoding ap-
proach to exploit the FDD UL/DL reciprocity in beam
response magnitudes and generate a low-dimensional
representation that is easier to recover with fewer antenna
ports (APs), leading to lower DL CSI training and UL
feedback overhead.

e The framework reconfigures CSI-RS placement by re-
ducing either pilot resource density or the number of
APs without loss of CSI recovery accuracy. An UL
feedback overhead compression module further reduces
UL feedback overhead.

o The framework better utilizes FDD reciprocity by not
only feeding UL CSI magnitudes as deep learning inputs
[10], but also designing a beam-based precoding matrix
according to high similarity of UL/DL beam response
magnitudes.

o The reduction of DL CSI training overhead in the frame-
work can significantly lower the computation and storage
burdens related to the compression by the low cost UEs
given the input size reduction of the compression module.

We let (), (-)T denote conjugate transpose and transpose
operations, respectively. (-)* denotes complex conjugate. The
i-th column of N x N identity matrix I is the unit vector e;.

II. SYSTEM MODEL

We consider a single-cell MIMO FDD link in which a
gNB using a Ny x Ny uniform planar array (UPA) with
N, = Ny Np antennas communicates with single antenna
UEs. Focusing on a specific UE, the DL subband consists of K
resource blocks (RBs) for DL CSI-RS and data transmission.
We assume channels within an RB to be under slow, flat
and block fading. As shown in Fig. 1, there are Ny X Ng
time-frequency resource elements (REs) in a specific RB

No OFDMsymbols g ource Block (Re)

| Timeslot______ )__--

[l
N,

Nf subcarriers
Resource block
N,

N L available TFRs
ina RB

Fig. 1. Resource block configuration.

(N subcarriers and No OFDM symbols). Since the same
processing procedures are applied for every RB, without loss
of generality, we only discuss the processing in a single
RB in this section. Given that the gNB assigns N, REs for
DL CSI training for IV, antennas, the received signal vector
ypL € CNoX1 at UE can be expressed as
yoL = Spi,n, - hpr + npr, 1)
where hpp, = vec(Hpr) € CN*! denotes the DL CSI vector
whereas Spr n, = diag(spr) € CM**o denotes the CSI-RS
training symbol matrix which is diagonal matrix with diagonal
entries of training symbols sgf‘), n=1,.., Ny np, € CNox1
denotes the additive noise. Hpy € (CNHXNV denotes the DL
CSI matrix before reshaping. From known training symbols in
Spr,n,, the UE can estimate its DL CSI for feedback to gNB
via R
hp, = SEE, N, " YDL- (2)

A. Beam-Space (BS) Precoding and DL CSI recovery

Existing wireless systems [19], [22] have applied beam-
forming/precoding techniques to CSI-RS symbols for beam
selection, DL CSI estimation, or resistance to attenuation in
high frequencies. In this work, we consider DL CSI recovery
at gNB under beamforming, which serves as CSI performance
baseline. According to [23], we can find IV, orthogonal beams
to construct an unitary “orthogonal beam matrix (OBM)”
B = [b() b® . b(")]. As shown in Fig. 2.A, applying the
OBM to the CSI-RS matrix Spr, n, in the digital beamforming
module, the UE receives signals at different REs:

3

From the orthogonality of the OBM, the DL CSI can re-
constructed at the gNB from the quantized feedback gg =
Q(S];Ii ~,yoL) from the UE according to the CSI-RS infor-
mation spi, as follows:

hp. = B*gs = B*Q(Sp] v, yoL), €5

where )(-) denotes the encoding process (e.g. quantization).

Given the angular sparsity of DL CSIs, especially for DL
CSIs in line-of-sight (LOS) scenarios, the beam space (BS) DL
CSI hpspr(= BThpy) can be assumed as a L-sparse vector

yoL = Spr.n, BT hpp + npy.
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Fig. 2. Signal processing flow for beam-space precoding

and thus DL CSI hpp can be approximated according to the
most significant L (L < N;) beams as follows:

EDL = Bsgss (5)

where Bg € CVo*L and ggs € CE*! respectively denote the
significant beam matrix consisting of the steering vectors of
the most significant L orthogonal beams, and the correspond-
ing quantized beam responses. Our experiments show that,
in propagation channels with low angular spread, the top 1/4
beams approximately contribute to 90% of DL CSI energy in
beam domain. Relying on L significant beams, the gNB only
need to assign L (< N;) REs for CSI-RS in DL to reduce UL
feedback.

Typically, the L significant beams could be found through
beam training or direction finding [24]-[26] by utilizing addi-
tional bandwidth and power resources. Fortunately, the FDD
UL/DL reciprocity in magnitudes of angular CSI [10] can help
gNB implement this beam selection process by relying the
available UL CSI at gNB. The numerical test results of Fig. 3
illustrate the recovery performance of DL CSI by determining
precoding matrix Bg which consists of the L significant beams
selected according to CSI magnitudes in UL and DL beam
domains, respectively. The modest difference in terms of CSI
estimation error demonstrates the high correlation (reciprocity)
between CSI magnitudes in UL and DL beam domains.
Specifically, the L dominant beams of UL and DL channels
are highly correlated. Good CSI recovery performance requires
sufficient number of beams L or REs for CSI-RS.

III. BS PRECODING AND DL CSI RECOVERY

A. Single-beam Precoding and DL CSI Recovery

As seen from the preliminary results of Fig. 3, CSI recovery
accuracy hinges on the number of available REs (equal to the
number of selected beams). Namely, missing beam responses
of the non-selected beams cause performance degradation. On
the other hand, careful examination of the DL CSI in beam
domain, we note the significant spatial correlation between
vertically and horizontally adjacent beam responses. Equally
important is the fact that UL CSI magnitudes can help improve
DL CSI estimation.
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Fig. 3. Normalized mean square error (NMSE) of the recovered results
obtained by beam selection according to UL/DL CSI magnitudes. (This
experiment is based on simulated outdoor UMa channels generated by
QuadDRiGa channel simulator [27].)
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Fig. 4. Illustration of BSdualNetg.

Taking advantage of these insights, we first develop a
heuristic CSI feedback framework, BSdualNety. As shown in
Fig. 4, the BSdualNet consists of three phases:

e UL-CSI aided beam selection: the gNB selects L beams
with the largest responses in UL CSI by assigning training
symbols on L REs for CSI-RS transmission to UEs. We
denote the index set of these beams as €)g.

o Beam response feedback: the UE estimates the beam
responses for direct encoding and feedback to the gNB.

e Beam response refinement: the gNB first generates a
sparse map filled with the quantized beam responses
according to the index set of the selected beams Q. The
sparse map and local UL CSI magnitudes form inputs to
a deep learning network to estimate the missing elements
in the sparse map for DL CSI refinement. The deep neural
network (DNN) generates refined DL beam domain CSI.

B. BS Precoding and DL CSI Recovery

We also develop a BS DL CSI recovery framework which
assigns N, orthogonal beams to L REs (L < Ny). Instead of
utilizing a single beam for each RE, as shown in Fig. 2.B, a
combination of weighted beams is applied. Let us denote an



Ny x L beam merging matrix

T=[ty t2 ... tz], t;= : . (6)

tNyi

The received signal vector at UE is expressed as
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hi; Bty sl
= SpL.T"B hpL + npL = SpL,. T  hpspL + nDL&7)

where T is used to reduce the required REs and to find a
compact representation of DL CSI. hgspr, = BThp;, denotes
the DL CSI vector in beam domain. The raw and quantized
response vectors of the merged beam responses are denoted
by grs = SSL{ ryoL and ggg = Q(grB), respectively.

Our goal is to find a beam merging matrix T € CN>*L and
a mapping function f. for recovering the DL CSI based on
the quantized feedback vector via the principle of

arg min IB* fre(Q(Spi. LypL)) — hoL |2 (8)

where (2. denotes the deep learning model parameters to be
optimized. Following this principle, the detailed design and
architecture of an UL CSl-aided feedback framework for DL
CSI estimation will follow in the next section.

IV. ENCODER-FREE CSI FEEDBACK WITH UL CSI
ASSISTANCE

In this section, we start with the general architecture of
the two proposed frameworks (BSdualNet, BSdualNet-MN).
Both exploit UL/DL reciprocity to design the beam merging
matrix T for dimension reduction but utilize different recovery
schemes. Next we introduce detailed model learning objectives
and design principle. Note that, unlike the previous learning-
based frameworks, DNN encoders are not necessary to be de-
ployed on the UEs, thereby reducing memory and computation
burdn on low cost UEs. Instead, this new framework lowers the
required REs for CSI-RS of DL. MIMO channels and reduces
UL feedback overhead.

A. General Architecture

For simplicity, Fig. 5 shows the general architecture of the
proposed CSI feedback framework for a single-UE, though the
same principle applies for multiple UEs. Consider a wireless
communication system with L REs assigned in each RB for
CSI-RS placement. We first design a beam merging matrix

T to match N, orthogonal beams with different weights to
the L REs that carry CSI-RS for dimension reduction. We
use a beam merging network that use UL CSI magnitudes
in beam domain as inputs. Owing to the high correlation
between magnitudes of UL and DL CSIs in beam domain,
the beam merging network learn to assign suitable weights
to orthogonal beams according to the UL CSI magnitudes
|IBThyy| in BS that are locally available at gNB. Next, we
apply the beam merging matrix T to L CSI-RS symbols the
L REs. Consequently, the effective channels at UEs after CSI
estimation would be the weighted sum of beam responses
as estimate of the full CSI at downlink. Obtaining effective
channels, the UE simply quantize and feeds back the channel
information to the gNB. The gNB recovers DL CSI by sending
the quantized feedback and the known beam merging matrix
T into the proposed deep learning decoder network.

Unlike previous works, our new framework does not require
another encoder at UE to store and compress full DL CSI. This
is beneficial to UE devices with limited computation, storage,
and/or power resources. Moreover, we reduce the DL overhead
of CSI-RS and provide higher spectrum efficiency. In addition,
the linear mapping matrix T instead of a general or non-
linear mapping function f : CM» — C’ for pilot dimension
reduction provides the advantage of simpler implementation
and easier decoupling of CSI-RS symbols.

B. BSdualNet

Fig. 6 shows the proposed CSI feedback framework, BS-
dualNet, in multi-user scenarios (i.e., N UEs). As shown
in Fig. 7, we aggregate and reshape the magnitudes of BS
UL CSIs of each UE into a tensor [Hpsyr| € CN#XNvxN
which is sent to the beam merging network. The beam
merging deep learning network (Fig. 7) consists of four 3 x 3
circular convolutional layers with 16, 8, 4, and 2 channels,
respectively, to learn the importance of different orthogonal
beams according to the spatial structures of UL beam domain
CSI magnitudes. Given the circular characteristic of BS CSI
matrices, we introduce circular convolutional layers to replace
traditional convolution. Subsequently, a fully connected (FC)
layer with 2N,L elements is included to generate desired
dimension after reshaping (Recall that T is a complex matrix
with size of N, x L). After CSI estimation at UEs, the gNB
receives the IV copies of quantized feedbacks from N UEs
and obtains quantized feedbacks gffB) eC?,i=1,2,...,N.

Now we focus on the network at gNB. For the 7-th UE, we
forward the received feedback gﬁfB) to a FC layer with 21V
elements. After reshaping the feedback data into a matrix of
size Ng x Ny x 2, we use four 3 x 3 circular convolutional
layers with 16, 8, 4, and 2 channels and activation functions to
generate initial BS DL CSI estimate fre(glﬁg). Next, the gNB
forwards the initial BS DL CSI estimate fre(gl(!B)) together
with the BS UL CSI magnitudes |H](;S),UL| to the combining
network for final DL CSI estimation. The combining network
uses Np residual blocks, each block contains the same design
of circular convolutional layers and activation functions as the
network for DL CSI recovery.
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Fig. 5. General architecture of the proposed BS CSI feedback framework. (Each of the small grids is a TFR. The region covered by the bold black frame is
the designated place for RS replacement. Thus, in this example, the available number of TFRs, L, is 16.)

The BSdualNet is optimized by updating the network
parameters Opy, Or and O. of non-linear beam merging,
recovery, and combining networks fom, fre and fc:

2
arg min hy, NG H , )

Gbn},{@re,@c ZH BS,DL BS.DL ||
b pr = fel (@), THSS o ), (10)
gy = QS "'y, (11)

Yo = St Thigdpr. + 0. (12)

T= fbm(|hBSUL| |h |h(SUL|)

Note that the superscript () denotes the UE index. hl(;S),UL =
Vec(H]gS)UL) € CNuNv and H](;S)’UL € CNuxNv denote the
vectorized and original UL CSI in beam domain at the i-th
UE.

C. BSdualNet-MN

In BSdualNet, the beam merging network provides a beam
merging matrix T to generate an efficient representation of
the convoluted responses of all orthogonal beams. Although
T is optimized for the ease of decoupling individual beam
responses, the decoder remains a blackbox such that the
information within T may not be fully exploited due to its
indirect use. In this section, we would redesign the decoder
by directly using the beam merging matrix T to achieve better
architectural interpretability and performance improvement.

Unlike the previous works that split the deployment of
CSI encoder and decoder at UEs and gNB, respectively, our
gNB knows the exact encoding and decoding processes in
our framework. Thus, we can exploit the locally known beam
merging matrix T to decode the feedback more efficiently. To

Sl - (13)

H(l)

BS DL

gNB BSdualNet

Combining
Network

[HE o | =P

|h(1) |h(2)

BS.UL BS,UL |2 |hBS UL
Beam
Merge ‘
Beam Merging
Network Recover
Network

vT 4
Beamforming )

e

4
gf) = Th{};

BS.DL

DL _ (i)
HBS .inii fie (g .

4

UE

Fig. 6. Block Diagram of BSdualNet.

this end, we reformulate the problem of DL CSI recovery for

h{) i =0,..., N — 1 by seeki inimum- luti
BspL: ¢ = 0,y y seeking a minimum-norm solution

to an under-determined linear system

yol =TThiy +nl) i=0,..,N-1.

As seen from Fig. 8, the output of the recovery network can

be expressed as follows:

TH(TT) gy,

fe@h,) = (14)
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Clearly, the minimum norm solution depends on matrix T.
Assuming perfect quantization and zero noise, we can approx-
imate the decoder' of Eq. (14) as

Fre(@8) ~ TH(TTH) ' Th)

L
= Z vivi! h](BZS),DL =1 hl(;S),DU (15)
i=1
h\‘f_/
I
where v;,i = 1,2,..., N, are right singular vectors of T.

Since Trace(I) = L, h](;S),DL cannot be fully recovered by only
relying on the diagonal entries of IIf strong spatial correlation
exists in the beam domain, we will need a recovery matrix I
with larger off-diagonal entries, representing the correlation
between beams. Given the FDD UL/DL reciprocity in beam
domain, by capturing the correlation between adjacent beam
response magnitudes of UL CSI, it would be more reasonable
to define a merging matrix T which contains well-behaved
right singular vectors such that 3~ " |Thgs)’DL - hgs)’DLHg
can be minimized.

With the same design of the beam merging network in
BSdualNet, the recovery network in BSdualNet-MN simply
includes a series of matrix products. Thus, BSdualNet-MN is
not only more interpretable, its computational complexity and
required model memory are also lower.

V. UL CSI AIDED BEAM BASED PRECODING AND A
RECONFIGURABLE CSI FEEDBACK FRAMEWORKS

Generally, the aforementioned methods perform better with
high sparsity CSI in beam domain. Yet, such spatial sparsity
may not hold for CSI of every propagation channels. For ex-
ample, indoor propagation channels tend to exhibit rich multi-
paths with high angular spreads. This could lessen spatial spar-
sity and degrade recovery accuracy of DL CSI. Interestingly,

I'See Appendix
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however, such channels are alternatively characterized by large
coherence bandwidth because of the dominance of low-delay
paths dominate [28]. This means that for such channels, it
is not necessary to have high CSI-RS density in frequency
domain.

In this section, a reconfigurable CSI feedback framework
will be described as a more flexible solution to reduce the
number of pilots by selecting frequency reduction (FR) and
beam reduction (BR) ratios. Instead of regarding feedback
of each RB independently, as discussed in the signal model
of Section II, we exploit the large coherence bandwidth and
consider a joint UL feedback for a total of K RBs. By
leveraging spectral coherence, we can further reduce the UL
feedback overhead by applying an autoencoder network. In
what follows, we elaborate on the reconfiguration of CSI-RS
placement and the design of a learning-based CSI feedback
framework, BSdualNet-FR.

A. Frequency Resource Reconfiguration

In modern wireless protocols, there are designated resource
regions for CSI-RS placement [19]. Compatible with existing
RS configurations, we can reduce the CSI-RS placement
density along the frequency domain by a frequency reduction
factor FR by placing pilots only at RB indices £ = 1,1 +
FR,1+2FR,..,1+ (K — 1)FR as shown in Fig. 9. We
can also further reduce the required REs by a beam reduction
factor of BR(= round(N,/L)) by applying beam merging
matrix T designed by using a three-dimensional (3-D) beam
merging network with 3-D convolutional kernels as shown in
Figs. 10 and 11. Jointly, the total REs for CSI-RS placement
can be reduced by a factor of BR - FR. Thus, the total number
of pilot REs becomes N, K/(BR - FR).

The DL received signal vector y]()iik) € CL>1 at the i-th UE
in the k-th RB can be expressed as
i,k k) T (i,k) k
y]()L )= SJ(JL,LT hl(as,DL + nl()L)v (16)
where the superscript (i, k) denotes the UE and RB indexes,
respectively. Following Section II, UE-i estimates beam re-
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sponse vectors gl(:B ) k= 1,1+ FR,.
beam response matrix

+(K—-1)FRasa

GFB _ éﬁl),gl(:gHFR),---, }(:glJr(Kfl)FR)} ¢ CLxK/FR
where the estimates gli;") = (Sgi) )7ty @R e ¢ are based

on pilots reduced by FR.

B. BSdualNet-FR

For further reduction of UL feedback overhead, we com-
press the beam responses by implementing a frequency com-
pression module (FCM) similar to an autoencoder. The FCM
consists of an encoder at UE and decoder at gNB for CSI
compression and recovery, respectively. The encoder consists
of four 3 x 3 circular convolutional layers with 16, 8,4 and 2
channels. Subsequently, an FC layer with [2LK/(CR-FR)]
elements accounts for dimension reduction by a factor of
CR.s = BR-FR-CR after reshaping. CR.¢ and CR respectively
denote the effective and feedback compression ratios. The
FC layer output is sent to a quantization module which uses
a trainable soft quantization function as proposed in [9] to
generate feedback codewords.

At the gNB, the codewords from different UEs are for-
warded into the decoder network of the FMC to recover their
respective DL CSIs. The decoder first expands the dimension
of the codewords to their original size of 2N, K. Reshaped
into a size of Ny x K x 2, a codeword enters four 3 x 3
circular convolutional layers with with 16, 8,4 and 2 channels
to generate the FCM output. Note that the dimensions in both
frequency and beam domains are already the same as our target
output in this sta%e The FCM output serves as an initial DL
CSI estimate HBS pLin € CY*X which is used to calculate
the first loss

IOSS1 Z ||HBSDL1n1 - BSDL||27 (17)
H](SZS),DL,ini = femcde(femcen(Gig))- (18)

Next, the combining network refines the initial estimate
with the help of UL CSI magnitudes. The combining network
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Fig. 10. Block Diagram of BSdualNet-FR.

first split the magnitude and the phase of the initial estimate
before sending the initial estimate magnitudes and the UL CSI
magnitudes into five residual blocks which are constructed by
a shortcut and four circular convolutional layers with 16, 8,4, 2
and 1 channels and activation functions for magnitude refine-
ment. From there, the refined magnitudes of DL CSI and their
corresponding phases form the final output ITI](;S)’DL € CNox K
to determine the second loss function

Z ||HBSDL

i i1 i,2
H](SS),UL = {Vec(Hl(ss,aL) VeC(Hl(ss,aL)

lossy = (19)

BSDL||27

vee(H{3))| 20)

H o = fe(H50 o H o)), @1)

The BSdualNet-FR is optimized by updating the network
parameters Opm, OpMcens Ormcge and O, of the non-linear
3-D beam merging, FMC encoder/decoder, and combining
networks fom, feMCens frMcde and f:

arg min
Obm , ORMC.en, OFMC e Oc

{a-loss; + (1 — ) - lossz }

where hyperparameter « adjusts the weighting.

Note that the deep learning network contains many hy-
perbolic tangent activation functions and a soft quantization
function which could lead to the gradient vanishing problem
for parameters in those layers. To mitigate this problem,
we suggest a two-stage training scheme for optimizing the
proposed framework. In the first stage, we train the model by
setting o = 1 for Ny epochs, freezing the combining network
and focusing on finding the best beam merging matrix and
encoding/decoding networks. In the second stage, we change

= 0.1 and focus on refining the final estimates with the
aid of UL CSI magnitudes. Using the elbow method [29], we
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Fig. 11. Network design of BSdualNet-FR.

found that Nge = 30 is usually sufficient to obtain a good
tradeoff.

VI. EXPERIMENTAL EVALUATIONS

A. Experiment Setup

In our numerical test, we consider both indoor and outdoor
cases. Using channel model software, we position a gNB
of height equal to 20 m at the center of a circular cell
with a radius of 30 m for indoor and 200 m for outdoor
environment. We equip the gNB with a 8 x 4(Ng x Ny ) UPA
for communication with single antenna UEs. UPA elements
have half-wavelength uniform spacing. The number of residual
blocks in the combining network is set to Ng = 5 throughout.

For our proposed model and other competing models, we set
the number of epochs to 300 and 1500, respectively. We use
batch size of 200. For our model, we start with learning rate of
0.001 before switching to 10~* after the 100-th epoch. Using
the channel simulator, We generate several indoor and outdoor
datasets, each containing 100,000 random channels. 57,143
and 28,571 random channels are for training and validation.
The remaining 14,286 channels are test data for performance
evaluation. For both indoor and outdoor, we use the QuaDRiGa
simulator [27] using the scenario features given in 3GPP TR
38.901 Indoor and 3GPP TR 38.901 UMa at 5.1-GHz and
5.3-GHz, and 300 and 330 MHz of UL and DL with LOS
paths, respectively. For both scenarios, 1024 subcarriers with
a 15K-Hz spacing are considered for each subband. Here, we
assume UEs are capable of perfect channel estimation. We
set antenna type to omni. We use normalized MSE as the
performance metric

D N
1 o (i i 2 i) 2
I 8 PRI N

where the number D and subscript d denote the total number
and index of channel realizations, respectively.

B. Testing Different Numbers of Available REs
We evaluate the performance of CSI recovery by adopt-
ing the proposed encoder-free CSI feedback frameworks,
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Fig. 12. NMSE performance of BS-UL, BS-DL, and BSdualNetg for different
TFRs L in (a) indoor, (b) outdoor scenarios.

BSdualNety, BSdualNet and BSdualNet-MN. To test the ef-
ficacy without considering quantization, we first compare
BSdualNety with two heuristic approaches (denoted as BS-
UL and BS-DL) that recover DL CSIs according to L beam
responses where the beams are selected according to the UL
and DL CSI magnitudes, respectively. Note that BS-UL should
serve as the lower bound of BSdualNety since BSdualNetg is
equivalent to refine the result of BS-UL with an additional
combining network.

Figs. 12 (a) and (b) provide the NMSE performance for
different number of available REs L in an RB for BSdualNety,
BS-UL and BS-DL in both indoor and outdoor scenarios,
respectively. The results show that BSdualNet, delivers better
performance than BS-UL and also BS-DL in outdoor scenario
owing to the high spatial correlation in beam domain. Because
of the high angle spread induced by the more complex
multi-path environment in indoor scenarios, the combining
network in BSdualNety only marginally improve the recovery
performance.

Figs. 13 (a) and (b) illustrate the NMSE performance for
different number L of REs within a RB for BSdualNetg,
BSdualNet and BSdualNet-MN for both indoor and outdoor
channels, respectively. We can observe the benefits of the beam
merging matrix T especially in outdoor cases. Furthermore,
instead of using a convolution-layer based combining network,
changing the combining function as a minimum-norm solution
yields a significant performance improvement in both indoor
and outdoor scenarios. Since minimum-norm solution directly
uses the beam merging matrix T, it becomes more efficient
to decouple the superposition of weighted beam responses by
minimizing the MSE of DL CSIs.

C. Performance for Different Numbers of UEs
Similar to our beam merging matrix T, measurement matrix
in compressive sensing based frameworks [30], [31] also
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Fig. 13. NMSE performance of BSdualNetp, BSdualNet, and BSdualNet-MN
for different TFRs L in (a) indoor, (b) outdoor scenarios.

functions to shrink the dimension of original data and derive
a better representation for their sparsity that can be easier
to recover. To demonstrate the relative performance of the
proposed frameworks, we also compare with two successful
compressive approaches ISTA [30] and ISTA-Net [31]:

« Iterative Shrinkage-Thresholding Algorithm (ISTA):
Its regularization parameter and maximum iteration num-
ber are set to 0.5 and 3000, respectively.

o ISTA-Net: The phase and epoch numbers are set to 5 and
1000, respectively.

Figs. 14 (a) and (b) provide the NMSE performance com-
parison for different numbers of UEs NV for L = 8 REs in aRB
for BSdualNet, BSdualNet-MN, ISTA and ISTA-Net and under
indoor and outdoor scenarios, respectively. From the results,
we observe the clear performance degradation for BSdualNet
and BSdualNet-MN as UE number grows. This is intuitive
since it is difficult to find an optimum beam merging matrix
for all active UEs. Fortunately, for most cases, the performance
degradation tends to saturate after the UE number exceeds a
certain number typically less than 10 for BSdualNet-MN.

Our tests show that both BSdualNet and BSdualNet-MN
deliver better performance over ISTA and ISTA-Net under dif-
ferent UE numbers. Our heuristic insight is that measurement
matrix in ISTA and ISTA-Net is unknown at recovery whereas
the beam merging matrix is designed by the gNB and can be
explicitly utilized by the recovery decoders of BSdualNet and
BSdualNet-MN.

D. CSI-RS Configurations and Compression Ratios

We consider a 5.76 MHz subband (i.e., 32 RBs each
of bandwidth 180K-Hz). Each codeword element uses 8
quantization bits. To comprehensively evaluate BSdualNet-
FR, The two tables in Fig. 15 and Fig. 16 provide the
NMSE performance of BSdualNet-FR against different CSI-
RS configurations and compression ratios in outdoor and
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Fig. 14. NMSE performance for different number of UEs N in (a) indoor,
(b) outdoor scenarios.

indoor scenarios, respectively. We apply the same background
color on results with the same pilot and feedback overhead
reduction ratios.

Since outdoor channels generally exhibit stronger sparsity
and larger delay spread respectively in beam and delay do-
mains, we observe a slight performance degradation with BR
increase as opposed to FR increase. Importantly, for BR = 4,
there is a clear performance loss even when using the same pi-
lot and feedback overhead reduction ratio. Despite the channel
sparsity, with the use of half-wavelength antenna spacing (i.e.,
Nyquist sampling in spatial domain), the overly aggressive
compression in beam domain cause too much information loss
to recovery at the gNB. For indoor channels, we observe a
slight performance degradation when increasing FR instead
of BR because of larger angular and shorter delay spread of
indoor CSL

E. Effective Compression Ratio CRy

As benchmarks, we also compare BSdualNet-FR with
CsiNet-Pro [7] and another successful method DualNet-MP
[11]. The newly proposed DualNet-MP also exploits FDD
reciprocity by incorporating UL CSI magnitude as side in-
formation at CSI decoder of gNB. Table I presents the three
way comparison of NMSE for CsiNet-Pro, DualNet-MP, and
BSdualNet-FR under different values of effective compression
ratio CRqy in indoor and outdoor cases. Benefiting from
the UL CSI magnitudes, both BSdualNet-FR and DualNet-
MP can outperform CsiNet-Pro in most cases. Interesting,
better utilization of UL CSI by BSdualNet-FR provides better
performance than DualNet-MP. Although the performance
gain becomes less impressive for higher CR.¢, the additional
benefit of the BSdualNet-FR framework is the reduction of
REs for DL CSI-RS by a factor of BR-FR that allows gNB to
reconfigure the CSI-RS placement to enhance the DL spectrum
efficiency.



TABLE I
NMSE PERFORMANCE OF DIFFERENT CSI FEEDBACK FRAMEWORKS AT DIFFERENT CRegr.

Fig. 15. NMSE performance of BSdualNet-FR for different CSI-RS place-
ment configurations in indoor scenarios. (The results with the same effective
compression ratio are denoted as the same color. The best performance at the
same effective compression ratio is denoted by bold fonts with underline.)

F. Complexity: FLOPs and Parameters

Most UEs have stronger memory, computation, and power
constraints. The system design favors light-weight and simpler
encoders for deployment at UEs. In comparison with the
baseline CsiNet Pro, Table II shows dimension reduction in
frequency and beam domains and smaller input size of our
encoder/decoder architecture. BSdualNet-FR provides signifi-
cant reduction in terms of FLOPs and the number of model
parameters. Similarly, if the total reduction factor FR-BR > 2,
BSdualNet-FR shows lower complexity than DualNet-MP.

VII. CONCLUSIONS

This work presents a new deep learning framework for CSI
estimation in massive MIMO downlink. Leveraging UL CSI
estimate to reduce its CSI-RS resources, the gNB designs
a beam merging matrix based on UL channel magnitude
information to transform DL CSI observation at UEs into a
lower dimensional representation that is easier for feedback
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CsiNet-Pro DualNet-MP BSdualNet-FR
CRef | Indoor | Outdoor | Indoor | Outdoor Indoor Outdoor
-34.6 -19.8
4 “24.2 -13 -27.3 -19.1 (FR=1,BR=1) | (FR=1,BR=1)
-34.5 -16.5
8 -20.8 -12.5 -20.9 -16.4 (FR=4.BR=1) | (FR =1, BR = 1)
-27.2 -13.3
16 -14.4 -11.8 -20.2 -13.3 (FR=8,BR=1) | (FR =1, BR = 2)
-17.4 -11
32 -13.2 86 -16.8 -1 (FR=8,BR=1) | (FR=2,BR=2)
CR=2 BR=1 (L=32) BR=2 (L=16) BR=4 (L=16) CR=2 BR=1 (L=32) BR=2 (L=16) BR=4 (L=16)
FR=2 -34.45 -10.16 -6.66 FR=2 -18.41 -15.21 -12.28
FR=4 -34.5 -10.2 FR=4 -15.73 -12.94
FR=8 =272 FR=8 -10.78
CR=4 BR=1 (L=32) BR =2 (L=16) BR =4 (L=8) CR=4 BR=1 (L=32) BR =2 (L=16) BR =4 (L=8)
FR=1 -34.63 -10 -6.66 FR=1 -19.78 -15.43 -10.89
FR=2 -34.06 -10.12 -6.85 FR=2 -16.08 -13.19 -9.98
FR=4 -27.03 -10.25 FR=4 -13.18 -10.79
FR=38 -17.41 FR=28 -9.642
CR=8 BR=1 (L=32) BR=2 (L=16) BR=4 (L=38) CR=8 BR=1 (L=32) BR=2 (L=16) BR=4 (L=38)
FR=1 -33.46 -10.14 -6.75 FR=1 -16.54 -13.3 -10.07
FR=2 -26 -10.15 FR=2 -13.28 -10.95
FR=4 -17.31 FR=4 -9.30
CRy=4 [ CRar=16 ] CRy=4 [ CRa=16 ]
CRy=8 [ CRy=32 ] CRq-8 [ CRy=32 ]

Fig. 16. NMSE performance of BSdualNet-FR for different CSI-RS place-
ment configurations in outdoor scenarios. (The results with the same effective
compression ratio are denoted as the same color. The best performance at the
same effective compression ratio is denoted by bold fonts with underline.)

and recovery. We further develop an efficient minimum-norm
CSI recovery network to improve recovery accuracy. Our new
framework does not deploy training deep learning models at
UEs, thereby lowering UE complexity and power consump-
tion. We achieve further reduction of DL CSI training and
feedback overhead, by introducing a reconfigurable CSI-RS
placement. Test results demonstrate significant improvement of
CSI recovery accuracy and reduction of both DL CSI training
and UL feedback overheads.

APPENDIX
Proof of Eq. (15):
For an L x Np merging matrix T with L < N, we have
an underdetermined linear problem y = Tx. The minimum
norm solution is simply

Xmn = TH(TTH) ' Tx, (A.1)



TABLE II
COMPARISON OF PARAMETERS AND FLOPS AT ENCODER.

CsiNet-Pro DualNet-MP BSdualNet-FR
CR.f | Parameters | FLOPs | Parameters | FLOPs Parameters FLOPs
4 IM 4.23M 0.54M 4.2M IM/(FR*BR) (2.1 + 2.1/(FR*BR))M
8 534K 2.12M 280K 2.2M 534K/(FR*BR) (1.1 + 1/(FR*BR))M
16 272K 1.08M 140K 1.1IM 272K/(FR*BR) | (0.55 + 0.5/(FR*BR))M
32 140K 0.56M 82K 0.6M 140K/(FR*BR) | (0.27 + 0.26/(FR*BR))M
Based on singular value decomposition of T by [6] J. Guo et al., “Convolutional Neural Network-Based Multiple-Rate Com-
pressive Sensing for Massive MIMO CSI Feedback: Design, Simulation,
T=U[X 0| v, (A2) and Analysis,” IEEE Trans. Wirel. Commun., vol. 19, no. 4, pp. 2827-

where U and V respectively are left and right singular matri-
ces corresponding to the L x L diagonal 3 of nonzero singular
values. Let V = [vy vy ---vy,] denote the corresponding
right singular vectors. It is clear that

Irxz O

L
TH(TT?)-'T _V{ A ]VH = ZviviH (A.3)
=1

. L .. .
Define a matrix I = >";” , v;v. The minimum-norm solution
is simply

L
Xmn = Z vilex —1-x. (A4)
i=1

Since the singular vectors {v;} are orthonormal, i.e., vl-H \z
1, it is clear that

L
Trace{I} = Z Trace{v;v’}
i=1
L
=Y Trace{viv;} (A.5)
i=1
L
=y 1=1L (A.6)
i=1
in which the equality of Eq. (A.5) holds because

Trace{AB} = Trace{BA}.
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