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Abstract—This work formulates a collaborative decision-
making framework that exploits over-the-air computation to
efficiently aggregate soft information from distributed sensors.
This new AirCompFDM protocol approximates the sufficient
statistic (SS) of optimum binary hypothesis testing at a server
node in this distributed sensing environment under different
operation constraints. Leveraging pre/post-processing functions
on over-the-air aggregation of sensor log-likelihood ratios, Air-
CompFDM significantly improves bandwidth efficiency with
little detection loss, even from modest numbers of participating
sensors and imperfect phase pre-compensation. Without phase
pre-compensation, the benefit of over-the-air sensor aggregation
diminishes but still can mitigate the effect of channel noise. Im-
portantly, AirCompFDM outperforms the traditional bandwidth-
hungry polling scheme, even under low SNR. Furthermore, we
analyze the Chernoff information and obtain the approximate
effect of sensor aggregation on the probability of detection error
that can help develop advanced detection strategies.

Index Terms—Internet of Things, decision-making, collabora-
tive learning, soft information, hypothesis testing.

I. INTRODUCTION

Internet of Things (IoT) broadly covers a variety of tech-
nologies that effectively deploy and integrate a wide range
of devices and sensors to advance a myriad of applications,
including smart cities and environmental protection. One im-
portant class of IoT applications involve the detection of an
underlying critical event based on local observations measured
by distributed nodes. Of course, the IoT network requires
consolidating the most local sensor observations possible to
optimize detection performance, i.e., minimize error and max-
imize correct detection. In this paper, we study the technical
challenge of achieving efficient collaborative learning for joint
decision-making with data from distributed low-complexity
wireless sensors.

Previous works have considered the aggregation of sensor
data to improve decision-making at the server. In [1], the
authors study a traditional system where the server polls each
sensor individually over a multiple-access channel (MAC) with
channel capacity R, and determine that R sensors sending one-
bit decisions to a server equipped with maximum a posteriori
(MAP) detector is an optimal detection strategy. However, data
fusion relies on polling each sensor individually, with several
hidden costs and ideal assumptions. Other works such as [2],
[3] attempt to tackle some of these shortcomings, providing
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detection strategies while lifting some of these assumptions.
Regardless, there still exist sizeable computational and band-
width cost of recovering each sensor signal due to channel
estimation and signal separation, the need of pilot signals,
network coordination, and other practical considerations.

As an alternative to MAC polling, grant-free access attempts
to separate multiple joint transmissions. The server may em-
ploy multiple receive antennas to exploit spatial diversity [4]—
[6], although signal separation is computationally intensive,
requires a significant number of samples of received signal,
and the number of receive antennas constrains the number
of simultaneous sensor transmissions that can be recovered.
Thus, grant-free access schemes have limited applicability in
performance- and energy-constrained networks.

However, in many distributed sensing scenarios the server
does not need to recover the data of each sensor. Approaches
like Federated Learning (FL) [7], [8], which jointly train a
shared learning model without directly transmitting local data,
have shown that both server and nodes can learn from each
other by iteratively sharing model updates of a deep learning
neural network, sharing training load and avoiding revealing
potentially private data. Nevertheless, FL requires complex
network coordination and large bandwidth usage, and thus it
is not appropriate for typical IoT deployments.

To overcome these difficulties in collaborative learning, data
fusion techniques such as over-the-air computation (AirComp)
[9] propose the aggregation of analog signals in the uplink
channel, thus providing bandwidth and energy savings by at
least a factor of S, the number of active sensors. AirComp
requires only a simple access protocol and small computational
load, which is ideal for IoT nodes. In our previous work [10],
we use AirComp for collaborative decision-making where
sensors send direct measurements, and we further demonstrate
that detection performance can improve substantially with
increasing number of participant sensors in different scenar-
ios, while saving considerable bandwidth with simultaneous
transmission of all sensors, and moreover, incurring very low
computational and energy costs.

In this paper, we extend our previous results. We now
consider a collaborative detection problem where the sensors
share soft information scores that consolidate their local obser-
vations, further improving the decision at the server via over-
the-air computation. We call this formulation AirCompFDM.
We develop theoretical performance bounds under a Bayesian
framework for AirCompFDM, and show that detection per-



formance improves for increasing participating sensors with
minimal communication load, even in challenging scenarios
with one observation per sensor. In particular, for the case of
local Gaussian measurements, we also show that our proposed
strategy can outperform a MAC polling scheme with perfect
sensor signal recovery [1], even in low channel SNR scenarios.

Notations: In the following, vectors will be denoted with
small boldface letters, such as z. Sets are denoted with cal-
ligraphic capital letters. The transpose, element-wise complex
conjugation and conjugate transpose are denoted by zT, Z and
21, respectively. 1 represents a vector of ones of appropriate
size. Expectation and variance are denoted as E{-} and Var{-},
respectively. Finally, 1[cond] denotes the indicator function of
whether cond is true.

II. SYSTEM MODEL

Consider a wireless system of single-antenna nodes, where a
server node hosts S sensors. In each transmission slot, sensors
simultaneously transmit analog signals to the server over a
shared wireless channel. We assume that all sensors have ac-
quired network timing and are synchronized at the server, e.g.,
via round-trip delay information, such that their transmitted
signals would aggregate synchronously at the receiving server.
Furthermore, we assume that each burst duration is below the
coherence time of wireless channel such that channel gains
remain constant within each transmission slot.

A. Over-the-Air Formulation

AirComp aims to compute an estimation or decision from a
nomographic function of distributed data collected locally by
participating sensors. Each sensor observes a sequence of [NV
observations v; = [v;1 ... vin]T, fori e S={1,...,S}, of
a phenomena H belonging to a discrete set { Hy, Hy }, which
are the two underlying hypotheses with prior probabilities
o, ™1 > 0, respectively, such that my 4+ 7 = 1.

At discrete time k, sensors compute a summary message
u;(k) = w;(v;; k) and transmit analog signals x;(k), i € S,
corresponding to a local pre-processing function ¢;j of the
summary message u;(k), i.e.

zi(k) = @i (Uz(k)) )

To save bandwidth with AirComp, the server node receives
all wireless signals simultaneously over a shared multiple
access channel with individual gains g;(k) € C/{0} as:

k) = gi(k)wi(k) +n(k), )

i€S

ieS. (1)

where n(k) is circularly symmetric complex AWGN with
power density w?, independent of all channels and signals.
The server collects K > 1 samples of the received signal
(2). If the K samples are obtained within a transmission slot,
they all experience the same channel gains. Conversely, if the
samples are taking in different transmission slots, we assume
that channel realizations are independent over slots, resulting
in that samples y(k) are independent of each other. In the
particular problem of over-the-air decision making, the server

decides on an hypothesis using these K samples, collected
in the vector y = [y(1),...,y(K)]", by computing a post-
processing function A = ¥(y).

B. Sufficient Statistic and Over-the-Air Approximation

If the server had access to all sensor observations from S
sensors, the optimal Bayesian test consolidates all observa-
tions using the likelihood ratio (LR) or equivalently, the log-
likelihood ratio (LLR)
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As sensor observations are i.i.d., we can rewrite the LLR as
pvm(vi|Hy)
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where ¢(v;) is the LLR computed with local observations only
at sensor 7. Hence, if the sensors transmit their local LLRs, the
server only needs to sum them to form a minimal sufficient

statistic (SS) A for optimal decision-making, and it is only
natural to define u;(k) = ¢(v;). Hence, the optimal test is
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Now, if the server implements over-the-air computation in
ideal conditions, i.e. with zero channel noise and equal chan-
nels with no fading, the received signal at the server is exactly
A. In other words, AirComp yields the SS of summed LLRs
with no additional computation and only needing minimal
signal bandwidth, which is indeed the best possible framework
for collaborative decision-making.

However, this ideal scenario does not occur in practice, and
over-the-air aggregation exhibits amplitude and phase distor-
tions for each sensor signal, plus the effect of channel noise,
as presented in (2). In other words, the received signal y is a
sample of a noisy and channel-weighted statistic NCWS), and
the technical challenge is to design pre- and post-processing
functions ¢; and ¥ and a NCWS \(y) that approximates the

SS, i.e.
— (L at
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Hence, our focus will be to study the effects of channel
gains and noise in detection performance. In particular, we will
devise how to deal with channel phases and/or magnitudes.

C. Compensation in Over-the-Air SS Approximation

Ideally, the system would compensate channel fading by
using individual channel inverses, i.e. sensors would use the
pre-processing functions x;(k) = g; 'u;(k). Regrettably, sen-
sors usually have limited available energy, and is impractical to
assume that they can totally compensate for arbitrary channel
magnitudes, which can exhibit significant attenuation in real-
world applications. Hence, we do not study full channel
compensation and focus on channel phase only.



However, if there exists channel reciprocity such as in a
TDD link between server and sensors, the server broadcast
used to acquire timing can also be used to estimate channel
phase. If we assume that the estimation is exact, the sensors
can use the pre-processing functions

9i(k)
i(k) = i(k), 7
7 = gy, e 7
and denoting a;(k) = |g;(k)| > 0, the received signal is
k)= ai(k)u;(k) + n(k), (8)
€S

and as the compensatedphannels are real, the server makes a
decision using NCWS M\p(y) = K~ 'Re{1Ty}. We call this
protocol AirCompFDM-P.

In the opposite scenario where there is no channel reci-
procity, sensors cannot estimate channels beforehand and
are unable to precompensate their local LLR signals. Thus,
sensors do not perform any pre-processing and we simply let
x;(k) = u;(k), resulting in

k) =Y gi(k)ui(k) + n(k). )
i€S
Regardless, we assume that the server is able to estimate the
aggregated channel at each sample, G = ;.5 9i(k) € C,
and compensates for its resulting phase. Under this protocol,
denoted AirCompFDM-U, we define the NCWS

1 Gy
y) = 2Re{ > i)

Finally, we can consider that phase compensations are not
exact and subject to errors, and we instead use quantized
phase corrections. For example, if we divide the complex
plane into 4 regions with angles +7/4 and +3 /4 radians, we
can compensate phase in the corresponding multiple of /2
radians. We call AirCompFDM-M when sensors and server
perform quantized phase compensation with M uniform angle
partitions of 27/M radians, with offset of 7/M. We will
not analyze this more practical protocol, but will show its
performance in numerical experiments.

}. (10)

III. PERFORMANCE ANALYSIS OF AIRCoMPFDM

A. Preliminaries

Let p;(y) = pyia(y|H;), j € {0,1} be the probability
distributions of the received signal under each hypothesis.
Using a maximum a posteriori (MAP) rule, the optimum
probability of error in decision-making is

— [ i {B(Holy) PO o) v, (1)
and it is known that the Chernoff information
C* = — min log / 6 (y)p1~*(y) dy (12)
ael0,1]

yields the best achievable exponent for a Bayesian probability
of error:
E* <78 mime e, (13)
Additionally, we can also obtain the Chernoff information
of a particular test or policy d(y) = 1[z(y) > n], with
z(y) the test statistic, and 7 a given threshold. To study test
performance, we use the test Chernoff information C'(d), but
as it is usually hard to derive, we also use a convenient lower
bound given by the test Battarcharyya coefficient B(J). Letting
P;(6) = P(0 = j|Hj), we have that

- 1— a < *
C(9) arenénl] logZPO YPL(0) < CF, (14)
logz P2 (8) P2 (8) < C(9). (15)

Finally, we consider that local observations v; conditioned
on hypothesis H;, j € {0,1}, are normally distributed with
means m; and sensor variance o2, with m; > my, and thus
the sensor LLRs correspond to

1

552 (16)

wi = 55 (v = moL |2 = floi — m11)2)
and by letting d = (m;—mg)v/N /o > 0 the sensor hypothesis
distance, we have that

2
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B. Exact channel phase precompensation

In this analysis, we assume static channels through K
samples of the received signal for simplicity, although the
generalization to different channels over transmission bursts
is straightforward. Thus, in the following, channel magnitudes
are unknown constants for detection purposes, even when
they were realizations following a distribution f,(a). Hence,
the NCWS Ap for S participating sensors has the following

conditional distributions:

)7 (18)
where A = Y7 ;a; > 0 and P = > 7 a7 > 0. Note
that the server does not need to know or estimate each
individual channel gain (which is impossible with over-the-
air aggregation and no signal separation), but only the sum of
magnitudes A and sum of powers P. The NCWS hypothesis
distance for AirCompFDM-P is

_jAd® Pd® +0.50°
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and the NCWS probability of error is

D D
Pu(Dp) = WOQ(QP + gp) + m@(; - gp) (20)



with @ the Gaussian @) Function [11] and v = In(mg /7). The

Chernoff information for this scenario is given by

D% B A?2d*K

8  8(Pd?+0.5w?)’

Regrettably, (21) does not really provide insights into detec-

tion performance in terms of the number of sensors S, which

is implicitly included in A and P. Moreover, A and P are both

dependent on channel realizations. To overcome this issue, we

perform statistical analysis for Dp and D2 for large enough
S. We can rewrite

Cp = 1)

A/VS
V/P/S +0.5w2/(Sd?)

By the Strong Law of Large Numbers, P/S *% E{a?}
as S — o0o. Since w? is constant, and invoking the Contin-
uous Mapping Theorem (CMT) with the continuous function
h(z) = \/x, we have that

Using the Central Limit Theorem on the numerator of Dp,
we obtain

A
VK % (W + ﬁE{a})d\/E when S — oo, (24)
VS

where W ~ N (0, Var{a}). Thus, invoking Slutzky’s theorem
and the CMT with the continuous function h(x) = 22,

, o (W+VSE{a})?
Dy — E{a?]

Taking expectation, and observing that E{W?} = Var{a},
Var{a} + SE2{a}
E{a?}

For large S, channel noise is nullified, equivalent to a high
SNR regime. However, as we are interested in the effect
of channel SNR in our analysis, we can assume that the
convergence theorems invoked in the previous derivation hold

with modest values of S, and we do not dismiss the channel
noise term in (23). Therefore, we obtain the approximation

E{D2} ~ Var{a} + SE?{a}
E{a?} + 0.5w?/(d2S)

Importantly, (27) shows that the mean squared hypothesis
distance (and hence, the mean Chernoff information) has
approximately an affine relationship with S, proportional to
channel statistics, and the effect of channel noise diminishes
with S at rate 1/S.

The test op(y) = 1[Ap(y) > An] is the optimal Bayesian
test, and it reduces to dp (y) = 1[Re{y} > 0] for equally likely
hypothesis and K = 1. As the conditional distributions (18)
have antipodal means, the Battarcharyya coefficient of the test
ép when S sensors collaborate is [1]

B(0p) = —%m [4@( - \/iDp)Q(\/ﬁDp)}

Dp = dVK.

(22)

E{a?} when S — co. (23)

d’K when S — co.

(25)

E{D3} = d°K. (26)

d’K. 27)

(28)

and given that we test means of Gaussian distributions, we
have that C'(6p) > B(dp) > Cf/2 [1, Theorem 2]. Hence,
test performance should improve with the number of sensors
S approximately according to (27), and in consequence, the
probability of error of dp exhibits exponential decay with
similar behavior for increasing S.

These theoretical results allow us to formulate optimal
detection strategies with AirCompFDM. The network should
always use the largest number of sensors available to col-
laborate in detection. Furthermore, the server can collect less
samples of the incoming signals and still enjoy satisfactory
detection performance thanks to source aggregation. Finally,
we can design detection strategies based on channel statistics
only. Thus, this analysis also applies to scenarios with chan-
nels varying throughout transmission bursts, as long as the
sampling process ensures that channel realizations g;(k) are
uncorrelated in different bursts.

We can also derive some additional insights. Consider
equally likely hypotheses, with test dp(y) = 1[\p(y) > 0].
In other words, as all channel magnitudes a; are positive,
we only need to know the sign of the NCWS: different
magnitude values will not change the sign of each individual
LLR transmitted by the sensors. This suggests that: (1) phase
compensation is more important than magnitude compensa-
tion; and (2) imperfect phase compensation of AirCompFDM-
M should still enjoy significant benefits of aggregation.

C. No phase precompensation

Now we analyze AirCompFDM-U, where we again assume
static channel gains over all samples y for simplicity (recall
that the extension is straightforward), and drawn from a
distribution f,(g). The conditional distributions of the NCWS
with S participating sensors are

LG Pd® +0.50°
2 K ’

Au|Hj ~ N((—l)l (29)

where the server only knows or estimates the aggregated sum
of gains G and sum of powers P. The NCWS hypothesis
distance for AirCompFDM-U is then

Do — |M1 —Mo\ _ \G\dZ\/K
U — — )
v VPd? + 0.5w?

with probability of error Pg(Dy) as in (20), and resulting

Chernof information
Dy |GRd'K
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Again, we resort to approximations to obtain an explicit
relationship of the Chernoff distance with the number of
sensors S. Noting that |G|?> = Re?{G} 4+ Im?{G}, we repeat
the derivation for large S f the previous section to obtain

Var{g} + S[E*{Re{g}} + E*{Im{g}}] ,

(Do) = E(l91)

I°K,
(32)




and for modest values of S, we approximate as

Var{g} + S [EQ{RG{Q}} + E? {Im{g}}] LK
E{I9} + 0.5/ (50) .

Hence, we again see an approximate affine relationship with
S and channel statistics for the Chernoff information. How-
ever, note that without precompensation, the aggregation of
channel gains can constructive or destructive. This is reflected
in the numerator of (33) because if channels have zero mean,
e.g. Rayleigh channels, E2{Re(g)} = E*{Im(g)} = 0 and we
lose significant collaboration gains, because

E{lg*}
E{|g|?} + 0.5w?/(d?S)

but we would still expect the impact of channel noise to
diminish at rate 1/.5, albeit that improvement is rather minor.

For AirCompFDM-U, dy(y) = ]I[S\U(y) > |G|y] is the
optimal Bayesian test, and if hypotheses are equally likely,
we have 0y(y) = 1[Re{Gy} > 0] for K = 1. In similar
fashion as the previous section, we obtain

E{D}} ~

E{D3} ~ d’K, (34)

B(dy) = —% In [4@( - \/§DU)Q(\/§DU)}, (35)

and because C(dy) > B(dy) > C}/2, we expect test
performance to behave in similar fashion as D% with respect
to .S. Moreover, we can also use this approximation based on
channel statistics to design detection strategies when obtaining
samples from multiple transmission slots.

IV. NUMERICAL EXPERIMENTS

To showcase the performance gains of AirCompFDM, we
set up several different network settings. Unless otherwise
stated, we simulate S sensors and one server, all with a
single antenna. We assume each sensor obtains N = 1
observation, independent among sensors, and contaminated
with i.i.d. Gaussian measurement noise, parameterized by the
sensor hypothesis distance d = |m; —mg|/o. Without loss of
generality, we assume antipodal means, i.e. mg = —m; < 0,
and equally likely hypotheses. We simulate i.i.d. Rayleigh
channels, i.e. g; ~ N(0,1/2) + iN(0,1/2). Channel noise
is AWGN with intensity w? corresponding to a given average
SNR for a single sensor. The server makes a decision using
K = 1 samples of the received analog signal. For empirical
simulations, we perform 10000 Monte Carlo (MC) simulations
with independent realizations of all random variables involved.

Furthermore, we compare to a traditional MAC polling
system [1], [2], where sensors send binary local decisions
uP"" € {0,1} and the server perfectly recovers all sent binary
data with rate smaller than the channel capacity, regardless of
channel conditions or transmission mechanisms. The server
implements a MAP detector over all received sensor decisions

wpol = [P 2T e {0,1}5, with probability of error
given by [2]
PYAC =1 — max {P(uP|H;)r;}.  (36)

= je0n)

100 L i Sensor hyp. dist. Type
d=1 AirCompFDM-P (MC)
d=2 - © — AirCompFDM-P (app.)
--ﬁ.k* = d=3 ceeepgense MAC polling
St
IEURNS s
A
=] O~ o
3 4
o
3
21072
Z
]
=1
2
Ay
-3
107 x,
ik
s ~
N 5 ~ .
\
104 I N o ‘\‘ I ™
0 5 10 15 20

Number of participating sensors S

Fig. 1: Probability of error of AirCompFDM-P with respect to participating
sensors S, for varying sensor hypothesis distance d, SNR 0dB and 79 = 7.

Note that for this MAC polling scheme, channel conditions
do not affect the optimality of decision strategies. Therefore,
the comparison to AirCompFDM is not totally straightforward,
because channel SNR would essentially change the total
channel capacity that MAC polling enjoys to aggregate many
sensor signals in one time interval. On the other hand, in
AirCompFDM we use only a few samples of the received
signal, greatly reducing computational load and networking
complexity while still enjoying good detection performance.

Fig. 1 shows the probability of error of AirCompFDM-
P, with channel SNR of 0dB and K = 1 sample of the
received signal, for different values of d. First, our approx-
imation Pg(E{Dp}) predicts lower error than empirical MC
simulations, especially for low d, but the gap reduces with
increasing S and d, showing that it can help in designing
detection strategies. When S = 1, MAC polling achieves better
detection performance in all cases, due to its perfect recovery
of sensor signals. Note that decision-making in MAC polling
is equivalent to a majority rule where all binary local decisions
are i.i.d. such that P(u?*" = 0|Hy) = P(uP®" = 1|H}) -as is
the case of Gaussian detection at each sensor-, and thus P%/[AC
only decreases when S is odd. For S even, a tie with S/2
counts of each decision is sorted by randomly removing a vote
to obtain a majority, with resulting PY!*¢ equal to the one with
S —1 sensors. Nevertheless, with increasing S, AirCompFDM-
P is comparable with MAC polling even using K = 1 samples
of the received signal. For larger but modest values of d
(which can be easily achieved by increasing local observations
N), AirCompFDM-P achieves better performance than MAC
polling with S > 6 sensors, with the additional benefit of
minimal computational load and bandwidth usage.

Fig. 2 shows the probability of error of a Bayesian de-
tection of AirCompFDM-U, with channel SNR of 0dB and
K =1, for different values of sensor hypothesis distance d. As
expected, not precompensating phase of zero-mean channels
yields worse performance than having channel compensation.
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Fig. 2: Probability of error of AirCompFDM-U with respect to participating
sensors S, for varying sensor hypothesis distance d, SNR 0dB and 79 = 7.

Still, increasing participating sensors does reduce probability
of error, albeit with a small effect at this SNR level.

Finally, Fig. 3 shows the probability of error of Monte
Carlo AirCompFDM simulations with d = 1 and varying
SNR values, for different channel compensation mechanisms,
and compare to the MAC polling scheme. Evidently, for
S = 1, AirCompFDM always performs worse than MAC
polling, as it is affected by channel gain and noise for any
SNR value, although performance improves with increasing
SNR. For 0dB of SNR and S < 5, AirCompFDM-P has
similar performance to MAC polling, and for larger number
of sensors, AirCompFDM-P shows lower probability of error
with minimal network coordination and bandwidth. For high
SNR, AirCompFDM-P outperforms MAC polling by the sim-
ple collaboration of 2 sensors. Additionally, AirCompFDM-
P can compensate for low SNR scenarios by increasing S.
For a low SNR of —10 dB and S = 5, we outperform
MAC polling 2 sensors. On the other hand, we see that
AirCompFDM-U indeed accomplishes better channel noise
reduction in lower SNR scenarios, being the only improvement
obtained by sensor aggregation.

Additionally, in Fig. 3 we also test quantized phase com-
pensation of AirCompFDM-M with M = 4 phases as de-
scribed in Section II-C. AirCompFDM-M enjoys only slightly
worse performance as AirCompFDM-P with equally likely
hypotheses, and the gap decreases with increasing SNR values.
Surprisingly, phase post-compensation at the server was not
necessary, and sensor precompensation was enough to provide
significant performance gains with S. This exciting result
further stresses the computational gains of our proposed Air-
CompFDM framework in performance-constrained networks.

V. CONCLUSIONS

In this work, we develop an over-the-air signal aggrega-
tion for collaborative detection in wireless sensor networks.
We exploit the natural over-the-air superposition of signals
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Fig. 3: Probability of error of AirCompFDM with respect to participating
sensors .S, for different SNR values, with d = 1 and w9 = 7.

over a shared channel to aggregate distributed sensor data
at a server for collaborative binary hypothesis testing, to re-
duce bandwidth usage while mitigating performance loss. We
demonstrate the advantages of this approach under different
network access protocols and deployment scenarios, including
channel fading, and using a low number of samples and
sensor observations, compared to traditional polling of sensors.
Our proposed AirCompFDM is a promising framework for
collaborate detection in applications such as IoT by balancing
the cost of bandwidth usage and detection accuracy.
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