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Abstract—Patients with both phonotraumatic and non-
phonotraumatic dysphonia commonly present with vocal hy-
perfunction, defined as excessive perilaryngeal muscle activity
and characterized by muscular pain and strain in the neck,
increased vocal effort, and vocal fatigue. The inability to reliably
measure vocal hyperfunction is a barrier to adequate evaluation
and treatment of hyperfunctional voice disorders. We have
recently demonstrated that the perilaryngeal functional muscle
network can be a novel sensitive neurophysiological window to
vocal performance in vocally healthy subjects. In this paper,
for the first time, we evaluate the performance and symmetry
of functional perilaryngeal muscle networks in three patients
with voice disorders. Surface electromyography signals were
recorded from twelve sensors (six on each side of the neck)
using the wireless Trigno sEMG system (Delsys Inc., Natick,
MA). Patient 1 was diagnosed with primary muscle tension
dysphonia, Patient 2 was diagnosed with unilateral vocal fold
paresis, and Patient 3 was diagnosed with age-related glottal
insufficiency. This paper reports altered functional connec-
tivity and asymmetric muscle network scan behavior in all
three patients when compared with a cohort of eight healthy
subjects. Our approach quantifies synergistic network activity
to interrogate coordination of perilaryngeal and surrounding
muscles during voicing and potential discoordination of the
muscle network for dysphonic conditions. Asymmetry in muscle
networks is proposed here as a biomarker for monitoring vocal
hyperfunction.

I. INTRODUCTION

Vocal hyperfunction (VH) is defined as excessive per-
ilaryngeal muscle activation during phonation [1] and is
associated with some of the most prevalent voice disorders
[2], [3]. VH is considered the primary manifestation of
primary muscle tension dysphonia (pMTD) [4]-[6]. In addi-
tion, VH contributes to the formation of vocal fold nodules
[7], [8] and often emerges as a compensatory behavior in
response to global insufficiency (e.g. vocal fold paralysis
and age-related vocal fold atrophy) [9], [10]. In spite of the
prevalence of related syndromes, clinical assessment of vocal
hyperfunction is conducted with mainly subjective methods,
such as patient self-reporting, palpation of the perilaryngeal
region, perceived vocal effort, and laryngovideostroboscopy
[11], [12].
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Classic non-invasive surface electromyography (SEMG)
has been investigated as a potential measure for the perilaryn-
geal muscle activation during phonation [13]-[15]. Previous
SEMGe-based investigations in normal or disordered voice
analyzed the temporal and spectral characteristics of the
SEMG from one or two muscles [16]. The reliability of
SEMG recording from perilaryngeal muscles is typically
excellent [17]. However, studies using SEMG measures such
as root mean square (RMS) and power spectral density (PSD)
of single muscles have shown heterogeneous outcomes for
assessment of VH, with some studies suggesting differences
in SEMG parameters between patients with muscle tension
dysphonia and controls, [18], [19] while others are finding no
differences at rest or in various phonatory tasks [20]. This
heterogeneity is likely because voicing is a complex neu-
romuscular activity, and activation differences in one or two
single muscles are unlikely to capture this complexity. There
exist studies designed to address this limitation by assessing
beta-band (15-35 Hz) coherence between two anterior neck
muscles during voicing, which showed some discriminative
power to indicate hyperfunction and differences between
control subjects and patients with vocal nodules [21], [22].
Other recent studies show the promise of multichannel SEMG
to distinguish vocal dysfunction from typical voicing [15],
[23]. In this case study, we investigate the potential of the
functional muscle network as a biomarker of VH.

The functional muscle network is an emerging concept
that uses simultaneous multichannel SEMG to decode muscle
synergy during complex motor tasks [24], [25]. In our
recently published study, we used multichannel SEMG to
expand from a single coherence measurement in specific
frequency bands to a wideband intermuscular coherence
network, thereby increasing the possibility for quantifying
the complex neuromuscular activity of perilaryngeal muscles
during voicing due to wider spectral and spatial distribution
of the analysis [26]. Our approach showed different muscle
network features discriminated different vocal tasks in typical
(non-disordered) speakers.

In this paper, we evaluate the performance of functional
perilaryngeal muscle network connectivity during voicing
using synchronized multi-sensor SEMG. The level of coordi-
nation in perilarygneal muscles during voicing and the level
of discoordination during dysphonic voicing is estimated by
investigating the intermuscular coherence network, which
measures the underlying spectrotemporal synergies. As men-
tioned, we have recently and for the first time, proposed
the concept of perilaryngeal muscle network across different
vocal tasks in normal speakers (e.g., sustained vowels, pitch



glide), [26], and we showed aberrant network activity in
hyper-functional speakers. In this paper, we take the next step
and evaluate the performance of functional muscle networks
in three cases of vocal hyperfunction with three different
voice disorder diagnoses. The paper suggests asymmetry in
perilaryngeal functional muscle connectivity as a biomarker
of VH.

The rest of this paper is organized as follows. In Section
II, we will provide the method of data collection and network
formulation and will explain the objective metrics quantify-
ing the integration and segregation of neural information at
the muscle networks. In Section III, we provide the results
comparing muscle networks in VH patients with that of the
healthy cohort. Concluding remarks are given in Section IV.

II. METHOD

The institutional review board of the New York Uni-
versity Grossman School of Medicine approved the study.
Three female patients with a voice disorder diagnosed by
a fellowship-trained laryngologist and symptoms of VH
were recruited at the NYU Langone Voice Center. Patient
1 (35 years old) was diagnosed with primary muscle tension
dysphonia, Patient 2 (56 years old) was diagnosed with
unilateral right vocal fold paresis, and Patient 3 (57 years
old) was diagnosed with age-related glottal insufficiency and
bilateral sulcus. All patients presented with symptoms of
vocal hyperfunction (e.g. increased effort with voicing, peri-
laryngeal muscle soreness or fatigue with voicing). Also, data
were collected from eight subjects (four females) without a
known history of voice disorders. After providing written
informed consent, subjects performed a series of vocal tasks
with varying degrees of pitch and loudness.

Three groups of tasks were tested. The first group of
tasks involved sustaining the vowel /a/ at a constant pitch
and volume, at four combinations of two levels of loudness
(habitual/increased) and two levels of pitch (habitual/high
pitch). Subjects performed three trials of each task. The sec-
ond group of tasks included single repetition vocal exercises,
namely (i) pitch glide [27], (ii) spontaneous speech, and (iii)
singing. The third group of tasks involved reading the first
paragraph of The Rainbow Passage, a reading commonly
used in voice and speech research, at three levels of loudness:
whispering, normal, and elevated [28]. The ten vocal tasks
are shown on the x-axis in Fig. 3(c), 3(d), and the y-axis in
Fig. 5. From left to right, the first four tasks are the sustained
phonation tasks with (1) habitual loudness, habitual pitch, (2)
elevated loudness, habitual pitch, (3) habitual loudness, high
pitch, and (4) elevated loudness, high pitch. Tasks 5-7 are the
single repetition tasks as follows: (5) pitch glide, (6) singing,
and (7) spontaneous speech. Tasks 8-10 are the reading tasks
with (8) whispering loudness, (9) habitual loudness, and (10)
elevated loudness.

sEMG signals were recorded from twelve sensors (six
on each side of the neck) placed parallel to the direction
of the muscles using the wireless Trigno SEMG system
(Delsys Inc., Natick, MA) with a sampling frequency of 1259
Hz (Fig. 1). Four bipolar Trigno Mini sensors were used
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Fig. 1. (a) Six sensors were placed at the masseter, superior sternocleido-
mastoid, superior infrahyoid, inferior infrahyoid, inferior sternocleidomas-
toid, and trapezius muscles. (b) SEMG was recorded using the wireless
Trigno system (Delsys Inc., Natick, MA) Avanti and Mini sensors (blue
head). (¢) An exemplar recording from all muscles indicates modulations
of the SEMG during the pitch glide.

for the smaller perilaryngeal muscles (inferior and superior
infrahyoid, bilaterally), while eight bipolar Trigno Avanti
sensors were used for masseter, superior sternocleidomastoid,
inferior sternocleidomastoid, and trapezius. Signals were
processed using MATLAB R2020b (MathWorks Inc. Natick
MA). The signals were filtered with a high-pass filter at 20
Hz, a band-stop filter at 57.5-62.5 Hz for power-line noise,
and a low-pass filter at 100 Hz. Thus, we considered the
20-100 Hz range. An exemplar recording from all muscles
(indicating modulations of the SEMG during the pitch glide)
is shown in Fig. 1(c).

SEMG Network Analysis

Muscle networks were constructed for all tasks, using
magnitude coherence analysis that estimates the frequency-
based power transfer between two signals and has been used
in a wide range of neuroscientific and neurophysiological
studies, mainly at the central nervous system level, to decode
information sharing between two neural activities. Magnitude
squared coherence, Cy, between two signals x(¢) and y(r) is:
¢, = 1Bl
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Fig. 2. The results in this figure summarize our recently published findings
[26]. The recent findings from healthy subjects are the point of comparison
for the evaluation of the muscle network in VH patients for the first time.
(a) The median (over subjects) of adjacency matrices for functional muscle
network from 8 healthy adults, with regard to four exemplar vocal tasks.
The adjacency matrices are constructed from the pairwise median coherence
between the sEMG signals during each task. The muscles are denoted
as follows: a = masseter, b = superior sternocleidomastoid, ¢ = superior
infrahyoid, d = inferior infrahyoid, e = inferior sternocleidomastoid, f =
trapezius. (b) The degree and weighted clustering coefficient of the network
scans show a gradual increase with the increases in pitch and loudness.

where Py and P, are the power spectral densities (PSDs)
and Py is the cross power spectral density (CPSD).

To compute the coherence, Welch’s overlapped averaged
periodogram method was utilized with a Hamming window
of 2048 samples (1.63 ms) and 50% overlap. [29] The
median coherence component in the 20-100 Hz range was
considered for each connection edge between two sensor
pairs to finally generate the proposed muscle networks
consisting of multiple edges and nodes (muscles) for each
trial. The network can be visualized using the net shape or
adjacency matrix. In the case of tasks that had multiple trials,
the median network across trials was computed in this work.
In order to objectively quantify the topographical changes in
muscle networks, we used measures from network sciences,
including network degree, clustering coefficient, and global
efficacy. The degree of each node, D;, is the average of all

edges connected to the node and can be calculated as:

] N
bi= <N—1) L A,
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where N is the number of nodes, and A;; is the i i element
of the Adjacency matrix of the network. In this context, a
node’s weighted clustering coefficient (WCC;) is defined as
the measure of how well that node is connected to its local
neighbors. The weighted clustering coefficient is defined as:

Y it Lki, ek AijARA ji
Y jtis ki, 2k AijAik

WCC; =

III. RESULTS

The healthy controls showed a significant increase in re-
sponse to raised loudness and pitch (Figs. 2, 3). Compared to
the healthy cohort, patients showed heterogeneous pairwise
muscle coherence indicated in network scan analysis (Figs.
3, 4). The adjacency muscle network of the three patients
for three tasks of interest is shown in Fig. 4. Overall, (i) the
network scans showed a lower mean degree for the patients
compared to the healthy cohort (Fig. 3), (ii) the network
scans showed skewed and asymmetric response towards one
side during certain tasks (Fig. 4), and (iii) the network
scans showed lack of consistent modulations with pitch and
loudness, in contrast to the monotonic response observed in
the healthy cohort for the network mean degree (Fig. 3).

Sagittal symmetry is disturbed in dysphonic patients

To further analyze the network behavior in our preliminary
cohort, the sagittal asymmetry matrix was computed by (i)
splitting a muscle network adjacency matrix A into two sub-
networks, left (Az) and right (Ag), and (ii) computing the
sagittal asymmetry matrix:

(AL —Ag)
(AL+AR)

The sagittal asymmetry matrix o displays both the magni-
tude and direction of asymmetry. If the left-side asymmetry
is positive, this implies that the left edge in the network
scans dominates the corresponding right edge in terms of
connectivity. Sagittal asymmetry provides a metric for quan-
tifying the mediolateral changes of the coherence network
and indicates how one side of perilaryngeal network scans
dominates connection during functional voice tests.

After calculating o for a given task, the mean asymme-
try across each muscle was calculated. The resultant 3-D
muscle-task-asymmetry maps are illustrated in Fig. 5 for
each patient, alongside the median map across all controls
(Median Control). In the 3-D asymmetry map, the x-, y-,
and z- axis respectively indicate the left-side muscles, the
vocal tasks performed by the subjects, and the asymmetry
value. Note that in this figure, a right-sided asymmetry will
be seen as negative values. Patient 1 showed a left-sided
dominance for the asymmetry (positive asymmetry), while
Patients 2 and 3 showed right-sided dominance (negative
values) (Fig. 5). As can be seen, each patient showed a
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Fig. 3. (a) Median of 8 functional muscle networks from 8 healthy adults
with regard to four exemplar vocal tasks [26]. (b) Median of 3 muscle
networks from 3 patients. (¢) Mean network degree of 8 healthy subjects for
all tasks. The ten vocal tasks are shown on the x-axis, and the four exemplar
tasks are colored in red. (d) Mean network degree of three patients for all
tasks. Pitch glide has the highest mean degree for all subjects.
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unique and high sagittal asymmetry response, indicating that
the muscle network is sensitive to personalized impairments,
their severity, function, and sites.

In Fig. 6, the top 25% absolute values from the asymme-
try maps of the patients are shown in comparison to the
top 25% of the control cohort. The violin plot for each
patient displays the absolute of the top 25% elements in
each muscle-task |asymmetry| map (n = 0.25 X number
of muscles x number of tasks = 15). The violin plot for
the ensembled healthy displays together the absolute of the
top 25% elements from each control’s asymmetry map (n =
0.25 x number of muscles x number of tasks = 120).
The absolute asymmetry violin plots show that the three
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Fig. 4. Adjacency matrices of three patients compared to the corresponding
median adjacency matrix of the healthy cohort, for three tasks of interest.
(a) For the /a/ task with high loudness and pitch, Patient 2 indicated that
connectivity was skewed towards the right side of the network (right-sided
asymmetry). (b) For the pitch glide task, Patient 2 indicated right-sided
asymmetry. (¢) For the speech task, the network connectivity of Patient 1
was skewed to the left while Patient 3 showed a right-sided asymmetry.
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Fig. 5. 3D sagittal asymmetry maps show high magnitude of asym-

metry (Jasymmetry|) in patients, relative to controls. The x-, y-, and z-
axis respectively indicate left-side muscles, vocal tasks performed, and
asymmetry values. The ten vocal tasks are shown on the y-axis. Red
indicates left-dominant asymmetry (positive score), and blue is a right-
dominant asymmetry (negative score). Patient 1 showed strongly right-
dominant while Patients 2 and 3 showed strongly left-dominant asymmetry
for certain tasks.

patients had a high asymmetry when compared with the eight
healthy subjects (p < 0.001), using Wilcoxon rank-sum test
at the 5% significance level with Bonferroni correction. It
is worth noting that the network modulations also differ per
task across the patients. The asymmetry of Patients 1 and 3

is higher during the reading tasks, while the asymmetry of
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Fig. 6. Each patient has higher top 25% of |asymmetry| than the healthy
controls. The top 25% of |asymmetry| across the muscles and tasks are
shown for each patient’s violin plot. The top 25% of |asymmetry| across
the muscles and tasks were computed for each control and combined for
the ensembled healthy violin plot. The null hypothesis was rejected for each
comparison of the ensembled healthy with a patient (Wilcoxon rank-sum:
p <0.001).

Patient 2 is more elevated during phonation (/a/ and pitch
glide) tasks.

IV. CONCLUSION

In this paper, we proposed the concept of alternation in
the perilaryngeal functional muscle network as a potential
biomarker of vocal hyperfunction. For this, the study includes
eight healthy subjects and three patients (one diagnosed
with primary muscle tension dysphonia, one diagnosed with
unilateral vocal fold paresis, and one diagnosed with age-
related glottal insufficiency). Surface electromyography data
were collected from 12 channels, and median magnitude
coherence was used as the connectivity method. The results
support that all three patients showed asymmetric muscle
networks when compared with the healthy cohort. At the
same time, the type of asymmetry in each patient was
condition-specific. It should also be noted that the results
showed that the modulation of mean network degree in
healthy subjects is more responsive to the increased pitch and
loudness, while patients with vocal hyperfunction showed
less responsive mean network degree for their perilaryngeal
muscle network. The study was limited by the number of
subjects.
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