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Learning to Model the Relationship Between Brain
Structural and Functional Connectomes

Yang Li"¥Y, Member, IEEE, Gonzalo Mateos

Abstract—Recent neuroimaging advances along with algorith-
mic innovations in statistical learning from network data offer a
unique pathway to integrate brain structure and function, and thus
facilitate revealing some of the brain’s organizing principles at the
system level. In this direction, we develop a supervised graph rep-
resentation learning framework to model the relationship between
brain structural connectivity (SC) and functional connectivity (FC)
via a graph encoder-decoder system, where the SC is used as
input to predict empirical FC. A trainable graph convolutional
encoder captures direct and indirect interactions between brain
regions-of-interest that mimic actual neural communications, as
well as to integrate information from both the structural network
topology and nodal (i.e., region-specific) attributes. The encoder
learns node-level SC embeddings which are combined to gener-
ate (whole brain) graph-level representations for reconstructing
empirical FC networks. The proposed end-to-end model utilizes
a multi-objective loss function to jointly reconstruct FC networks
and learn discriminative graph representations of the SC-to-FC
mapping for downstream subject (i.e., graph-level) classification.
Comprehensive experiments demonstrate that the learnt represen-
tations of said relationship capture valuable information from the
intrinsic properties of the subject’s brain networks and lead to im-
proved accuracy in classifying a large population of heavy drinkers
and non-drinkers from the Human Connectome Project. Our work
offers new insights on the relationship between brain networks
that support the promising prospect of using graph representation
learning to discover more about brain function.

Index Terms—Brain connectomes, encoder-decoder system,
graph classification, graph convolutional network, graph
representation learning, graph signal processing.

I. INTRODUCTION

HE human brain is a complex yet efficient information
processing network, whose distributed organization entails
different regions conducting individual tasks while actively in-
teracting with each other [2]. This integrative nature of brain
function along with recent advances in neuroimaging, moti-
vate well the adoption of graph-centric signal and information
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processing tools to study the interplay between brain structure
(of neural connections often referred to as the structural con-
nectome) [3] and functional activity [4]. Indeed, understanding
the underpinnings of brain function is one of the fundamental
scientific challenges of this century.

Brain connectivity broadly consists of two types of networks.
Structural connectivity (SC) has to do with anatomical tracts of
axonal bundles [5], which can be extracted using tractography
algorithms applied to diffusion magnetic resonance imaging
(dMRI). On the other hand, functional connectivity (FC) rep-
resents pairwise statistical correlation between activation sig-
nals in various brain regions of interest (Rols) [4], [5]. These
so-termed blood oxygen level-dependent (BOLD) signals are
measured by functional MRI (fMRI). The interplay between SC
and FC is of great importance and a timely area of research
in network neuroscience. There is consensus that further un-
derstanding of such coupling could offer new and important
insights on the inner working mechanics of the brain [6], [7],
[8]. Previous studies have revealed that FC correlates with SC
at an aggregate level [9]. Although FC is shaped by the actual
anatomical connections within the brain, strong functional con-
nections exist between brain regions that are not directly linked
by structural connections, or have rather limited anatomical
pathways [10]. These findings provide strong evidence that
functional interactions between brain regions depend on both
direct and indirect anatomical connections [11], and motivate
multiple previous works in predicting FC from SC [9], [10],
[12], [13], and in estimating SC from FC [8]. Recently, [14]
developed a deep learning model to predict FC from SC, and
reported that the structure-function coupling in human brain
networks is substantially tighter than previously suggested.

In this paper, we model the structure-function relationship
in the brain by learning low-dimensional representations of
the SC-to-FC mapping using graph convolutional networks
(GCNs) [15], [16], [17]. This way, we aim at better exploit-
ing the relational inductive biases present in brain connectome
data. While the benefits of graph representation learning (GRL)
methods have been well documented in applications ranging
from recommender systems [ 18] to social network analysis [19],
their impact to network neuroscience is yet to fully material-
ize [20], [21]. In the context of brain network analysis, it is
not apparent how to generalize inductive GRL models with
learnable parameters shared among a large cohort of subjects;
we explore this avenue here. Specifically, we propose and test a
supervised GRL framework to jointly learn: (i) low-dimensional
node embeddings generated from SC networks to reconstruct
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empirical FC; and (ii) graph embeddings to represent the whole
graphs for subject-level classification.

Our overall architecture can be viewed as a graph encoder-
decoder system inspired by the graph autoencoder model [22];
see also [23]. For each Rol in the input SC graph, the encoder
outputs low-dimensional node embeddings that integrate both
nodal attributes (when available) and the local graph topology in-
formation. To aggregate information from multiple hops within
the network, layered graph convolution operations interleaved
with point-wise nonlinearities are used to compute nodal fea-
tures. This makes the GCN a proper encoder model to generate
connectome embeddings that capture indirect connections inher-
ent to brain networks, and the SC-FC relationship in particular.
Whole graph embeddings are then obtained by applying certain
global pooling mechanisms on the node embeddings [24]. All in
all, we propose a multi-task learning model with the dual goal
of reconstructing brain FC from input SC data, and perform-
ing subject classification using the learnt graph embeddings as
features. The graph estimation/regression task learns a parsimo-
nious representation of the population-level SC-FC relationship,
and the classification task uses subject labels as additional inputs
for supervised learning. Accordingly, the model strikes the right
balance between deciphering population patterns that shape
the SC-FC coupling, and distilling subject-level variability to
facilitate graph classification with regard to drinking habits.

We train and test our graph encoder-decoder model on a neu-
roimaging dataset of 412 subjects from the Human Connectome
Project (HCP) [25], and obtain satisfactory FC reconstruction
performance as well as subject classification accuracy (classes
are 191 non-drinkers and 221 heavy drinkers). The proposed
GRL pipeline outperforms baseline auto-encoder methods that
only rely on SC or FC, supporting the thesis that SC-to-FC
mapping provides valuable information to better discriminate
among the classes beyond static graph topology, specifically in
the study of alcohol’s effect on the human brain. Via statistical
tests on the reconstructed FC networks, brain sub-graphs ex-
hibiting significant difference between groups are also unveiled.
Allin all, the novelty of our work is in learning low-dimensional,
latent representations that capture the intrinsic attributes of the
brain SC-FC coupling across a large population, while being
discriminative for subject-level classification. This paper is not
about fundamental innovations in the GRL space, but instead
it offers a novel application of this framework to neuroimag-
ing data analysis with the distinct perspective of modeling the
SC-FC relationship in the brain.

A. Related Works

GCNs are versatile signal and information processing archi-
tectures [15], [16], [17], which comprise stacked layers of graph
(convolutional) filters followed by point-wise nonlinearities;
see [17], [23], [26], [27], [28], [29] for recent surveys and the
references therein. From early spectral convolutions [15], [30]
to distributed implementations of (equivalent) shift-invariant
polynomial graph filters [19], [26], [31], GCNs integrate in-
formation from both the graph topology and nodal attributes to
learn representations of network data. Indeed, the GRL paradigm

is to learn low-dimensional embeddings of individual vertices,
edges, or the graph itself [23], [32], [33], [34], which can then
be used in e.g., (semi-supervised) node classification [15], link
prediction [35], graph clustering [36], [37], and graph clas-
sification [38]. Recently, GRL ideas have permeated to neu-
roimaging data analysis for behavioral state classification [39],
to study the relationship between SC and FC [13], [40], and
to extract representations for subject classification [41], [42],
[43]. Recent works in [44] and [45] utilize spatio-temporal-
based GCNs to capture the temporal information within the
brain signals, and demonstrate superior performance in fMRI
classification. Although these prior works have probed the area
of brain connectomics in several novel directions and achieved
solid performance in multiple regression or classification tasks,
they mostly rely on a single type of brain network and use
feed-forward models to predict subject labels from input graphs.
Our different approach is to distill actionable information from
the relationship between FC and SC. Instead of learning repre-
sentations of a certain type of brain network, we propose a multi-
task GRL pipeline to model the SC-FC coupling, thus seam-
lessly integrating brain structure and function in a principled
way.

B. Summary of Contributions

In summary, we develop a GCN-based supervised encoder-
decoder system to learn parsimonious latent-space represen-
tations of the SC-FC relationship from HCP neuroimaging
data. Different from the surveyed deep learning approaches
for brain network analyses, to the best of our knowledge
this is the first work to explore learnt representations of the
mapping between two brain connectivity modalities — among
which a tight coupling is well documented [9], [12], [40].
Our model can extract valuable and interpretable information
from the intrinsic properties of the subjects’ brain networks,
leading to an improved performance trade-off between FC re-
construction error and graph classification accuracy relative to
baseline methods. We also identified brain sub-networks ex-
hibiting significant functional connectivity differences among
heavy drinkers and non-drinkers. Such data-driven findings
may serve as explanations behind the improved classifica-
tion performance. They could also offer additional insights
to guide follow-up studies about alcohol’s effects on the
brain.

Relative to the conference precursor [1], here we consider
GRL-based modeling of the SC-FC mapping through a unified
presentation along with full-blown technical details (including
required background material, model refinements, extended dis-
cussions and interpretation of results, as well as unpublished
experimental tests). Noteworthy novel pieces include:

¢ Exploration of GCN architectures. We examine different

GCN-based encoder architectures with multiple layers and
various numbers of filters per layer. Accordingly, the rep-
resentation space of the resulting model is markedly richer
than the shallow GCN encoder in [1]. Inspired by [31], we
also find that concatenating the outputs from each GCN
layer as a readout function improves model performance.
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As an important component in our architectural design not
present in [1], we explore various global (mean/max/sum)
pooling mechanisms to form graph-level representations
from the set of node embeddings.

® Comparison with baseline methods. Preliminary tests
in [1] did not include comparisons with single-modality
FC or SC auto-encoder baselines, while the results pre-
sented here allow us to justify our claim on the merit of
learning SC-FC representations (that inherently integrate
brain structure and function). New comparisons with a
graph isomorphism network (GIN)-based classifier [31]
are included in the Appendix.

® Reproducibility. The code we developed to train and
optimize the model architecture in publicly accessible from
https://github.com/yli131/brainGRL/. The HCP data we
used is open access but cannot be shared in our repository,
please refer to the HCP’s data usage terms.

II. GRAPH NEURAL NETWORKS BACKGROUND

In this section, the required background of graph neural
networks (GNNs) is briefly outlined. As the GCN [15] is
adopted for the encoder in the GRL pipeline, we focus on graph
convolutional models; see also [17], [23], [27], [28], [29] for
comprehensive surveys with further details.

A. Network Models, Graph Signals and Transforms

Consider a weighted, undirected graph denoted by G :=
(V,E), where V ={1,...,N} is a set of N vertices corre-
sponding to brain Rols and £ CV x V are edges in which
(i,7) € € isastructural connection joining 7 and j. We define the
neighborhood of vertex ¢ as N'(i) = {j € V: (¢,j) € £}. The
symmetric adjacency matrix A € ]Rf *N' has entries Aij >0
representing the structural connection strengths between Rols 4
and j; A;; = Oindicates (7, j) ¢ £. Henceforth we will use X to
denote the N x N adjacency matrix of the FC network, making
it explicit that this is a correlation matrix (and different from
A). Network data models often augment GG with a vertex-valued
signal x € RY, where x; denotes the signal value at node i, for
example, the nodal attributes (or features) on the brain FC (or SC)
network. Extensions to feature vectors (of length d) x; € R? per
node are straightforward, leading to a signal matrix X € RV x4
that serves as input to the GNN.

The main building block of spectral graph theory is the graph
Laplacian matrix defined as L:= D— A, where D := diag(A1)
is the diagonal matrix of nodal degrees. The Laplacian L is
symmetric and positive semidefinite. Accordingly, it can be
decomposed as L = UAU", where U € RV*N denotes the set
of orthonormal eigenvectors and the diagonal matrix A contains
all the non-negative eigenvalues 0 = 11 < do < ... < Ay :=
Amax. The eigenvectors in U serve as Fourier modes to decom-
pose graph signals [46]. Specifically, the graph Fourier transform
(GFT) of x is defined as x := U'x, where X = [#1,...,2n]"
collects the graph spectral coefficients of x at frequencies given
by the Laplacian eigenvalues [46], [47].

B. Graph Convolutional Networks

To process signals x efficiently while incorporating G’s topol-
ogy information, one defines the graph convolution as

K

Hx = Z hiLFx, (1)
k=0

where H := 3 i,(:o hi ¥ is a graph filter with coefficients h :=
[ho, ... ,hx]". The graph convolution operation aggregates
signal values from K -hop neighborhoods in GG. Indeed, compu-
tation of L¥x = L(L%~!x) entails a sequence of K one-hop
aggregations (shifts or diffusions) through multiplication with
L. Graph filters can be more generally defined as polynomials
of GSOs beyond the combinatorial Laplacian L, for instance the
adjacency matrix A or suitable normalized variants of the afore-
mentioned algebraic graph topology descriptors [26], [46]. With
this interpretation, the analogy of (1) with temporal convolutions
implemented via (shift and sum) finite impulse response (FIR)
filters should be apparent. Graph convolutions are thus linear
shift-invariant operators because HS = SH, where S = L in
(1). The intuitiveness of the definition can be further appreciated
in the graph frequency domain, since the GFT of the filtered
signal (1) becomes

K K
U'Hx=U"Y I (UAUT) x = (Z hkAk> % )

k=0 k=0

Notice how the GFT diagonalizes the filter, so that the convolu-
tion becomes the element-wise (per frequency A;) multiplication
between the filter’s frequency response h; := Zfzo hiA¥ and
the signal’s GFT coefficient z;.

GCNs broadly consist of stacked layers of learnable graph
convolutional filters and point-wise nonlinearities. Convolu-
tional NNs for network data can be traced to [30], where the
filter’s frequency response h(9) = [ﬁi”,...,i}%)r at each layer ¢
is learnt using stochastic gradient descent. While intuitive this
architecture has several drawbacks. First, computing the eigen-
decomposition of L may become computationally infeasible for
large graphs, and the number of trainable parameters grows with
N. Also, the filters depend on the eigenbasis of the Laplacian
and thus the parameters cannot be shared across different graphs,
which limits its usage in an inductive setting. Finally, without
a smoothness constraint in the frequency response one obtains
filters that are not localized in the vertex domain [cf. the smooth
polynomial frequency response in (2), resulting in a K-hop
localized graph filter (1)]. To overcome these limitations, the
ChebNet was proposed in [48] by defining a filter in terms of
Chebyshev polynomials of the diagonal matrix of eigenvalues A.
In terms of expressive power, this choice is essentially equivalent
to the polynomial graph filters (1); see also [17], [26].

Adoption of first-order (K = 1) graph convolutional filters
was advocated for the GCN model in [15], working with the
degree-normalized Laplacian D~/2LD~1/2 and letting # =
ho/2 = —h; so that (1) simplifies to

Hx = §(Iy + D" Y/2ADV/?)x. 3)
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This motivates a simple per-layer filtering update implemented
to refine the nodal embeddings, namely

X — ReLU (AX“*”@(’Z)) : 4)

where A :=1Iy +D '/2AD /2 is a graph shift operator
(GSO), X € RN*de are the nodal representations at layer £,
O € R¥-1xde gtores the learnable parameters of dy filters
acting on d;_; input features, and ReLU(x) = max(0,z) is
a point-wise nonlinear activation function. Notice that actu-
ally [15] advocates a slightly different GSO than A, which is
obtained from A using a renormalization trick that we describe
in Section III.

In the sequel, for the proposed encoder architecture we lever-
age GCN layers in (4) due to their simplicity and satisfactory
performance on weighted graphs [15], [31], [49], such as brain
SC. While using only first-order filters, GCNs have the capability
to integrate multi-hop information within GG using L > 1 stacked
layers. Adoption of more expressive filters where K > 1 is left
as future work, and may be prudent for larger neuroimaging
datasets than the one described next.

III. PROBLEM SETUP AND PROPOSED METHOD

Given brain SC graphs, we build and train a model with
the twofold goal of: (i) reconstructing the corresponding FC
networks from nodal embeddings; and (ii) classifying a cohort
of subjects using graph-level representations learnt from binary
labels in a supervised fashion. This way, learnt representations
should capture both population patterns and subject-level vari-
ability. We start by describing the dataset in Section III-A.
The proposed supervised graph encoder-decoder model is then
presented in Section III-B.

A. Data Description and Network Construction

We adopt a neuroimaging dataset with P = 412 subjects
from the Human Connectome Project (HCP) [50], [51]. The
cohort is partitioned into two classes: 191 non-drinkers and 221
heavy drinkers according to information available on the lifetime
maximum number of drinks had in a single day. Subjects with no
more than 3 drinks in a single day are considered non-drinkers,
and heavy drinkers are those who had over 16 drinks. Refer to
Appendix A for more details on the subject label delineation.
The Desikan-Killiany atlas is used to specify brain Rols [52].
Hence, V in both FC and SC networks correspond to N = 68
cortical surface regions, with 34 nodes in each hemisphere.
Based on the data-processing pipeline in [53], [54], the SC
network A of each subject is extracted from the dMRI and
structural MRI data. Brain functional activities on each Rol
are given by the resting-state BOLD time courses measured
using TMRI [55]. Brain FC networks 3 are then constructed
so that edge weights are the Pearson correlation coefficient
between the BOLD signals at the incident Rols. We find that
the resulting FC graphs contain few negative edge weights
with much smaller magnitude compared to a vast majority of
positive edges. To mitigate such data imbalance problem, we
discard all functional edges with negative weights and restrict

1.0 1.0

0.0

(a) SC (b) FC

Fig. 1. Visualization of SC and FC networks of a sample subject, where
Rols have been ordered according to the hemisphere they belong to. Note the
increased edge density in the main diagonal blocks of the SC adjacency matrix,
corresponding to a modular structure with more connections within hemispheres
than between. The FC graph exhibits a more disassortative pattern of connections
among brain Rols. Increased functional correlations between regions that belong
to different hemispheres are observed.

ourselves to entries X;; € [0,1], as it is customarily done in
prior FC studies [56], [57]. For additional details about the data,
preprocessing, and network construction steps, refer to [53], [54]
and http://www.humanconnectome.org/.

In Fig. 1, we depict the resulting adjacency matrices of the SC
and FC networks of a sample subject in the dataset. Nodes are
rearranged by hemisphere, with the first 34 vertices correspond-
ing to Rols that belong to the left brain. Note how edges densely
concentrate in the main diagonal blocks of the SC network, thus
indicating a markedly larger amount of anatomical connections
within hemispheres rather than across the left and right brains.
On the other hand, the FC network exhibits a more disassorta-
tive (or less modular) connectivity pattern. This supports the
well-documented finding that functional links exist between
Rols that are loosely-connected in a structural sense, thus also
depending on indirect (multi-hop) anatomical pathways. These
general observations are consistent across subjects.

B. Graph Encoder-Decoder Model and Architecture

Here we introduce the proposed graph encoder-decoder sys-
tem used to model the relationship between structural and func-
tional brain connectomes; see also the schematic description of
the architecture in Fig. 2 and the recent survey in [23]. The top
branch in Fig. 2 implements a regression model to reconstruct
FC from SC. The bottom branch is a supervised graph clas-
sification algorithm to predict heavy-drinking subjects. Notice
that the encoder module is shared and trained using HCP data
to accomplish both tasks. This way, the learnt representations
capture population patterns in the SC-FC relationship while
also reflecting subject-specific variability to discriminate among
classes.

Next, we introduce the main modules of the architecture and
explain various design choices made.

Input. The required input for the GRL model is an SC network
represented by its (symmetric) adjacency matrix A € RN*N,
where N = 68 is the number of Rols from the Desikan atlas.
Optionally, nodal attributes or graph signals X € RV*90 can
be fed to the model to provide additional information via Rol-
specific feature vectors of length dy. Since we did not extract
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The GRL encoder-decoder architecture. The inputs are SC networks A and optional nodal attributes x(0), Graph convolution/information propagation

occurs within the deep GCN encoder. Rows in X (L) are low-dimensional node embeddings at the final layer of the GCN encoder. An outer-product decoder

reconstructs the FC network 3 and thus implicitly models the SC-to-FC mapping. Given graph (i.e., subject)-level representations X obtained via pooling, a
logistic regression classifier outputs the predicted binary label ¢. Training is performed over a large cohort of HCP subjects, using empirical FC 3 and labels y to

define a judicious loss function.

Rol attributes from the dataset outlined in Section III-A, we use
one-hot encoding to define graph signals and accordingly set the
initial signal input as X(9) = Igg (dy = 68). Future work will be
devoted to collect and investigate the merits of incorporating ad-
ditional meaningful subject-related nodal attributes, in addition
to the graph structure itself. Examples of potential graph signals
include Rol volume, node degree in the SC network, or BOLD
timecourses. The latter two alternatives have been considered in
network-based machine learning (ML) studies of neuroimaging
data [10], [43], [47].

For training, empirical functional networks 3 and subject
(i.e., graph-level) labels y related to drinking are used to define
a loss function we describe later in this section. Accordingly,
both these quantities could be viewed as inputs to the model
during the training phase.

Encoder. The deep encoder module is a parametric function

X¢o =ENC(A, X(: @p) 5)

that takes a normalized version of the SC adjacency matrix A
as well as graph signals X(©) as inputs, and generates low-
dimensional representations for each node that we stack as rows
of X¢. ®p represents the trainable parameters in the encoder.
Following the renormalization idea in [15], the normalized adja-
cency matrix is A =D /2AD1/2 WhereA =Iy+ Aand
D = diag(A1) is the degree matrix of A. Among various pos-
sible node embedding approaches, neighborhood-aggregation
methods such as the GCN model discussed in Section II-B are
simple, permutation-invariant, and inductive [58]. As a result,
we opted for a GCN-based encoder to generate latent variables
capturing network topology information such as the connection
strengths among Rols in SC networks.

Unlike the single-layer GCN model in our previous work [1],
here we consider a deep GCN encoder with L > 1 stacked
layers and multiple filters d, per layer / as listed in Table I. The
methodology used to choose the values of the hyperparameters
L and {d,} is outlined in Section IV-A. Another alternative to
gain in expressivity is to utilize graph convolutional filters (1)
with K > 1. But given the limited number of training samples
and the satisfactory performance obtained with first-order filters,
we decided to stick with a GCN architecture. Recall from (4)
that the weight matrix @(¥) € R%-1%4 contains learnable graph

TABLE I
GCN ARCHITECTURES FOR HYPERPARAMETER SEARCH

L =1 layer do x {128;64;32;16;8}
L = 2 layers do x {128 x 64;64 x 32;32 x 16;16 x 8}
L =3 layers | do x {128 x 64 x 32;64 x 32 x 16;32 x 16 x 8}

filter coefficients at layer £. So overall, the trainable parameters
in the deep GCN-based encoder (5) are @ := {@“)}L_  The
ReLU activation function is used to speed up training and avoid
the problem of vanishing gradients in multi-layer settings [59].

It is natural to consider the output X(%) € RN*4r of layer
L as the sought nodal embeddings. Inspired by [31], [58], we
also evaluated the contribution from node embeddings learnt in
intermediate GCN layers £ = 1,..., L — 1 via concatenation,
thus forming X € RN >3 de,

Decoder and loss function. Starting with the FC reconstruc-
tion branch of the GRL architecture in Fig. 2, node embeddings
X go through an outer product decoder

3 = ReLU (X X[) (6)

to generate a predicted FC adjacency matrix 3. Notice that we
utilize arectifier to enforce the constraint 3;; > 0;recall we have
dropped those few functional connections exhibiting negative
correlations (Section III-A). To also enforce XJ;; < 1 we have
tried other non-linearities such as the sigmoid function or the
hyperbolic tangent (useful even when retaining the negative
correlations), and found training to be slower while the recon-
struction performance is comparable to the chosen ReLU [1].
The mean squared error (MSE) between the reconstructed graph
3 and the empirical FC 3, averaged over a training set and
denoted as CMSE(ﬁ], 3), is used as reconstruction loss for
training the regression branch of the model. All in all, while
we did not normalize the decoder output to impose ¥;; < 1 we
instead let the MSE reconstruction loss adjust the scale of the
predicted Pearson correlations.

Moving on to the supervised classification branch of the
model, we compute a graph-level embedding by taking the

row-wise average of all nodal representations in X . This results
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in a vector X that summarizes information about the SC-
FC relationship. Admittedly simple, average pooling has been
shown effective in multiple studies [16], [60]. For a thorough
comparison, we also investigated max pooling and sum pooling
which are common alternatives [19]. Attention mechanisms
could also be applied to determine the relevance of each Rol
to the subject-level task [61]. The graph embeddings x¢ are
then fed to a logistic regression classifier to predict the binary
subject labels. As our main objective is to assess how well the
graph convolution operation helps integrate information within
brain networks, a simple logistic regression classifier is preferred
rather than advanced models such as multi-layer perceptrons,
where training may be biased towards the fully connected layers
post GCN.

Finally, the GRL model is trained on HCP data in an end-
to-end manner by considering the regression and classification
tasks simultaneously. The overall loss function is given as

L=Lyvse(E,Z) + 2 x Leva (), (7)

where y is the predicted label and y is the ground truth label of
the subject. The sigmoid cross-entropy loss denoted by Lcra
is used to evaluate classification performance. The hyperpa-
rameter A controls the trade-off between FC reconstruction
and classification performance. Its value is determined via grid
search and predefined criteria described in the next section. By
training the model end-to-end with the loss function as in (7),
we aim to strike the right balance between FC reconstruction
and subject classification and achieve satisfactory performance
on both objectives. The results are presented in Section V.

IV. TRAINING AND EVALUATION FRAMEWORK

Training details and hyperparameter search criteria are out-
lined in Section IV-A; the code to implement the model is
publicly accessible from https://github.com/yli131/brainGRL/.
We also describe our comprehensive evaluation protocol in
Section IV-B, listing several baselines that will guide the pre-
sentation of numerical results in Section V.

A. Training Details

The supervised graph encoder-decoder system is imple-
mented in TensorFlow [62]. The details about the model archi-
tectures we tested are given in Table I. We carry out a two-stage
training procedure for model selection.

The first stage is a low-resolution model selection module. We
set L = 0.1 following our preliminary results in [1], and search
for the optimal architecture among the options in Table I. With
fixed A, during training of each candidate model architecture
we use 10-fold cross validation whereby the whole dataset of
P = 412 subjects is randomly partitioned into 80% training,
10% validation, and 10% test set. The random seed for each
fold is fixed for a fair comparison between model architectures.
We use Xavier initialization for the weight coefficients e of
each GCN layer ¢ [63]. The Adam algorithm with learning rate
0.001 was adopted to optimize the tunable parameters in ® g as
well as those of the logistic regression classifier [64]. To avoid
overfitting, early stopping is applied to monitor the validation

loss and to stop the training once the loss increases during 10
consecutive training epochs. Altogether, we trained 57 models
because we also considered three global pooling mechanisms
(mean/max/sum pooling) and node embedding concatenation
for the multi-layer GCN encoders (with L = 2 or L = 3).

For each of the 57 model architectures, metrics including
the graph reconstruction error and classification accuracy are
monitored across all 10 folds to evaluate the performance on
both regression and classification. We also compute the F score
in its traditional form —defined as the harmonic mean of the
classifier’s precision and recall- in order to better evaluate the
mis-classification between groups. Training time is also taken
into consideration to offer insights into the performance cost
ratio. A selection criterion Ciqy, is developed by combining the
aforementioned metrics, which is given by

c classification accuracy x F score
low —

8
MSE X training time ®)

The three models with highest Cjoy are singled out for the second
stage. Therein, an extensive grid search over A values from 0 to
1.5 with step size 0.1 is carried out to determine the optimal A
for each selected GCN architecture.

Recall the loss function (7). For large values of A, the recon-
struction performance deteriorates because training is biased
towards the subject classification objective. When A = 0, the
model achieves the best possible FC reconstruction while the
classification loss is at its peak. As A increases from zero, the
classification loss first decreases, then fluctuates and saturates
at a certain level. This is intuitive as the graph embeddings that
serve as input features for classification depend on the learnt
node embeddings that are also driven by the reconstruction
objective. When the reconstruction is getting worse, as expected
the classification performance will also eventually degrade. The
A search results in Section V-A will corroborate such intuition.

In the end, among the 3 picked encoder architectures and all
16 possible A values, we choose the final model for downstream
analysis and visualization as the one that maximizes

classification accuracy x F score
MSE '

(C))

Chigh =

B. Evaluation Protocol and Baselines

To corroborate the effectiveness of the proposed model, in
Section V-B we perform a comprehensive comparative study
involving four baseline methods.

First, instead of training the graph classification framework
in an end-to-end manner, we train the graph reconstruction
branch with A = 0 [13]. Subsequently, the graph embeddings
obtained by row-wise average pooling of node embeddings are
fed to a logistic regression classifier that is separately trained
for subject-level classification. Two-step algorithms have been
observed to yield sub-optimal performance for supervised learn-
ing application [65]. Accordingly, we expect that training our
model in an end-to-end fashion while jointly accounting for both
objectives in (7) will lead to better performance relative to this
two-step baseline.
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Second, as one of the objectives of our framework is to re-
construct FC and distill information from the structure-function
relationship as a byproduct, a natural alternative would be to
consider using FC as an additional input besides SC. To this
end, we carry out an experiment where both the SC and FC
networks of the same subject are inputs to a feed-forward GCN
model, which is trained to predict the subject-level binary labels
associated to drinking habits. Such comparison would help
reveal whether the SC-FC mapping offers additional information
for classification on top of the raw graph topologies for both
modalities.

Third, we explore whether the information within SC or FC
individually suffices for subject classification. With this purpose,
the scheme in Fig. 2 is modified so that the desired output graph
is the same as the one fed at the input. As a result, with the input
being SC or FC, the model boils down to a graph autoencoder.
The training details remain the same and consequently, the learnt
representations capture information with respect to either SC or
FC only. Their discriminative power for subject classification
is evaluated and compared against the learnt representations
of the SC-FC mapping. In Appendix C, we also investigate
the potential of another GNN model, the graph isomorphism
network (GIN) [41] in a feed-forward classifier trained on a
single brain network modality.

The last baseline method is an ML pipeline that relies on
handcrafted features constructed from graph summary statistics
extracted from SC, FC, or both. Network measures [5], [57], [66]
capture certain properties of the graph, e.g., community struc-
ture, connectivity, and graph components or subgraph structure.
Here, we extracted scalar graph measures including average
path length, global efficiency, clustering coefficient, graph ra-
dius/diameter, transitivity as well as graph density. We combined
all aforementioned graph-level measures into a feature vector
summarizing network structure. For more information regard-
ing the said graph measures, the interested reader is referred
to [57], [66]. After constructing such a feature vector for each
subject, we implement workhorse ML models such as SVM,
logistic regression and tree-based classifiers; see e.g., [67]. Such
a comparison with baseline ML-based methods is expected to
reveal the power of the proposed GRL model, by capitalizing on
task-driven learnt representations (cf. handcrafted features) that
exploit the geometric structure of network data.

V. RESULTS

Here we present and discuss the results of our experimental
validation with HCP data.

A. Training and Model Selection

As discussed in Section I'V-A, the first stage of training is a
low-resolution model selection process, where we tested the 12
GCN-based encoder architectures given in Table I. Comparisons
were also conducted among global pooling methods, and be-
tween the inclusion and exclusion of node embedding concate-
nation in multi-layer (L > 1) settings. Fig. 3 depicts the results of
the performance comparison for 3-layer GCN encoders. We can
tell that concatenating node embeddings from previous layers

TABLE II
END-TO-END MODEL VERSUS TWO-STEP BASELINE

Model MSE Accuracy F score
End-to-end 0.0398 + 0.003 0.6610 + 0.043 | 0.6962 + 0.030
Two-step 0.0377 + 0.003 0.5072 £ 0.033 0.5071 + 0.033

to form X helps improve the performance in both subject
classification (second row) and FC graph reconstruction (first
row). This finding is consistent with prior results reported in
the literature [19], [58], suggesting that the embeddings in early
layers also contain valuable information about localized signal
propagation over the graph GG. Based on the criteria Cqy, defined
in (8), we singled-out the three best models. These are the models
with L = 3 GCN layers (see the third row in Table I), together
with node embedding concatenation and global average pooling.

Starting with these three models, the second stage was an
extensive grid search of the A parameter in (7) to determine
the optimal trade-off between graph reconstruction and subject
classification. The classification accuracy and FC reconstruction
MSE on the three selected models were evaluated and presented
in Fig. 4. Tt is apparent that 1 = 0 gives the lowest regression
MSE as the model training merely focuses on graph reconstruc-
tion. As X gets larger, the regression error keeps increasing while
the classification accuracy slightly fluctuated around a saturation
value. Finally, the best model for the downstream tasks and
further analysis as well as comparison with baselines is chosen
based on the criteria Cy;gy defined in (9). This corresponds to an
encoder architecture with L = 3 layers and 32 x 16 x 8 filters,
where A = 0.2. Recall we concatenate nodal representations
from all layers, and we use global average pooling to obtain x¢.

B. Comparison With Baselines

In this section, we discuss the results of the comparisons with
the baselines outlined in Section I'V-B.

Two-step GRL followed by classification procedure. Un-
like the model in Fig. 2 which is trained in an end-to-end manner,
GRL-based classification can also be conducted in a step-wise
fashion. The first step is to train the FC reconstruction branch
alone (A = 0). In the second step, graph embeddings x¢ are
constructed from the output node representations X in the first
step, and then used in a logistic regression classifier for subject
classification. When it comes to training in an end-to-end or
stage-wise fashion, 10-fold cross validation is adopted for both
schemes with the same random seeds for fair comparison. The
performance of these two training procedures is summarized
in Table II. As expected, the reconstruction MSE is marginally
lower for the two-step procedure, as the encoder is optimized
for FC reconstruction performance. When it comes to subject
(i.e., graph) classification, the proposed model outperforms the
two-step GRL baseline both in terms of accuracy and F score,
matching the findings in [65]. All in all, when trained in an
end-to-end fashion the proposed model attains a markedly better
classification performance, while incurring a marginal penalty in
FC reconstruction MSE relative to a baseline that was optimized
for this latter objective.
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Fig. 3.  Graph reconstruction and subject classification performance of the three selected model architectures with A = 0.1 and L = 3 (number of filters per layer

shown in the legend where ‘con’ represents concatenation of node embeddings from each layer and ‘no_con’ indicates that only the node embedding from the last
layer is considered). Apparently, the combination of node embedding concatenation and global average pooling attains better performance in graph reconstruction
with lower MSE and subject classification with higher accuracy. For performance comparison for model architectures with L = 1 and L = 2, refer to Appendix

B.

For visualization purposes, the model with the highest test
accuracy among the 10 folds is retained and re-run on the
whole dataset. In more details, the SC networks of all P = 412
subjects are fed through the trained encoder-decoder system
in Fig. 2 to yield per-subject reconstructed FC networks and
the low-dimensional graph embeddings that model the SC-FC
relationship. We use the t-SNE algorithm [68] to reduce the
dimensionality of the graph embeddings xs (56-dimensional
vectors) so that they can be visualized in the 2D plane. The
results are depicted in Fig. 5(a). We can distinguish a separation,
albeit not perfect, between the two groups, indicating that the
learnt graph representations contain valuable information for
subject classification. In Fig. 5(b), we also plot the learnt graph
embeddings obtained when A = 0, i.e., optimizing only the FC
reconstruction loss. In that case, there is no apparent separation
among the classes. These findings suggest that end-to-end train-
ing captures discriminative properties of the subjects’ networks.

Combined FC-SC input. The proposed model learns the
representation of the SC-FC relationship to distinguish heavy
drinkers from non-drinkers. One valid question is whether using
both SC and FC as the combined graph input to a feed-forward
GCN-based classifier could also achieve competitive or similar
performance. If so, there is no gain in using advanced GRL meth-
ods and considering the FC graph reconstruction pipeline as a
regression component in the model. Moreover, this would imply
that the SC to FC mapping we model is not as informative to
distinguish among classes. In this comparative study we examine

the aforementioned question. To this end, we combined both SC
and FC networks of each subject into a 2NV x 2 N adjacency
matrix, where the upper left block corresponds to SC and lower
right block contains FC. The other entries are set to zero. The
combined SC plus FC adjacency matrix is then used in the same
GCN architectures as in Table I for a fair comparison. Fig. 6 de-
picts the classification performance comparison between all 12
different GCN architectures (L. = 1, 2, 3 and different amounts
of filters per layer), with node embedding concatenation and
global average pooling. One finds that the proposed method out-
performs this baseline in almost all of the architectural settings,
and importantly this always holds for those models that yield the
highest classification rates. The general trend remains the same
without embedding concatenation (i.e., X¢ = X (L )), or, when
using other global pooling schemes (max/sum).

FC and SC autoencoders. We also compared the proposed
encoder-decoder system against two graph autoencoder base-
lines that individually process SC and FC, respectively. Fig. 6
shows that the proposed approach exhibits superior performance
relative to the autoencoder baselines, both in terms of classifi-
cation accuracy and F score. This offers further evidence sup-
porting our hypothesis which states that, beyond the information
encoded in the graph topology of each individual connectome
(SC or FC), the relationship between them appears to provide ad-
ditional insights and more discriminative learnt representations
to improve subject classification (while capturing intrinsic prop-
erties of the brain structure-function coupling as a byproduct).
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Fig. 4.

FC reconstruction MSE and classification accuracy with respect to different A values, for the three selected model architectures with 32 x 16 x 8,

64 x 32 x 16, 128 x 64 x 32 filter (left to right). As A increases, the training is biased towards classification; thus, the MSE increases. The classification
performance saturates for large A values as the reconstruction is compromised at these values. The chosen model that maximizes Chigh has L = 3 layers with
32 x 16 x 8 filters (left), node embedding concatenation and global average pooling, where A = 0.2.

* Drinker
*Non-drinker

(a) Proposed method (b) Two-step method

Fig. 5. 2D visualization of the graph embeddings x¢ learnt by the proposed
model (left) and the two-step baseline method (right). Group-wise separation
can be observed on the left but not on the right, supporting the difference in
classification performance reported in Table II.

ML with handcrafted graph-theoretic features. Starting
from both FC and SC connectomes, we compute network-centric
measures that summarize different global graph properties such
as modular structure, paths lengths, connectivity, and/or graph
components as well as subgraph structures [5], [57], [66]. Specif-
ically, we evaluate average path length, global efficiency, clus-
tering coefficient, graph radius/diameter, transitivity, and graph
density for the SC and FC networks of each subject [57]. These
summary statistics are collected in a feature vector representing
the connectivity patterns of the subject’s FC, SC, or both. Using
these handcrafted feature vectors and the given labels, we train
several classifiers for non-graph inputs. These include logistic

regression, linear and kernel SVMs, decision trees, random
forests and gradient-boosted decision trees (GBDTs). Results
are presented in Fig. 7. The conclusion is that using handcrafted
features relative to learnt representations accounting for symme-
tries and invariances in graph data, leads to inferior classification
performance. Needless to say, this principle has been verified in
a multitude of other domains and is at the heart of the deep
learning revolution we have witnessed over the last dozen years.

C. Analysis on Reconstructed FC Networks

By virtue of the combined loss function (7) in the model,
learnt nodal representations serve as discriminative features
to distinguish among the two drinking-related classes. These
representations are also used to reconstruct the FC networks s,
so we expect to see some of this embedded discriminability in
the reconstructed graphs themselves. To examine and interpret
these patterns, we test for significant between-group (i.e., heavy
drinkers and non-drinkers) differences in the topology of the
graphs 3. In more detail, for each potential functional connec-
tion (7, ) € &,i.e.,eachelement iij in the, say, upper-triangular
half of 32, we perform a t-test with False Discovery Rate (FDR)
correction for multiple testing. We report statistically-significant
differences between groups at the 5% level (p < 0.05), and
collections of significant links forming connected subgraphs are
examined next. Results are shown in Fig. 8, where the top row
depicts the adjacency matrix of the subgraphs and the lower row
offers a visualization of the networks themselves.
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Fig. 6. Classification performance comparison between proposed model and
baselines. The proposed encoder-decoder model (shown in the rightmost red
box) outperforms autoencoders that learn representations to reconstruct either
FC or SC. It is also consistently superior to a baseline method where both SC
and FC are fed as a combined input to a GCN-based feed-forward classifier.

Fig. 8(a) and 8(c) depict a subgraph of functional connections
that are significantly weaker for the group of heavy drinkers.
For reference, edge weights in Fig. 8(a) and 8(b) correspond to
the average functional connection strengths in the non-drinker
group and the drinker group, respectively. Fig. 8(c) shows an
important connectivity decrease for brain Rols that can be traced
to the parietal, cingulate, temporal, occipital, and frontal cortical
regions. Recent literature has identified these regions as being
susceptible to adverse effects due to binge drinking or heavy
alcohol consumption. For instance, [69] reports that past and
recent patterns of intermittent heavy alcohol consumption are
associated with reduced frontal cortical thickness. A high dose
of alcohol detrimentally affects a number of functions associ-
ated with the prefrontal and temporal lobes [70]; and marked
alterations in the inferior and superior fronto-occipital fasciculus
white matter bundles may underlie the visual processing deficits
found in alcohol-dependent subjects [71]. The spatial breadth
of the observed FC sparsification suggests that alcohol may
not only affect localized regional brain linkages, but also affect
global patterns of brain functional organization; see [72], [73]
for related findings.

Interestingly, the observed effect of drinking does not only
reflect FC weakening and sparsification. A different subgraph
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Fig. 7. Classification performance of various ML models using handcrafted
graph-theoretic feature vectors. The performance is not competitive with that of
the proposed GRL encoder-decoder system marked by the red horizontal line in
each subplot.

shown in Fig. 8(b) and 8(d), illustrates functional edges that
were found to be significantly stronger in the group of heavy-
drinkers. Nodes in said subgraph span various cortical Rols
and can be attributed to a neural compensation or equalization
effect, which has been investigated extensively in the field of
cognitive analysis [74]. Prior findings on neural compensation
suggest it correlates with a combination of brain structure and
function-related effects, hence it is more likely to be revealed
in models that jointly account for SC and FC as we do here.
All in all, our results are aligned with the literature [75] that
reports the brain tends to establish additional connections to
compensate for neuro-functional damage caused by alcohol.
A deeper neuroscientific interpretation in the broader context
of robustness and resilience of human brain activity is well
beyond the scope of this methodological paper. Nonetheless,
we believe these preliminary analyses can be valuable from the
perspective of explainability, further motivating the application
of GRL advances for neuroimaging data research.
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Fig. 8. Subgraphs with edges that were found to be significantly (a), (c)
weaker, and (b), (d) stronger among the group of heavy drinkers (p < 0.05).
For visualization purposes, in the bottom plots edges are color-coded to match
the color assigned to the source node. The difference in sparsity (edge densities)
between the subgraphs in the (a), (c) and (b), (d) appears to suggest a marked
weakening of functional links in heavy-drinkers, with some limited level of
compensation via strengthened connections.

VI. CONCLUDING SUMMARY AND OUTLOOK

We developed a GCN-based encoder-decoder system to learn
low-dimensional embeddings that carry information about the
relationship between brain structural and functional connec-
tomes. Although there have been ample SC- and FC-based stud-
ies to investigate the difference between brain connectomes of
patients and healthy controls, using GRL to model the structure-
function coupling for subject (i.e., graph) classification has been
unexplored so far. By putting forth a flexible multi-objective
framework the learnt representations can be used in various
types of downstream tasks, thus markedly broadening the range
of network neuroscience applications. In the proposed model,
two learning objectives are considered. Given SC networks
as inputs, the first objective is to reconstruct the FC of the
same subject as a regression problem. The second objective
is to generate graph-level embeddings that capture individual
subject’s variability and are discriminative among the classes
of heavy drinkers and non-drinkers. This enables supervised
subject-level classification.

We conducted a rather broad exploration of the architectural
design space. Specifically, we investigated a wide range of GCN
models and also tested different global pooling mechanisms.
For deep GCNs, nodal embeddings that concatenate the output
of earlier layers were shown to improve performance in both
graph reconstruction and subject classification. Through exper-
imental comparisons with a broad lineup of baseline methods,

we showed that: (i) end-to-end multi-objective training attains
better classification performance than a two-step method where
graph reconstruction and classification are trained separately;
and (ii) the proposed GRL model could extract succinct, yet in-
formative latent representations of the SC-FC mapping. Relative
to baseline models that learn from SC, FC (using autoencoders),
or both networks fed as inputs to a feed-forward GCN, the
obtained SC-FC representations offer additional information,
leading to higher classification accuracy and F score. Moreover,
(iii) the proposed method outperformed ML models trained on
hand-crafted features collecting various graph-theoretic sum-
mary statistics computed from the FC and SC networks. This
highlights the superior discriminative power of representations
learnt using geometric deep learning, which favorably exploit
symmetries and invariances in graph data. Finally, from the
reconstructed FC for all subjects, statistically significant differ-
ences in edges between drinkers and non-drinkers were revealed.
Our findings suggest a marked weakening of functional links in
heavy-drinkers, with some limited level of neural compensation
in the form of sparse strengthened connections.

This being the first work to build a GRL model of SC-FC brain
networks, several extensions are possible. For example, we used
one-hot encoding as the initial nodal attributes for each node. An
open challenge concerns situations where nodal attributes can
be collected from meaningful subject-related information, such
as the physical volume of Rols. In the convolutional layers of the
encoder, one could also adopt higher-order graph filters to further
gain in expressive power. Node- or edge-varying graph filters are
other valuable alternatives in this direction, possibly departing
from convolutional models. Rich temporal information within
the BOLD signals can also be leveraged via spatio-temporal
graph convolutions and dynamic FC networks. Also, attention
mechanisms can also be applied for the global pooling. Our focus
here was on a simple, yet powerful architecture to demonstrate
conceptual advantages of the model — not to push e.g., subject
classification accuracy to the limit. In a broader context, the
proposed multi-task GRL framework could be applied (modulo
application-specific modifications) to other domains beyond
network neuroscience. We believe it is especially well suited
to combine dynamic or multi-view (multi-aspect) network data,
while being capable to extract interpretable and discriminative
patterns for supervised learning applications. Examples include
snapshots of traffic networks, dynamic brain connectomes at
consecutive time stamps, or sensor-collected human co-location
graphs along with Facebook ties for friendship recommendation
via link prediction.

APPENDIX A
SUBJECT LABEL DELINEATION

The HCP dataset contains more subjects than those P = 412
used in our experiments. Fig. 9 depicts the distribution of sub-
jects with different levels of drinking habits, as measured by the
lifetime maximum number of drinks consumed in a single day.
In our study, we consider the 191 subjects with no more than 3
drinks as the group of non-drinkers, and label the 221 subjects
with 16 or more drinks as the group of heavy drinkers. This
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Fig. 9. Distribution of subjects with different levels of drinking habits, as
measured by the lifetime maximum number of drinks consumed in single day.
In our experiments, we consider the 191 subjects with no more than 3 drinkers
as the non-drinker group (most left-wise bin), and label the 221 subjects with
16 or more drinks as heavy drinkers (most right-wise bin).
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Fig. 10.  Graph reconstruction and subject classification performance of se-
lected model architectures with A = 0.1 and L = 2.

way, the two classes are balanced, well separated, and contain
sufficient data points to effectively train and test the proposed
GRL-based classifier.

APPENDIX B
PERFORMANCE OF SHALLOWER GCN ENCODERS

For completeness, we present the MSE and accuracy values
achieved by selected shallower GCN encoder architectures with
only one or two layers. Due to space constraints, we only select
and present 2 architectures from each layer setting. As shown in
Figs. 10 and 11, node embedding concatenation together with
global average pooling offers better performance with respect to
FC reconstruction and subject classification in most architecture
settings. While MSE performance is comparable with the chosen
model (L = 3), the classification accuracy of these shallower
encoders tends to degrade.
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Fig. 11.

841

Graph reconstruction and subject classification performance of se-

lected model architectures with A = 0.1 and L = 1. Node embedding concate-
nation is not available in the single-layer setting.

TABLE III
GIN-BASED CLASSIFIER ON THRESHOLDED SC
Threshold Accuracy F score
20% 0.524 +0.070 | 0.528 £ 0.141
40% 0.529 £+ 0.056 | 0.567 £0.073
60% 0.522 +0.029 | 0.559 £ 0.279
80% 0.515+0.034 | 0.489 + 0.320
TABLE IV
GIN-BASED CLASSIFIER ON THRESHOLDED FC
Threshold Accuracy F score
20% 0.554 +0.085 | 0.564 + 0.097
40% 0.549 £+ 0.055 | 0.569 =+ 0.055
60% 0.520 £ 0.079 | 0.533 £ 0.099
80% 0.512 +0.085 | 0.523 £0.107
APPENDIX C

GRAPH ISOMORPHISM NETWORK

For the sake of comparison, we add an additional baseline
that implements the graph isomorphism network (GIN)-based
encoder [31] in a feed-forward classifier to test the predictions
of subject drinking labels using a single brain network modality
(SC or FC alone). We opt to use the same architecture settings
(3 layers with dimension 32 x 16 x 8). As GIN works on bi-
nary graphs, we tested different threshold levels to binarize the
weighted brain networks by keeping a certain portion of the
edges. For each level, a 10-fold cross validation is conducted
where each time the whole dataset is partitioned into 80%
training, 10% validation and 10% test set. We compute the
classification accuracy and F score and report the results in
Tables IIT and IV of input SC and input FC, respectively.

From the tables we can see that the threshold that retains a
moderate amount of edges (40%) gives the best classification
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performance. This is as expected since keeping too few edges
will cause significant information loss from the original graphs,
while retaining too many edges leads dense binary graphs with
less discriminative power. The results shown in the tables above
are inferior to the results presented in Table I, which again
suggests that the representations learnt from the SC-FC relation-
ship provide more discriminative power than the information
embedded within a single brain network modality, regardless
of the GNN models selected for the encoder. Although GIN
has been shown effective in subject classification tasks from
neuroimaging data [41], the information loss due to binary
quantization of e.g., FC links may lead to inferior performance
in some cases. As one of the unique features in GIN is the
concatenation of node embeddings, which we also implemented
here to form X, we believe that GCN with node embedding
concatenation suits better for our purpose and helps capture the
high-resolution differences of the structural connection strengths
between drinkers and non-drinkers.
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