
Algorithmic Advances for the Adjacency Spectral

Embedding

Marcelo Fiori∗, Bernardo Marenco∗, Federico Larroca∗, Paola Bermolen∗, and Gonzalo Mateos†

∗Universidad de la RepÂublica, Uruguay. Email: {mfiori,bmarenco,flarroca,paola}@fing.edu.uy
†University of Rochester, Rochester, NY, USA. Email: gmateosb@ur.rochester.edu

AbstractÐThe Random Dot Product Graph (RDPG) is a
popular generative graph model for relational data. RDPGs
postulate there exist latent positions for each node, and specifies
the edge formation probabilities via the inner product of the
corresponding latent vectors. The embedding task of estimating
these latent positions from observed graphs is usually posed
as a non-convex matrix factorization problem. The workhorse
Adjacency Spectral Embedding offers an approximate solution
obtained via the eigendecomposition of the adjacency matrix,
which enjoys solid statistical guarantees but can be computation-
ally intensive and is formally solving a surrogate problem. In this
paper, we bring to bear recent non-convex optimization advances
and demonstrate their impact to RDPG inference. We develop
first-order gradient descent methods to better solve the original
optimization problem, and to accommodate broader network
embedding applications in an organic way. The effectiveness
of the resulting graph representation learning framework is
demonstrated on both synthetic and real data. We show the
algorithms are scalable, robust to missing network data, and
can track the latent positions over time when the graphs are
acquired in a streaming fashion.

Index TermsÐGraph Representation Learning; Gradient De-
scent; Non-convex Optimization; Random Dot Product Graphs

I. INTRODUCTION

One of the most popular generative models for random

graphs is the Random Dot Product Graph (RDPG). Under this

model each node i ∈ {1, . . . , N} in a simple, undirected graph

G has an associated latent position vector xi ∈ X ⊂ R
d, and

edge (i, j) exists with probability Pij = x
⊤
i xj , independent

of all other edges. In other words, letting A ∈ {0, 1}N×N

be the random symmetric adjacency matrix of G and X =
[x1, . . . ,xN ]⊤ ∈ R

N×d the matrix of latent vertex positions,

the RDPG model specifies that given X, edges are condition-

ally independent with Aij ∼ Bernoulli(x⊤
i xj). The model’s

popularity stems from its simplicity and expressiveness; e.g.

the ErdÈos-RÂenyi and Stochastic Block Model (SBM) families

are included as particular cases [1]. Furthermore, the resulting

embeddings are easy to interpret: nodes with large ∥xi∥2 tend

to exhibit higher connectivity, whereas a small angle between

xi and xj indicates higher ªaffinityº among i and j.

Background on RDPG inference. Let us now discuss the

associated inference (or node embedding) problem, which is

the focus of the methods presented here. Given a realization

of a graph (or a sequence of graphs), we look for the latent

This work was partially funded by the NSF (awards CCF-1750428 and
ECCS-1809356).

position matrix X̂ which best explains the given adjacency ma-

trix A under the RDPG model. Since the maximum-likelihood

estimator is intractable beyond toy graphs [2], moving forward

we note that A is a noisy observation of P = XX
⊤, the

rank-d matrix of edge probabilities Pij , since E
[

A
∣

∣X
]

= P.

Therefore, and remembering that the diagonal entries of P are

zero, we want to solve the following problem [2]:

X̂ ∈ argmin
X∈RN×d

∥M ◦ (A−XX
⊤)∥2F , (1)

where ◦ is the Hadamard product, and M = 11
⊤ − I is a

mask matrix, with zero-diagonal and ones everywhere else.

In the RDPG framework, the usual approach to obtain an

approximate solution of (1) is to slightly modify the problem in

order to avoid the zero-diagonal constraint (either by replacing

the main diagonal of A, or simply ignoring the constraint) [1]:

X̂ ∈ argmin
X

∥A−XX
⊤∥2F , s. to rank(X) = d. (2)

Its solution can be computed as X̂ = V̂Λ̂
1/2

, where A =
VΛV

⊤ is the eigendecomposition of A, Λ̂ ∈ R
d×d is a diago-

nal matrix with the d largest eigenvalues of A, and V̂ ∈ R
N×d

are the corresponding d eigenvectors. This estimator is known

as the Adjacency Spectral Embedding (ASE).

Contributions and paper outline. Inspired by related matrix-

factorization problems, we propose to tackle the non-convex

problem (1) via gradient descent (GD). As we show in Section

II-A, our method scales better than the spectral-based ASE,

and therefore may be used for graphs with several tens

of thousands of vertices. Very recent papers [3] explicitly

comment on the difficulty of scaling these RDPG approaches

for large graphs and streaming settings. In this context, ours is

the first work to develop scalable algorithms to compute RDPG

embeddings, by proposing a proper formulation and bringing

to bear recent advances in first-order non-convex optimization.

Furthermore, our framework allows to solve exactly the

more appropriate problem formulation (1) [instead of (2)].

This limitation was recognized more than a decade ago [2],

yet to the best of our knowledge it has not been satisfac-

torily addressed in the recent RDPG literature. The existing

alternative [2], where the ASE is repeatedly computed and

the diagonal entries of A are completed with the diagonal

of X̂X̂
⊤, lacks convergence guarantees and multiplies the

ASE complexity by the number of iterations. Moreover, as

we discuss in Section III, the proposed algorithmic framework

672ISBN: 978-1-6654-6798-8 EUSIPCO 2022



can seamlessly accommodate missing or unobserved data. All

in all, our approach offers a better representation at a lower

computational cost, in more general settings.

The last contribution is an online, lightweight method for

tracking and visualizing ASEs of dynamic networks. Observe

that the RDPG model (and the solutions of (2) and (1)), are

invariant to orthogonal transformations. This poses a challenge

when the goal is to embed a sequence of graphs and subse-

quently compare the estimated vectors. Existing alternatives

to align the resulting estimates rely on eigendecomposition

of a matrix whose size increases linearly with the number of

graphs in the sequence [3]±[5]. In Section II-B we propose

to use our first-order method to embed sequences of graphs,

maintaining a certain alignment between the latent positions

by virtue of warm restarts, while scaling favorably with the

number of graphs involved. Tracking the latent nodal positions

of dynamic graph streams is presented in Section IV.

II. ESTIMATION VIA GRADIENT DESCENT

We propose to solve the smooth problem (1), and em-

bedding tasks for other RDPG generalizations, using a GD

approach. Although the formulation is not convex with respect

to X, there exist recent results showing convergence under

very reasonable assumptions. Note that the objective function

is indeed convex with respect to Z = XX
⊤, since it becomes

∥M ◦ (A− Z)∥2F .

Let us denote by f : R
n×d → R the objective function

f(X) = ∥M ◦ (A−XX
⊤)∥2F . The GD algorithm is

Xt+1 = Xt − α∇f(Xt), t = 0, 1, 2, . . . (3)

where α > 0 is the step size and ∇f(X) =
4
[

M ◦ (XX
⊤ −A)

]

X, for symmetric A and M. When

applied to this class of problems where the objective function

depends on the product XX
⊤, and in general is convex with

respect to Z = XX
⊤, this approach is sometimes called

factorized GD [6], or Procrustes flow [7]. There have been

several noteworthy advances in the study of its convergence,

rate of convergence, and accelerated variants [6]±[10].

For the RDPG embedding problem dealt with here, the main

result states that if the initial condition is close to the solution,

the iteration (3) converges with linear rate to X̂ [6], [11].

Proposition 1: Let X̂ be a solution of (1). Then there exist

δ > 0 and 0 < κ < 1 such that, if ∥X0 − X̂∥F ≤ δ, we have

d(Xt, X̂) ≤ κtd(X0, X̂), ∀t > 0 (4)

where Xt is the sequence of GD iterates (3) with an appropri-

ate constant stepsize, and d(X, X̂) := min
W∈Od×d

∥XW − X̂∥2F

accounts for the orthogonality invariance.

See [11] and references therein for a similar version of this

proposition. Although there are some very specific initializa-

tions which correspond to stationary points (and therefore do

not lead to global convergence), in our experience the method

converges to the global optimum when initalizated randomly.

Generalizations. The RDPG model can be extended to de-

scribe more general graph families. For instance, the General-

ized RDPG model [12] can capture disassortative connectivity

0 5000 10000 15000 20000 25000
Graph size

0

2000

4000

6000

ti
m
e
(s
)

ASE - SVD

GD - Random init

GD - RSVD init

Fig. 1. Execution time for SBM graphs up to N = 24000 nodes. As N grows,
GD exhibits markedly better scaling than the state-of-the-art ASE algorithm.

patterns by including a diagonal matrix Dp,q , with p elements

with value +1 and q elements with value −1. The formulation

(1) can be then readily adapted for this model, resulting in

X̂ ∈ argmin
X∈Rn×d

∥M ◦ (A−XDp,qX
⊤)∥2F , (5)

which also allows to compute embeddings with missing data.

Indeed, via the binary mask M one can encode which entries

of A are observed and which are missing. The gradient step

in (3) only differs in the computation of the gradient itself.

The RDPG model can only represent undirected graphs,

since the product XX
⊤ is always symmetric. Extensions to

accommodate directed graphs (digraphs) are possible [1], [13],

whereby each node i of the digraph has two vectors associated,

denoted by x
l
i and x

r
i . This way, the Directed RDPG (D-

RDPG) model is defined as

P
(

A
∣

∣X
)

=
∏

i ̸=j

[(xl
i)

⊤
x
r
j ]

Aij [1− (xl
i)

⊤
x
r
j ]

1−Aij . (6)

For this case, the corresponding embedding problem (which

also allows to work with missing data) becomes

{X̂l, X̂r} = argmin
Xl∈Rn×d,Xr∈Rn×d

∥M ◦ (A−X
l(Xr)⊤)∥2F .

Here, GD can be thought as comprising two gradient steps,

one with respect to X
l and the other with respect to X

r.

A. Complexity and execution time analyses

The per-iteration computational cost incurred to evaluate

∇f(X) is dominated by the matrix multiplication, which is

Θ(N2d) for a naÈıve implementation. The number of iterations

depends on X0, but in our experience even with random

initializations the runtime is still markedly lower than the

SVD-based ASE. Further time complexity improvements may

be obtained by using Nesterov-type acceleration methods [14].

In Figure 1 we compare the execution times of GD and the

ASE as a function of N . For the latter, we use the SciPY im-

plementation of the eigendecomposition in Python, as in state-

of-the-art RDPG inference packages such as Graspologic

[15]. For GD, we test two different initializations: a uniform

random matrix X, and one based on a fast eigendecomposition

computation using the randomized-SVD (RSVD) [16] (we

account for the RSVD in the overall execution time). In all

673



cases, the methods converge to a solution of the inference

problem. The obtained cost function is very similar for each

run, with slightly lower values for the GD method because it

is solving the problem with the zero-diagonal restriction.

For each N , we sampled several 2-block SBM graphs, with

connection probabilities of p = 0.5 (within community) and

q = 0.2 (across communities). Community sizes are N/3 and

2N/3. The embedding dimension was set to d = 2 in all

cases. Results are averaged over 10 Monte Carlo replicates,

and corresponding standard deviations are depicted in Figure

1. As N grows, GD attains significant reductions in wall-

clock time relative to the state-of-the-art ASE implementation,

especially when GD is initialized using the RSVD.

B. Warm restart for embedding graph sequences

As mentioned in Section I, the embedding matrix X̂ in the

RDPG model can only be determined up to rotations. This

challenges network inference tasks where the data comes from

multiple graphs, e.g., sequential graphs over time. For instance,

problems like hypothesis testing to determine whether two

graphs are drawn from the same RDPG model, or tracking

nodal embeddings over time, heavily rely on the correspon-

dence of nodes across different networks.

For the hypothesis testing problem, a test is put forth in [17]

which involves solving a Procrustes problem to align the em-

beddings. A joint so-termed Omnibus embedding of m graphs

is proposed in [4], by forming an mN ×mN matrix from the

adjacency matrices and computing its ASE latent positions.

More recently, the Unfolded Adjacency Spectral Embedding

(UASE) was proposed in [3], [5]. The UASE also relies on

an auxiliary matrix, this time by horizontally stacking the

adjacency matrices of all graphs, and then computes its SVD

to obtain the joint embeddings. Both these approaches come

with asymptotic statistical guarantees under some technical

assumptions. However, from a computational standpoint they

do not scale well with the number of nodes N of each graph,

or the total number of graphs m.

The GD algorithm of this paper can be initialized using

the latent positions of another related graph. This so-termed

warm restart will not only decrease processing time, but is

also likely to yield embeddings that are closely aligned with

those of previous graphs in the squence.

Numerical example. To illustrate this desirable behaviour, we

borrow the motivating experiment and code from [3]. The

goal is to compute the embedding of two SBMs with four

communities, that change their connection probabilities. Two

graphs are respectively generated according to the following

SBMs, whose inter-community probabilities are given by

B1 =

(

0.08 0.02 0.18 0.10
0.02 0.20 0.04 0.10
0.18 0.04 0.02 0.02
0.10 0.10 0.02 0.06

)

,B2 =

(

0.16 0.16 0.04 0.10
0.16 0.16 0.04 0.10
0.04 0.04 0.09 0.02
0.10 0.10 0.02 0.06

)

.

Notice how communities 1 and 2 merge in the second

model, while community 4 retains the same probabilities

with the other three groups. In [3], the authors comment

how their UASE approach manages to capture the merger of

communities 1−2, while keeping the latent positions of nodes

Fig. 2. Embeddings of two SBM graph realizations, where communities 1 and
2 merge, while community 4 keeps the connection probabilities with other
groups. Observe how the GD approach (far right) manages to capture this
behaviour, while providing the best representation for each graph individually
(quantified by the smallest cost function values). Code adapted from [3].

in community 4 largely unchanged. The Omnibus approach, or

independent embedding of both graphs, fails in accomplishing

at least one of these objectives; see Figure 2.

We tested the GD algorithm in this numerical example, and

confirmed that the obtained embeddings also reflect the desired

behaviour regarding communities 1, 2, and 4. Moreover, GD

provides a better overall representation for each graph (similar

to independent embeddings of the graph). We quantify this

via the cost function of (1) evaluated at each solution. These

values are also presented in Fig. 2, and show the favorable

representation quality obtained by the GD algorithm.

Another example of this alignment method via warm restarts

is outlined in Section IV, using a real-world application

involving model tracking for Wi-Fi network monitoring.

III. INFERENCE WITH MISSING DATA

We now show an example of how GD-based inference can

be useful for problems with missing data. In this setup we

have a bipartite graph that simulates a two-party senate. Nodes

correspond to senators and laws, and the fact that senator i has

voted affirmatively for law j is indicated by the edge (i, j).
Each of the two parties can submit a law for voting, with

affirmative votes being more likely for senators from the party

that introduced the law, and less likely for senators from

the opposing party. There are also bipartisan laws, for which

affirmative votes are more similar across parties. Furthermore,

for each law, there is a subset of senators that have a 30%
chance of being absent from the voting. So in our formulation

the mask matrix M in (1) will encode whether those senators

were present in the voting of each law.

We simulated such a graph with 50 senators of each

party and a total of 230 proposed laws, and compared the

embeddings given by the ASE and by GD. Results are shown

in Fig. 3. Both methods result in a clear alignment between

674



0.2 0.4 0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.2 0.4 0.6

Party 1 members

Missing data (Party 1)

Party 2 members

Missing data (Party 2)

Party 1 laws

Party 2 laws

Bipartisan laws

Fig. 3. Embeddings with missing data. Naive ASE (left) and GD with mask
matrix encoding present and absent voters (right). Our approach is able to
assign the absent voters to the correct group.

the embeddings of laws and senators from the same party, and

opposing groups are embedded as almost orthogonal clusters

(which is consistent with a small inner product, i.e. small

connection probability). The difference is that GD assigns

the senators that are absent to the same cluster as the rest

of the senators in their party, while the ASE assigns them to a

smaller, independent cluster. GD is able to correctly handle the

missing information in this setup, producing a representation

that is faithful to the underlying structure of the data.

IV. MODEL TRACKING FOR DYNAMIC GRAPHS

Consider now a monitoring scenario, where we observe a

stream of graphs Gt (where t denotes time), and the goal is to

track the underlying model. We will assume that there exists a

correspondence between nodes at different times, and that all

these graphs stem from an RDPG with latent positions given

by Xt ∈ R
N×d. We focus on the vanilla model for ease of

exposition, and consider other variants in the numerical tests.

There is a growing interest in the above setting, with several

applications arising with the online change-point detection

problem; i.e., flagging if and when the underlying generative

model changed [13], [18]±[20]. Here we take a step further,

and strive at actually tracking the model. Applications may

include recommender systems (where rankings are revealed

or even change over time) [21] or, as we discuss below,

monitoring wireless networks [22].

Suppose then that at time t we observe a window of length

m of the past graphs in the sequence, which we may safely

assume stem from the same RDPG model; i.e., Xt−m = . . . =
Xt = X. In this case the best estimate of X is the ASE of

the averaged adjacency matrix Āt = 1/m
∑t

k=t−m Ak [23].

Applying GD iterations (3) when A← Āt yields updates:

X̂t = X̂t−1 − α∇
X̂
∥M ◦ (Āt − X̂t−1X̂

⊤
t−1)∥

2
F . (7)

The algorithm (7) suggests a tracking system as the one

depicted in Figure 4, where we have substituted Āt with the

output of an entry-wise filter F(z) applied to the stream of

incoming adjacency matrices At. A moving average as the

one discussed before is readily recovered by considering a

FIR filter with all its m taps set to 1/m, although a single-

pole IIR filter would be preferable in terms of memory and

Fig. 4. A diagram of the proposed RDPG tracking system. If the entry-wise
filter F(z) is a moving average, we would obtain Bt = Āt, resulting in
embedding the average adjacency matrix.

0 50 100 150 200 250 300 350 400

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

‖
M

◦
(P

t
−

X̂
l t(
X̂

r t)
)⊤
‖
F
/‖
M

◦
P

t‖
F

α: 0.01 - pole: 0

α: 0.01 - pole: 0.9

α: 0.01 - pole: 0.99

α: 0.001 - pole: 0

α: 0.001 - pole: 0.9

α: 0.001 - pole: 0.99

Fig. 5. Evolution of ∥M ◦ (Pt − X̂
l
t
(X̂r

t
)⊤∥F )/∥M ◦Pt∥F as a function

of t. Different curves correspond to different step sizes and poles. A judicious
choice of these values yields both estimation accuracy and tracking speed.

processing. We may even drop the filtering stage altogether

(setting m = 1) to yield a least mean squares (LMS)-type

stochastic gradient algorithm .

Simulated numerical results. Let us consider a synthetic

example, where a stream Gt of SBMs digraphs with two

communities of N/2 = 100 nodes each changes from an

assortative to a disassortative behaviour. That is to say, until

t = 200 nodes belonging to the same community would

connect with probability p = 0.5 and with members of the

other community with probability q = 0.2. This is reversed so

that p = 0.2 and q = 0.5 after t = 200, meaning that nodes

now tend to connect more to nodes of the other community.

The temporal evolution of the relative error between the

true Pt and the estimated X̂
l
t(X̂

r
t )

⊤ obtained via our tracking

system is shown in Fig. 5. Different curves correspond to

different values of α and the pole’s value of F(z). In all

cases, the ASE of the first graph is used as the initial estimate

of X̂
l
0 and X̂

r
0. Firstly, note how when no filter is applied

(i.e. a pole at 0) excellent estimates of the latent positions are

found, provided that a small enough step size is used. Else,

the resulting estimate is no better than the single graph one.

Note however that what is lost in precision is gained in speed,

as after t = 200 the error is the same as before in very few

iterations for α = 0.01, whereas the more precise α = 0.001
takes almost 150 iterations to find the new embeddings.

Secondly, note how including the filter and a judicious

choice of α may result in better accuracy-speed tradeoffs.

When the incoming graphs’ generative model do not change,

the averaging performed by the filter allows to use larger

values of α without compromising precision. This in turn may

result in faster convergence after the change (see the curve

corresponding to α = 0.01 and a pole at 0.9).

675



0.0 2.5 5.0 7.5
−6

−4

−2

0

2

4

6

1

3

5

0.0 2.5 5.0
−6

−4

−2

0

2

4

6

2

46

Fig. 6. X̂
l
t

(left) and X̂
r
t

(right) using d = 2 for the RSSI example. Color
palettes identify the nodes and a lighter tone indicate larger values of t. Best
viewed in a color display. The network’s change at t ≈ 310 is clearly visible:
the AP that was moved (i = 4) is now closer to the upper cluster of nodes.

Real-world dataset. We also study the dataset described

in [24], which includes the Received Signal Strength Indicator

(RSSI) measurements between Wi-Fi access points (APs) in

a Uruguayan school. In particular we considered a network

consisting of N = 6 APs, with measurements collected hourly

during almost four weeks, corresponding to m = 655 graphs.

The AP corresponding to i = 4 was moved at t ≈ 310. As

RSSI is measured in dBm (and are negative), we have first

added an offset to all weights so that they become positive

and larger values still mean ªstrongerº edges. We thus have

a directed (as power measurements between APs are not

necessarily symmetric) and weighted graph sequence.

The GD estimates X̂l
t and X̂

r
t for d = 2 are shown in Fig. 6.

We have used α = 0.01 and F(z) with a pole at 0.9. Different

color palettes identify the nodes and as t increases the color

becomes lighter. Note how at first all the embeddings are

relatively static (cf. darker colors), with two almost orthogonal

clusters of nodes, in addition to node 4 in a somewhat

intermediate position. When the network is modified, this node

approaches the upper cluster. The node is apparently moved

nearer node 5 than 3, and not so far away from node 1. Note

how the movement of nodes in the clusters are radial and result

in an unchanged inner product between them.

V. CONCLUDING SUMMARY

In this paper we proposed a new algorithmic framework

to estimate latent positions of RDPG models, by bringing

to bear non-convex optimization techniques that have been

recently developed for low-rank matrix factorization problems.

This allows to solve the associated nodal embedding problem

by taking into account the (often overlooked) zero-diagonal

constraint, which is relevant for graphs with no self loops.

The general formulation also offers the possibility to compute

the RDPG embeddings in the presence of unobserved data.

We tested the computational complexity of the method, and

provided examples of applications with missing data, and to

track latent positions of nodes in graph sequences, both with

synthetic and real data.

REFERENCES

[1] A. Athreya, D. E. Fishkind, M. Tang, C. E. Priebe, Y. Park, J. T.
Vogelstein, K. Levin, V. Lyzinski, and Y. Qin, ªStatistical inference
on random dot product graphs: A survey,º J. Mach. Learn. Res., vol.
18, no. 1, pp. 8393±8484, January 2017.

[2] E.R. Scheinerman and K. Tucker, ªModeling graphs using dot product
representations,º Comput. Stat, vol. 25, pp. 1±16, 2010.

[3] I. Gallagher, A. Jones, and P. Rubin-Delanchy, ªSpectral embedding
for dynamic networks with stability guarantees,º Advances in Neural

Information Processing Systems 34, NeurIPS, 2021.
[4] K. Levin, A. Athreya, M. Tang, V. Lyzinski, and C. E. Priebe, ªA central

limit theorem for an omnibus embedding of multiple random dot product
graphs,º in Int. Conf. on Data Mining Workshops, 2017, pp. 964±967.

[5] A. Jones and P. Rubin-Delanchy, ªThe multilayer random dot product
graph,º arXiv preprint arXiv:2007.10455, 2020.

[6] S. Bhojanapalli, A. Kyrillidis, and S. Sanghavi, ªDropping convexity for
faster semi-definite optimization,º in Conference on Learning Theory.
PMLR, 2016, pp. 530±582.

[7] S. Tu, R. Boczar, M. Simchowitz, M. Soltanolkotabi, and B. Recht,
ªLow-rank solutions of linear matrix equations via procrustes flow,º in
International Conference on Machine Learning. PMLR, 2016.

[8] Y. Chen and M. Wainwright, ªFast low-rank estimation by projected
gradient descent: General statistical and algorithmic guarantees,º 2015.

[9] R. Sun and Z. Luo, ªGuaranteed matrix completion via non-convex
factorization,º IEEE Trans. on Information Theory, vol. 62, 2016.

[10] D. Zhou, Y. Cao, and Q. Gu, ªAccelerated factored gradient descent for
low-rank matrix factorization,º in International Conference on Artificial

Intelligence and Statistics. PMLR, 2020, pp. 4430±4440.
[11] Y. Chi, Y. M Lu, and Y. Chen, ªNonconvex optimization meets low-rank

matrix factorization: An overview,º IEEE Trans. on Signal Processing,
vol. 67, no. 20, pp. 5239±5269, 2019.

[12] P. Rubin-Delanchy, J. Cape, M. Tang, and C. E. Priebe, ªA statistical in-
terpretation of spectral embedding: The generalised random dot product
graph,º arXiv:1709.05506 [stat.ML], 2017.

[13] Bernardo Marenco, Paola Bermolen, Marcelo Fiori, Federico Larroca,
and Gonzalo Mateos, ªOnline change point detection for weighted and
directed random dot product graphs,º IEEE Transactions on Signal and

Information Processing over Networks, vol. 8, pp. 144±159, 2022.
[14] Y. Nesterov, ªA method of solving a convex programming problem with

convergence rate o(1/k2),º in Sov. Math. Dokl, 1983, vol. 27.
[15] J. Chung, B. D. Pedigo, E. W. Bridgeford, B. K. Varjavand, H. S. Helm,

and J. T. Vogelstein, ªGraspy: Graph statistics in Python.,º J. Mach.

Learn. Res., vol. 20, no. 158, pp. 1±7, 2019.
[16] N. Halko, P. Martinsson, and J. Tropp, ªFinding structure with ran-

domness: Probabilistic algorithms for constructing approximate matrix
decompositions,º SIAM review, vol. 53, no. 2, pp. 217±288, 2011.

[17] M. Tang, A. Athreya, D. Sussman, V. Lyzinski, Y. Park, and C.E. Priebe,
ªA semiparametric two-sample hypothesis testing problem for random
graphs,º J. of Comput. and Graphical Statistics, vol. 26, no. 2, 2017.

[18] Y. Yu, O. H. M. Padilla, D. Wang, and A. Rinaldo, ªOptimal network
online change point localisation,º arXiv:2101.05477 [math.ST], 2021.

[19] H. Chen, ªSequential change-point detection based on nearest neigh-
bors,º Ann. Stat, vol. 47, no. 3, pp. 1381 ± 1407, 2019.

[20] M. Zhang, L. Xie, and Y. Xie, ªOnline community detection by spectral
cusum,º in Proc. Int. Conf. Acoustics, Speech, Signal Process., 2020.

[21] P. Campos, F. DÂıez, and I. Cantador, ªTime-aware recommender
systems: a comprehensive survey and analysis of existing evaluation
protocols,º User Modeling and User-Adapted Interaction, vol. 24, no.
1, pp. 67±119, 2014.

[22] G. Mateos and K. Rajawat, ªDynamic network cartography: Advances
in network health monitoring,º IEEE Signal Process. Mag., vol. 30, no.
3, pp. 129±143, 2013.

[23] R. Tang, M. Tang, J. T. Vogelstein, and C. E. Priebe, ªRobust
estimation from multiple graphs under gross error contamination,º
arXiv:1707.03487 [stat.ME], 2017.

[24] G. Capdehourat, F. Larroca, and G. Morales, ªA nation-wide Wi-Fi
RSSI dataset: Statistical analysis and resulting insights,º in 2020 IFIP

Networking Conference (Networking), 2020, pp. 370±378.

676


