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AbstractÐAdvances in graph signal processing for network
neuroscience offer a unique pathway to integrate brain structure
and function, with the goal of revealing some of the brain’s
organizing principles at the system level. In this direction, we
develop a supervised graph representation learning framework
to model the relationship between brain structural connectivity
(SC) and functional connectivity (FC) via a graph encoder-
decoder system. Specifically, we propose a Siamese network
architecture equipped with graph convolutional encoders to learn
graph (i.e., subject)-level embeddings that preserve application-
dependent similarity measures between brain networks. This
way, we effectively increase the number of training samples
and bring in the flexibility to incorporate additional prior
information via the prescribed target graph-level distance. While
information on the brain structure-function coupling is implicitly
distilled via reconstruction of brain FC from SC, our model also
manages to learn representations that preserve the similarity
between input graphs. The superior discriminative power of
the learnt representations is demonstrated in downstream tasks
including subject classification and visualization. All in all, this
work advocates the prospect of leveraging learnt graph-level,
similarity-preserving embeddings for brain network analysis, by
bringing to bear standard tools of metric data analysis.

Index TermsÐBrain connectomics, graph representation learn-
ing, Siamese network, graph convolutional network.

I. INTRODUCTION

The human brain is an immensely complex yet highly

efficient network consisting of distributed regions conducting

individual tasks, while actively communicating with each other

to accomplish collaborative operations [1]. This so-termed

integrative nature of the brain motivates well the adoption

of graph-centric signal and information processing tools to

study the relationship between brain structure (of neural con-

nections) [2] and functional activity [3].

Brain connectomes consist of two major types of net-

works [4]. Structural connectivity (SC) measures the anatom-

ical tracts of axonal bundles [5], whereas functional connec-

tivity (FC) represents pairwise statistical correlation between

(proxies of) neural activities across various brain regions of

interest (RoI). Previous studies have revealed that FC corre-

lates with SC at an aggregate level [6], where strong functional

connections exist between RoIs with scarce anatomical path-

ways [7]. These intriguing findings sparked multiple works

aiming at predicting FC from SC by exploiting both direct
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and indirect anatomical connections [6]±[9], and in estimating

SC from FC [10], [11]. There is now reasonable consensus

that the coupling between brain SC and FC can be of great

importance towards understanding the underpinnings of human

brain function, and remains a timely research area in (network)

neuroscience; see e.g., [12], [13].

In this paper, we explore the coupling between brain SC and

FC by learning low-dimensional representations of the SC-to-

FC mapping obtained from graph convolutional features [14]±

[16]. Specifically, we propose and implement a supervised

graph representation learning (GRL) framework to jointly

learn: (i) low-dimensional node embeddings generated from

brain SC networks to reconstruct empirical FC networks;

and (ii) (subject-level) graph embeddings to represent whole

connectomes for downstream classification and visualization

tasks. The proposed GRL pipeline incorporates a Siamese net-

work with two identical branches, an architecture that has been

proven effective in various pattern recognition tasks [17]±

[20], but is otherwise less explored for network neuroscience;

see [21], [22] for a recent contribution to metric learning. Each

branch can be viewed as a graph encoder-decoder system [23],

[24]; see Section II-B for more details. The input of the

Siamese network is a pair of SC graphs, and for each graph,

the encoder learns low-dimensional node embeddings that

preserve application-dependent similarity measures between

brain networks. To aggregate information from multiple hops

within the network, layered graph convolution operations

interleaved with point-wise nonlinearities are used to compute

nodal features. This procedure calls for graph convolutional

networks (GCNs), which serve as a proper encoder model to

output connectome representations that capture indirect brain

connections. The learnt node embeddings are then used to

reconstruct the corresponding FC of the input SC graph.

Whole graph embeddings are also obtained by applying

mean pooling mechanism on the node embeddings [25], with

the goal of performing (subject-level) graph classification.

If the two input graphs come from the same class (here,

non-drinkers or heavy drinkers), we expect that they share

higher similarity and consequently, their graph embeddings

shall be close in the latent space. To learn discriminative

representations, embeddings of graphs with the same labels are

grouped into clusters while the distances between clusters in

latent space are maximized. All in all, we propose a multi-task

GRL model with the dual goal of reconstructing brain FC from

input SC data, and estimating similarity between each pair of
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graphs. The graph reconstruction task learns a parsimonious

representation of the population-level SC-FC relationship, and

the similarity estimation uses subject labels as additional

inputs for supervised classification. Accordingly, the model

strikes the right balance between deciphering population pat-

terns that shape the SC-FC coupling, and distilling subject-

level variability to facilitate graph-level metric learning.

We train and test our model on a population of 412 subjects

with 191 non-drinkers and 221 heavy drinkers from the Human

Connectome Project1 (Section III). To evaluate the proposed

GRL model, the estimated pairwise similarities are used to

assign a class membership for each sample in the test set ac-

cording to a K-nearest neighbor (KNN) classifier. Satisfactory

classification performance is obtained, outperforming relevant

baselines [13], [26]. We also conduct embedding visualization

by feeding the learnt graph representations to the t-SNE [27]

algorithm to project them into a 2-D space, and corroborate

that graph embeddings of drinkers and non-drinkers are well

separated. By leveraging the Siamese framework, we manage

to significantly increase the amount of training data; by using

the similarity-preserving mechanism, the learnt graph repre-

sentations possess better discriminative power thus boosting

classification performance.

II. PRELIMINARIES AND PROPOSED MODEL

In this section, we review the background on graph con-

volutional networks (GCNs) that form the encoder in our

model; see also [16], [28] for further details. Then we formally

introduce the proposed Siamese GRL framework.

A. Graph convolutional networks

Consider a weighted, undirected graph denoted by G(V,A),
where V is a set of N nodes corresponding to brain RoIs,

and A ∈ R
N×N
+ is the symmetric adjacency matrix with

Aij = Aji ≥ 0 representing the structural connection

strengths between RoIs i and j. The graph Laplacian matrix

is defined as L := D−A, where D is the diagonal degree

matrix. The symmetric Laplacian L can be further decomposed

as L = UΛU
⊤, where U ∈ R

N×N denotes the set of

orthonormal eigenvectors and Λ contains all eigenvalues on

its diagonal. The eigenvectors U serve as a graph Fourier

basis [29]. Consider a vertex-valued signal x ∈ R
N , where

xi denotes the signal value at RoI i, e.g., nodal attributes or

features on the brain FC (or SC) network. With the graph

Fourier transform (GFT) of x given by x̂ = U
⊤
x [29], [30],

the graph convolution can be defined as

Hx = (

K
∑

i=0

hiL
i)x = U(

K
∑

i=0

hiΛ
i)U⊤

x = UĤx̂, (1)

where H =
∑K

i=0 hiL
i is the graph filter with coefficients

h := [h0, . . . , hK ]⊤ and frequency response Ĥ =
∑K

i=0 hiΛ
i.

Graph convolutional networks are then neural network archi-

tectures with stacked layers of graph convolutional filters (1)

and pointwise nonlinear activation functions [31].

1https://www.humanconnectome.org/

Adoption of first-order (K = 1) graph convolutional filters

was advocated for the GCN model in [14], working with the

degree-normalized Laplacian D
−1/2

LD
−1/2 and a suitable

reparametrization of the filter coefficients so that (1) simplifies

to (IN stands for the N ×N identity matrix)

Hx = θ(IN +D
−1/2

AD
−1/2)x. (2)

This motivates a simple per-layer filtering update imple-

mented to refine the nodal embeddings, namely

X
(ℓ) = ReLU

(

ÃX
(ℓ−1)

Θ
(ℓ)

)

, (3)

where Ã := IN + D
−1/2

AD
−1/2, X

(ℓ) ∈ R
N×dℓ are

the nodal representations at layer ℓ, and Θ
(ℓ) ∈ R

dℓ−1×dℓ

stores the learnable parameters of dℓ filters acting on dℓ−1

input features. For the encoder of the proposed Siamese GRL

pipeline, we leverage GCN layers in (3) due to their simplicity

and satisfactory performance [14], [32], [33]. By stacking

multiple layers, the GCN-based encoder is capable to integrate

multi-hop information, making it suitable to capture both direct

and indirect interactions over brain SC networks [13], [26].

B. Problem statement and Siamese model architecture

Given brain SC networks, the twofold goal is to build and

train a model to: (i) reconstruct FC networks using learnt node

embeddings; and (ii) learn whole graph representations that

approximately preserve some pre-defined similarity measure

between pairs of input graphs. The learnt representations then

contain information of both population patterns while they

also capture some degree of subject-level variability. To this

end, we propose a supervised Siamese network with two sister

graph encoder-decoder pipelines as shown in Figure 1.

Taking as input a brain SC network whose N nodes rep-

resent brain RoIs, the encoder generates a lower-dimensional

representation for each node. Among various node embedding

models, neighbor aggregation methods such as GCN are

permutation-invariant and inductive [17]. As a result, a multi-

layer GCN is used in the encoder to generate latent variables

that consolidates both nodal attributes such as the known

intrinsic properties of each brain region, and the network

topology information like the connection strengths among

regions in SC networks. In the Siamese framework, the two

sister GCN encoders share the same learnable weights and

for each encoder, the input is a subject’s SC network A

and the corresponding feature matrix X ∈ R
N×T , where

each row represents a nodal attribute of length T . Following

the re-normalization idea in [14], the normalized adjacency

matrix is Ã := D̂
−1/2

ÂD̂
−1/2, where Â := IN + A and

D̂ = diag(Â1) is the degree matrix of Â. Identity matrix is

added to the input graph A to introduce self loops to assure

that the attribute on the node itself also contributes to the new

node embedding during graph convolution. Inspired by [17],

[32], we concatenate node embeddings learnt in intermediate

GCN layers ℓ = 1, . . . , L− 1, thus forming XC ∈ R
N×

∑
ℓ
dℓ .
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Fig. 1: The Siamese GRL architecture. The inputs are a pair of SC networks Ai,Aj and optional nodal attributes. Graph

convolution/information propagation occurs within the GCN encoder. The sister GCN encoders share the same learnable

weights. Rows in X
(L) are low-dimensional node embeddings at the final layer of the GCN encoder. An outer-product

decoder reconstructs the FC network Σ̂ and thus implicitly models the SC-to-FC mapping. Given graph (i.e., subject)-level

representations hi,hj obtained via pooling, their similarity is computed using the cosine similarity.

For the FC reconstruction objective of the GRL architecture

in Figure 1, node embeddings XC go through an outer product

decoder

Σ̂ = ReLU(XCX
⊤

C) (4)

to generate a predicted FC adjacency matrix Σ̂. The mean

squared error (MSE) between the reconstructed graph Σ̂ and

the empirical FC Σ of each input subject, averaged over a

training set and denoted as LMSE(Σ̂,Σ), is used as reconstruc-

tion loss for training the regression branch of the model. In the

current setup described in Section III-A, FC networks contain

few negative edges with much smaller magnitude compared

with the vast amount of positive edges. To avoid such data

imbalance problem, we remove all negative FC connections

and restrict FC weights to the range [0, 1] as in other studies

on FC [34], [35].

Given the node embeddings XC , we further obtain whole

graph embeddings by taking the row-wise average of all the

node embeddings. This representation hi can be viewed as a

summary (in latent space) of the SC-FC coupling of subject i.
Node-wise average pooling is a simple yet effective procedure

which has been used in many studies; see e.g. [15]. For

the input graph pairs {Ai,Aj} fed to the Siamese network,

the learnt representations hi,hj shall exhibit high similarity

(quantified by the cosine similarity s(hi,hj)) if the input

graphs share the same labels li = lj (i.e both are non-

drinkers, or drinkers). On the other hand, when the input

graphs have different labels, we expect to train the model to

output embeddings that are comparatively less similar. To this

end, with Ns pairs of graphs with the same labels and Nd pairs

with different labels, we implement the pairwise similarity

global loss function in [22], [36]

LSIM = (σ2+ + σ2−) +w ×max(0,m− (µ+ − µ−)) (5)

which minimises the mean similarity between embeddings

of different classes µ− =
∑

s(hi,hj)/Nd, li ̸= lj and

maximises the mean similarity between embeddings of the

same classes µ+ =
∑

s(hi,hj)/Ns, li = lj . At the same time,

the variance of similarities within and between classes are

also minimized. The margin between the means of matching

and non-matching pairs is denoted by m, and w tunes the

balance between the mean and variance terms. The overall

loss function is

L = LSIM + λ× LMSE(Σ̂,Σ), (6)

where hyperparameter λ controls the trade-off between FC

reconstruction and similarity estimation. By training the model

end-to-end, we aim to strike the right balance between FC re-

construction and similarity estimation and achieve satisfactory

performance on both objectives.

III. NUMERICAL TEST

In this section, the performance of the proposed Siamese

architecture is evaluated on a real-world neuroimaging dataset,

and compared with our previous work on the same dataset.

A. Neuroimaging data

We adopt a neuroimaging dataset with P = 412 subjects

from the Human Connectome Project (HCP) [37], [38]. The

cohort is partitioned into two classes: 191 non-drinkers and

221 heavy drinkers according to information available on the

lifetime maximum number of drinks had in a single day. The

threshold is set to 21. The Desikan-Killiany atlas is used to

specify brain RoIs [39]. Hence, V in both FC and SC networks

correspond to N = 68 cortical surface regions, with 34 nodes

in each hemisphere. The SC network A of each subject is

extracted from the dMRI and structural MRI data [40], [41].

Brain functional activities are given by the resting-state BOLD
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TABLE I: Subject classification performance

Model Accuracy F score

Siamese model 0.6843± 0.016 0.7391± 0.016

End-to-end model in [13] 0.6610± 0.043 0.6962± 0.030

signals measured using fMRI. Brain FC networks Σ are then

constructed so that edge weights are the Pearson correlation

coefficient between the BOLD signals at the incident RoIs.

Currently we use one-hot encoding to define graph signals

as X = I68. Additional information regarding specific brain

anatomical features, e.g. volumes, can be integrated into the

nodal features to bring in add-on advantages, which we leave

for future work.

B. Implementation

The proposed model is implemented in TensorFlow. We opt

to choose the same GCN encoder architecture as in [13] which

contains 3 layers with dimensions of 32 × 16 × 8. Xavier

initialization [42] was used to initialize the weight coefficients

Θ. λ is set to be 0.2 in (6) via grid search, and m = w = 1 in

(5). We carry out a 5-fold cross validation where each time the

whole dataset is partitioned randomly into 60% training, 20%

validation and 20% testing set. From graphs in the training

set, all the possible pairs are generated and fed to the Siamese

model to learn representations that reconstruct FC from in-

put SC and simultaneously maximize/minimize the similarity

between input graphs if they have same/different labels. To

avoid overfitting, early stopping is applied to monitor the

performance on validation sets, and to stop the training once

the performance is not improving in the last 10 training epochs.

The Adam [43] optimizer is used with learning rate 0.001.

C. Results

During testing, the learnt representations of all the graphs

in the training set and validation set (with known labels) are

combined to establish a selection pool in the vector space.

Each graph in the test set goes through the encoder to generate

its low-dimensional representation. We locate its position in

the vector space, and classify it by a majority vote of its closest

5 neighbors measured by the cosine similarity between their

embeddings. Repeat this process for each test set of the 5

folds, and the overall classification performance across all test

sets is given in Table I.

Table I shows that the proposed Siamese framework out-

performs our previous work where we proposed a supervised

graph representation learning model that reconstruct FC from

SC and conduct subject classification via a logistic regression

classifier [13]. This indicates that by building the Siamese net-

work and training it with graph pairs significantly increase the

amount of training data, leading to the superior performance

in subject classification. In addition, the training objective of

similarity estimation is more directed to the distinguishing of

subjects’ labels in the vector space, and by utilizing the global

loss function from [36], the similarity metric is optimally

estimated for graph representations of subjects with the same

labels, and with different labels. Since in [13] we already

(a) Proposed (b) Model in [13]

Fig. 2: Visualization of the learnt graph representations via t-

SNE algorithm. Clear separation is observed between red cir-

cles of non-drinkers and blue triangles of drinkers, indicating

the effectiveness of the proposed Siamese network to capture

subject uniqueness. Circles within each group are closer to

each other on the left, indicating the advantage of the similarity

estimation proposed in this work.

reveal that the SC-FC coupling, captured by the regression

branch in Figure 1, helps achieve better classification perfor-

mance, here we only compare with the reported results in [13]

to reflect the advantage of the proposed Siamese network plus

the metric learning procedure of similarity estimation.

Visualizing the embeddings on a two-dimensional space is a

popular way to assess the representation learning performance.

To this end, we select the model trained using the data

from one of the 5 folds that offers the highest classification

accuracy on the test set, and put all the 412 graphs through

the GCN encoder to generate 412 embeddings. Via the t-SNE

algorithm [27], we plot these embeddings on the 2-D plane

shown in Figure 2a. It is obvious that a nice separation exists

between the drinkers represented by the blue triangles, and

the non-drinkers of the red circles. Compared with [13] in

Figure 2b, the representations in Figure 2a are closer within

each group, which is the expected result from the similarity

learning. Such visualization further verifies the discriminative

power of the proposed Siamese network trained with similarity

estimation between graph representations.

IV. CONCLUSION

In this work, we propose a Siamese network framework

that consists of two sister graph encoder-decoder pipelines.

Besides reconstructing FC networks from SC which captures

the SC-FC coupling, the Siamese architecture also entails a

metric-learning mechanism where we manage to learn graph

representations that are more similar if the input graphs have

the same labels (i.e. drinking habits), and are less similar if

they have different labels. Such modification in the GRL model

architecture significantly increases the amount of training

data, and the learnt similarity-preserving representations offer

more discriminative power to distinguish drinkers from non-

drinkers. Experiments on a large cohort of subjects from HCP

reveal superior performance on subject classification than our

previous work, suggesting the prospect of leveraging graph-
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level, similarity-preserving embeddings to measure SC-FC

coupling for brain network analysis. Future work shall be de-

voted to further exploit the power of the Siamese network. For

example, the margin that measures the difference between the

means of matching and non-matching pairs can be designed

to reflect more intrinsic differences between drinkers and non-

drinkers, or the differences within the FC networks between

input subjects.
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