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Abstract—Advances in graph signal processing for network
neuroscience offer a unique pathway to integrate brain structure
and function, with the goal of revealing some of the brain’s
organizing principles at the system level. In this direction, we
develop a supervised graph representation learning framework
to model the relationship between brain structural connectivity
(SC) and functional connectivity (FC) via a graph encoder-
decoder system. Specifically, we propose a Siamese network
architecture equipped with graph convolutional encoders to learn
graph (i.e., subject)-level embeddings that preserve application-
dependent similarity measures between brain networks. This
way, we effectively increase the number of training samples
and bring in the flexibility to incorporate additional prior
information via the prescribed target graph-level distance. While
information on the brain structure-function coupling is implicitly
distilled via reconstruction of brain FC from SC, our model also
manages to learn representations that preserve the similarity
between input graphs. The superior discriminative power of
the learnt representations is demonstrated in downstream tasks
including subject classification and visualization. All in all, this
work advocates the prospect of leveraging learnt graph-level,
similarity-preserving embeddings for brain network analysis, by
bringing to bear standard tools of metric data analysis.

Index Terms—Brain connectomics, graph representation learn-
ing, Siamese network, graph convolutional network.

I. INTRODUCTION

The human brain is an immensely complex yet highly
efficient network consisting of distributed regions conducting
individual tasks, while actively communicating with each other
to accomplish collaborative operations [1]. This so-termed
integrative nature of the brain motivates well the adoption
of graph-centric signal and information processing tools to
study the relationship between brain structure (of neural con-
nections) [2] and functional activity [3].

Brain connectomes consist of two major types of net-
works [4]. Structural connectivity (SC) measures the anatom-
ical tracts of axonal bundles [5], whereas functional connec-
tivity (FC) represents pairwise statistical correlation between
(proxies of) neural activities across various brain regions of
interest (Rol). Previous studies have revealed that FC corre-
lates with SC at an aggregate level [6], where strong functional
connections exist between Rols with scarce anatomical path-
ways [7]. These intriguing findings sparked multiple works
aiming at predicting FC from SC by exploiting both direct
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and indirect anatomical connections [6]-[9], and in estimating
SC from FC [10], [11]. There is now reasonable consensus
that the coupling between brain SC and FC can be of great
importance towards understanding the underpinnings of human
brain function, and remains a timely research area in (network)
neuroscience; see e.g., [12], [13].

In this paper, we explore the coupling between brain SC and
FC by learning low-dimensional representations of the SC-to-
FC mapping obtained from graph convolutional features [14]-
[16]. Specifically, we propose and implement a supervised
graph representation learning (GRL) framework to jointly
learn: (i) low-dimensional node embeddings generated from
brain SC networks to reconstruct empirical FC networks;
and (ii) (subject-level) graph embeddings to represent whole
connectomes for downstream classification and visualization
tasks. The proposed GRL pipeline incorporates a Siamese net-
work with two identical branches, an architecture that has been
proven effective in various pattern recognition tasks [17]—
[20], but is otherwise less explored for network neuroscience;
see [21], [22] for a recent contribution to metric learning. Each
branch can be viewed as a graph encoder-decoder system [23],
[24]; see Section II-B for more details. The input of the
Siamese network is a pair of SC graphs, and for each graph,
the encoder learns low-dimensional node embeddings that
preserve application-dependent similarity measures between
brain networks. To aggregate information from multiple hops
within the network, layered graph convolution operations
interleaved with point-wise nonlinearities are used to compute
nodal features. This procedure calls for graph convolutional
networks (GCNs), which serve as a proper encoder model to
output connectome representations that capture indirect brain
connections. The learnt node embeddings are then used to
reconstruct the corresponding FC of the input SC graph.

Whole graph embeddings are also obtained by applying
mean pooling mechanism on the node embeddings [25], with
the goal of performing (subject-level) graph classification.
If the two input graphs come from the same class (here,
non-drinkers or heavy drinkers), we expect that they share
higher similarity and consequently, their graph embeddings
shall be close in the latent space. To learn discriminative
representations, embeddings of graphs with the same labels are
grouped into clusters while the distances between clusters in
latent space are maximized. All in all, we propose a multi-task
GRL model with the dual goal of reconstructing brain FC from
input SC data, and estimating similarity between each pair of
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graphs. The graph reconstruction task learns a parsimonious
representation of the population-level SC-FC relationship, and
the similarity estimation uses subject labels as additional
inputs for supervised classification. Accordingly, the model
strikes the right balance between deciphering population pat-
terns that shape the SC-FC coupling, and distilling subject-
level variability to facilitate graph-level metric learning.

We train and test our model on a population of 412 subjects
with 191 non-drinkers and 221 heavy drinkers from the Human
Connectome Project' (Section III). To evaluate the proposed
GRL model, the estimated pairwise similarities are used to
assign a class membership for each sample in the test set ac-
cording to a K-nearest neighbor (KNN) classifier. Satisfactory
classification performance is obtained, outperforming relevant
baselines [13], [26]. We also conduct embedding visualization
by feeding the learnt graph representations to the t-SNE [27]
algorithm to project them into a 2-D space, and corroborate
that graph embeddings of drinkers and non-drinkers are well
separated. By leveraging the Siamese framework, we manage
to significantly increase the amount of training data; by using
the similarity-preserving mechanism, the learnt graph repre-
sentations possess better discriminative power thus boosting
classification performance.

II. PRELIMINARIES AND PROPOSED MODEL

In this section, we review the background on graph con-
volutional networks (GCNs) that form the encoder in our
model; see also [16], [28] for further details. Then we formally
introduce the proposed Siamese GRL framework.

A. Graph convolutional networks

Consider a weighted, undirected graph denoted by G(V, A),
where V is a set of IV nodes corresponding to brain Rols,
and A € Rf *N' s the symmetric adjacency matrix with
A;; = Aj;; > 0 representing the structural connection
strengths between Rols ¢ and j. The graph Laplacian matrix
is defined as L := D — A, where D is the diagonal degree
matrix. The symmetric Laplacian L can be further decomposed
as L = UAUT, where U € RY*N denotes the set of
orthonormal eigenvectors and A contains all eigenvalues on
its diagonal. The eigenvectors U serve as a graph Fourier
basis [29]. Consider a vertex-valued signal x € RY, where
x; denotes the signal value at Rol ¢, e.g., nodal attributes or
features on the brain FC (or SC) network. With the graph
Fourier transform (GFT) of x given by x = UTx [29], [30],
the graph convolution can be defined as

K K
Hx = (> hL)x=U(}_ hA)U'x=UHX, ()
1=0 =0

where H = ZiK:O h;L¢ is the graph filter with coefficients
h:= [ho,...,hk]" and frequency response H = Zfio h;A*.
Graph convolutional networks are then neural network archi-
tectures with stacked layers of graph convolutional filters (1)
and pointwise nonlinear activation functions [31].

Uhttps://www.humanconnectome.org/

Adoption of first-order (X = 1) graph convolutional filters
was advocated for the GCN model in [14], working with the
degree-normalized Laplacian D~/2LD~!/2 and a suitable
reparametrization of the filter coefficients so that (1) simplifies
to (I stands for the N x N identity matrix)

Hx = 0(Iy + D™Y/2AD1/2)x. )

This motivates a simple per-layer filtering update imple-
mented to refine the nodal embeddings, namely

X — ReLU (AX“-U@“)) : 3)

where A = Iy + D71/2AD1/2, X ¢ RNxde gpe
the nodal representations at layer ¢, and O ¢ Re—1xde
stores the learnable parameters of d, filters acting on dy_;
input features. For the encoder of the proposed Siamese GRL
pipeline, we leverage GCN layers in (3) due to their simplicity
and satisfactory performance [14], [32], [33]. By stacking
multiple layers, the GCN-based encoder is capable to integrate
multi-hop information, making it suitable to capture both direct
and indirect interactions over brain SC networks [13], [26].

B. Problem statement and Siamese model architecture

Given brain SC networks, the twofold goal is to build and
train a model to: (i) reconstruct FC networks using learnt node
embeddings; and (ii) learn whole graph representations that
approximately preserve some pre-defined similarity measure
between pairs of input graphs. The learnt representations then
contain information of both population patterns while they
also capture some degree of subject-level variability. To this
end, we propose a supervised Siamese network with two sister
graph encoder-decoder pipelines as shown in Figure 1.

Taking as input a brain SC network whose N nodes rep-
resent brain Rols, the encoder generates a lower-dimensional
representation for each node. Among various node embedding
models, neighbor aggregation methods such as GCN are
permutation-invariant and inductive [17]. As a result, a multi-
layer GCN is used in the encoder to generate latent variables
that consolidates both nodal attributes such as the known
intrinsic properties of each brain region, and the network
topology information like the connection strengths among
regions in SC networks. In the Siamese framework, the two
sister GCN encoders share the same learnable weights and
for each encoder, the input is a subject’s SC network A
and the corresponding feature matrix X € RM*T  where
each row represents a nodal attribute of length 7. Following
the re-normalization idea in [14], the normalized adjacency
matrix is A := D"1/2AD~1/2, where A := Iy + A and
D = diag(A1) is the degree matrix of A. Identity matrix is
added to the input graph A to introduce self loops to assure
that the attribute on the node itself also contributes to the new
node embedding during graph convolution. Inspired by [17],
[32], we concatenate node embeddings learnt in intermediate
GCN layers £ = 1,..., L —1, thus forming X € RV*2¢de,
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Fig. 1: The Siamese GRL architecture. The inputs are a pair of SC networks A;, A; and optional nodal attributes. Graph
convolution/information propagation occurs within the GCN encoder. The sister GCN encoders share the same learnable
weights. Rows in X(F) are low-dimensional node embeddings at the final layer of the GCN encoder. An outer-product
decoder reconstructs the FC network 3 and thus implicitly models the SC-to-FC mapping. Given graph (i.e., subject)-level
representations h;, h; obtained via pooling, their similarity is computed using the cosine similarity.

For the FC reconstruction objective of the GRL architecture
in Figure 1, node embeddings X go through an outer product
decoder

3 = ReLU(XX() (4)

to generate a predicted FC adjacency matrix 3. The mean
squared error (MSE) between the reconstructed graph 3 and
the empirical FC ¥ of each input subject, averaged over a
training set and denoted as £MSE(2, 3.), is used as reconstruc-
tion loss for training the regression branch of the model. In the
current setup described in Section III-A, FC networks contain
few negative edges with much smaller magnitude compared
with the vast amount of positive edges. To avoid such data
imbalance problem, we remove all negative FC connections
and restrict FC weights to the range [0, 1] as in other studies
on FC [34], [35].

Given the node embeddings X, we further obtain whole
graph embeddings by taking the row-wise average of all the
node embeddings. This representation h; can be viewed as a
summary (in latent space) of the SC-FC coupling of subject :.
Node-wise average pooling is a simple yet effective procedure
which has been used in many studies; see e.g. [15]. For
the input graph pairs {A;, A;} fed to the Siamese network,
the learnt representations h;, h; shall exhibit high similarity
(quantified by the cosine similarity s(h;, h;)) if the input
graphs share the same labels [; = [; (i.e both are non-
drinkers, or drinkers). On the other hand, when the input
graphs have different labels, we expect to train the model to
output embeddings that are comparatively less similar. To this
end, with N, pairs of graphs with the same labels and N, pairs
with different labels, we implement the pairwise similarity
global loss function in [22], [36]

Lsiv = (02" +07) +w x max(0,m — (u™ —p7)) (5)

which minimises the mean similarity between embeddings
of different classes p~ = Y s(h;,h;)/Ng,l; # I; and
maximises the mean similarity between embeddings of the
same classes ' = > s(h;, h;) /N, l; = ;. At the same time,
the variance of similarities within and between classes are
also minimized. The margin between the means of matching
and non-matching pairs is denoted by m, and w tunes the
balance between the mean and variance terms. The overall
loss function is

L= Loy + A X Lyse (2, ), (6)

where hyperparameter A controls the trade-off between FC
reconstruction and similarity estimation. By training the model
end-to-end, we aim to strike the right balance between FC re-
construction and similarity estimation and achieve satisfactory
performance on both objectives.

III. NUMERICAL TEST

In this section, the performance of the proposed Siamese
architecture is evaluated on a real-world neuroimaging dataset,
and compared with our previous work on the same dataset.

A. Neuroimaging data

We adopt a neuroimaging dataset with P = 412 subjects
from the Human Connectome Project (HCP) [37], [38]. The
cohort is partitioned into two classes: 191 non-drinkers and
221 heavy drinkers according to information available on the
lifetime maximum number of drinks had in a single day. The
threshold is set to 21. The Desikan-Killiany atlas is used to
specify brain Rols [39]. Hence, V in both FC and SC networks
correspond to N = 68 cortical surface regions, with 34 nodes
in each hemisphere. The SC network A of each subject is
extracted from the dMRI and structural MRI data [40], [41].
Brain functional activities are given by the resting-state BOLD
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TABLE I: Subject classification performance

Model
Siamese model
End-to-end model in [13]

F score
0.7391 + 0.016
0.6962 4+ 0.030

Accuracy
0.6843 + 0.016
0.6610 £ 0.043

signals measured using fMRI. Brain FC networks 3 are then
constructed so that edge weights are the Pearson correlation
coefficient between the BOLD signals at the incident Rols.
Currently we use one-hot encoding to define graph signals
as X = Igs. Additional information regarding specific brain
anatomical features, e.g. volumes, can be integrated into the
nodal features to bring in add-on advantages, which we leave
for future work.

B. Implementation

The proposed model is implemented in TensorFlow. We opt
to choose the same GCN encoder architecture as in [13] which
contains 3 layers with dimensions of 32 x 16 x 8. Xavier
initialization [42] was used to initialize the weight coefficients
©. )\ is set to be 0.2 in (6) via grid search, and m = w = 1 in
(5). We carry out a 5-fold cross validation where each time the
whole dataset is partitioned randomly into 60% training, 20%
validation and 20% testing set. From graphs in the training
set, all the possible pairs are generated and fed to the Siamese
model to learn representations that reconstruct FC from in-
put SC and simultaneously maximize/minimize the similarity
between input graphs if they have same/different labels. To
avoid overfitting, early stopping is applied to monitor the
performance on validation sets, and to stop the training once
the performance is not improving in the last 10 training epochs.
The Adam [43] optimizer is used with learning rate 0.001.

C. Results

During testing, the learnt representations of all the graphs
in the training set and validation set (with known labels) are
combined to establish a selection pool in the vector space.
Each graph in the test set goes through the encoder to generate
its low-dimensional representation. We locate its position in
the vector space, and classify it by a majority vote of its closest
5 neighbors measured by the cosine similarity between their
embeddings. Repeat this process for each test set of the 5
folds, and the overall classification performance across all test
sets is given in Table L.

Table I shows that the proposed Siamese framework out-
performs our previous work where we proposed a supervised
graph representation learning model that reconstruct FC from
SC and conduct subject classification via a logistic regression
classifier [13]. This indicates that by building the Siamese net-
work and training it with graph pairs significantly increase the
amount of training data, leading to the superior performance
in subject classification. In addition, the training objective of
similarity estimation is more directed to the distinguishing of
subjects’ labels in the vector space, and by utilizing the global
loss function from [36], the similarity metric is optimally
estimated for graph representations of subjects with the same
labels, and with different labels. Since in [13] we already

Subject type
Non drinker
Drinker

(b) Model in [13]

(a) Proposed

Fig. 2: Visualization of the learnt graph representations via t-
SNE algorithm. Clear separation is observed between red cir-
cles of non-drinkers and blue triangles of drinkers, indicating
the effectiveness of the proposed Siamese network to capture
subject uniqueness. Circles within each group are closer to
each other on the left, indicating the advantage of the similarity
estimation proposed in this work.

reveal that the SC-FC coupling, captured by the regression
branch in Figure 1, helps achieve better classification perfor-
mance, here we only compare with the reported results in [13]
to reflect the advantage of the proposed Siamese network plus
the metric learning procedure of similarity estimation.

Visualizing the embeddings on a two-dimensional space is a
popular way to assess the representation learning performance.
To this end, we select the model trained using the data
from one of the 5 folds that offers the highest classification
accuracy on the test set, and put all the 412 graphs through
the GCN encoder to generate 412 embeddings. Via the t-SNE
algorithm [27], we plot these embeddings on the 2-D plane
shown in Figure 2a. It is obvious that a nice separation exists
between the drinkers represented by the blue triangles, and
the non-drinkers of the red circles. Compared with [13] in
Figure 2b, the representations in Figure 2a are closer within
each group, which is the expected result from the similarity
learning. Such visualization further verifies the discriminative
power of the proposed Siamese network trained with similarity
estimation between graph representations.

IV. CONCLUSION

In this work, we propose a Siamese network framework
that consists of two sister graph encoder-decoder pipelines.
Besides reconstructing FC networks from SC which captures
the SC-FC coupling, the Siamese architecture also entails a
metric-learning mechanism where we manage to learn graph
representations that are more similar if the input graphs have
the same labels (i.e. drinking habits), and are less similar if
they have different labels. Such modification in the GRL model
architecture significantly increases the amount of training
data, and the learnt similarity-preserving representations offer
more discriminative power to distinguish drinkers from non-
drinkers. Experiments on a large cohort of subjects from HCP
reveal superior performance on subject classification than our
previous work, suggesting the prospect of leveraging graph-
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level, similarity-preserving embeddings to measure SC-FC
coupling for brain network analysis. Future work shall be de-
voted to further exploit the power of the Siamese network. For
example, the margin that measures the difference between the
means of matching and non-matching pairs can be designed
to reflect more intrinsic differences between drinkers and non-
drinkers, or the differences within the FC networks between
input subjects.
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