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AbstractÐWe propose a deep learning solution to the inverse
problem of localizing sources of network diffusion. Invoking
graph signal processing (GSP) fundamentals, the problem boils
down to blind estimation of a diffusion filter and its sparse
input signal encoding the source locations. While the observations
are bilinear functions of the unknowns, a mild requirement on
invertibility of the graph filter enables a convex reformulation
that we solve via the alternating-direction method of multipliers
(ADMM). We unroll and truncate the novel ADMM iterations,
to arrive at a parameterized neural network architecture for
Source Localization on Graphs (SLoG-Net), that we train in an
end-to-end fashion using labeled data. This way we leverage
inductive biases of a GSP model-based solution in a data-
driven trainable parametric architecture, which is interpretable,
parameter efficient, and offers controllable complexity during
inference. Experiments with simulated data corroborate that
SLoG-Net exhibits performance in par with the iterative ADMM
baseline, while attaining significant (post-training) speedups.

Index TermsÐGraph signal processing, network diffusion,
deep learning, blind deconvolution, algorithm unrolling.

I. INTRODUCTION

We study the problem of localizing sources of network

diffusion, which can be cast as one of blind graph filter

identification [23], [26]. To fix ideas, suppose we observe

P graph signals {yi}
P
i=1 that we model as outputs of some

diffusion graph filter, i.e., a polynomial in the graph-shift

operator of a known graph G [7], [15], [20]. The goal is to

jointly identify the filter coefficients h and the input signals

{xi}
P
i=1 that generated the network observations. This inverse

problem broadens blind deconvolution of temporal or spatial

signals to graph domains [1], [12], [24]. Since the resulting

bilinear inverse problem is ill-posed, we assume that the inputs

are sparse ± a natural setting when few source nodes inject

a signal that spreads through the network [23]. Applications

of source localization on graphs include sensor-based environ-

mental monitoring (where is the epicenter?), opinion formation

in social networks (who started the rumor?), neural signal

processing (which brain regions were activated post stimuli?),

epidemiology (who is patient zero for the disease outbreak?),

or disinformation campaigns (which accounts instilled fake

news?). In this paper, we propose a novel data-driven deep

learning (DL) solution to this source localization problem.

Prior art, proposed approach and contributions. Unlike

most existing works dealing with source localization on

graphs, e.g., [17], [21], [28], similar to [16], [23], [26] the

advocated approach brings to bear the graph signal processing

(GSP) toolbox [15]. A noteworthy GSP method was put forth
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in [23], which casts the (bilinear) blind graph filter identifi-

cation task as a linear inverse problem in the ªliftedº rank-

one, row-sparse matrix xh⊤; see also [1], [13] for seminal

blind deconvolution work via convex programming. While the

rank and sparsity minimization algorithms in [19], [23] can

successfully recover sparse inputs along with low-order graph

filters, reliance on matrix lifting can hinder applicability to

large graphs. Beyond this computational consideration, the

overarching assumption of [23] is that the inputs {xi}
P
i=1 share

a common support. Other works adopt probabilistic models of

network diffusion, and resulting maximum-likelihood source

estimators can only be optimal for particular (e.g., tree)

graphs [17], or rendered scalable under restrictive dependency

assumptions [6]. Relative to [10], [16], the proposed frame-

work can accommodate signals defined on general undirected

graphs and relies on a convex estimator of the sparse sources

of diffusion, which here we favorably exploit to design a DL

architecture as well as to generate training examples.

In this context, our starting point is the model-based blind

graph filter identification formulation in [26]. A mild re-

quirement on invertibility of the graph filter facilitates an

efficient convex formulation for the multi-signal case with

arbitrary supports (Section III); see also [24] for a time-domain

precursor. While [26] focused on fundamental identifiability

conditions and exact recovery guarantees, here we shift gears

to algorithmic issues and develop a solver based on the

alternating-directions method of multipliers (ADMM) [2, Ch.

3.4.4]. In Section IV we unroll and truntate the novel ADMM

iterations [14], [25], to arrive at a parameterized neural net-

work architecture for Source Localization on Graphs (SLoG-

Net), that we train in an end-to-end fashion using labeled data.

This way we leverage inductive biases of a GSP model-based

solution in a data-driven trainable parametric architecture,

which is interpretable, parameter efficient, and offers control-

lable complexity during inference. Experiments with simulated

data corroborate that SLoG-Net exhibits performance in par

with the iterative ADMM baseline, while attaining significant

(post-training) speedups (Section V). These preliminary tests

show promise and support the prospect of algorithm unrolling

for learning from network data; see also [4], [18]. Concluding

remarks are given in Section VI, which includes a discussion

about future research direction in this space.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a weighted and undirected network graph

G(V,A), where V is the set of vertices of cardinality |V| = N ,

and A ∈ R
N×N
+ is the symmetric adjacency matrix. Entries

Aij = Aij ≥ 0 denote the edge weight between nodes i
and j. As a more general algebraic descriptor of network
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structure, one can define a graph-shift operator S ∈ R
N×N as

a matrix with the same sparsity pattern as G [20]. Accordingly,

S can be viewed as a local, meaning one-hop, diffusion (or

averaging) operator. See [8], [15] for typical choices including

normalized variations of adjacency and Laplacian matrices.

Since S is symmetric, it is diagonalizable as S = VΛV⊤, with

Λ = diag(λ1, . . . , λN ). Lastly, a graph signal x : V 7→ R
N is

an N -dimensional vector, where entry xi represents the signal

value at node i ∈ V; see [15] for examples.

A. Graph filter models of network diffusion

Let y be a graph signal supported on G, which is generated

from an input state x via linear network diffusion, namely

y = α0

∏∞
l=1(IN − αlS)x =

∑∞
l=0 βlS

lx. (1)

While S encodes only one-hop interactions, each successive

application of the shift in (1) diffuses x over G. This model is

quite general and subsumes heat diffusion, consensus and the

classic DeGroot model of opinion dynamics [5].

The diffusion expressions in (1) are polynomials on S

of possibly infinite degree, yet the Cayley-Hamilton theo-

rem asserts they are equivalent to polynomials of degree

smaller than N . Upon defining the vector of coefficients

h := [h0, . . . , hL−1]
⊤ and the (convolutional) graph filter

H :=

L−1∑

l=0

hlS
l, (2)

the signal model in (1) becomes y =
(∑L−1

l=0 hlS
l
)
x := Hx,

for some particular h and L ≤ N . Due to the local structure

of S, graph filters represent linear transformations that can

be implemented in a distributed fashion [22], e.g., via L − 1
successive exchanges of information among neighbors in G.

Leveraging the spectral decomposition of S, graph filters

and signals can be represented in the frequency domain.

Specifically, let us use the eigenvalues of S to define the

N × L Vandermonde matrix ΨL, where Ψij := λj−1
i . The

frequency representations of a signal x and filter h are defined

as x̃ := V⊤x and h̃ := ΨLh, respectively. The latter follows

since the output y=Hx in the frequency domain is given by

ỹ = diag
(
ΨLh

)
V⊤x = diag

(
h̃
)
x̃ = h̃ ◦ x̃. (3)

This identity can be seen as a counterpart of the convolution

theorem for temporal signals, where ỹ is the elementwise

product (◦) of x̃ and the filter’s frequency response h̃.

B. Problem statement

For given shift operator S and filter order L, suppose

we observe P output signals collected in a matrix Y =
[y1, . . . ,yP ] ∈ R

N×P such that Y = HX, where X =
[x1, . . . ,xP ] ∈ R

N×P is sparse having at most S ≪ N
non-zero entries per column. The goal is to perform blind

identification of the graph filter (and its input signals), which

amounts to estimating sparse X and the filter coefficients h

up to scaling and (possibly) permutation ambiguities [26].

Sparsity is well motivated when the signals in Y represent

diffused versions of a few localized sources in G, here indexed

by supp(X) := {(i, j) | Xij ̸= 0}. Moreover, the non-

sparse formulation is ill-posed, since the number of unknowns

NP + L in {X,h} exceeds the NP observations in Y.

All in all, using (3) the diffused source localization task can

be stated as a feasibility problem of the form

find {X,h} s. to Y = Vdiag
(
ΨLh

)
V⊤X, ∥X∥0 ≤ PS,

(4)

where the ℓ0-(pseudo) norm ∥X∥0 := |supp(X)| counts the

non-zero entries in X. In words, we are after the solution to a

system of bilinear equations subject to a sparsity constraint in

X; a hard problem due to the non-convex ℓ0-norm as well as

the bilinear constraints. To deal with the latter, similar to [24],

[26] we will henceforth assume that the filter H is invertible.

Suppose that X is a realization drawn from some distri-

bution of sparse matrices, say the Bernoulli-Gaussian model

for which one can establish (4) is identifiable [26, Remark 1].

Likewise, suppose the filter taps h are drawn from a distribu-

tion such that H is invertible with high probability. Then given

independent training samples T := {Xi,Yi}
|T |
i=1 adhering to

(1), our goal in this paper is to learn a judicious parametric

mapping that predicts X̂ = Φ(Y;Θ) by minimizing a loss

function

L(Θ) :=
1

|T |

∑

i∈T

ℓ(Xi,Φ(Yi;Θ)), (5)

where Θ are learnable parameters. The particular choice of ℓ
will be discussed in Section V.

III. MODEL-BASED SOURCE LOCALIZATION ON GRAPHS

Here we review the model-based solution to the blind graph

filter identification problem proposed in [26], which relies

on a convex relaxation of (4) when the diffusion filter is

invertible. Then we develop novel ADMM iterations to solve

said relaxation, which we unroll in Section IV to obtain the

SLoG-Net model that we train using data by minimizing (5).

A. Convex relaxation for invertible graph filters

Note from (3) that graph filter H is invertible if and only

if h̃i =
∑L−1

l=0 hlλ
l
i ̸= 0, for all i = 1, . . . , N . In words,

the frequency response of the filter should not vanish at the

graph frequencies {λi}. In such case one can show that the

inverse operator G := H−1 is also a graph filter on G, which

can be uniquely represented as a polynomial in the shift S of

degree at most N−1 [20, Theorem 4]. To be more specific, let

g ∈ R
N be the vector of inverse-filter coefficients, i.e., G =∑N−1

l=0 glS
l. Then one can equivalently rewrite the generative

model Y = HX for the observations as

X = GY = Vdiag(g̃)V⊤Y, (6)

where g̃ := ΨNg ∈ R
N is the inverse filter’s frequency

response and ΨN ∈ R
N×N is Vandermonde. Naturally,

G = H−1 implies the condition g̃ ◦ h̃ = 1N on the frequency

responses, where 1N denotes the N × 1 vector of all ones.

Leveraging (6), one can recast (4) as a linear inverse problem

min
{X,g̃}

∥X∥0, s. to X = Vdiag(g̃)V⊤Y, X ̸= 0. (7)
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The ℓ0 norm in (7) makes the problem NP-hard to optimize.

Over the last decade or so, convex-relaxation approaches to

tackle sparsity minimization problems have enjoyed remark-

able success, since they often entail no loss of optimality.

Accordingly, we instead: (i) seek to minimize the ℓ1-norm

convex surrogate of the cardinality function, that is ∥X∥1 =∑
i,j |Xij |; and (ii) express the filter in the graph spectral

domain as in (6) to obtain the cost

∥X∥1 = ∥GY∥1 = ∥Vdiag(g̃)V⊤Y∥1 = ∥(Y⊤V ⊙V)g̃∥1,

where ⊙ denotes the Khatri-Rao (i.e., columnwise Kronecker)

product. This suggests solving the convex ℓ1-synthesis prob-

lem (in this case a linear program), e.g., [27], namely

̂̃g = argmin
g̃∈RN

∥(Y⊤V ⊙V)g̃∥1, s. to 1⊤
N g̃ = 1. (8)

While the linear constraint in (8) avoids the trivial solution ̂̃g =
0, it also serves to fix the scale of the estimated filter. Once the

frequency response ̂̃g of the inverse filter is recovered, one can

readily reconstruct the sources via vec[X̂] = (Y⊤V⊙V)g̃ as

well as the filter H, if desired.

As a result, under the pragmatic assumption that the diffu-

sion filter is invertible, one can readily use e.g., an off-the-shelf

interior-point method or a specialized sparsity-minimization

algorithm to solve (8) efficiently.

B. ADMM algorithm

Problem (8) can be solved using the ADMM. Let x =
vec[X] ∈ R

NP and denote Z := Y⊤V ⊙ V. Using variable

splitting, problem (8) can be equivalently written as

min
{x,g̃}

∥x∥1, s. to Zg̃ − x = 0NP , 1⊤
N g̃ = c, (9)

where c = 1, but will henceforth treat it as a generic constant

in case we want to adjust the scale of g̃. Associating dual

variables λ and µ to the equality constraints in (9), the

augmented Lagrangian function of the problem becomes

Lρ(x, g̃,λ, µ) = ∥x∥1 +
ρλ
2
∥Zg̃ − x+ λ/ρλ∥

2
2

+
ρµ
2
(1⊤

N g̃ − c+ µ/ρµ)
2, (10)

where ρλ and ρµ are non-negative penalty coefficients. Letting

Γ := ρλZ
⊤Z+ ρµ1N1⊤

N for notational convenience, then the
ADMM [2], [3] update rules are given by (k = 0, 1, 2, . . . will
henceforth denote iterations)

g̃[k + 1] = Γ
−1

[

Z
⊤(ρλx[k]− λ[k]) + (ρµc− µ[k])1N

]

, (11)

x[k + 1] = S
ρ
−1
λ

(Zg̃[k + 1] + λ[k]/ρλ), (12)

λ[k + 1] = λ[k] + ρλ(Zg̃[k + 1]− x[k + 1]), (13)

µ[k + 1] = µ[k] + ηµ(1
⊤

N g̃[k + 1]− c). (14)

The soft-thresholding operator Sρ
−1
λ

(·) in (12) acts

component-wise on the entries of its vector argument. Dif-

ferent from the solvers in [19], [23], the provably convergent

ADMM updates are free of expensive singular-value decom-

positions per iteration. The inversion of the N × N matrix

Γ is done once, and Γ−1Z⊤, Γ−11N are cached to run the

iterations.

In the next section, we unroll the ADMM iterations (11)-

(14) to arrive at the trainable parametric model Φ(Y;Θ).

IV. LOCALIZING SOURCES VIA ALGORITHM UNROLLING

The idea of algorithm unrolling was introduced in [9].

In the context of sparse coding, [9] advocated identifying

iterations of proximal-gradient algorithms with layers in a

deep network of fixed depth that can be trained from examples

using backpropagation. One can view this process as effec-

tively truncating the iterations of an asymptotically convergent

procedure, to yield a template architecture that learns to

approximate solutions with substantial computational savings

relative to the optimization algorithm. Beyond parsimonious

signal modeling, there has been a surge in popularity of

unrolled deep networks for a wide variety of applications; see

e.g., [14]. Most relevant to our approach is the unrolling of

ADMM iterations for undersampled image reconstruction [25],

and recent advances to learn from graph data [4], [18].

We construct the SLoG-Net architecture by unrolling the

iterations (11)-(14) into a deep neural network. This entails

mapping individual update rules as sub-layers within a layer,

and stacking a prescribed number K of layers together to form

Φ(Y;Θ). The ADMM penalty coefficients {ρλ, ρµ} will be

treated as learnable parameters in Θ. In designing SLoG-Net’s

sub-layers, we will introduce additional parameters to broaden

the model’s expressive power. We will also forgo the parameter

sharing constraint imposed by the unrolled ADMM iterations.

Filter sub-layer. This sub-layer refines the inverse filter

coefficient estimate g̃[k] at layer k, based on the source

estimates x[k− 1] and the dual variables {λ[k− 1], µ[k− 1]}
from the previous layer. We mimic the g̃ update in (12),

and introduce some minor tweaks. To circumvent problems

with the inversion of Ψ in the eventuality ρλ = ρµ = 0
during training, we introduce change of variables ρ1 := 1/ρλ
and ρ2 := ρµ/ρλ and impose non-negativity constraints on

both parameters. Besides, we consider different parameters

{ρ
(k)
1 , ρ

(k)
2 }Kk=1 across layers to increase the network capacity,

thus obtaining [cf. (11)]

g̃[k + 1] = (Z⊤Z+ ρ
(k)
2 1N1⊤

N )−1
[
Z⊤(x[k]− ρ

(k)
1 λ[k])

+(ρ
(k)
2 c− ρ

(k)
1 µ[k])1N

]
, (15)

where ρ
(k)
1 , ρ

(k)
2 ≥ 0, for k = 1, . . . ,K. Once training

concludes, the matrix inverse and its products with Z⊤ and

1N can be precomputed and cached for fast inference.

Sources sub-layer. Here we update the source estimates x[k]
based on g̃[k] in (15) and the multiplier λ[k−1]. The sub-layer

imitates (13), but instead of a single tunable parameter ρλ we

introduce learnable combination weights {α
(k)
1 , α

(k)
2 }Kk=1 and

thresholds {τ (k)}Kk=1. We propose [cf. (12)]

x[k + 1] = Sτ (k)

(
α
(k)
1 Zg̃[k + 1] + α

(k)
2 λ[k]

)
, (16)

where the thresholds are naturally constrained as τ (k) ≥ 0 for

k = 1, . . . ,K. Notice how (16) implements a simple linear

filter followed by a point-wise nonlinear activation, which is

reminiscent of vanilla neural network layers.

Multiplier sub-layer. In this simple linear sub-layer, we per-

form parallel updates of the Lagrange multipliers {λ[k], µ[k]}
by combining {λ[k − 1], µ[k − 1]} and the primal variable
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inputs {g̃[k],x[k]}. The combination weights are learnable

parameters {β
(k)
1 , β

(k)
2 , β

(k)
3 }Kk=1 and {γ

(k)
1 , γ

(k)
2 , γ

(k)
3 }Kk=1, re-

sulting in [cf. (13)-(14)]

λ[k + 1] = β
(k)
1 λ[k] + β

(k)
2 Zg̃[k + 1] + β

(k)
3 x[k + 1], (17)

µ[k + 1] = γ
(k)
1 µ[k] + γ

(k)
2 1⊤

N g̃[k + 1] + γ
(k)
3 c. (18)

In closing, we note that the intial states {x[0],λ[0], µ[0]}
can be: (i) used as a means to incorporate prior information

(especially on the source locations x); (ii) randomly initialized

as we do in the ensuing experiments; or (iii) learned from data

along with Θ as it is customary with recurrent neural networks

(RNNs). Going all the way to layer K, source location predic-

tions are generated as Φ(Y,Θ) = unvec[(Y⊤V ⊙V)g̃[K]].
Inspection of SLoG-Net’s sub-layers leads to a parameter

count of |Θ| = 11 ×K, independent of the problem dimen-

sions N and P . Parameter efficiency is a well-documented

feature of unrolled architectures [14]. Given a training set

T := {Xi,Yi}
|T |
i=1 of e.g., syntethic data, or, real signals

Yi and source estimates obtained using ADMM, learning is

accomplished by using mini-batch stochastic gradient descent

to minimize the loss function L(Θ) in (5). Further training

details, including the specification of the loss, are outlined in

the following numerical evaluation section.

V. PRELIMINARY NUMERICAL EXPERIMENTS

We present preliminary numerical results on a source local-

ization task, using simulated data and a random graph.

Synthetic data generation. The graph shift operator is se-

lected as the normalized adjacency matrix S = D− 1
2AD− 1

2 ,

where D := diag(A1N ) is the diagonal matrix of node

degrees and A is a realization of an Erdos-Renyi random

graph with N = 20 and p = 0.3. For |T | = 64000, we

generate sparse X ∈ R
N×|T | adhering to the Bernoulli-

Gaussian model. Specifically, X = Ω◦R, where Ω ∈ R
N×|T |

is an i.i.d. Bernoulli matrix with parameter θ = 0.2 (i.e.,

P (Ωij = 1) = θ), and R ∈ R
N×|T | is an independent

random matrix with i.i.d. symmetric random variables drawn

from a standard Gaussian distribution. Realizations of filter

coefficients h are generated as h = (e1 + αb)/∥e1 + αb∥1,

where e1 = [1, 0, . . . , 0]⊤ ∈ R
L is the first canonical basis

vector and entries of b ∈ R
L are drawn independently from

a standard Gaussian distribution. We have shown in [26] that

recovery is harder for ªless-impulsiveº filters, so we focus on

a challenging instance where α = 1.

For each training epoch, the training samples in T are

randomly split into Q = 1600 mini-batches of Pb = 40
signals, namely {Xq}

Q
q=1 ∈ R

N×Pb . We sample Q graph

filter coefficients {hq}
Q
q=1 (with L = 3, α = 1) and randomly

assign them to the input signal mini-batches to generate the

observations Yq = Vdiag(ΦLhq)V
⊤Xq , q = 1, . . . , Q. We

use a validation set Xval of size Pval = 0.01 × |T | = 640,

with observations Yval = Vdiag(ΨLhval)V
⊤Xval, where hval

is also generated from the same distribution as {hq}
Q
q=1.

Training details. We train SLoG-Net with K = 5 layers and
use the normalized root mean square error (NRMSE) of X as

0 20 40 60 80
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Fig. 1. Recovery performance for SLoG-Net with K = 5 layers and Ptest =
100 observations. (A) Diffused signals Ytest. (B) Ground-truth sparse sources

Xtest. (C) SLoG-Net predictions Φ(Ytest; Θ̂). (D) Frequency response of the

inverse filter g̃test (blue) and recovered inverse filter coefficient ˆ̃gtest (red).
The predictions are quite accurate. The relative error of the recovered Xtest

and g̃test are 0.090 and 0.086, respectively.

loss function. Notice that if {X̂, ĥ} is a solution to the bilinear

problem, then so is {−X̂,−ĥ} and accordingly we minimize

L(Θ) =

Q
∑

q=1

min

(

∥Φ(Yq;Θ)−Xq∥F
∥Xq∥F

,
∥Φ(Yq;Θ) +Xq∥F

∥Xq∥F

)

using the Adam optimizer [11] implemented in PyTorch.

We initialize {ρ
(k)
1 , ρ

(k)
2 , τ (k)}Kk=1 as i.i.d. samples from the

uniform distribution in [0, 1], since these parameters are con-

strained to be non-negative. All other parameters in Θ are

randomly drawn from a standard Gaussian distribution.

We consider 30 epochs for training. In each epoch, we

estimate the sparse sources {Φ(Yq; Φ̂q)}
Q
q=1 using the training

batches {Yq;Xq}
Q
q=1. We choose one batch out of every 200

batches to compute the loss on the validation set {Yval;Xval}
and record both the value of loss and the network parameters.

In the end, we select the model Θ̂ that has minimum validation

loss across the entire training process.

Comparisons with the ADMM algorithm. For test-

ing, we generate a test set {Xtest,htest} where N =
20, Ptest = 100. Fig. 1 depicts the diffused signals Ytest =
Vdiag(ΦLhtest)V

⊤Xtest that were fed as inputs to the trained

SLoG-Net model, the ground-truth sources Xtest and the

predictions Φ(Ytest; Θ̂), as well as the recovered frequency

response of the inverse filter ˆ̃gtest. Visual inspection confirms

the predictions are quite accurate.

SLoG-Net is also compared with the model-based convex

optimization approach in [26] using the ADMM solver de-

veloped in this paper. We consider two figures of merit to

carry out the comparisons. Firstly, we consider the relative

error (RE) given by ∥Φ(Ytest; Θ̂)−Xtest∥F /∥Xtest∥F . We also
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Fig. 2. Recovery performance of SLoG-Net (K = 5) and the model-based
ADMM, or θ = 0.2 and different values of Ptest. (top) Mean relative error of

recovered X̂ via SLoG-Net (blue) and ADMM (red). (Bottom) Mean accuracy

in identifying the support of X̂ for a threshold κ = 0.1 via SLoG-Net (blue)
and ADMM (red). The shaded region indicates the corresponding standard
deviation. The mean elapsed time to form a prediction of the input signals
(20 nodes × 100 observations) via a single forward of SLoG-Net and ADMM
iterations are 0.005s and 0.067s, respectively.

compute the accuracy in recovering the support of Xtest, i.e.,

the source locations. To identify the support, we introduce a

thresholding approach suppκ(·) with threshold κ that if the

entry of the recovered signal satisfies |[Φ(Ytest; Θ̂)]ij | ≥ κ,

the index pair (i, j) will be considered a member of the

estimated support. Accordingly, the recovered signal support

is Îtest := suppκ(Φ(Ytest; Θ̂)). We also apply the threshold

to the ground-truth sources so the sought support set is

Itest := suppκ(Xtest). Fig. 2 depicts the mean relative error

(MRE) and mean accuracy of SLoG-Net and ADMM across

50 realizations, for θ = 0.2, κ = 0.1 and different values of

Ptest. Apparently, the MRE and mean accuracy performance of

SLoG-Net is on par with that ADMM. Notice that recovering

the sources of network diffusion and the filter coefficients only

requires a single forward pass through the neural network,

while ADMM requires hundreds of iterations to converge. To

reconstruct the test signal of size N = 20, P = 100, the

mean elapsed time (over 50 realizations) is about 0.005s and

0.067s for SLoG-Net and ADMM, respectively. This (post-

training) order-of-magnitude speed-up is likely to become

more pronounced as the problem size grows.

VI. CONCLUSIONS AND FUTURE WORK

We developed SLoG-Net, a novel deep learning approach

to tackle the challenging problem of localizing sources of

network diffusion. The unrolled architecture fruitfully lever-

ages inductive biases stemming from model-based ADMM

iterations, is parameter efficient, and can offer controllable

complexity after training. Our promising preliminary results

with simulated data demonstrate that SLoG-Net exhibits per-

formance on par with an iterative ADMM baseline, while

attaining order-of-magnitude speedups to generate predictions

for source localization. We also observe SLoG-Net transfers

well to problems with different number of observations from

what was used during training. Ongoing work includes ex-

panding our performance evaluation protocol to study robust-

ness to noise, generalization and transfer to larger graphs, as

well as tests with real brain, seismic, and epidemiological data.
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