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Abstract—The popular Random Dot Product Graph (RDPG)
generative model postulates that each node has an associated
(latent) vector, and the probability of existence of an edge between
two nodes is their inner-product (with variants to consider
directed and weighted graphs). In any case, the latent vectors may
be estimated through a spectral decomposition of the adjacency
matrix, the so-called Adjacency Spectral Embedding (ASE). As-
sume we are monitoring a stream of graphs and the objective is to
track the latent vectors. Examples include recommender systems
or monitoring of a wireless network. It is clear that performing
the ASE of each graph separately may result in a prohibitive
computation load. Furthermore, the invariance to rotations of
the inner product complicates comparing the latent vectors at
different time-steps. By considering the minimization problem
underlying ASE, we develop an iterative algorithm that updates
the latent vectors’ estimation as new graphs from the stream ar-
rive. Differently to other proposals, our method does not accumu-
late errors and thus does not requires periodically re-computing
the spectral decomposition. Furthermore, the pragmatic setting
where nodes leave or join the graph (e.g. a new product in the
recommender system) can be accommodated as well. Our code
is available at https://github.com/marfiori/efficient-ASE.

Index Terms—graph representation learning, node embed-
dings, graph sequence.

I. INTRODUCTION

There is an increasing interest in statistical analysis of data
stemming from networks that are observed sequentially [1]-
[3]. These may come from a social network (new users sign
up to the platform and followers are gained and lost over
time), a recommender system (new content is added and user’s
preferences are revealed over time) or a transportation network
(where the edges’ weight indicate the traffic intensity of a route
between two nodes at a given time).

One of the most popular statistical models to analyze a
single of such graphs G = (V, E) is the so-called Random
Dot Product Graph (RDPG) [4]. This model postulates that
each node is associated to a latent vector x; € R? (which is
unobserved and may be interpreted as an embedding) and the
probability of existence of an edge between nodes ¢ and j is the
inner product between x; and x;. The case of directed and/or
weighted graphs are easily accounted for through relatively
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simple variations of the base model. Including as particular
cases other generative models (such as Stochastic Block Mod-
els), its great expressiveness and the interpretability of the
resulting embeddings are the reasons behind its popularity.

Assume that we are observing a stream of graphs G,
and the objective is to track the underlying embedding for
all time-steps t. A naive approach would be to compute
separately for each ¢ the estimated embeddings. As we discuss
in some detail in the next section, these estimations are
obtained by computing the d most significant eigenvalues of
the adjacency matrix A; and their associated eigenvectors, a
procedure known as Adjacency Spectral Embedding (ASE).
As the graph size increases, computing the ASE for each graph
G, separately will result in an extremely computationally
expensive algorithm.

Furthermore, since it is defined in terms of the inner product,

it is easy to see that RDPG is invariant to rotations of the
embeddings. Thus, computing the ASE for each graph G,
separately may result in significantly different embeddings for
each t (i.e. rotated versions of the same embeddings), while
actually nothing changed on the underlying generative process.
Note that we may try to find the best alignment between
the previous and the current embedding (solving a so-called
Procrustes problem), but this approach will only worsen the
computational cost of the algorithm.
Proposed approach and contributions. Instead of computing
the eigenpairs, we revisit the underlying optimization problem.
Notice that the ASE is basically looking for the best d-
rank approximation of A; in terms of the Frobenius norm.
This interpretation along with recent advances in first-order
non-convex optimization allows us to address the problem
through Gradient Descent (GD). In particular, our proposal is
to compute the ASE of graph GG; by running a gradient descent
initialized on the embeddings of the previous time-step (i.e.
the ASE of G;_1). This warm started gradient descent method
maintains a certain alignment between the latent positions,
while at the same time converging in few iterations.

Furthermore, we also extend the method to the case where
new nodes appear in the network. This so-called inductive
learning is generally regarded as beyond the capabilities of
shallow embeddings as the one we are discussing here [5], [6,
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ch. 3.4]. However, a simple approximation through projection
may be used as the initialization of the new nodes in the
gradient descent method, thus enabling inductive learning in
the context of ASE without requiring the re-computation of
the eigenpairs.

Related work. The rotation ambiguity of RDPG has long
been recognized as a problem when estimating the embeddings
for several graphs. To address this issue, the Omnibus Em-
bedding [7] or the Unfolded Adjacency Spectral Embedding
(UASE) [8], [9] propose to compute the ASE of different
forms of concatentations of the adjacency matrices A;. For
instance, when estimating the embeddings of 7" matrices, the
Omnibus embedding requires computing the eigenpairs of a
matrix of size T'n x Tn (with n the number of nodes in the
graph), whereas UASE requires computing the Singular Value
Decomposition of an n x T'n one.

In addition to being enormously costly as 7' grows beyond
very small values, these techniques are designed for the batch
case, where we are able to observe the whole sequence of
graphs G;. In the streaming context as the one we consider
here, and since ASE may be regarded as computing the
eigenpairs, we may instead resort to classic methods that
recursively update these values as the adjacency matrix is
modified [10]. However, these algorithms are computationally
expensive except for specific types of changes (e.g. rank-1
modifications) and, as it has been pointed out in the literature
and we illustrate in our simulations, they accumulate error as ¢
increases [11] and are also susceptible to the rotation problem.

Finally, the problem of computing the ASE as new nodes are
introduced in the network has been studied in the context of
stringent memory requirements, where only the embeddings
are kept and a single new node is added [12]. In this case,
projecting the new column (of the adjacency matrix) to the
space spanned by the older embeddings produces asymptoti-
cally consistent estimates of the new node’s embedding. How-
ever, the underlying assumption is that the older embeddings
do not change over time, and as several nodes are added
to the network the error tends to accumulate too. We will
nevertheless use this estimate as the warm start of the new
nodes for our gradient descent method, thus improving on the
resulting precision as several nodes are added, while at the
same time permitting changes of the older nodes’ embedding.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Random dot product graphs

Consider an unweighted and undirected graph G = (V, E),
with nodes V' = {1,...,n} and edges E C V x V. In
this section, we will drop the time-step sub-index ¢ for the
sake of clarity. In the RDPG model each node ¢ € V has
an associated column vector x; € X C RY, and edge (i,j)
exists with probability x; x; (a particular case of the latent
space model [13]). Note that the set X’ of possible x; is such
that x 'y € [0,1], Vx,y € X. In general, vectors x; may be
random, drawn from a distribution in X.

Thus, letting A € {0,1}"*" be the random symmetric
adjacency matrix of G and X = [x1,...,%,]’ € R"*? the
matrix of latent vertex positions, the RDPG model specifies

P(A[X) =[] x) ™ (1= xx) . )
i<j

That is, given X, edges are conditionally independent with
A;; ~ Ber(x,x;). The RDPG model is a tractable yet
expressive family of random graphs that subsume Erdos-
Rényi (ER) and SBM ensembles as particular cases. Indeed,
if x; = /p Vi, we obtain an ER graph with edge probability
p. An SBM with M communities may be generated by re-
stricting X to having only (at most) M different columns (i.e.
|X| = M); see also [4] for additional examples. Furthermore,
the weighted case is easily accommodated by the model. In
this case, the inner-product between nodes’ embeddings is
equal to the mean of the weight’s distribution [14].

B. Inference on RDPG

Given a graph stemming from an RDPG with adjacency
matrix A, we now discuss how to estimate the matrix X of
latent vertex positions. In lieu of a maximum-likelihood esti-
mator that is intractable beyond toy graphs, the key intuition
is that A is a noisy observation of

P=XX", (2)

the matrix of edge probabilities p;;, since E [A |X] = P.
Therefore, and remembering that the diagonal entries of P
are zero, we want to solve the following problem [15]:
X € argmin [Mo (A — XX )2, 3)
X RN xd
Instead, the usual approach to obtain an approximate so-
lution of (3) is to slightly modify the problem in order to
avoid the zero-diagonal constraint (either by replacing the
main diagonal of A, or simply ignoring the constraint) [4]:

X € argmin ||A — XX |2, s. to rank(X) = d.  (4)
X

The solution to (4) is readily given by
X=QA"? (5)

where A = QAQT is the spectral decomposition of A,
A € R4 is a diagonal matrix with the d largest eigenvalues
of A, and Q € R"*? are the corresponding d dominant
eigenvectors. We are assuming that A has only non-negative
values, a limitation that may be easily circumvented [16].
Estimator (5) is known as the Adjacency Spectral Embedding
(ASE).

C. Problem statement and proposed solution

Assume we observe a stream of graphs G and the objective
is to estimate its embedding X,. Note that both the number
of edges as well as nodes may change between time-steps,
although we assume we can identify nodes at all time-steps
(e.g. they correspond to users in a social network or nodes in
a wireless network).
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In order to compute the new ASE Xt, we have the estimate
of the previous time-step Xt_l, which we would like to
compare to the new one (for instance, in the context of change-
point detection [14], visualization or any other downstream
task). As we discussed before, computing the eigenpairs for
each time-step separately is out of the question due to its com-
putational cost, as well as the potentially rotated estimates. An
alternative is to update these eigenpairs through the difference
in the adjacency matrix A; = A; — A;_; [10]. However, as
we will demonstrate through simulations in the next section,
this solution also suffers from the rotation ambiguity problem,
as well as accumulating errors as t grows.

Following the ideas first presented in [17], we propose
instead to reconsider the original optimization problem (3)
and solve it through GD instead of computing the eigenpairs.
Let us denote by X,[k] the k-th iteration of the algorithm
in time-step ¢ and by f : R"*¢ — R the objective function
f(X) = |M;o (A; — XXT)||2. The GD algorithm is then

Xt[k +1] = X, (k] — avf(xt[k])a

where o« > 0 is the step size and Vf(X) =
4 [Mt o (XXT — At)] X, for symmetric A; and M.

Note that the objective function depends on the product
XXT, and is convex when considering the variable Z =
XXT. In this context, this approach is sometimes called
factorized GD [18], or Procrustes flow [19], which has been
shown to converge with linear rate to the solution Xt of (3)
if the initial value X,[0] is close [18], [20].

Precisely, our idea is to initialize the GD by using X;[0] =
X,_1; i.e. the estimate of the previous time-step. Given the
above results, as long as the underlying embeddings do not
change dramatically between time-steps, the GD will converge
in few iterations to the new solution. Even if the embeddings
do change significantly at time-step ¢, the algorithm is guaran-
teed to converge except for some very specific initializations
which correspond to stationary points. In our experience this
pathological case has never occurred.

The question remains on how to proceed when nodes leave
or join the network. The former is straightforward, since we
may simply keep the rows of X, 1 corresponding to the nodes
that remain in the network at time-step ¢ and use that as an
initialization of the GD. The latter is more challenging.

Assume for clarity of the exposition that a single new node
i = n + 1 is added to the network at time-step . The
new adjacency matrix A; now has an extra row (column)
an+1 € {0,1}" (where the (n+ 1)-th coordinate, correspond-
ing to the diagonal of A, will be zero). Instead of randomly
initializing the new embedding X, 11, we project a, 1 to the
d-dimensional space spanned by the columns of X,_1. That
is to say:

k=0,1,2,... (6)

(Xt [O])n-‘rl = ap+1 X lt“inln7 (7)

where X?‘l”{l is the column-wise normalized version of Xt, 1.

For the rest of the entries of X, [0] we use X,_; as before.
This initialization has the advantage of being very simple

and it is actually a consistent estimator of the true new x, 41

X,att:l.
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Fig. 1. The embeddings corresponding to the first two time-steps of our
method (left) and by updating the corresponding eigenpairs through a classic
iterative method [10] (right) when in a two-class SBM a single node changes
affiliation at each t. Note how the change of a single node produces
significantly different results for [10], whereas our method provides stable
results.

as n — oo [12]. Note however that if m > 1 nodes are
added to the network at time-step ¢, this initialization alone
will forcefully ignore the information contained in the links
between the new nodes. Furthermore, even if nodes are added
one at a time, the error introduced in the estimation of the
first X, will negatively impact the estimation error of the
successive Xt. In a nutshell, running GD initialized at (7) will
both include information of the new nodes to correct the old
estimates X,_1 as well as the interconnection between these
new nodes. This will be further illustrated in the next section.

III. NUMERICAL TESTS
A. Simulated data

Embeddings’ stability. Let us first consider a relatively simple
case, where the number of nodes is fixed but the underlying
embeddings change. In particular, we will consider an SBM
graph with n = 200 nodes and two communities. At each time-
step t a single randomly chosen node changes affiliation to the
other community. The resulting embeddings of our method for
the first two time-steps are displayed on the left of Fig. 1. See
how effectively the embedding of a single node is moved from
one community to the other, while the rest of the embeddings
remain virtually unmoved.

Furthermore, the figure also displays on the right the result
of applying the method described in [10] to re-compute
the ASE at the same time steps. This is a classic iterative
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Fig. 2. The error in estimating the probability matrix using our method and
the one described in [10] when in a two-class SBM a single node changes
affiliation at each ¢. Note how our method produces approximately the same
error, whereas the method in [10] accumulates error as ¢ progresses.

method that updates the d most significant eigenpairs based
on A; = A; — A;_,. Note how, similarly to re-computing
the ASE at each time-step, a single node may produce sig-
nificantly different embeddings (i.e. rotations). Furthermore,
and in addition to these rotations, since this method updates
only the d most significant eigenpairs, the error in terms of
|X;XT — P,||r also increases with . This is shown in figure
2, and it is a known drawback of this kind of methods [11].
On the other hand, and as illustrated in the same figure, our
method produces estimates with a constant error as expected.
Nodes’ addition. An apparent drawback of analyzing a stream
of graphs using a spectral decomposition such as ASE is its
inability to deal with the inductive setting. As new nodes join
the network, it is indeed not clear at all how to compute their
embeddings, except by performing a complete re-computation
of all the nodes.

However, this is not the only possibility, and as we dis-
cussed before we may obtain a first approximation of these
embeddings by projecting the new rows of the adjacency
matrix to the space spanned by the current embeddings (c.f.
equation (7)) [12]. But using this approximation alone has
at least three drawbacks. First of all, the new nodes are
not used to improve on the estimate of the older nodes’
embeddings (e.g. in an SBM, if the new nodes belong to
the same community as some of the older ones, the resulting
estimation should have a smaller variance [4]). Secondly, the
interconnection between the new nodes is disregarded in this
estimation. And lastly, the implicit assumption is that the older
nodes’ embedding do not change.

Our proposal is to initialize the embeddings of the nodes
added at time-step ¢ using the projection, and then perform
GD on all of the embeddings as usual. We now illustrate
through a simple example how this results in a method that
circumvents the two first issues mentioned before (the last
one was illustrated in the last subsection). Let us consider
an Erdos-Rényi graph with a fixed connection probability
p = 0.1 and with an initial number of nodes ny = 100.
At each time-step ¢ we add a single node under the same
model, so that n; = n;—; + 1. The normalized error in terms
of |X, X7 — P.||r/\/n: is displayed in figure 3. Note how
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Fig. 3. The error in estimating the probability matrix using our method and
the one described in [12] for the case when at each ¢ a single new node
is added to an Erdos-Rényi graph. Note again how our method produces an
estimate with a constant normalized error.

our method obtains a constant normalized error as expected,
whereas simply projecting accumulates error. It is important
to highlight that this increase in precision is gained with a
modest increase in computation (some iterations of (6)), but
with the same memory footprint as the original method [12]
(i.e. the old embeddings and the new adjacency matrix).

B. Real data

Finally, let us showcase our method in real-world graphs.
To this end, we have used a football dataset which includes
the yearly number of matches played between men’s national
teams [21]. We thus have a graph G, per year, where nodes
are national teams and an edge exists between two nodes if
the corresponding teams have played a match between years
t —3 and ¢ and the weight is precisely the number of matches
they have played during that period (we considered a moving
four-year window so as to always include a world cup). Note
that the number of edges vary, but the number of nodes too
as national teams are formed (and not all national teams play
a match every period).

Our algorithm is thus started at ¢ = 1930 with the first
world cup (and n; = 41 nodes/national teams) using d = 7
as the embedding dimension, and we have proceeded to run
the GD for every year until ¢ = 2016 (with a graph size of
ny = 222).

As an illustrative example of the kind of tasks that our
framework enables, let us consider the embedding correspond-
ing to Australia. Along with New Zealand they formed the
Oceania Football Confederation (OFC) in 1966, which they
left to join the Asian Football Confederation (AFC) in 2006.
This situation is clearly illustrated in figure 4, which shows the
embeddings (a projection from the original 7-dimensional vec-
tors for visualization) of Asian and Oceanian national teams
for three years including the move between confederations.
Note how until 2005 Australia is aligned with Oceanian teams’
embeddings, until 2015 when it clearly becomes aligned with
the Asian nodes’ embeddings.

IV. DISCUSSION AND FUTURE WORK

We have presented a lightweight algorithm that is able to
track the nodal positions of a stream of RDPG graphs Gy,
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Fig. 4. A visualization of the embeddings’ estimation of the proposed
method for the graphs consisting of football matches between men’s national
teams. In particular, we focus on the nodal position of Australia, Asian and
Oceanian teams for three years in particular. Note how the confederations are
consistently aligned between years, and is Australia’s embedding that changes
from one community to the other, reflecting its confederation change in 2006.

efficiently avoiding the ever-present rotation problem of this
kind of spectral embeddings (i.e. without recurring to re-
alignments every time-step). This was achieved by reconsid-
ering the underlying optimization problem in ASE and apply-
ing a convergent first-order gradient descent (GD) algorithm,
which is warm-started from the embeddings’ estimate of the
previous time-step. Furthermore, the approach also enables
inductive learning; i.e. embedding new nodes that are added to
the network. This is achieved again by warm-starting the GD,
in the case of the new nodes by projecting the corresponding
new rows of the adjacency matrix to the space spanned by the
previous embeddings. Finally, our code is freely available for
experimentation at https://github.com/marfiori/efficient- ASE.

As future work, we plan on tackling the directed case. In
this case, RDPG requires the estimation of two d-dimensional
vectors, each corresponding to a direction. For instance, an
edge from node ¢ to j will exist with probability (xé,x?).
In order to preserve its interpretability, it is necessary that
the estimated embeddings matrices X! and X" are column-
wise orthogonal [4], [14]. The addition of this constrain
to the GD algorithm is a challenge that we are currently
tackling. Another interesting theoretical development would
be to establish properties of the resulting estimation of the
GD, such as consistency, asymptotic normality or its stability
to modifications on the embeddings.
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