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AbstractÐThe popular Random Dot Product Graph (RDPG)
generative model postulates that each node has an associated
(latent) vector, and the probability of existence of an edge between
two nodes is their inner-product (with variants to consider
directed and weighted graphs). In any case, the latent vectors may
be estimated through a spectral decomposition of the adjacency
matrix, the so-called Adjacency Spectral Embedding (ASE). As-
sume we are monitoring a stream of graphs and the objective is to
track the latent vectors. Examples include recommender systems
or monitoring of a wireless network. It is clear that performing
the ASE of each graph separately may result in a prohibitive
computation load. Furthermore, the invariance to rotations of
the inner product complicates comparing the latent vectors at
different time-steps. By considering the minimization problem
underlying ASE, we develop an iterative algorithm that updates
the latent vectors’ estimation as new graphs from the stream ar-
rive. Differently to other proposals, our method does not accumu-
late errors and thus does not requires periodically re-computing
the spectral decomposition. Furthermore, the pragmatic setting
where nodes leave or join the graph (e.g. a new product in the
recommender system) can be accommodated as well. Our code
is available at https://github.com/marfiori/efficient-ASE.

Index TermsÐgraph representation learning, node embed-
dings, graph sequence.

I. INTRODUCTION

There is an increasing interest in statistical analysis of data

stemming from networks that are observed sequentially [1]±

[3]. These may come from a social network (new users sign

up to the platform and followers are gained and lost over

time), a recommender system (new content is added and user’s

preferences are revealed over time) or a transportation network

(where the edges’ weight indicate the traffic intensity of a route

between two nodes at a given time).

One of the most popular statistical models to analyze a

single of such graphs G = (V,E) is the so-called Random

Dot Product Graph (RDPG) [4]. This model postulates that

each node is associated to a latent vector xi ∈ R
d (which is

unobserved and may be interpreted as an embedding) and the

probability of existence of an edge between nodes i and j is the

inner product between xi and xj . The case of directed and/or

weighted graphs are easily accounted for through relatively
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ECCS-1809356).

simple variations of the base model. Including as particular

cases other generative models (such as Stochastic Block Mod-

els), its great expressiveness and the interpretability of the

resulting embeddings are the reasons behind its popularity.

Assume that we are observing a stream of graphs Gt

and the objective is to track the underlying embedding for

all time-steps t. A naive approach would be to compute

separately for each t the estimated embeddings. As we discuss

in some detail in the next section, these estimations are

obtained by computing the d most significant eigenvalues of

the adjacency matrix At and their associated eigenvectors, a

procedure known as Adjacency Spectral Embedding (ASE).

As the graph size increases, computing the ASE for each graph

Gt separately will result in an extremely computationally

expensive algorithm.

Furthermore, since it is defined in terms of the inner product,

it is easy to see that RDPG is invariant to rotations of the

embeddings. Thus, computing the ASE for each graph Gt

separately may result in significantly different embeddings for

each t (i.e. rotated versions of the same embeddings), while

actually nothing changed on the underlying generative process.

Note that we may try to find the best alignment between

the previous and the current embedding (solving a so-called

Procrustes problem), but this approach will only worsen the

computational cost of the algorithm.

Proposed approach and contributions. Instead of computing

the eigenpairs, we revisit the underlying optimization problem.

Notice that the ASE is basically looking for the best d-

rank approximation of At in terms of the Frobenius norm.

This interpretation along with recent advances in first-order

non-convex optimization allows us to address the problem

through Gradient Descent (GD). In particular, our proposal is

to compute the ASE of graph Gt by running a gradient descent

initialized on the embeddings of the previous time-step (i.e.

the ASE of Gt−1). This warm started gradient descent method

maintains a certain alignment between the latent positions,

while at the same time converging in few iterations.

Furthermore, we also extend the method to the case where

new nodes appear in the network. This so-called inductive

learning is generally regarded as beyond the capabilities of

shallow embeddings as the one we are discussing here [5], [6,
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ch. 3.4]. However, a simple approximation through projection

may be used as the initialization of the new nodes in the

gradient descent method, thus enabling inductive learning in

the context of ASE without requiring the re-computation of

the eigenpairs.

Related work. The rotation ambiguity of RDPG has long

been recognized as a problem when estimating the embeddings

for several graphs. To address this issue, the Omnibus Em-

bedding [7] or the Unfolded Adjacency Spectral Embedding

(UASE) [8], [9] propose to compute the ASE of different

forms of concatentations of the adjacency matrices At. For

instance, when estimating the embeddings of T matrices, the

Omnibus embedding requires computing the eigenpairs of a

matrix of size Tn × Tn (with n the number of nodes in the

graph), whereas UASE requires computing the Singular Value

Decomposition of an n× Tn one.

In addition to being enormously costly as T grows beyond

very small values, these techniques are designed for the batch

case, where we are able to observe the whole sequence of

graphs Gt. In the streaming context as the one we consider

here, and since ASE may be regarded as computing the

eigenpairs, we may instead resort to classic methods that

recursively update these values as the adjacency matrix is

modified [10]. However, these algorithms are computationally

expensive except for specific types of changes (e.g. rank-1

modifications) and, as it has been pointed out in the literature

and we illustrate in our simulations, they accumulate error as t
increases [11] and are also susceptible to the rotation problem.

Finally, the problem of computing the ASE as new nodes are

introduced in the network has been studied in the context of

stringent memory requirements, where only the embeddings

are kept and a single new node is added [12]. In this case,

projecting the new column (of the adjacency matrix) to the

space spanned by the older embeddings produces asymptoti-

cally consistent estimates of the new node’s embedding. How-

ever, the underlying assumption is that the older embeddings

do not change over time, and as several nodes are added

to the network the error tends to accumulate too. We will

nevertheless use this estimate as the warm start of the new

nodes for our gradient descent method, thus improving on the

resulting precision as several nodes are added, while at the

same time permitting changes of the older nodes’ embedding.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Random dot product graphs

Consider an unweighted and undirected graph G = (V,E),
with nodes V = {1, . . . , n} and edges E ⊆ V × V . In

this section, we will drop the time-step sub-index t for the

sake of clarity. In the RDPG model each node i ∈ V has

an associated column vector xi ∈ X ⊂ R
d, and edge (i, j)

exists with probability x⊤
i xj (a particular case of the latent

space model [13]). Note that the set X of possible xi is such

that x⊤y ∈ [0, 1], ∀x,y ∈ X . In general, vectors xi may be

random, drawn from a distribution in X .

Thus, letting A ∈ {0, 1}n×n be the random symmetric

adjacency matrix of G and X = [x1, . . . ,xn]
⊤ ∈ R

n×d the

matrix of latent vertex positions, the RDPG model specifies

P
(

A
∣

∣X
)

=
∏

i<j

(x⊤
i xj)

Aij (1− x⊤
i xj)

1−Aij . (1)

That is, given X, edges are conditionally independent with

Aij ∼ Ber(x⊤
i xj). The RDPG model is a tractable yet

expressive family of random graphs that subsume ErdÈos-

RÂenyi (ER) and SBM ensembles as particular cases. Indeed,

if xi =
√
p ∀ i, we obtain an ER graph with edge probability

p. An SBM with M communities may be generated by re-

stricting X to having only (at most) M different columns (i.e.

|X | = M ); see also [4] for additional examples. Furthermore,

the weighted case is easily accommodated by the model. In

this case, the inner-product between nodes’ embeddings is

equal to the mean of the weight’s distribution [14].

B. Inference on RDPG

Given a graph stemming from an RDPG with adjacency

matrix A, we now discuss how to estimate the matrix X of

latent vertex positions. In lieu of a maximum-likelihood esti-

mator that is intractable beyond toy graphs, the key intuition

is that A is a noisy observation of

P = XX⊤, (2)

the matrix of edge probabilities pij , since E
[

A
∣

∣X
]

= P.

Therefore, and remembering that the diagonal entries of P

are zero, we want to solve the following problem [15]:

X̂ ∈ argmin
X∈RN×d

∥M ◦ (A−XX⊤)∥2F , (3)

Instead, the usual approach to obtain an approximate so-

lution of (3) is to slightly modify the problem in order to

avoid the zero-diagonal constraint (either by replacing the

main diagonal of A, or simply ignoring the constraint) [4]:

X̂ ∈ argmin
X

∥A−XX⊤∥2F , s. to rank(X) = d. (4)

The solution to (4) is readily given by

X̂ = Q̂Λ̂1/2, (5)

where A = QΛQ⊤ is the spectral decomposition of A,

Λ̂ ∈ R
d×d is a diagonal matrix with the d largest eigenvalues

of A, and Q̂ ∈ R
n×d are the corresponding d dominant

eigenvectors. We are assuming that Λ̂ has only non-negative

values, a limitation that may be easily circumvented [16].

Estimator (5) is known as the Adjacency Spectral Embedding

(ASE).

C. Problem statement and proposed solution

Assume we observe a stream of graphs Gt and the objective

is to estimate its embedding X̂t. Note that both the number

of edges as well as nodes may change between time-steps,

although we assume we can identify nodes at all time-steps

(e.g. they correspond to users in a social network or nodes in

a wireless network).
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In order to compute the new ASE X̂t, we have the estimate

of the previous time-step X̂t−1, which we would like to

compare to the new one (for instance, in the context of change-

point detection [14], visualization or any other downstream

task). As we discussed before, computing the eigenpairs for

each time-step separately is out of the question due to its com-

putational cost, as well as the potentially rotated estimates. An

alternative is to update these eigenpairs through the difference

in the adjacency matrix ∆t = At −At−1 [10]. However, as

we will demonstrate through simulations in the next section,

this solution also suffers from the rotation ambiguity problem,

as well as accumulating errors as t grows.

Following the ideas first presented in [17], we propose

instead to reconsider the original optimization problem (3)

and solve it through GD instead of computing the eigenpairs.

Let us denote by X̂t[k] the k-th iteration of the algorithm

in time-step t and by f : Rn×d → R the objective function

f(X) = ∥Mt ◦ (At −XX⊤)∥2F . The GD algorithm is then

X̂t[k + 1] = X̂t[k]− α∇f(X̂t[k]), k = 0, 1, 2, . . . (6)

where α > 0 is the step size and ∇f(X) =
4
[

Mt ◦ (XX⊤ −At)
]

X, for symmetric At and Mt.

Note that the objective function depends on the product

XX⊤, and is convex when considering the variable Z =
XX⊤. In this context, this approach is sometimes called

factorized GD [18], or Procrustes flow [19], which has been

shown to converge with linear rate to the solution X̂t of (3)

if the initial value X̂t[0] is close [18], [20].

Precisely, our idea is to initialize the GD by using X̂t[0] =
X̂t−1; i.e. the estimate of the previous time-step. Given the

above results, as long as the underlying embeddings do not

change dramatically between time-steps, the GD will converge

in few iterations to the new solution. Even if the embeddings

do change significantly at time-step t, the algorithm is guaran-

teed to converge except for some very specific initializations

which correspond to stationary points. In our experience this

pathological case has never occurred.

The question remains on how to proceed when nodes leave

or join the network. The former is straightforward, since we

may simply keep the rows of X̂t−1 corresponding to the nodes

that remain in the network at time-step t and use that as an

initialization of the GD. The latter is more challenging.

Assume for clarity of the exposition that a single new node

i = n + 1 is added to the network at time-step t. The

new adjacency matrix At now has an extra row (column)

an+1 ∈ {0, 1}n (where the (n+1)-th coordinate, correspond-

ing to the diagonal of At, will be zero). Instead of randomly

initializing the new embedding x̂n+1, we project an+1 to the

d-dimensional space spanned by the columns of X̂t−1. That

is to say:

(X̂t[0])n+1 = an+1X̂
norm
t−1 , (7)

where X̂norm
t−1 is the column-wise normalized version of X̂t−1.

For the rest of the entries of X̂t[0] we use X̂t−1 as before.

This initialization has the advantage of being very simple

and it is actually a consistent estimator of the true new xn+1
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Fig. 1. The embeddings corresponding to the first two time-steps of our
method (left) and by updating the corresponding eigenpairs through a classic
iterative method [10] (right) when in a two-class SBM a single node changes
affiliation at each t. Note how the change of a single node produces
significantly different results for [10], whereas our method provides stable
results.

as n → ∞ [12]. Note however that if m > 1 nodes are

added to the network at time-step t, this initialization alone

will forcefully ignore the information contained in the links

between the new nodes. Furthermore, even if nodes are added

one at a time, the error introduced in the estimation of the

first X̂0 will negatively impact the estimation error of the

successive X̂t. In a nutshell, running GD initialized at (7) will

both include information of the new nodes to correct the old

estimates Xt−1 as well as the interconnection between these

new nodes. This will be further illustrated in the next section.

III. NUMERICAL TESTS

A. Simulated data

Embeddings’ stability. Let us first consider a relatively simple

case, where the number of nodes is fixed but the underlying

embeddings change. In particular, we will consider an SBM

graph with n = 200 nodes and two communities. At each time-

step t a single randomly chosen node changes affiliation to the

other community. The resulting embeddings of our method for

the first two time-steps are displayed on the left of Fig. 1. See

how effectively the embedding of a single node is moved from

one community to the other, while the rest of the embeddings

remain virtually unmoved.

Furthermore, the figure also displays on the right the result

of applying the method described in [10] to re-compute

the ASE at the same time steps. This is a classic iterative
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Fig. 2. The error in estimating the probability matrix using our method and
the one described in [10] when in a two-class SBM a single node changes
affiliation at each t. Note how our method produces approximately the same
error, whereas the method in [10] accumulates error as t progresses.

method that updates the d most significant eigenpairs based

on ∆t = At − At−1. Note how, similarly to re-computing

the ASE at each time-step, a single node may produce sig-

nificantly different embeddings (i.e. rotations). Furthermore,

and in addition to these rotations, since this method updates

only the d most significant eigenpairs, the error in terms of

∥X̂tX̂
T
t −Pt∥F also increases with t. This is shown in figure

2, and it is a known drawback of this kind of methods [11].

On the other hand, and as illustrated in the same figure, our

method produces estimates with a constant error as expected.

Nodes’ addition. An apparent drawback of analyzing a stream

of graphs using a spectral decomposition such as ASE is its

inability to deal with the inductive setting. As new nodes join

the network, it is indeed not clear at all how to compute their

embeddings, except by performing a complete re-computation

of all the nodes.

However, this is not the only possibility, and as we dis-

cussed before we may obtain a first approximation of these

embeddings by projecting the new rows of the adjacency

matrix to the space spanned by the current embeddings (c.f.

equation (7)) [12]. But using this approximation alone has

at least three drawbacks. First of all, the new nodes are

not used to improve on the estimate of the older nodes’

embeddings (e.g. in an SBM, if the new nodes belong to

the same community as some of the older ones, the resulting

estimation should have a smaller variance [4]). Secondly, the

interconnection between the new nodes is disregarded in this

estimation. And lastly, the implicit assumption is that the older

nodes’ embedding do not change.

Our proposal is to initialize the embeddings of the nodes

added at time-step t using the projection, and then perform

GD on all of the embeddings as usual. We now illustrate

through a simple example how this results in a method that

circumvents the two first issues mentioned before (the last

one was illustrated in the last subsection). Let us consider

an ErdÈos-RÂenyi graph with a fixed connection probability

p = 0.1 and with an initial number of nodes n0 = 100.

At each time-step t we add a single node under the same

model, so that nt = nt−1 + 1. The normalized error in terms

of ∥X̂tX̂
T
t − Pt∥F /

√
nt is displayed in figure 3. Note how

0 200 400 600 800 1000

# of new nodes

0.5

0.6

0.7

0.8

Evolution of ||X̂tX̂
⊤
t −Pt||F/

√
nt

[Levin et al. ’18]

Gradient Descent

Fig. 3. The error in estimating the probability matrix using our method and
the one described in [12] for the case when at each t a single new node
is added to an ErdÈos-RÂenyi graph. Note again how our method produces an
estimate with a constant normalized error.

our method obtains a constant normalized error as expected,

whereas simply projecting accumulates error. It is important

to highlight that this increase in precision is gained with a

modest increase in computation (some iterations of (6)), but

with the same memory footprint as the original method [12]

(i.e. the old embeddings and the new adjacency matrix).

B. Real data

Finally, let us showcase our method in real-world graphs.

To this end, we have used a football dataset which includes

the yearly number of matches played between men’s national

teams [21]. We thus have a graph Gt per year, where nodes

are national teams and an edge exists between two nodes if

the corresponding teams have played a match between years

t−3 and t and the weight is precisely the number of matches

they have played during that period (we considered a moving

four-year window so as to always include a world cup). Note

that the number of edges vary, but the number of nodes too

as national teams are formed (and not all national teams play

a match every period).

Our algorithm is thus started at t = 1930 with the first

world cup (and nt = 41 nodes/national teams) using d = 7
as the embedding dimension, and we have proceeded to run

the GD for every year until t = 2016 (with a graph size of

nt = 222).

As an illustrative example of the kind of tasks that our

framework enables, let us consider the embedding correspond-

ing to Australia. Along with New Zealand they formed the

Oceania Football Confederation (OFC) in 1966, which they

left to join the Asian Football Confederation (AFC) in 2006.

This situation is clearly illustrated in figure 4, which shows the

embeddings (a projection from the original 7-dimensional vec-

tors for visualization) of Asian and Oceanian national teams

for three years including the move between confederations.

Note how until 2005 Australia is aligned with Oceanian teams’

embeddings, until 2015 when it clearly becomes aligned with

the Asian nodes’ embeddings.

IV. DISCUSSION AND FUTURE WORK

We have presented a lightweight algorithm that is able to

track the nodal positions of a stream of RDPG graphs Gt,
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Fig. 4. A visualization of the embeddings’ estimation of the proposed
method for the graphs consisting of football matches between men’s national
teams. In particular, we focus on the nodal position of Australia, Asian and
Oceanian teams for three years in particular. Note how the confederations are
consistently aligned between years, and is Australia’s embedding that changes
from one community to the other, reflecting its confederation change in 2006.

efficiently avoiding the ever-present rotation problem of this

kind of spectral embeddings (i.e. without recurring to re-

alignments every time-step). This was achieved by reconsid-

ering the underlying optimization problem in ASE and apply-

ing a convergent first-order gradient descent (GD) algorithm,

which is warm-started from the embeddings’ estimate of the

previous time-step. Furthermore, the approach also enables

inductive learning; i.e. embedding new nodes that are added to

the network. This is achieved again by warm-starting the GD,

in the case of the new nodes by projecting the corresponding

new rows of the adjacency matrix to the space spanned by the

previous embeddings. Finally, our code is freely available for

experimentation at https://github.com/marfiori/efficient-ASE.

As future work, we plan on tackling the directed case. In

this case, RDPG requires the estimation of two d-dimensional

vectors, each corresponding to a direction. For instance, an

edge from node i to j will exist with probability ⟨xl
i,x

r
j⟩.

In order to preserve its interpretability, it is necessary that

the estimated embeddings matrices X̂l and X̂r are column-

wise orthogonal [4], [14]. The addition of this constrain

to the GD algorithm is a challenge that we are currently

tackling. Another interesting theoretical development would

be to establish properties of the resulting estimation of the

GD, such as consistency, asymptotic normality or its stability

to modifications on the embeddings.
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