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ABSTRACT

We investigate online network topology identification from smooth
nodal observations acquired in a streaming fashion. Different from
non-adaptive batch solutions, our distinctive goal is to track the (pos-
sibly) dynamic adjacency matrix with affordable memory and com-
putational costs by processing signal snapshots online. To this end,
we leverage and truncate dual-based proximal gradient (DPG) itera-
tions to solve a composite smoothness-regularized, time-varying in-
verse problem. Numerical tests with synthetic and real electrocor-
ticography data showcase the effectiveness of the novel lightweight
iterations when it comes to tracking slowly-varying network connec-
tivity. We also show that the online DPG algorithm converges faster
than a primal-based baseline of comparable complexity. Aligned
with reproducible research practices, we share the code developed to
produce all figures included in this paper.

Index Terms— Dynamic network, topology identification,
dual-based proximal gradient, online algorithm, signal smoothness.

1. INTRODUCTION

The intertwined fields of graph signal processing (GSP) [1-3], graph
representation learning [4], and machine learning on graphs [5, 6]
have recently emerged with the common goal of extracting action-
able information from graph-structured (i.e., relational) data describ-
ing networks [7, Ch. 1]. In some real-world applications such as
network neuroscience [8], said relational structures may not be ex-
plicitly available [9, 10]. Therefore, depending on the end goal the
first step may be to recover the latent network topology to reveal
patterns in the complex system under study; or, to rather learn graph
representations that can facilitate downstream tasks such as classifi-
cation; see e.g, [11]. Recognizing that many of these networks are
also dynamic and that graph datasets grow every day in volume and
complexity, there is a pressing need to develop efficient online topol-
ogy identification algorithms to process network data streams [12].
The term network topology inference encompasses a broad class
of approaches to identify an underlying graph using data. Inference
refers to the process of searching for a graph (represented via some
graph shift operator) that is optimal for the task at hand. Data of-
ten come in the form of nodal observations (also known as graph
signals in the GSP parlance), but partial edge status information is
not uncommon [7, Ch. 7]. Optimality notions and constraints are
typically driven by statistical priors, physical laws, or explainability
goals, all of which translate to models binding the observations to
the sought graph. A common probabilistic prior is to model net-
work observations via undirected Gaussian graphical models. In
this case, the topology inference problem boils down to graphical
model selection [13—15]. Other recent approaches instead assume
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that graph signals are e.g., stationary and possibly generated by lin-
ear network diffusion [16, 17], or, smooth with respect to the graph
(i.e., they are sparse in the graph spectral domain) [18-22]. Please
refer to [9, 10, 12] for recent surveys of network topology inference
advances.

Proposed approach and contributions in context. In this paper,
we propose an online algorithm to track the topology of (possibly
dynamic) undirected graphs using streaming, smooth signals (Sec-
tion 2 outlines the required GSP background and formally states the
topology inference problem). The rationale behind the adoption of
a smoothness prior has been well-documented; see e.g., [19]. More-
over, exploiting this cardinal property of network data is central
to graph-based learning tasks including semi-supervised learning
and denoising via variation minimization [1, 7], just to name a few.
Starting from the widely adopted, but batch, graph learning formu-
lation in [18,21], in Section 4 we develop a novel online dual-based
proximal-gradient (DPG) algorithm that refines graph estimates
sequentially-in-time. Capitalizing on favorable dual domain struc-
ture of the smoothness-regularized inverse problem (Section 3) [23],
we leverage and truncate proximal-gradient (PG) iterations in [24]
to optimize the resulting time-varying cost function adaptively.
Computer simulations in Section 5 showcase the effectiveness of
the novel lightweight iterations when it comes to tracking slowly-
varying network connectivity. The numerical experiments involve
both synthetic and real electrocorticography data [7,25]. In the in-
terest of reproducible research, the code used to generate the figures
in this paper is made publicly available.

Related work. Noteworthy dynamic network topology inference
algorithms exploiting a smoothness prior include [20,26-28]. The
online PG method put forth in [26] operates in the primal domain.
Yet, because of its quadratic complexity in the number of graph
nodes, it is the most natural baseline to assess the proposed method’s
performance in tracking the optimal solution. Recently, a model-
independent framework for learning time-varying graphs from on-
line data was proposed in [28]. Iterations therein can be accelerated
by virtue of a prediction-correction strategy, but specific instances
may incur cubic complexity. Unlike the novel online DPG algo-
rithm of this paper (as well as [26, 28]), recovery of dynamic net-
work topology in [20, 27] is accomplished via non-recursive batch
processing; hence incurring a computational cost and memory foot-
print that grow linearly with the number of temporal samples. For
other models besides signal smoothness; see e.g., [12,17,29].

2. PRELIMINARIES AND PROBLEM STATEMENT

Consider a network graph G (V,£, W), where V = {1,...,N}
is the set of vertices and £ C V x V denotes the edges. Because
G is assumed to be undirected, elements of £ are unordered pairs
of vertices in V. The symmetric adjacency matrix W & RY*Y
collects the edge weights, and W;; = 0 for (¢,5) ¢ &. Also, W;; =
0, Vi € V, since we exclude self-loops. An equivalent algebraic
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representation of G’s topology is given by the graph Laplacian L :=
diag (d) — W, where d = W1 collects the vertex degree sequence.
Graph signal smoothness. We acquire graph signal observations
x = [z1,... ,gr:N]T € RY, where z; is the value measured ati € V.
The Dirichlet energy or total variation (TV) of x with respect to L is

1
TV(x) :=x ' Lx = 3 Z Wij (x5 — x5)° . )

Measure TV(x) € [0, Amax] quantifies the smoothness of graph sig-
nals supported on G [1,30], where Amax is the largest eigenvalue of
the positive semidefinite matrix L. We say a signal is smooth (or
low-pass bandlimited) if it has a small total variation. From (1) it
follows the lower bound TV (x) = 0 is attained by constant signals.
Problem statement. Given a dataset X := {x;}i_; of network
measurements, we want to estimate an undirected graph G(V, £, W)
so that the signals in X" are smooth on G. We also consider tracking
dynamic networks with slowly time-varying weight matrix Wy, t =
1,2,...(V remains fixed); see Section 4.

2.1. Topology identification from smooth signals

We start by briefly reviewing the batch topology inference frame-
work in [18,21], that we build on in the remainder of the paper. Con-
sider arranging the graph signals in X" as columns of the data matrix
X = [x1,...,x7] € RY*T Let x] € R be the ith row of
X, which collects all T" observations at vertex ¢. Define the pairwise
node dissimilarity matrix E € RY*Y, where E;; = ||%; — %;||3,
1,7 € V. With these definitions, it is established in [18] that the
aggregate signal smoothness measure over X’ can be expressed as

T
> TV(x:) = trace(X LX) = %HWOEHh 2)
t=1

where o stands for the Hadamard product. Notice how TV min-
imization as criterion for graph topology inference inherently in-
duces sparsity on £. This is because the model preferentially se-
lects edges (4, j) with smaller pairwise nodal dissimilarities E;; [cf.
the weighted ¢;1-norm in (2)]. Exploiting this intuitive relationship
between signal smoothness and edge sparsity, a fairly general graph-
learning framework was put forth in [18]. The idea therein is to solve
the following convex inverse problem

min {||W oEl; — a1’ log (W1) + §|\W||2p} NC)
s.to  diag(W) =0, Wy; =W;; >0,i#j

where «, 5 > 0 are tunable regularization parameters. In most ap-
plications, it is undesirable to have isolated (null degree) vertices in
the learned graph. Hence, the logarithmic barrier imposed over the
nodal degree sequence d = W1. The Frobenius-norm regulariza-
tion on adjacency matrix W offers a handle on the level of sparsity
(through ). Indeed, the sparsest solution of (3) will be attained by
setting 5 = 0.

Formulating (3) as a search over adjacency matrices offers note-
worthy computational complexity benefits. Unlike inverse problems
whose optimization variable is a graph Laplacian L [19], the con-
straints in (3) (i.e. null diagonal, symmetry and non-negativity) are
all separable across the entries W;;. This favorable structure has
enabled a host of efficient batch solvers derived based on primal-
dual (PD) iterations [18], the PG method [26], and the linearized
alternating-directions method of multipliers (ADMM) [31]. Next,

we present a dual-based algorithm we proposed in [23], which comes
with convergence rate guarantees in the batch setting while it is
amenable to an online scheme in streaming scenarios.

3. PROXIMAL GRADIENT IN THE DUAL DOMAIN

Because W is symmetric and has a null diagonal, the free decision
variables in (3) are effectively the, say, lower-triangular elements
[W]ij, j < 4. Thus, we henceforth work with the compact vec-
tor w := vec[triu[W]] € RTN*U/ ?, were we have adopted con-
venient Matlab notation. To impose the non-negativity constraints
over edge weights, we augment the cost with a penalty function
I{w =0} =0ifw = 0,else [{w = 0} = oo [18]. Given these
definitions, one can rewrite the objective in (3) as the unconstrained,
non-differentiable problem

rr‘lﬂi’n { I{w = 0} + 2w e+ B|w||3 — a1 log (Sw) }, 4)

= f(w) i=—g(Sw)

where e := vec[triu[E]] and S € {0, 1}V =1/2 maps edge
weights to nodal degrees, i.e., d = Sw. The non-smooth function
f(w) == I{w = 0} + 2w e + B||w]||3 is strongly convex with
strong convexity parameter 23, while g(w) := —al ' log (w) is a
(strictly) convex function for all w > 0. Given the aforementioned
properties of f and g, one can establish that the composite problem
(4) has a unique optimal solution w*; see e.g., [24,31]. To tackle
(4) efficiently we can adopt a dual-based PG algorithm introduced
in [24], which is capable of solving general non-smooth, strictly con-
vex optimization problems of the form miny, { f(w) 4+ g(Sw)}. In
the remainder of this section we briefly review the DPG-based graph
learning framework proposed in [23].
Using a standard variable-splitting technique we recast (4) as

rvrvuél {f(w)+g(d)}, s.tod=Sw. (5)

Attaching Lagrange multipliers A € RY to the equality constraints
and minimizing the Lagrangian function £L(w,d,\) = f(w) +

g(d) — (A, Sw — d) with respect to the primal variables {w, d}, we
obtain the (minimization form) dual problem

mgn {F(A) + G(X\)}, where (6)
F(A) = max {(STA,w) - f(w)}], ™
G(A) = max{(-A,d) - g(d)}. ®)

Because f is strongly convex, one can derive useful smoothness
properties for its Fenchel conjugate F'. Indeed, it follows that the
gradient VF () is Lipschitz continuous with constant I, := &=1;
see [23, Lemma 1]. Recognizing this additional structure of (6),
the PG algorithm [24] (say of the ISTA type) becomes an attractive
choice to solve the the dual problem. Accordingly, when applied
to (6) the PG method yields the following iterations (initialized as

Xo € RV, henceforth k = 1,2, ... denotes the iteration index)
1
Ak = prox; i (Ak—l — EVF()\k—l)) ) (©)]

where the proximal operator of a proper, lower semi-continuous con-
vex function A is (see e.g., [32])

prox, (x) = argmin {h(u) + %Hu - XH%} . (10)
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4. ONLINE DUAL PROXIMAL GRADIENT ALGORITHM

We switch gears to online estimation of W (or even tracking W, in
a dynamic setting) from streaming signals {X1,...,X¢, X¢41,. ..}
A natural approach would be to solve the time-varying optimization
problem at each time instant ¢t = 1,2, ... [cf. (4)]

=fr(w)

w; € argmin {]I {w = 0} + 2w ey + Bl|wl3

—al' log (Sw)}7 (11)

N— ———
i=—g(Sw)

where the vectorized dissimilarity matrix eq.; is formed using all
signals acquired by time ¢. As data come in, the edge-wise ¢1-
norm weights will fluctuate explaining the time dependence of (11)
through its non-smooth component f;.

One can naively solve (11) by sequentially running the batch
DPG algorithm (cf. Section 3) every time a new datum arrives. How-
ever, this approach falls short when it comes to (pseudo) real-time
operation, particularly for delay-sensitive tasks that preclude run-
ning multiple k; = 1,2, ... inner DPG iterations per time interval
[t, t+1) (in order to attain convergence to w; ). What is more, for dy-
namic networks it may not be even worth obtaining a high-precision
solution w; (thus incurring high delay and computational burden),
because at time ¢+ 1 a new datum arrives and the solution w}, ; may
be substantially off the prior estimate; see also Section 5.1. All these
considerations motivate well the pursuit of an recursive algorithm
that can track the solution of the time-varying optimization (11).

Our online approach entails two steps per time instant ¢ =
1,2,... of data acquisition. First, we recursively update the upper-
triangular entries e;.; of the Euclidean-distance matrix once e
becomes available. In stationary settings where the graph is static, it
is prudent to adopt an infinite-memory scheme

t
1 e+ (t—1eri—1
et =7 Z:lef = = (12)
On the other hand, in non-stationary environments arising with dy-
namic networks it is preferable to update e;.; via a moving average
in order to track the topology fluctuations. To that end, we employ
an exponentially-weighted moving average (EWMA)

et = (1 —y)ert—1 + ves, (13)

where the constant v € (0, 1) is a discount (or forgetting) factor. In
other words, higher v downweighs older observations faster. Sec-
ond, we run a single iteration of the batch graph learning algorithm
developed in Section 3 to update w1, namely

1
At = Prox; _1, (At_1 - ZVFt(At—ﬂ) ; (14)

The dual variable update iteration in (14) can be equivalently rewrit-
ten as )\t = )\t—l — L_l(SVt — ut), with

T — .
vi = max (0, 5 A1~ 2ene )‘t‘;ﬂ 2e“> : (15)
u = SVt — L)\t—l + \/(Svt — L}\t_1)2 + 4al1 (16)

2 )

Algorithm 1: Online DPG for dynamic topology infer-
ence

Loset [ = N1

Input parameters «, (3, stream eq, ez, . . 5

Initialize \( at random.
fort=1,2,...,do
Update e;.; via either (12) or (13)
ST)\t—l_Qe]:t>
28
Svi—LA;_1+4/(Svi—LX;_1)2+4all

V¢ = max (0,

ur = 2
>\t = >\t—1 — L_l(SVt — ut)
end

.
Output topology estimate w; = max (0, S"g—;%”)

where max(-, -), (-)2, and 1/(*) in (15) are all element-wise opera-
tions of their vector arguments, see [23, Proposition 1] for all details.
The novel online DPG iterations are tabulated under Algorithm 1.
Computational complexity. Update (15) in Algorithm 1 incurs
a per iteration cost of O(N?), on par with the online PG algo-
rithm in [26]. The auxiliary variable u; is also given in closed
form, through simple operations of vectors living in the dual
N-dimensional domain of nodal degrees [cf. the N(N — 1)/2-
dimensional primal variables w]. If additional prior knowledge
about the set of possible edges is available, one can reduce the com-
plexity further [21]. There are no step-size parameters to tune here
(on top of « and ) since we explicitly know the Lipschitz constant
L [23, Lemma 1].

5. NUMERICAL EXPERIMENTS

We perform numerical experiments to assess how well the online
DPG algorithm learns random and real-world graphs, in both sta-
tionary and dynamic environments. Our main objective is to evalu-
ate Algorithm 1’s effectiveness in tracking w; (11). This is different
from explicitly monitoring the quality of the minimizer in terms of
recovering the ground-truth graph used to generate the data; see e.g.,
the experiments in [18,21] for a study on the latter. This clarifi-
cation notwithstanding, for the synthetic experiments we perform a
rough grid search to tune «, 3, the criterion being to maximize the
F-measure of the recovered edge set. Unless otherwise stated, the
discount factor is set to v = 0.002 for all ensuing experiments. We
compare Algorithm 1 to online PG [26], since they both incur the
same computational complexity per iteration. The code to generate
all figures in this section can be downloaded from http://hajim.
rochester.edu/ece/sites/gmateos/code/ODPG.zip.

5.1. Random graphs

Here we examine a pair of test cases. First, we assume the underly-
ing graph is time invariant and use (12) in Algorithm 1. We draw a
N = 100-node graph realization from the Erd6s-Rényi (ER) model
(edge probability p = 0.2). Second, we consider dynamic graph
learning where the underlying network topology changes midway
through the trial. We simulate two settings. A piecewise-constant
sequence of two: i) random graphs is drawn from the ER model
(p = 0.2) with N = 50 nodes; as well as from ii) a 2-block
Stochastic Block Model (SBM) with N = 100 vertices (even split
of nodes across blocks), and connection probability p1 = 0.3 for
nodes in the same community and p2 = 0.05 for vertices in dif-
ferent blocks. The initial graph switches after ¢ = 1000, leading
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Fig. 1. Convergence behavior illustrated via the evolution of ||W; — w{ ||2, for various random graph models. (a) Stationary ER graph with
N =100, (b) dynamic ER graph with N = 50, and (c) dynamic SBM graph with N = 100. For the dynamic network, the topology changes
at t = 1000. In all settings, the proposed online DPG method converges faster to w; than the baseline algorithm in [26].
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to a different topology obtained after resampling 10% of the edges.
Fort =1,...,2000, we generate i.i.d. Gaussian-distributed smooth
signals x; ~ N (07 Li + O’SIN), where 0. = 0.01 and L; is the
Laplacian of the ground-truth graph; see e.g., [19].

We examine the convergence behavior of the aforementioned
methods by monitoring the evolution of the error metric ||W;—w7 ||2.
For given «, 3, we compute the solution w; by running the batch al-
gorithm in [18] until convergence (we use all signals available over
the interval where the graph remains fixed). The results of these tests
are presented Fig. 1. The plots clearly show that Algorithm 1 con-
verges faster to w; than the baseline [26]; in both the stationary and
dynamic settings, uniformly across model classes and graph sizes.

5.2. Dynamic network-based analysis of epileptic seizures

We test Algorithm 1 on an inherently dynamic task, namely a
network-based study of epileptic seizures [25]. To that end, we re-
sort to a publicly available dataset that contains electrocorticogram
(ECoG) signals of 8 seizure instances acquired from human patients
with epilepsy [7]. ECoG data are captured by N = 76 electrodes,
where 64 of them form an 8 X 8 grid located at the cortical brain’s
surface. The other 12 electrodes are placed deeper in the left subor-
bital frontal lobe and over the left hippocampal region. Signals are
recorded with sampling rate of 400 Hz.

We apply online DPG to the ECoG signals including 10 seconds
before an epileptic seizure (pre-ictal) and 10 seconds upon seizure
onset (ictal). In general, we notice a significant reduction in the

(b)
Fig. 2. Dynamic graph learning using ECoG data. (a) Evolution of edge weights from pre-ictal to ictal stage, where the vertical line indicates
seizure onset. Recovered brain graphs (b) 2.5s prior to seizure; and (c) 2.5s after. An edge-thinning pattern is apparent on seizure onset.

e o o9 o
(]
(]
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°

L] L]
[ ]
e e o o & ¢

©)

overall level of brain connectivity during the seizures. In Fig. 2(a)
we plot the temporal variation of edge weights as we update the re-
covered dynamic brain network. The vertical line indicates the mo-
ment of seizure onset, where the drop in edge density is consider-
able. Moreover, in Figs. 2(b) and (c) we depict two snapshots of the
learned graph at 2.5 seconds prior to seizure and 2.5 seconds after;
respectively. Vertex colors in Fig. 2(b) are proxies of closeness cen-
trality values, where darker shades correspond to lower values. The
closeness centrality scores are calculated as the inverse sum of the
distances from a node to all other nodes [7, Ch.4]. We observe in
Fig. 2(b) and (c) that edge thinning is more prominent in the bottom
corner of the grid and along the two strips. This result is well aligned
with the findings in [25].

6. CONCLUDING SUMMARY

We proposed an online algorithm to track the topology of slowly-
varying undirected graphs from streaming signals. Capitalizing on
favorable dual domain structure of a smoothness-regularized inverse
problem with well-documented merits, we derive and truncate prox-
imal gradient iterations to minimize a time-varying cost in an online
fashion. The novel algorithm is devoid of (often hard to tune) step-
sizes, it is lightweight and demands constant memory storage regard-
less of the number of measurements. Numerical tests with synthetic
and real brain activity signals demonstrate the effectiveness of the
dynamic network topology tracker, and that it compares favorably
against a state-of-the-art baseline of comparable complexity.
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