
Received: 1 January 2023 Revised: 13 July 2023 Accepted: 24 July 2023

DOI: 10.1002/nla.2528

RE S EARCH ART I C L E

Low-rank updates of matrix square roots

Shany Shmueli1 Petros Drineas2 Haim Avron1

1School of Mathematical Sciences,Tel Aviv
University, Tel Aviv, Israel
2Department of Computer Science,Purdue
University, West Lafayette, Indiana, USA

Correspondence
Haim Avron, Tel Aviv University, Israel.
Email: haimav@tauex.tau.ac.il

Funding information
Israel Science Foundation, Grant/Award
Number: 1272/17; National Science
Foundation, Grant/Award Numbers:
10001415, 10001390; United States - Israel
Binational Science Foundation,
Grant/Award Number: 2017698

Abstract
Models in which the covariance matrix has the structure of a sparse matrix plus
a low rank perturbation are ubiquitous in data science applications. It is often
desirable for algorithms to take advantage of such structures, avoiding costly
matrix computations that often require cubic time and quadratic storage. This
is often accomplished by performing operations that maintain such structures,
for example, matrix inversion via the Sherman–Morrison–Woodbury formula.
In this article, we consider the matrix square root and inverse square root oper-
ations. Given a low rank perturbation to a matrix, we argue that a low-rank
approximate correction to the (inverse) square root exists. We do so by estab-
lishing a geometric decay bound on the true correction’s eigenvalues. We then
proceed to frame the correction as the solution of an algebraic Riccati equation,
and discuss how a low-rank solution to that equation can be computed. We ana-
lyze the approximation error incurredwhen approximately solving the algebraic
Riccati equation, providing spectral and Frobenius norm forward and backward
error bounds. Finally, we describe several applications of our algorithms, and
demonstrate their utility in numerical experiments.

KEYWORD S

low rank perturbations, low rank updates, matrix functions, matrix square root

1 INTRODUCTION

In applications, and in particular data science applications, one often encountersmatrices that are low-rank perturbations
of another (perhaps simpler) matrix. For example, models in which the covariance matrix has the structure of a sparse
matrix plus a low rank perturbation are common. In another example, it is common for algorithms to maintain a matrix
that is iteratively updated by low-rank perturbations.

It is often desirable for algorithms to take advantage of such structures, avoiding costly matrix computations that
often require cubic time and quadratic storage. An indispensable tool for utilizing low-rank perturbations is the famous
Sherman–Morrison–Woodbury formula, which shows that the inverse of a low-rank perturbation can be obtained using a
low-rank correction of the inverse. While the usefulness of the Sherman–Morrison–Woodbury formula cannot be under-
stated, other matrix functions also frequently appear in applications. One naturally asks the following questions. Given a
matrix function f , when does a low rank perturbation of a matrixA correspond to a (approximately) low-rank correction
of f (A)? Can we find a high quality approximate correction efficiently, that is, without computing the exact correction
and truncating it using a SVD?

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2023 The Authors. Numerical Linear Algebra with Applications published by John Wiley & Sons Ltd.

Numer Linear Algebra Appl. 2023;e2528. wileyonlinelibrary.com/journal/nla 1 of 15
https://doi.org/10.1002/nla.2528

http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/NLA
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnla.2528&domain=pdf&date_stamp=2023-08-09

2 of 15 SHMUELI et al.

In this article, we answer these questions affirmatively for two important and closely related functions: the matrix
square root and inverse square root. The square root operation on matrices is a fundamental operation that frequently
appears inmathematical analysis.Moreover,matrix square roots and their inverse arise frequently in data science applica-
tions, for example, when sampling from a high dimensional multivariate Gaussian distribution, or when whitening data.
Computing the square root (or inverse square root) of low-rank perturbations of simple matrices (e.g., diagonal matrices)
appear in quite a few data science applications, for example, in the aforementioned applications when the covariance
matrix follows a spiked populationmodel. Formore discussion on applications of low-rank perturbations ofmatrix square
root, see Section 6.

In particular, we show that given a low rank perturbation D to a matrix A, we can approximate (A +D)1∕2 well by a
low rank correction to A1∕2. We do so by proving a geometric decay bound on the eigenvalues of (A +D)1∕2 −A1∕2. We
also provide a similar bound for the inverse square root. We then proceed to show that the exact update is a solution of
an algebraic Riccati equation, and discuss how a low-rank approximate solution to that equation can be computed. This
allows us to propose concrete algorithms for updating and downdating the matrix square root and matrix inverse square
root. Finally, we report experiments that corroborate our theoretical results.

1.1 Related work

Most previous work on the matrix square root focused on computingA1∕2x andA−1∕2x for a given vector x using a Krylov
method, possibly with preconditioning.1-4 The motivation for most of the aforementioned works is sampling from a mul-
tivariate Gaussian distributions. Worth mentioning is recent work by Pleiss et al.5 which combines a Krylov subspace
method with a rational approximation, and also allows preconditioning.

The problem of updating a function of a matrix after a low rank perturbation, that is, computing f (A +D) given f (A)
whereD is low-rank, has been recently receiving attention. The Sherman–Morrison–Woodbury formula is a well known
formula for updating thematrix inverse, that is, f (x) = x−1. Bernstein and Van Loan6 showed that that when f is a rational
function of degree q, a rank one perturbation ofA corresponds to a rank q perturbation of f (A). This article also provides
an explicit formula for the low rank perturbation. Higham1 showed that a rank k perturbation of A = 𝛼I corresponds
to a rank k perturbation of f (A) for any f (see Theorem 1.35 therein). As for inexact corrections, Beckermann et al.7
proposed a Krylovmethod for computing a low-rank correction of f (A) that approximates f (A +D)well for any analytic f
(however, approximation quality depends on properties of the function itself, for example, howwell it is approximated by
a polynomial). In follow up work, they proposed a rational Krylov method,8 citing the matrix square root as an example
of a case in which their original method might have slow convergence.

Theworkmost similar to ours is Reference 9. In that article, the authors consider the problem of computing the square
root of amatrix of the form 𝛼I +UVT , as a correction of

√
𝛼I. Due toReference 1 (Theorem1.35), the rank of the correction

is the same as the rank of UVT . However, the formula in Reference 1 (Theorem 1.35) requires VTU to be non-singular,
which is not required for the square root to be defined. The authors circumvent this issue by suggesting another formula
for the square root, or by using aNewton iteration. In away, the algorithm in Reference 9 ismore general than ourmethod
since it allows non-symmetric updates. However, in another way it is less general: the matrix to be perturbed must be a
scaled identity matrix. Moreover, we also suggest a method for updating the inverse square root.

2 PRELIMINARIES

2.1 Notation and basic definitions

We denote scalars using Greek letters or using x, y, … . Vectors are denoted by x, y, … and matrices by A,B, … . The
n × n identity matrix is denoted In. We use the convention that vectors are column-vectors.

Given a symmetric positive-semidefinite matrix A ∈ Rn×n, another matrix B ∈ Rn×n is a square root of A if B2 = A.
There is a unique square root of A that is also positive semi-definite, which is called the principal square root and we
denote it by A1∕2.

Given two matrices F and G, the (F,G)-displacement rank of A is defined as the rank of FA −AG. Displacement
structures and displacement rank are closely connected to the Sylvester equation.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2528, W

iley O
nline Library on [20/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

SHMUELI et al. 3 of 15

2.2 Low-rank algebraic Riccati equation

Consider the following equation in X ∈ Rn×n,

EX + XE + 𝛼X2 = GTG, (1)

where E ∈ Rn×n is a symmetric full-rank matrix, G ∈ Rk×n where k ≪ n, and 𝛼 = ±1. Our algorithms are based on
approximately solving Equation (1) with a positive semidefinite low-rank X.

If 𝛼 = +1, Equation (1) is an instance of the algebraic Riccati equation. There is a rich literature on algorithms for
finding low rank solutions for the algebraic Riccati equation. We note the survey due to Benner and Saak,10 and the book
by Bini et al.11 In our experiment, we use a recently proposed meta-scheme for approximately solving a slightly more
general version of Equation (1) based onRiemannian optimization.12 When applied to Equation (1) their scheme assumes
the ability to take products of E by a vector, and to solve linear equations where the matrix is equal to E2 + low-rank,
which is easily achievable via the Sherman–Morrison–Woodbury formula if we have access to an oracle that multiplies
E−1 by a vector. Under the assumption that each rank update in Reference 12 requires O(1) trust-region iterations, and
that the target maximum rank of X is r, the overall cost of the scheme in Reference 12 is O((TE + TE−1)r2 + nr4)where TE
and TE−1 is the cost of multiplying E and E−1 by a vector (respectively). In most of our applications E is diagonal, so the
cost reduces to O(nr4).

The method described in Reference 12 handles only the case of 𝛼 = +1. However, it can be generalized to the case of
𝛼 = −1. We give details in Appendix A.

In our algorithms, we denote the process of solving Equation (1) via the notation

U ← RiccatiLRSolver(E,G, 𝛼, r),

where r is the target maximum rank, and U ∈ Rn×r is a symmetric factor of the solution X (i.e., X = UUT). In the com-
plexity analyses we assume that this process takes O((TE + TE−1)r2 + nr4), as justified by the discussion above. However,
we stress that our algorithm can use any algorithm for finding low-rank approximate solution to the algebraic Riccati
equation, for example, we have also successfully used theM.E.S.S solver1 for this purpose (experiments not reported). We
use the algorithm from Reference 12 in our discussion and experiments due to the algorithm’s clear complexity cost. We
remark that our algorithm actually uses only the case 𝛼 = +1, but for some discussions it is useful to consider also the
ability to solve for 𝛼 = −1.

2.3 Problem statement

LetA ∈ Rn×n be a a symmetric positive semidefinite matrix. Suppose we are givenA1∕2, perhaps implicitly (i.e., as a func-
tion that maps a vector x to A1∕2x). Given a perturbation D ∈ Rn×n of rank k ≪ n, our goal is to approximate (A +D)1∕2
using a low-rank correction of A1∕2. That is, to find a Δ̃ of rank r such that (A +D)1∕2 ≈ A1∕2 + Δ̃. The rank r of Δ̃
should be treated as a parameter, and should optimally be O(k). We show in Section 3 that we can expect to find a good
approximation with r ≪ n.

Wemake two additional assumptions onD. First, we assume that it is either positive semidefinite or negative semidef-
inite. Indefinite perturbations can be handled by splitting the update into two semidefinite perturbations and applying
our algorithms sequentially. Second, we assume thatD is given in a symmetric factorized form. We can combine the last
two assumptions in a single assumption by assuming we are given a Z ∈ Rn×k such that D = 𝛼ZZT where 𝛼 = ±1. We
refer to the case of 𝛼 = +1 as updating the square root, and 𝛼 = −1 as downdating the square root.

In the case of updating the square root, we are guaranteed that A + ZZT is positive definite for any Z, but this
does not necessarily holds for downdating. Thus, for downdates we further assume that A − ZZT is positive definite.
The following Lemma gives an easy way to test this condition in cases we also have access to the inverse of A1∕2

or A.

Lemma 1. Suppose that A ∈ Rn×n is symmetric positive definite, and Z ∈ Rn×k for k ≤ n. Then A − ZZT is
positive semidefinite if and only if Ik − ZTA−1Z is positive semi definite.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2528, W

iley O
nline Library on [20/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

4 of 15 SHMUELI et al.

Proof. A − ZZT ⪰ 0 if and only if A ⪰ ZZT . Multiplying by A−1∕2 on both sides, we see that this holds if and
only if A−1∕2ZZTA−1∕2 ⪯ In. The last inequality holds if and only if all the eigenvalues of A−1∕2ZZTA−1∕2 are
smaller or equal to 1. However, the non-zero eigenvalues of thatmatrix are equal to the eigenvalues ofZTA−1Z,
so A − ZZT ⪰ 0 if and only if ZTA−1Z ⪯ Ik, which is equivalent to Ik − ZTA−1Z being positive definite. ▪

The correction Δ̃ should be returned in factorized form. For reasons that will become apparent in our algorithm, the
correction will be positive semidefinite when D is positive semidefinite, and negative semidefinite when D is negative
semidefinite. Thus, we require our algorithm to return aU ∈ Rn×r such that (A + 𝛼D)1∕2 ≈ A1∕2 + 𝛼UUT .

The discussion so far was for updating or downdating the square root. We also aim at correcting the inverse of the
square root, that is,A−1∕2. Again, we will requireD to be either positive semidefinite or negative semidefinite, and Δ̃ to be
factorized as well and definite. However, for updating the inverse of the square root, the definiteness of Δ̃will be opposite
to the one of D.

We can capture the distinction between updating the square root and the inverse square root with an additional
parameter 𝛽 = ±1, where we wish to update A𝛽∕2. Putting it all together, we arrive at the following problem:

Problem 1. Given implicit access toA1∕2 and/orA−1∕2, Z ∈ Rn×k, 𝛼 = ±1, 𝛽 = ±1 and target rank r, return a
U ∈ Rn×r such that

(A + 𝛼ZZT)𝛽∕2 ≈ A𝛽∕2 + 𝛼𝛽UUT
.

3 DECAY BOUNDS FOR SQUARE ROOTS CORRECTIONS

Given a matrix A and a low-rank perturbation D, our goal is to find a low-rank correction Δ̃ to A𝛽∕2. However, one can
ask whether such a correction even exists? Let Δ denote the exact correction, that is,

Δ ∶= (A +D)𝛽∕2 −A𝛽∕2
.

In this section, we show that the eigenvalues of Δ exhibit a geometric decay. Thus, by applying eigenvalue thresholding
to Δ we can obtain a low-rank approximate correction Δ̃ (however, our algorithm uses a different method for finding Δ̃).

3.1 Decay bound for square root corrections

We first consider the case that 𝛽 = 1, so we are perturbing the square root.
Let us denote B ∶= A +D. The following is a known identity:

A1∕2Δ + ΔB1∕2 = B −A.

Indeed, since B = (B1∕2)2 = (A1∕2 + Δ)2 we have

B −A = (A1∕2 + Δ)2 −A
= A +A1∕2Δ + Δ(A1∕2 + Δ) −A
= A1∕2Δ + Δ(A1∕2 + Δ)
= A1∕2Δ + ΔB1∕2.

In our case, that is when B = A +D, we see that Δ upholds the following Sylvester equation:

A1∕2Δ + ΔB1∕2 = D. (2)

Since the rank ofD is k, we see that Δ has a (A1∕2
,−B1∕2)-displacement rank of k. Beckermann and Townsend13 recently

developed singular value decay bounds for matrices with displacement structure. Using their results, we can prove the
following bound.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2528, W

iley O
nline Library on [20/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

SHMUELI et al. 5 of 15

Theorem 1. Suppose that bothA andB = A +D are symmetric positive definitematrices, and thatD is of rank
k. Let Δ = B1∕2 −A1∕2. Then for j ≥ 1, the singular values of Δ satisfy the following bound

𝜎j+kl(Δ) ≤ 4
[
exp

(
𝜋
2

2 log(4𝜅̂)

)]−2l
𝜎j(Δ),

where

𝜅̂ =
2(
√
||A||2 + ||D||2 +

√
𝜆min(A)∕2)

√
𝜆min(A)

.

Proof. Let 𝜇 =
√
𝜆min(A) and 𝛿 =

√
||A||2 + ||D||2. The matrix Δ upholds the following Sylvester equation

(A1∕2 − (𝜇∕2)In)Δ + Δ(B1∕2 + (𝜇∕2)In) = D.

Thus, the results in Reference 13 show that we can bound

𝜎j+kl(Δ) ≤ Zl(E,F)𝜎j(Δ), (3)

where E is any set that contains the spectrum of A1∕2 − (𝜇∕2)In, F is any set that contains the spectrum of
−(B1∕2 + (𝜇∕2)In), and Zl(E,F) is the Zolotarev number.

Let a = 𝜇∕2. Since 𝜇 is the minimal eigenvalue of A1∕2, all the eigenvalues of A1∕2 − (𝜇∕2)In are big-
ger than a or equal to it. Since B is by assumption positive definite, all the eigenvalues of −(B1∕2 + (𝜇∕2)In)
are smaller than −a or equal to it. Let b = 𝛿 + 𝜇∕2. Obviously, all the eigenvalues of A1∕2 − (𝜇∕2)In are
smaller than b. Furthermore, since ||B||2 ≤ ||A||2 + ||D||2, all the eigenvalues of −(B1∕2 + (𝜇∕2)In) are big-
ger than or equal to −b. Thus, we can take E = [a, b] and F = [−b,−a]. In Reference 13 it is also shown
that

Zl([a, b], [−b,−a]) ≤ 4
[
exp

(
𝜋
2

2 log(4b∕a)

)]−2l
,

plugging that into Equation (3) gives the desired bound. ▪

The theorem bounds the singular values. However, if D is positive semidefinite, then Δ is also positive semidefinite,
and the bound is actually on the eigenvalues. Figure 1 illustrates the bound versus actual decay of the eigenvalues on
two simple test cases. In both examples, A ∈ R100×100 is a diagonal matrix. In the left graph, the diagonal entries are
sampled uniformly from U(0, 1). In the right graph, diagonal entries are logarithmically spaced between 10−3 and 103.
The perturbation is D = zzT , where z is a normalized Gaussian vector.

We remark the previous to the aforementioned theoretical results of Beckermann and Townsend,13 it has been empir-
ically observed that if the righthand side of a Sylvester equation is low rank, then the solution is well approximated using
a low rank matrix.14

3.2 Decay bound for inverse square root corrections

Observe that

−A−1DB−1 = B−1 −A−1 = A−1∕2Δ + ΔB−1∕2
. (4)

SinceD is rank k, so the matrix −A−1DB−1 is of rank at most k. Thus, similarly to Theorem 1, by observing that ||B−1||2 ≤
||A−1||2

(
1 + ||D||2||B−1||2

)
(which follows fromB−1 = A−1 − B−1DA−1), we can prove the following bound on the singular

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2528, W

iley O
nline Library on [20/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

6 of 15 SHMUELI et al.

F IGURE 1 Illustration of the eigenvalue decay bound of Theorem 1 versus the actual decay observed on two simple examples—on the
left we sampled A entries uniformly and on the right we used logspace sampling.

values of Δ:

𝜎j+kl(Δ) ≤ 4
[
exp

(
𝜋
2

2 log(4𝜅̂)

)]−2l
𝜎j(Δ),

where

𝜅̂ =
2(
√
𝜆min(A)−1(1 + ||D||2𝜆min(B)−1) +

√
𝜆max(A)−1∕2)

√
𝜆max(A)−1

.

We omit the proof since it is almost identical to the proof of Theorem 1.

4 EQUATION FOR SQUARE ROOTS CORRECTIONS AND ERROR
ANALYSIS

Our algorithms are based on writing Δ as a solution of an equation, and then finding a low-rank approximate solution
Δ̃. Seemingly, Equations (2) and (4) are the equations we need. However, these equations contain the unknown B𝛽∕2 so
they are not useful for us algorithmically. We derive a different equation instead. In particular, we writeΔ as the solution
of an algebraic Riccati equation, that is, in the form of Equation (1).

We can combine Equations (2) and (4) into a single equation:

A𝛽∕2Δ + ΔB𝛽∕2 = B𝛽 −A𝛽

.

Recalling that B𝛽∕2 = A𝛽∕2 + Δ, and plugging it into the last equation we get

A𝛽∕2Δ + ΔA𝛽∕2 + Δ2 = B𝛽 −A𝛽

. (5)

In order for the equation to fit Equation (1) we must write the right side as a positive semi-definite factorized matrix.
The first step is finding a matrix V ∈ Rn×k such that

B𝛽 −A𝛽 = 𝛼𝛽VVT
.

When 𝛽 = 1, and recalling that in Problem 1we haveB −A = 𝛼ZZT , we can takeV = Z. When 𝛽 = −1, we obtainV using
the Sherman–Morrison–Woodbury formula. Indeed,

B−1 −A−1 = −𝛼A−1Z(I + 𝛼ZTA−1Z)−1ZTA−1
.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2528, W

iley O
nline Library on [20/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

SHMUELI et al. 7 of 15

So we take V = A−1Z(I + 𝛼ZTA−1Z)−1∕2 (note that if 𝛼 = −1 the condition that A − ZZT is positive definite ensures that
I + 𝛼ZTA−1Z is positive definite and the inverse square root exists).

We now have the equation

A𝛽∕2Δ + ΔA𝛽∕2 + Δ2 = 𝛼𝛽VVT
.

We do an additional change of variables to make the right-hand side positive definite even if 𝛼 ≠ 𝛽. Let C = 𝛼𝛽Δ (so
B1∕2 = A1∕2 + 𝛼𝛽C since 𝛼 = ±1 and 𝛽 = ±1). Bymultiplying the last equation on both sides by 𝛼𝛽 we obtain the equation:

A𝛽∕2C + CA𝛽∕2 + 𝛼𝛽C2 = VVT
. (6)

Except C, all other quantities of the last equation are known, and solving Equation (6) using a low-rank positive semidef-
inite C of the form C = UUT forms the basis of our algorithm (see next section). However, all our algorithms solve
Equation (6) approximately, since they output low-rank solutions, while the exact solution tends to be full-rank.

We now analyze how errors in solving Equation (6) translate to errors in approximating B𝛽∕2. First, let us define the
residual of an approximate solution:

R(C̃) ∶= VVT −A𝛽∕2C̃ − C̃A𝛽∕2 − 𝛼𝛽C̃2
.

We start with a backward error bound, that is, showing that if the residual has a small norm, thenA𝛽∕2 + 𝛼𝛽C̃ is the square
root of a matrix that is close to (A + 𝛼ZZT)𝛽 .

Lemma 2. We have

||(A + 𝛼ZZT)𝛽 − (A𝛽∕2 + 𝛼𝛽C̃)2||F = ||R(C̃)||F .

Proof. We have defined V so that (A + 𝛼ZZT)𝛽 = A𝛽 + 𝛼𝛽VVT , so

||(A + 𝛼ZZT)𝛽 − (A𝛽∕2 + 𝛼𝛽C̃)2||F = ||A𝛽 + 𝛼𝛽VVT − (A𝛽∕2 + 𝛼𝛽C̃)2||F
= ||A𝛽 + 𝛼𝛽VVT −A𝛽 − 𝛼𝛽A𝛽∕2C̃ − 𝛼𝛽C̃A𝛽∕2 − C̃2||F
= ||𝛼𝛽R(C̃)||F
= ||R(C̃)||F .

▪

In order to get a bound on the forward error in terms of the backward error, we need the following perturbation bound
for the matrix square root:

Lemma 3 (Schmitt15(Lemma 2.2)). Suppose that Re
(
Aj
)
⪰ 𝜇

2
j I, 𝜇j > 0, j = 1, 2. Then, both A1 and A2 have

square roots satisfying Re
(
A1∕2
j

)
⪰ 𝜇jI for j= 1,2, and

||A1∕2
2 −A1∕2

1 ||2 ≤
1

𝜇1 + 𝜇2
||A2 −A1||2.

Lemma 4. LetW andH be two symmetric positive definite matrices. The following bounds hold:

||W𝛽∕2 −H||F ≤ (n1∕2||W𝛽 −H2||F)1∕2,

||W𝛽∕2 −H||2 ≤ min

(
||W𝛽 −H2||2
√
𝜆min(W𝛽)

, (n1∕2||W𝛽 −H2||F)1∕2
)

.

Proof. The bound ||W𝛽∕2 −H||2 ≤ ||W𝛽 −H2||2∕
√
𝜆min(W𝛽) follows immediately from Lemma 3. The Frobe-

nius norm bound follows from Wihler inequality the pth root of positive semidefinite matrices: for any two
n × n positive semidefinite matrix X and Y and p > 1 we have ||X1∕p − Y1∕p||pF ≤ n(p−1)∕2||X − Y||F .16 We apply
this inequality to X = W𝛽 and Y = H2. ▪

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2528, W

iley O
nline Library on [20/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

8 of 15 SHMUELI et al.

Finally, we obtain the following bound:

Corollary 1. Suppose that both A and A + 𝛼ZZT are positive definite where 𝛼 = ±1. Let C̃ be a positive
semidefinite matrix. Assume that A𝛽∕2 + 𝛼𝛽C̃ is positive definite. The following bounds holds:

||(A + 𝛼ZZT)𝛽∕2 − (A𝛽∕2 + 𝛼𝛽C̃)||F ≤
(
n1∕2||R(C̃)||F

)1∕2
,

||(A + 𝛼ZZT)𝛽∕2 − (A𝛽∕2 + 𝛼𝛽C̃)||2 ≤ min

{
||R(C̃)||F

√
𝜆min((A + 𝛼ZZT)𝛽)

,

(
n1∕2||R(C̃)||F

)1∕2
}

.

Proposition 1. Suppose that both A and A + 𝛼ZZT are positive definite where 𝛼 = ±1, 𝛽 = ±1. The matrix
𝛼𝛽((A + 𝛼ZZT)𝛽∕2 −A𝛽∕2) is a solution to Equation (6). Conversely, if C is a positive definite solution of
Equation (6) for which A𝛽∕2 + 𝛼𝛽C is positive definite as well, then A𝛽∕2 + 𝛼𝛽C = (A + 𝛼ZZT)𝛽∕2.

Proof. Let C = 𝛼𝛽((A + 𝛼ZZT)𝛽∕2 −A𝛽∕2). By substation we have A𝛽∕2C + CA𝛽∕2 + 𝛼𝛽C2 = 𝛼𝛽(A + 𝛼ZZT)𝛽 −
𝛼𝛽A𝛽 . Recall that we defined V such that (A + 𝛼ZZT)𝛽 = A𝛽 + 𝛼𝛽VVT so we find that A𝛽∕2C + CA𝛽∕2 +
𝛼𝛽C2 = VVT and Equation (6) holds.

Conversely, if C is a positive definite solution of Equation (6) then R(C) = 0. Since A𝛽∕2 + 𝛼𝛽C is
positive definite, Corollary 1 ensures that ||(A + 𝛼ZZT)𝛽∕2 − (A𝛽∕2 + 𝛼𝛽C̃)||F ≤ 0. This can only happen if
(A + 𝛼ZZT)𝛽∕2 − (A𝛽∕2 + 𝛼𝛽C̃) = 0, that is, A𝛽∕2 + 𝛼𝛽C = (A + 𝛼ZZT)𝛽∕2. ▪

5 ALGORITHMS

In this section, we describe our algorithms for solving Problem 1. As alluded earlier, our algorithms are based on using
a Riccati low-rank solver as encapsulated by RicattiLRSolver. However, in some combinations of 𝛼 and 𝛽 there is a chal-
lenge: while the returned C̃ is guaranteed to be positive definite, there is no guarantee thatA𝛽∕2 + 𝛼𝛽C̃ is positive definite
as well. Such guarantee is necessary in order to apply Corollary 1. Thus, we split our algorithm to various cases based on
the combination of 𝛼 and 𝛽. Our proposed algorithms are summarized in pseudo-code form in Algorithm 1.

Algorithm 1. Algorithms for updating/downdating square root and inverse square root

1: Inputs: A1∕2 ∈ Rn×n and/or A−1∕2 ∈ Rn×n implicitly, 𝛼 = ±1, 𝛽 = ±1, Z ∈ Rn×k, target rank r.
2: Output: U ∈ Rn×r such that

(A + 𝛼ZZT)𝛽∕2 ≈ A𝛽∕2 + 𝛼𝛽UUT.
3:

4: 𝛼 = +1, 𝛽 = +1: (only A1∕2 required)
5: U ← RiccatiLRSolver(A1∕2

,ZT,+1, r)
6:

7: 𝛼 = −1, 𝛽 = −1: (only A−1∕2 required)
8: G ← A−1∕2Z
9: Verify Ik − GTG is positive definite (o/w return error)
10: V ← A−1∕2G(Ik − GTG)−1∕2
11: U ← RiccatiLRSolver(A−1∕2

,VT
,+1, r)

12:

13: 𝛼 = −1, 𝛽 = +1:
14: Execute the 𝛼 = −1, 𝛽 = −1 case to obtainU1.
15: U ← A1∕2U1(Ir +UT

1A
1∕2U1)−1∕2

16:

17: 𝛼 = +1, 𝛽 = −1:
18: Execute the 𝛼 = +1, 𝛽 = +1 case to obtainU1.
19: U ← A−1∕2U1(Ir +UT

1A
−1∕2U1)−1∕2

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2528, W

iley O
nline Library on [20/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

SHMUELI et al. 9 of 15

5.1 Updating (𝜶 = 1) the square root (𝜷 = 1)

This is the simplest case: we simply callU ← RiccatiLRSolver(A1∕2
,ZT ,+1, r) and returnU.

5.2 Downdating (𝜶 = −1) the inverse square root (𝜷 = −1)

We first compute V = A−1Z(Ik − ZTA−1Z)−1∕2. Along the way we can verify that I − ZTA−1Z is positive defi-
nite, which is required for A − ZZT to be positive semidefinite, and our algorithm to work. We now call U ←
RiccatiLRSolver(A−1∕2

,VT
,+1, r) and returnU.

5.3 Downdating (𝜶 = −1) the square root (𝜷 = 1)

Seemingly, we could simply callU ← RiccatiLRSolver(A1∕2
,ZT ,−1, r) and returnU. However, there is no guarantee that

A1∕2 −UUT is positive definite, and Corollary 1 no longer guarantees that we have an approximation to the principal
square root.

If we want to approximate the principal square root, we can first solve for downdating the inverse square root
(𝛼 = −1, 𝛽 = −1), obtainingU1 such that (A − ZZT)−1∕2 ≈ A−1∕2 +U1UT

1 .We nowuse the Sherman–Morrison–Woodbury
formula to note that

(A−1∕2 +U1UT
1)

−1 = A1∕2 −A1∕2U1(Ir +UT
1A

1∕2U1)−1UT
1A

1∕2
,

so we returnU = A1∕2U1(Ir +UT
1A

1∕2U1)−1∕2.

5.4 Updating (𝜶 = 1) the inverse square root (𝜷 = −1)

Again, calling the Riccati solver directly might return a corrected matrix which it not necessarily positive definite,
and it will not be a good approximation to the principal square root. To approximate the principal square root, we
first solve the updating problem for the square root (A + ZZT)1∕2 ≈ A1∕2 +U1UT

1 (𝛼 = +1, 𝛽 = +1), and then use the
Sherman–Morrison–Woodbury formula to find a U such that (A1∕2 +U1UT

1)−1 = A−1∕2 −UUT . We omit the details and
simply refer the reader to the pseudo code description in Algorithm 1.

5.5 Costs

Themain cost of the algorithms is in solving the Riccati equation. Evenwhen the Sherman–Morrison–Woodbury formula
is needed to ensure positive definiteness of the correction, its cost of O(nk2) is subsumed by the cost of solving the Riccati
equation. Overall, under our assumptions on the cost of solving the Riccati equation, the overall cost of the algorithms is
O((TA1∕2 + TA−1∕2)r2 + nr4)where TA1∕2 and TA−1∕2 are the costs of the taking products ofA1∕2 andA−1∕2 (respectively) with
a vector. In many of the applications we discuss in the next sectionA is diagonal, in which case the cost of the algorithms
reduces to O(nr4).

6 APPLICATIONS

6.1 ZCA whitening of high dimensional data

Whitening transformations are designed to transform a random vector (or samples of that random vector) with a known
covariance matrix into a new random vector whose covariance is the identity matrix. Suppose that x ∈ Rp is a random
vector with covariance matrix Σ ∈ Rp×p. LetW be any matrix such thatWTW = Σ−1; such a matrix is called a whitening
matrix. Then the covariancematrix of the randomvector z = Wx is the identity, so the randomvariable has beenwhitened.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2528, W

iley O
nline Library on [20/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

10 of 15 SHMUELI et al.

There are several possible choices forW, leading to different whitening transformations. ZCAwhitening is the whitening
transformation defined byW = Σ−1∕2.

In practice, the ZCA transformation is learned from data. Given samples x1, … , xn an estimate Σ̂ of Σ is formed, and
Ŵ = Σ̂−1∕2 is used for the ZCAwhitening matrix. A common choice is to use the sample covariance matrix Sn = n−1XT

c Xc
for Σ̂ where Xc is the data matrix whose rows are x1, … , xn after centering (subtraction of the mean).

However, it is well appreciated in the statistical literature that when the random vectors are high dimensional, that is,
when p is of the same order as n (or much larger), then the sample covariance Sn is a poor estimate of Σ. Indeed, one can
easily see that if p > n then Sn is not even invertible so the ZCA transformation is not even defined. In high dimensional
settings it is common to adopt the spiked covariance model of Johnstone.17 In the spiked covariance model it is assumed
that the covariance matrix has the following form:

Σ = 𝜎
2Ip + ZZT , (7)

for some Z ∈ Rp×k (k is a parameter).
Suppose that we have formed an estimate Σ̂ of Σwith the same structure as in Equation (7), and we want to transform

the samples using ZCA whitening. Explicitly computing the square root of Σ̂ requires O(p3), which is prohibitive when p
is large, and additional O(p2n) is required for applying the transformation to the data. Instead, we can use our algorithm
to find aU ∈ Rn×r with r = O(k) such that

Σ̂−1∕2 ≈ 𝜎
−1I −UUT

.

We can then apply the ZCA transformation in O(npk).

6.2 Updating/downdating polar decomposition and ZCA transformed data

Given a matrix X ∈ Rn×d where n ≥ d, a polar decomposition of it is

X = UP,

whereU has orthonormal columns and P is symmetric positive semidefinite. The matrix P is always unique, and is given
by P = (XTX)1∕2. If X has full rank, then P is positive definite, andU = XP−1. The polar decomposition can be computed
using a reduced SVD, so the cost of computing a polar decomposition is O(nd2). There are quite a few uses for the polar
decomposition.18

We now consider the following updating/downdating problem. Let us denote the rows of X by x1, … , xn ∈ Rd, that
is, row j ofX is xTj . Suppose we already have a polar decompositionX = UP ofX. The downdating problem is: compute the
polar decomposition of a matrix X− obtained by removing one row from X. Theupdating problem is: compute the polar
decomposition of X+, a matrix obtained by adding a single row to X.

We describe an algorithm for downdating a polar decomposition. The updating algorithm is almost the same.Without
loss of generality, assume we remove the last row from X:

XT
−X− = XTX − xnxTn .

This is a rank-1 perturbation ofXTX. TheP-factor ofX−, whichwe denote byP−, is obtained by computing the square root
of XT

−X−, and we already have the square root P for the unperturbed matrix XTX. So we can use the algorithm described
in Section 5 to find a matrixU ∈ Rd×k for some small r (a parameter; e.g., k = 4) such that

P− ≈ P̃− ∶= P −UUT
.

Assume now that X− is full rank as well. We now have

U− ≈ Ũ− ∶= X−P̃
−1
− .

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2528, W

iley O
nline Library on [20/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

SHMUELI et al. 11 of 15

Using the Sherman–Morrison–Woodbury formula:

P̃−1
− = P−1 + P−1U(Ir −UTP−1U)−1UTP−1

,

so

Ũ− = X−P−1(Ir +U(Ik −UTP−1U)−1UTP−1).

Now notice that X−P−1 is just the first n − 1 rows of XP−1 = U so we do not need to recompute it. Multiplying X−P−1 by
(Id +U(Ir −UTP−1U)−1UTP−1) can be done, utilizing the low rank structure of that matrix, using O(ndr) operations. If
r ≪ n this is a big reduction in complexity over O(nd2).

The polar decomposition is closely connected to ZCA whitening. Suppose that X is a data matrix whose rows are
sampled from a zero mean random vector (or, alternatively, X has been centered). TheU-factor is equal, up to scaling, to
the ZCA transformed data, while the inverse of the P-factor is, up to scaling, the ZCA whitening matrix itself. Using the
ability to update the inverse square root, the procedure for updating/downdating the polar decomposition can be adjusted
to update/downdate ZCA. Updating/downdating ZCA can be useful if you want to transform data that arrives over time
while the covariance matrix itself changes slowly. That is, data point xj is sampled with covariance Σj. If we assume the
covariance changes slowly, we can keep an approximate ZCA of the data by taking the sample covariance over a sliding
window. To do so efficiently, we can use the proposed ZCA updating/downdating procedure to first remove outdated data
(a downdate operation), and then add the newly arrived data (and update operation).

6.3 Sampling from amultivariate normal distributionwith perturbed precisionmatrix

Consider a random vector x ∈ Rn following a multivariate normal distribution with precision matrix Q, that is, x ∼
N(𝜇,Q−1). Suppose we want to sample x. This can be accomplished by sampling a vector z from the standardmultivariate
normal distribution (i.e., z ∼ N(0, In)) and then computing the sample x = 𝜇 +Q−1∕2z.

In certain cases the matrix Q has the structure of a low-rank perturbation of a fixed precision matrix, that is, Q =
Q0 + ZZT . Assuming we already have computed the inverse square root ofQ0, we can use our algorithms to compute aU
such that Q−1∕2 ≈ Q−1∕2

0 −UUT . We can then sample efficiently from x.
Such cases can occur in Gibbs Samplers for Bayesian inference on spatially structured data. An example is the image

reconstruction task discussed in Reference 19. The computational bottleneck in the algorithm proposed in Reference 19 is
sampling from a conditional Gaussian distribution whose precision matrix has the structureQ = 𝛾priorL + 𝛾obsZZT where
L is a fixed discrete Laplace operator that encodes prior smoothness assumptions on the image, while ZT encodes how
the high-resolution images are blurred and downsampled to yield low-resolution images.

6.4 Preconditioned second-order optimization

Recently introduced by Gupta et al.,20 Shampoo is a preconditioned second-order optimization method for solving prob-
lems in which the parameter space is naturally organized as am × nmatrix or higher order tensor. Here, we consider the
matrix-shaped case. In this case, at the core, Shampoo performs update steps of the form

Wt+1 ← Wt − 𝜂L−1∕4
t GtR−1∕4

t , (8)

where 𝜂 is the learning rate, {Wt} are the parameters at time t, {Gt} are the gradients at time t, and

Lt ∶= 𝜖Im +
t∑

s=1
GsGT

s Rt ∶= 𝜖In +
t∑

s=1
GT
s Gs.

Ifm ≫ nt then it is better to avoid holdingL−1∕4
t explicitly (which ism ×m), and simply hold an implicit representation

of bothL−1∕4
t andL−1∕2

t as diagonal plus low-rankmatrices. In each iterationwe canupdate both by applying our algorithm

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2528, W

iley O
nline Library on [20/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

12 of 15 SHMUELI et al.

twice. Since n ≪ m, we can store Rt explicitly, and compute R−1∕4
t in each iteration. If n ≫ mt we can reverse roles,

implicitly keeping Rt and explicitly keeping Lt. Even if both m and n are of comparable size, then in some cases Gt is of
low-rank, and again we can track Lt and Rt using our algorithm.

We stress that our method has an advantage over Fasi et al.,9 when applied to SHAMPOO. Fasi et al.,9 can only handle
perturbations of the identity, so when applied to compute the square root ofLt+1 it cannot use the square root ofLt (which
is available from the previous iteration). Our algorithm, on the other hand, can use the fact that Lt+1 = Lt + GtGT

t for a
low rank update of the previous iteration. If the matrices are explicitly held, Fasi et al.,9 will have a cost per iteration that
grows linearly with iteration count, while with our algorithm the cost will stay constant.

6.5 Faster generalized least squares with a spiked weight matrix

Let X ∈ Rn×d and y ∈ Rn. In generalized least squares we wish to find the minimizer

min
w∈Rd

||Xw − b||W, (9)

whereW ∈ Rn×n is some symmetric positive definite weight matrix, and ||z||W ∶=
√
zTWz. In this section, we focus on

the cases thatW can be written as a diagonal plus a definite low rank perturbationW = D + 𝛼ZZT where D ∈ Rn×n is
diagonal, and Z ∈ Rn×k.

A statistical motivation for this problem is generalized linear regression with a spiked covariance matrix. Assume
that the rows of X correspond to data points x1, … , xn, the entries y1, … , yn of y are responses. We now assume that
the responses follow the model yi = xTi w

⋆ + 𝜖i where the vector of noise elements 𝜖1, … , 𝜖m is distributed according
to  (0,C) for some covariance matrix C = D + 𝛼ZZT . The optimal unbiased estimate of w⋆ is obtained by solving
Equation (9) withW = C−1.

One can easily see that Equation (9) is equivalent to

min
w∈Rd

||W1∕2Xw −W1∕2y||2. (10)

Once we have efficiently computed W1∕2X and W1∕2y, we can leverage faster, sketching based, least squares algo-
rithms.21,22 Using the algorithms from Section 5 we can compute a U ∈ Rn×r such that W1∕2 = D−1∕2 − 𝛼UUT with
r = O(k).We can them computeW1∕2X andW1∕2y efficiently.

7 EXPERIMENTS

We report experiments exploring the ability of our algorithm to find low-rank corrections to the square root or inverse
square root of a perturbed matrix. In our experiments, we focus on the quality of the corrections found. We do not report
running time since the code we used for the algebraic Riccati solver (downloaded from the homepage of Mishra and
Vandereycken12) is not optimized to take advantage of the structures present in the inputmatrices for the specific algebraic
Riccati equations our algorithm solves.

7.1 Synthetic experiments

We first test our algorithm on randomly generated matrices, and compare them to the approximations obtained using the
algorithm of Beckermann et al.,7 the approximation obtained using the algorithm of Beckermann et al.,8 and the optimal
correction obtained by zeroing out the smallest eigenvalues of the exact correction. The matrixA ∈ R100×100 is a diagonal
matrix, whose diagonal is either sampled uniformly from U(0, 1), or whose entries are logarithmically spaced between
10−3 and 103. The perturbation is D = zzT , where z is a normalized Gaussian vector. We consider both updates (𝛼 = +1)
and downdates (𝛼 = −1). In case of downdates, we multiply z by 0.1 to ensure positive definiteness after the downdate.
We consider both the square root (𝛽 = +1) and inverse square root (𝛽 = −1). We plot the relative error ||(A + 𝛼zzT)𝛽∕2 −
(A𝛽∕2 + 𝛼𝛽UUT)||F∕||(A + 𝛼zzT)𝛽∕2||F as a function of the rank of the update (#columns inU).

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2528, W

iley O
nline Library on [20/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

SHMUELI et al. 13 of 15

F I GURE 2 Comparison of our algorithm to approximations obtained using Beckermann et al.7 and to the optimal approximation, on
randomly generated matrices of the form D + zzT where D is diagonal with uniformly sampled entries from N(0, 1).

F IGURE 3 Comparison of our algorithm to approximations obtained using Beckermann et al.7 and to the optimal approximation, on
randomly generated matrices of the form D + zzT where D is diagonal with logarithmically spaced entries.

We consider the algorithm of Beckermann et al.7 applied in two different ways. The first, which is labeled in the
graphs as “Krylov Method,” simply runs the algorithm of algorithm of Beckermann et al.7 for r iterations (r is the target
rank), to obtain a rank r perturbation. In the second, which is labeled in the graphs as “Truncated r2 Krylov Method,”
runs the algorithm of algorithm of Beckermann et al.7 for r2 iterations, but then computes the best rank r approxima-
tion to the correction (which is of rank r2). This algorithm has the same asymptotic cost for diagonal matrices as our
algorithm.

We implemented the algorithm of Beckermann et al.8 using the Rational Krylov Toolbox for MATLAB.2 The poles are
obtained using that toolbox as well. The algorithm is labeled in the graphs as “Rational Krylov Method.”

Figures 2 and 3 show the result for all different combinations. Our algorithm is clearly able to find much better
approximations than the Krylov method of Beckermann et al.7

7.2 Matrices arising from second-order optimization

Our next set of experiments simulates the use of our algorithm to track L−1∕4
t or R−1∕4

t in Shampoo (see Section 6.4). We
obtain and preprocess the data in a similar way to Reference 9, but the experiment itself is different. We downloaded two
test matrices available from the Lingvo framework for TensorFlow23 and are available on GitHub.3 These matrices are
obtained by accumulating updates with 𝛼 = 0. Unfortunately, the provided test matrices are only the final accumulated
matrix, and do not contain the discrete updates themselves, so we need to extract updates that accumulate to the final
matrix. We do so in a similar fashion to the one used by Fasi et al.9: we compute an eigendecomposition, and keep domi-
nant factors that are bigger than 0.1. This yields a rank 82 approximation to the first matrix, and a rank 221 approximation
to the second matrix.

For the experiment, we split the low rank approximation into discrete updates of rank 5. So we now have a sequence of
{Gs}, eachGs having five columns. Our goal is to efficiently track L−1∕4

t where Lt = 𝛼I +
∑t

s=1GsGT
s = Lt−1 + GtGT

t where
we set 𝛼 = 0.001. We use our algorithm to form two sets of updates, {Us} and {Ws}, each with five columns, such that
L−1∕2
t ≈ L−1∕2

t−1 +UtUT
t ≈ 𝛼

−1∕2I +
∑t

s=1UsUT
s and L

−1∕4
t ≈ L−1∕4

t−1 +WtWT
t ≈ 𝛼

−1∕4I +
∑t

s=1WsWT
s . Note that in iteration t,

we consider the latest perturbation to be of Lt−1 and the approximation of L−1∕2
t−1 . This saves time (since the perturbation

rank does not grow) and storage (we do not need to keep previous updates). We plot in Figure 4 the distance between

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2528, W

iley O
nline Library on [20/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

14 of 15 SHMUELI et al.

F IGURE 4 Simulating the use of our algorithm to track L−1∕4
t or R−1∕4

t in Shampoo, on two test matrices from the Lingvo framework.

L−1∕4
t and its approximation, as it evolves over time.We do so for three different tolerances in the internal Riccati low-rank

solver. We see that our algorithm is able to track L−1∕4
t well over time, without the errors blowing-up.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their helpful comments. Haim Avron and Shany Shmueli were partially
supported by the Israel Science Foundation (Grant no. 1272/17) and by the US-Israel Binational Science Foundation
(Grant no. 2017698). Petros Drineas was partially supported by NSF 10001415 and NSF 10001390.

CONFLICT OF INTEREST STATEMENT
This study does not have any conflicts to disclose.

DATA AVAILABILITY STATEMENT
Research data are not shared.

ENDNOTES
1https://www.mpi-magdeburg.mpg.de/projects/mess
2http://guettel.com/rktoolbox/guide/html/index.html
3https://github.com/tensorflow/lingvo/tree/master/lingvo/core/testdata

REFERENCES
1. Higham NJ. Functions of matrices. Philadelphia, PA: Society for Industrial and Applied Mathematics; 2008.
2. Aune E, Eidsvik J, Pokern Y. Iterative numerical methods for sampling from high dimensional Gaussian distributions. Stat Comput.

2013;23(4):501–21.
3. Chow E, Saad Y. Preconditioned Krylov subspace methods for sampling multivariate Gaussian distributions. SIAM J Sci Comput.

2014;36(2):A588–A608.
4. Frommer A, Güttel S, Schweitzer M. Efficient and stable Arnoldi restarts for matrix functions based on quadrature. SIAM J Matrix Anal

Appl. 2014;35(2):661–83.
5. Pleiss G, Jankowiak M, Eriksson D, Damle A, Gardner J. Fast matrix square roots with applications to Gaussian processes and Bayesian

optimization. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H, editors. Advances in neural information processing systems.
Volume 33. Red Hook, NY: Curran Associates, Inc.; 2020. p. 22268–81.

6. Bernstein DS, Van Loan CF. Rational matrix functions and rank-1 updates. SIAM J Matrix Anal Appl. 2000;22(1):145–54.
7. Beckermann B, Kressner D, Schweitzer M. Low-rank updates of matrix functions. SIAM J Matrix Anal Appl. 2018;39(1):539–65.
8. BeckermannB, Cortinovis A, Kressner D, SchweitzerM. Low-rank updates ofmatrix functions II: rational Krylovmethods. SIAM JNumer

Anal. 2021;59(3):1325–47.
9. Fasi M, Higham NJ, Liu X. Computing the square root of a low-rank perturbation of the scaled identity matrix. MIMS ePrint. 2022. p. 1.
10. Benner P, Saak J. Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the

art survey. GAMMMitt. 2013;36(1):32–52.
11. Bini DA, Iannazzo B, Meini B. Numerical solution of algebraic Riccati equations. Philadelphia, PA: Society for Industrial and Applied

Mathematics; 2011.
12. Mishra B, Vandereycken B. A Riemannian approach to low-rank algebraic Riccati equations. arXiv preprint arXiv: 1312.4883, 2014.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2528, W

iley O
nline Library on [20/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://www.mpi-magdeburg.mpg.de/projects/mess
http://guettel.com/rktoolbox/guide/html/index.html
https://github.com/tensorflow/lingvo/tree/master/lingvo/core/testdata

SHMUELI et al. 15 of 15

13. Beckermann B, Townsend A. On the singular values of matrices with displacement structure. SIAM J Matrix Anal Appl.
2017;38(4):1227–48.

14. Benner P, Kürschner P. Computing real low-rank solutions of Sylvester equations by the factored ADI method. Comput Math Appl.
2014;67(9):1656–72.

15. Schmitt BA. Perturbation bounds for matrix square roots and Pythagorean sums. Linear Algebra Appl. 1992;174:215–27.
16. Wihler T. On the Hölder continuity of matrix functions for normal matrices. J Inequalities Pure Appl Math. 2009;10:10.
17. Johnstone IM. On the distribution of the largest eigenvalue in principal components analysis. Ann Stat. 2001;29(2):295–327.
18. Higham NJ. Computing the polar decomposition, with applications. SIAM J Sci Stat Comput. 1986;7(4):1160–74.
19. Bardsley JM. MCMC-based image reconstruction with uncertainty quantification. SIAM J Sci Comput. 2012;34(3):A1316–32.
20. Gupta V, Koren T, Singer Y. Shampoo: preconditioned stochastic tensor optimization. In: Dy J, Krause A, editors. Proceedings of the 35th

International Conference on Machine Learning. Volume 80. New York: PMLR; 2018. p. 1842–50.
21. Woodruff DP. Sketching as a tool for numerical linear algebra. Found Trends Theor Comput Sci. 2014;10(1–2):1–157.
22. Drineas P, Mahoney MW. RandNLA: randomized numerical linear algebra. Commun ACM. 2016;59(6):80–90.
23. Shen J, Nguyen P, Wu Y, Chen Z, Chen MX, Jia Y, et al. Lingvo: a modular and scalable framework for sequence-to-sequence modeling.

arXiv preprint arXiv: abs/1902.08295, 2019.

How to cite this article: Shmueli S, Drineas P, Avron H. Low-rank updates of matrix square roots. Numer
Linear Algebra Appl. 2023;e2528. https://doi.org/10.1002/nla.2528

APPENDIX A. SOLVING EQUATION (1) FOR 𝛂= −1

If 𝛼 = +1, Equation (1) is an instance of the algebraic Riccati equation, for whichMishra and Vandereycken12 proposed an
algorithm for finding an approximate low rank solution. That algorithm can be adjusted to the 𝛼 = −1, by making several
small adjustments to the various Euclidean components (the Riemannian ones are obtained by converting the Euclidean
components to Riemannian ones). We frame the expressions with an 𝛼 = ±1 to cover both cases concurrently.

• Optimization problem: the new optimization problem is:

min
rankX=k,Δ⪰0

0.25||EX + XE + 𝛼XBBTXT − GTG||2F . (A1)

• Gradient expression: the method in Reference 12 keeps X in factorized low-rank form X = YYT . Let

S(Y) ∶= EYYT + YYTE + 𝛼YYTBBTYYT − GTG.

The cost function in Equation (A1) is F(Y) ∶= 0.25||S(Y)||2F . Simple calculations show that the gradient of F is:

∇F(Y) = ETS(Y)Y + S(Y)EY + 𝛼S(Y)YTBBTY + 𝛼BBTYYTS(Y).

• Hessian expression: using a similar technique as Reference 12, we calculate directional derivative in direction w by
computing lim 1

𝜖

(∇F(Y + 𝜖W) − ∇F(Y)). In the limit, S(Y) and S(Y + 𝜖W) include 𝛼 and so are slightly different from
the ones used in Reference 12. Nevertheless, the expression for the Euclidean Hessian is:

ETS(Y)Y + ETS(Y)W + S(Y)EW + S(Y)ETY
+ 𝛼

(
S(Y)YYTBBTY + S(Y)WTBBTY + S(Y)WYTBBTY + S(Y)YYTBBTW

)

+ 𝛼

(
BBTYYTS(Y)W + BBTYYTS(Y)Y + BBTYWTS(Y)Y + BBTWYTS(Y)Y

)
.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2528, W

iley O
nline Library on [20/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://doi.org/10.1002/nla.2528
https://doi.org/10.1002/nla.2528
https://doi.org/10.1002/nla.2528

	Low-rank updates of matrix square roots
	1 INTRODUCTION
	1.1 Related work

	2 PRELIMINARIES
	2.1 Notation and basic definitions
	2.2 Low-rank algebraic Riccati equation
	2.3 Problem statement

	3 DECAY BOUNDS FOR SQUARE ROOTS CORRECTIONS
	3.1 Decay bound for square root corrections
	3.2 Decay bound for inverse square root corrections

	4 EQUATION FOR SQUARE ROOTS CORRECTIONS AND ERROR ANALYSIS
	5 ALGORITHMS
	5.1 Updating ([[math]]) the square root ([[math]])
	5.2 Downdating [[math]] the inverse square root ([[math]])
	5.3 Downdating ([[math]]) the square root ([[math]])
	5.4 Updating ([[math]]) the inverse square root ([[math]])
	5.5 Costs

	6 APPLICATIONS
	6.1 ZCA whitening of high dimensional data
	6.2 Updating/downdating polar decomposition and ZCA transformed data
	6.3 Sampling from a multivariate normal distribution with perturbed precision matrix
	6.4 Preconditioned second-order optimization
	6.5 Faster generalized least squares with a spiked weight matrix

	7 EXPERIMENTS
	7.1 Synthetic experiments
	7.2 Matrices arising from second-order optimization

	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	REFERENCES
	APPENDIX A. SOLVING EQUATION (1) FOR [[math]]

