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ABSTRACT
With the advent of online educational platforms and the advances
in pedagogical technologies, self-directed learning has emerged as
one of the most popular modes of learning. Distance education—
elevated by the COVID-19 pandemic—involves methods of instruc-
tion through a variety of remote activities which often rely on
educational videos for mastery. In the absence of direct student
engagement, the asynchronous nature of remote activities may de-
teriorate the quality of education for learners. Students often have
an illusion of skill acquisition after watching videos, which results
in overestimation of abilities and skills. We focus on the efficacy of
skill acquisition through interactive technologies and assess their
impact on computational thinking in comparison with delivery
through other traditional media (e.g. videos and texts). In particular,
we investigate the relationship between actual learning, perception
of learning, and learners’ confidence in adult learners. Our results
reveal intriguing observations about the role of interactivity and
visualization and their implications on the pedagogical design for
self-directed learning modules.

CCS CONCEPTS
• Social and professional topics → Computational thinking;
Computational science and engineering education; • Applied
computing → Interactive learning environments.
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1 INTRODUCTION
Recent research in psychology of skill learning suggests that solely
watching videos creates an illusion of skill acquisition for learners
without any measurable impact on people’s actual abilities [14].
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Surprisingly, even intense repetition (repeatedly watching videos)
can only enable learners to ‘track the steps’, but does not help
in skill development itself.1 These findings and their impacts on
self-efficacy or meta-cognition have been investigated recently in a
variety of contexts [26, 38].

With the advent of online educational technologies (e.g. MOOCs
and Khan Academy), self-directed learning has emerged as one
of the most popular modes of learning, overcoming national and
societal boundaries. The pandemic of COVID-19 and its subse-
quent global restrictions, more than ever, has exacerbated access
to in-person learning opportunities and, as a result, elevated the
importance of effective self-directed learning technologies and their
impact on skill acquisition. Self-directed learning, at its core, utilizes
asynchronous remote instruction techniques such as text-based in-
struction and educational videos that heavily rely on learners’ effort
and self-discipline. Yet, the lack of learner engagement, for example
when watching educational videos, has shown to be detrimental to
effective learning and comprehension [6]. The use of interactivity
in computer-supported education to teach concepts is arguably mo-
tivated by its connection to the learning theory, and primarily, the
self determination theory [5]. Interactive modules target learners’
intrinsic motivation by giving learners a sense of control and active
involvement, and as a result, can improve cognition and critical
thinking among learners in various age ranges [30, 35].

Computational thinking is a mental skill that utilizes multiple
levels of abstraction for reasoning to solve problems in a variety
of areas [41]. It is one of the core skills in training students in
computing-related fields. In computational thinking, several recent
papers have investigated active learning methods and their impact
on perception of learning, actual learning comprehension, and
engagement, focusing on in-classroom pedagogical interventions
and delivery styles [1, 10–12, 31]. To date, however, little has been
done in evaluating (the illusion of) skill acquisition in computational
and algorithmic thinking and its relation to learning performance
and the perception of learning.

We focus on self-directed learning techniques in teaching com-
putational thinking to adult learners through asynchronous educa-
tion.2 In this vein, we investigate the interplay between perceived
learning, actual learning, and learners’ confidence in acquiring ap-
plied knowledge, and ask the following questions: Is there an illusion
of skill acquisition in teaching computational thinking through a va-
riety of learning technologies? Is there a gap between the perception of
learning, actual learning comprehension, and learners’ confidence?

1Note that vicarious learning may not necessarily fall into this category because it
involves active and deliberate imagination of actions and/or steps.
2It is critical to emphasize the self-directed aspect of education since we do not consider
synchronous teaching technologies such as content delivery through Zoom that enable
(albeit limited) teacher-learner or learner-learner real-time interactions.
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1.1 Our Contributions
We initiate a systematic comparison between an interactive plat-
form and two other modes of self-directed learning, namely educa-
tional videos and text-based instruction. To this end, we utilized an
interactive online platform—MatchU.ai [8]—where learners can en-
gage with new algorithms, manipulate the input data, and visually
learn the steps of the algorithms.

We conducted an empirical study with 150 participants on Ama-
zon Mechanical Turk.3 We measured learners’ actual learning com-
prehension, perception of learning, confidence, and interest in learn-
ing on each of the treatments (interactive, video, text-based). Specif-
ically, we highlight the role of interactivity as follows:

• Learning comprehension: learners in video and interac-
tive groups outperformed those in the text-based group.
While there was no statistically significant difference be-
tween the video and interactive groups, there was a larger
variance between the participants in the video group com-
pared to the interactive group. These findings, although not
statistically conclusive, suggest that interactive technologies
may be more suitable for a wider range of learners.

• Perception of learning: there is a significant difference
between the groups with respect to the perception of learn-
ing. In particular, the perception of learning is significantly
higher among participants of the interactive group. This is
a surprising finding because (i) there was no significant dif-
ference between video and interactive groups with respect
to actual learning and (ii) across all participants there is a
strong positive correlation between actual learning and the
perception of learning.

• Confidence/interest in learning: the participants in the
video group were as confident as those in the interactive
group, despite reporting significantly lower score for their
perceived learning. This finding suggests that educational
videos may be misleading with respect to confidence due
to lack of interaction and missed opportunities to actively
engage the learners. In addition, there was a significant differ-
ence between the three groups with respect to their interest
in learning the material. Nonetheless, a follow up analysis
was not able to show any statistical difference between the
interactive and video groups.

While our study does not conclusively settle all aspects of skill ac-
quisition in computational thinking, it provides several key insights
and raises intriguing questions about the relationship between com-
prehension, perception, and confidence in algorithmic thinking. In
Section 6 we discuss the limitations of our study, provide insights
into next steps, and explain some of the lessons learned that may
be of interest in conducting followup studies in the future.

1.2 Related Work
The emergence of novel web-based technologies has given rise to
new possibilities in educational content development and has im-
pacted the form of visualizations as pedagogical means (e.g. [19, 40,

3This study was conducted on Amazon Mechanical Turk due to restrictions during
the COVID-19 pandemic. In Section 6, we discuss its limitations and potential future
improvements under a controlled lab study.

42]). Online learning technologies increase accessibility while en-
abling students self-learn through interactionswith the content [21].
In this vein, visualizations and interactive components can enhance
learners’ computational and algorithmic thinking, resulting in sig-
nificant attention in computer-supported and cooperative education
research [20, 27, 28]. In computer science education, visualization
tools are often used by instructors in class in conjunction with
other traditional-style lectures to demonstrate programming con-
cepts or computational problem solving. Yet, the availability and
spread of these tools have shown to be limited: approximately 20%
of programming courses use software visualizations regularly [13].
Additionally, techniques such as programming visualizations for
basic introductory CS courses and algorithmic visualizations for
teaching data structures and algorithms, are generally of low quality
with little pedagogical value [33]. Moreover, these techniques are
generally passive and do not include interactive components, failing
to engage students in the learning process. That is, visualization
alone is insufficient for most self-directed learning environments.

Effective learning platforms should provide the ability to control
the pace of visualization, focus on logical steps, provide effective
examples, and allow learners to manipulate the input [32]. Naps et
al. indicated that supporting student interaction and active learn-
ing makes visualization technologies more effective due to higher
engagement levels [23]. They proposed five necessary forms of
interactions in learning technologies: 1) animating the concepts
(which is supported by most visualization systems, e.g., [7, 16, 39]),
2) responding to the system (e.g. [16, 36]), 3) ability to modify and
interact by manipulating the input, 4) constructing visualizations
manually, and 5) presenting and connecting with other learners.

Focusing on these interactivity forms, we design an interactive
learning environment where learners can manipulate the algo-
rithms, change instances, and interact with the visualizations. We
evaluate learners’ comprehension based on Blooms’ taxonomy [2],
perception of learning [14], confidence in applying the algorithms,
and the usability of our computer-supported system [3]. The per-
ception of learning and actual learning comprehension may have
different contributing factors [4], but the relationship between them,
in general (with few exceptions [17]), remains unstudied.

2 DESIGN AND DEVELOPMENT
2.1 Self-Directed Learning Methods
We considered the following learning strategies as primarymethods
for self-directed learning. These teaching strategies have different
interaction levels based on the engagement categories developed
by Naps et al. [23] (Table 1 provides a brief summary).

(1) Interactive platform: we developed online modules for inter-
active teaching of two algorithms. They contain animated
visualizations for learning the algorithms, data manipulation,
step by step progress and pace control, as well as additional
manipulation features along with supportive text to explain
the algorithmic concepts (see Section 2 for details).

(2) Educational videos: we selected well-produced educational
videos on the topics that were carefully created by educa-
tors in the field and are publicly available. The videos are
animated with voice-over and are about 6 minutes long.
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(3) Text-Based instruction: we selected the instruction material
from well-established courses/tutorials and enhanced them
further by adding extra (static) graphical examples.

2.2 Interactive Design and Usability
We utilized a public academic platform, MatchU.ai [8], which is
a not-for-profit effort with the mission of fostering the adoption
of algorithmic decision-making and facilitating their learning by
leveraging interactive design.We designed interactivemodules each
containing the following components: i) A learning tab, that briefly
describes a sample problem, the algorithm, and the characteristics
of the outcome, and ii) An interactivity tab, where users can interact
with the algorithm and follow its steps visually. The interactive tab
contains 1) input data components where users can manually enter
the input or randomly generate input data, 2) visualization that
animates each step of the algorithm, and 3) a control panel where
users can change the pace of the steps, move backward or forward
in every step (see Figure 1). The interactive modules do not include
any audio explanation but include supportive text information.

Evaluating the Prototype. To assess the initial design of the
interactive modules, we performed a heuristic evaluation [24, 25]
by asking questions such as 1) Are users able to understand the
language and figures used in the interactive platform? and 2) Can
users create algorithm instances with minimum effort?

For the purpose of this initial study, four students majoring
in human-computer interaction with no prior knowledge about
these algorithms were recruited. We conducted a semi-informal
interview where they were able to freely explore and interact with
the platform and were encouraged to speak out loud and explain
their thought process. Upon completion, participants filled out a
post-session survey. We used the well-adopted System Usability
Scale (SUS) test to measure the user experience.

After taking these consideration into account, we updated our
design and recruited three additional college students to test the
platform in person. Figure 1 illustrates the final design for one of the
two algorithms. The SUS score for new prototype is 90.83, which
indicates a desirable level of usability.

3 EXPERIMENTAL DESIGN
We conducted a randomized between-subject study on Amazon
Mechanical Turk (MTurk)—a popular crowdsourcing marketplace—
through a single Human Intelligence Task (HIT). We recruited 150
participants (turkers) to complete a 20-minute learning task. The
experiment consisted of a demographic survey, a pre-knowledge
assessment test, a learning task, a questionnaire about perception
of learning, a post-assessment test with 5 questions, and a usability
questionnaire (only for the interactive treatment).

The payment for the HIT is divided into two parts—a base pay-
ment, and a bonus payment. If a participant answers all the ques-
tions within the HIT, she gets a base payment of 50¢ upon submis-
sion. Depending on the consistency of responses a participant may
receive an additional bonus payment of 50¢.

Treatments. To evaluate the efficacy of the learning methods in
algorithmic/computational thinking, we conducted our experiment
on two well-studied algorithms that are foundational in artificial in-
telligence research. The first algorithms is the Deferred Acceptance

Table 1: Interaction level of three teaching strategies.

Learning Strategy Mode ManipulationText Graphic Animation

Text-Based Instruction ✓ ✓

Educational Videos ✓ ✓ ✓

Interactive Module ✓ ✓ ✓ ✓

algorithm [9] for finding stable matching between two disjoint sets.
This algorithm has been in the center for attention in National Res-
idency Matching program as well as several related organ/kidney
exchange programs. We also evaluated a second algorithm, called
the Top Trading Cycle algorithm [34], that has been widely used
for assigning courses to students or students to public schools.4

The choice of these two algorithms, in contrast to other algo-
rithms, is intentional for several reasons: First, these algorithms
are often not taught in most typical undergraduate courses on data
structures or analysis of algorithms. As a result, our data is more
likely not to suffer from any selection or anchoring bias. Later, we
will discuss a pre-knowledge test to check for such biases. Sec-
ond, these two algorithmic methods are sufficiently intuitive and
straightforward, and thus, require little prior knowledge.

Demographic Survey. Prior to the start of the task, each par-
ticipant was asked demographic questions about gender, age, level
of education, and prior exposure to one of the algorithms. To avoid
any type of selection bias, we only included adult participants with
no prior knowledge about these algorithms. The breakdown of our
participants is as follows: 50.67% female and 48.67% male; 56.67%
have some computing-related background; 43.33% did not have
computing-related background; 56.67% were undergrads; 32% post-
graduates; and 8% were PhD students. The participants’ age group
were distributed as follows: 28% aged between 19–22; 22.67% be-
tween 23–26; 12.67% between 27–30; and 34.67% were over 30.

Assignment and Workflow. Each participant was randomly
assigned to one of the treatment groups. Each treatment group
received about 50 responses. In each treatment group, participants
completed a learning task according to the assigned learning mode
(interactive, educational video, or text-based instruction). Upon
finishing a learning task, each participant answered a set of ques-
tions about their perceived level of learning, followed by a post-
assessment test. The participants in the interactive group also com-
pleted an additional usability questionnaire (see Figure 2).

Pre-knowledge Assessment. To test participant’s prior knowl-
edge of the material, we conducted a short pre-knowledge test
that included 5 questions. These questions are meant to assess
participants’ knowledge about well-known data structures and al-
gorithmic concepts. The first question is participants self-evaluation
of their knowledge. We asked participants “How do you rate your
knowledge of the following concepts?” where they rated through
a 5-point Likert scale from “Not familiar” to “Very Familiar” their
familiarity with “Arrays, Linked-List, Stacks and Queues, Binary
Trees, Graph Structures, and Hash Tables”. The remaining questions
formed a quick quiz, for example, as follows:

What is the run-time of the following code snippet (in Big-O notation?)

4Due to space constraints, we only discuss the results of the first algorithm. The results
of the second algorithm are qualitatively similar, and further confirm our findings.
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Figure 1: A snapshot of the interactive visual design that enables learners to interact and manipulate the input.
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Figure 2: The workflow of the experimental design.

in t sum = 0 ;
for ( in t i = 1 ; i < n ; i = i ∗ 2 ) {

sum ++ ; }

(1)𝑂 (𝑙𝑜𝑔 (𝑛) ) , (2)𝑂 (2𝑛 ) , (3)𝑂 (𝑛2 ) , (4)𝑂 (𝑛) , (5) Do not know.

There was no significant difference between the groups with respect
to self evaluation (Kruskal-Wallis: 𝐻 (2) = 1.58, 𝑝 = .454). Similarly,
the remaining four assessment questions showed no difference be-
tween the prior knowledge among the groups (one-way ANOVA:
𝐹 (2, 147) = 0.82, 𝑝 = .441). There was no difference between par-
ticipants that were assigned randomly to different groups with
respect to the prior knowledge. Therefore, our remaining analysis
is reliable with respect to potential selection biases.

Perception Questionnaire. Inspired by the experiments con-
ducted by Kardas and O’Brien [14] to measure the perception of skill
acquisition, we developed six questions that ask a learner to report
their perceived learning experience as well as their confidence in
applying the learned topic to solve similar or new problems. The
questions are categorized based on Bloom’s taxonomy of learning [2]
and address the first three objectives level of the cognitive domain.

Each question is designed specifically to measure how much
a participant believes to have learned the material (knowledge
acquisition), comprehend the details (comprehension), and can solve
new problems by applying the acquired knowledge and techniques
(application). Below is an example of the question statement:

I have comprehended the following aspects of this algorithm
(5-point scale from “Strongly Disagree” to “Strongly Agree”):

(1) What problems it can solve; (2) How it works on those problems; (3)
What properties it guarantees; (4) Its application to other problems.

Additional questions elicit participants confidence in their answers.
For instance, participants were asked to rate the following: You
are asked to run this algorithm on a given problem. What do you
feel are the chances that you’d successfully execute this algorithm?
Select from a 5-point Likert scale: “I feel there’s no chance at all I’d
succeed.” to “I feel I’d definitely succeed without a doubt.”

Post Assessment. Upon completion of the perception question-
naire, participants go through a post-assessment quiz with five
standard questions about the algorithm. The questions were de-
signed to test their knowledge according to the Bloom’s taxonomy
of learning ranging from recalling concepts to application of the
algorithm on new sample inputs.

Usability Questionnaire. To assess the relation between learn-
ing and usability of the interactive modules, the interactive group
completed an additional questionnaire based on the System Usabil-
ity Scale (SUS). This is a widely adopted test—proposed by John
Brooke [3]—that measures the perceptions of usability in technolog-
ical platforms where users interact with computer systems. The SUS
questionnaire contains five positively worded statements and five
alternate negatively worded statements to reduce framing bias. The
total score is 100; any score above 50 and below 70 suggests that the
usability is fair but needs some mild improvements. For instance,
one question asked participants to rate the following statement “I
think that I would like to use the platform frequently.”.

For our interactive platform, the mean SUS score was 53.75, sug-
gesting that the usability of the educational modules are acceptable
but needs some mild improvements (see the result section for an
extensive discussion). In the final question, we asked participants
to leave any comments about the experiment or their experience.

Response Qualification. To ensure high-quality responses, we
deployed several ‘sanity checks’ along the way. First, we restricted
our HIT on MTurk to only be visible to participants who meet the
following conditions: (a) completed at least 100 HITS successfully,
(b) above 85% approval rate on previous HITs, (c) completed high
school, and (d) the region restricted to the US and Canada.5

We performed two additional ‘sanity checks’ in the middle and at
the end of the experiment by repeating a question towards the end
of the experiment and including a simple memory retrieval question
to check attention. This process ensures that MTurk participants
put minimal effort in going through the learning task. About 65% of
participants (150 out of 231) successfully passed our sanity checks.

Time Spent. To ensure that our analysis is not influenced by
the time participants have spent on the learning material, we also
collected the task completion time. A one-way ANOVA analysis
showed no statistically significant difference between any of the
interactive (𝑀 = 5.43 min, 𝑆𝐷 = 9.98), video (𝑀 = 5.839 min,

5We restricted location to ensure language proficiency and prevent any potential issues
due to linguistic barriers.
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𝑆𝐷 = 6.492), and the text (𝑀 = 4.952 min, 𝑆𝐷 = 5.059) groups
(𝑝 = 0.838). Moreover, we found no significant (positive or negative)
correlation between time spent and other parameters such as actual
learning, perception, or interest.

4 RESULTS
4.1 Perception of Learning
We collected responses about the perception of learning as well as
confidence about applying the learned algorithm to solve similar
problems (See Section 3). Since the collected responses are ordi-
nal, we used a Kruskal-Wallis test to compare differences among
three groups and an additional Mann-Whitney test to compare
between each of the two groups. The results show a statistically
significant difference between all groups on questions pertaining
to the perception of learning (𝐻 (2) = 7.47, 𝑝 = .024) and confi-
dence (𝐻 (2) = 9.01, 𝑝 = .011). A non-parametric Mann-Whitney
test between each pair of the treatments revealed an intriguing
observation: there is a statistically significant difference between
the interactive group (𝑚𝑑𝑛 = 3) and the video group (𝑚𝑑𝑛 = 2,𝑈 =

2858.5, 𝑝 = .018), and between the interactive group and the text-
based group (𝑚𝑑𝑛 = 3,𝑈 = 2193.5, 𝑝 = .019).

With respect to confidence, although there was a significant
difference between the interactive group and the text-based group
(𝑚𝑑𝑛 = 3,𝑈 = 2120.5, 𝑝 = .003), there was no difference be-
tween the interactive and the video group (𝑚𝑑𝑛(𝑏𝑜𝑡ℎ) = 3,𝑈 =

2770.50, 𝑝 = .072). Figures 3a and 3b illustrate the distributions for
perception of learning and confidence.

These findings reveal an intriguing observation: while the learn-
ers of the interactive group reported significantly higher score
for perceived comprehension—in contrast to video and text-based
groups—the participants in the video group were as confident about
their knowledge as those in the interactive group. This finding sug-
gests that educational videos may lead learners to develop overcon-
fidence about the subject matter. In contrast, interactivity provides
an opportunity for learners to ‘get their hands dirty’ by manipulat-
ing the input and directly interacting with the algorithms; which
in turn aligns learners’ perceived comprehension with confidence.

4.2 Actual Learning Comprehension
Wemeasured the learning comprehension of the participants through
a summative assessment that contained five questions. All partic-
ipants (irrespective of the treatment) answered the same set of
questions. These answers were manually graded according to a pre-
defined rubric. The descriptive statistics reveal less variation in re-
sponses of the interactive group (𝑀 = 2.13, 𝑆𝐷 = 1.13) compared to
the text (𝑀 = 2.32, 𝑆𝐷 = 1.32) and the video (𝑀 = 2.61, 𝑆𝐷 = 1.37)
groups (Figure 3c). A one-way ANOVA test showed that there is
no significant difference in actual learning comprehension among
the video and the interactive groups (𝐹 (2, 147) = 1.79, 𝑝 = .171).

We postulate that these inconclusive findings are due to chal-
lenges in measuring actual learning in education, which requires
significant control on the environment and learners’ attitude. Ac-
tual learning is often attributed to a variety of internal and external
factors [29], resulting in low or inconclusive efficacy of pedagogical
interventions [18].

Table 2: Positive and negative comments.

Group Positive Negative Total

Text-Based 19 (90.48%) 2 (9.52%) 21 (26.25%)
Educational Video 29 (96.67%) 1 (3.33%) 30 (37.50%)
Interactive 29 (100.00%) 0 (0.00%) 29 (36.25%)
Total 77 (96.25%) 3 (3.75%) 80 (100%)

4.3 Interest in Learning
To compare the engagement level and interest among the groups,
we asked a few additional questions in the post-assessment survey.
A sample question is “I want to learnmore about matching algorithms
in the future” ranging from ‘strongly disagree’ to ‘strongly agree’
(5-point). A Kruskal-Wallis test showed a significant difference
between the groups (𝐻 (2) = 6.44, 𝑝 = .04). A follow up pairwise
Mann-Whitney test between the video (𝑚𝑑𝑛 = 5) and the text-based
group (𝑚𝑑𝑛 = 4) indicates that more participants in the video group
have increased interest in learning the material (𝑈 = 2196, 𝑝 = .011).
However, there was no difference between the video group (𝑚𝑑𝑛 =

5) and the interactive group (𝑚𝑑𝑛 = 5,𝑈 = 2399.5, 𝑝 = .304).

4.4 Usability
To measure the usability of the interactive modules, we collected
open-ended comments from the participants and manually ana-
lyzed their positive or negative sentiments (Table 2). Overall, the
interactive and video groups received substantially more positive
comments compared to the text group. However, a follow up chi-
square analysis found no significant difference between the groups
(chi-square value = 3.08). We attribute this result to two impor-
tant factors: First, the interactive treatment required participants
to proactively engage in the learning process by manipulating the
input. Thus, more effort is required in this mode compared to the
video group. Second, the educational videos contained audio in
addition to the visual explanation. We hypothesize that audio can
have an important impact on the overall learning experience. As
expected, those in the text-based group were less satisfied and
found the instructions complicated and sometimes confusing. For
example, two participants commented: "Very confusing. I’m sorry
but I did put genuine effort into the assignment. I’m absolutely not
computer language literate. Not adept at all, however thank you for
giving me the opportunity to be a part of this HIT.", and "it was kind
of complicated."

5 POSITIVE CORRELATIONS
Actual Learning and Perception. Although we found no sig-
nificant difference in actual learning, the perception of learning
between the groups varied. An interesting question for us was to
find whether the perception of learning and actual learning are
statistically correlated. To investigate this relation, we conducted
a Pearson correlation test across all treatment groups. Inspired by
Kardas and O’Brien [15], our goal was to measure how participants
perceive their acquired knowledge. Specifically, we were interested
in measuring applied knowledge corresponding to the first three
levels of cognitive domain in the Bloom’s taxonomy of learning
[2]. Therefore, once the learning task was completed, participants
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Figure 3: Box plots for perception of learning, confidence, and actual learning comprehension.

responded to the following question: “You are asked to run this algo-
rithm on a given problem. What do you feel are the chances that you’d
successfully execute this algorithm?”. It turns out that the perception
of learning is positively correlated with the actual learning com-
prehension (𝑟 (148) = .326, 𝑝 < .001), and the positive correlation
remains the same within the groups.

Actual Learning and Usability. A key factor in successfully
designing learning technology for self-directed learning is usability
of the systems. Previous studies showed that the usability of dig-
ital technology for education improves student engagement and
learning [37]. Therefore, we conducted a Pearson correlation test
between the usability scores (SUS) and the actual learning compre-
hension of the post-assessment quiz. The results reveal that usability
and learning are positively correlated (𝑟 (48) = .381, 𝑝 = .006), sug-
gesting that the usability of the interactive platform is an important
factor in learners’ ability to comprehend new knowledge.

6 LIMITATIONS & LESSONS LEARNED
Our preliminary study uncovered a series of insights in design and
assessment of effective self-directed learning modules. Below, we
briefly outline these limitations, insights, and lessons learned.

Lab Experiments vs. Crowdsourcing. The positive correla-
tion between usability score (SUS) and actual learning (𝑟 (148) =
0.381, 𝑝 = .006) emphasizes the importance of learner-focused de-
signs. The SUS score of our modules through MTurk was 53.75,
while the in-person semi-informal assessment of the same resulted
in the score of 90.83. While both are within the acceptable range, the
discrepancy between the two reveals a potential negative impact of
conducting experiments on online platforms such as MTurk. Since
participants are often less motivated in crowdsourcing platforms–
with no oversight–our assessment of actual learning may be suffer-
ing from a floor effect, which prevents distinguishing between the
groups. In fact, despite 20 minutes allocated time, participants in all
groups spent an average of less than 6 minutes to complete the task
(see Section 3 for details). We believe future studies should include
formal in-person assessments with real learners in addition to a
thorough study with students involved in self-directed learning.

Learner Agency. A crucial factor in educational technologies
is providing learners with means of control for pace and step by
step progression while interacting with the modules. The stop of
the animation has shown to be a key factor in active learning [22].

Non-stop demonstrations, in forms of animated features or videos,
do not provide an opportunity for taking a break, stepping back,
and reflecting on the learning material. In several critical steps,
providing learners the opportunity to pause and showing detailed
explanations can be an effective way for encouraging deep thinking.

Active Interventions. To improve understanding of concepts,
the interactive platforms should be designed to actively intervene
and prompt learners by asking questions, showing new features, or
verifying some answers during the visualization process. Asking
the user to predict the next step of the visualization has shown to
be an effective pedagogical tool in previous studies [16, 36]. These
interventions are crucial in self-directed learning technologies to
promote mastery and further engage learners with the platform.

Instance generation. Our findings postulate that merely con-
structing input instances for visualization may not be a sufficient
learning strategy. From the qualitative results, we learned that the
educational modules should cover a wide range of instances as well
as several interesting edge cases. In our experiments, we found
that learners would like to see more ‘edge cases’ in addition to
randomly generated examples and the ones created by themselves.
Thus, a feature that allows learners to switch between a list of
useful examples may help learners discover all ‘interesting’ cases.

7 CONCLUDING REMARKS
While interactive platforms improve the perceived learning [10,
12] compared to other methods, educational videos also provide a
sense of confidence among learners. Although our findings do not
show any impact on actual learning, the gap between confidence in
applying algorithmic techniques and perceived knowledge suggests
that educational videos (when used in isolation) may be detrimental
to learning by providing an illusion of confidence. The interactive
visualizations enhance learners’ perception of learning and improve
their confidence in the ability to solve problems. While perception
and interest are positively correlated with comprehension, further
research is required to identify the causal relationship between
actual learning, perception, and confidence in self-directed learning.
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