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Abstract

Non-interference is a popular way to enforce confidential-
ity of sensitive data. However, declassification of sensitive
information is often needed in realistic applications but
breaks non-interference. We present Anosy, an approximate
knowledge synthesizer for quantitative declassification poli-
cies. Anosy uses refinement types to automatically con-
struct machine checked over- and under-approximations
of attacker knowledge for boolean queries on multi-integer
secrets. It also provides an AnosyT monad to track the at-
tacker knowledge over multiple declassification queries and
checks for violations against user-specified policies in infor-
mation flow control applications. We implement a prototype
of Anosy and show that it is precise and permissive: up
to 14 declassification queries are permitted before a policy
violation occurs using the powerset of intervals domain.

CCS Concepts: · Software and its engineering → Soft-

ware verification; Formal software verification; Auto-
matic programming; · Security and privacy → Infor-

mation flow control.

Keywords: knowledge-based privacy, program verification,
program synthesis, refinement types

ACM Reference Format:

Sankha Narayan Guria, Niki Vazou, Marco Guarnieri, and James
Parker. 2022. Anosy: Approximated Knowledge Synthesis with
Refinement Types for Declassification. In Proceedings of the 43rd

ACM SIGPLAN International Conference on Programming Language

Design and Implementation (PLDI ’22), June 13ś17, 2022, San Diego,

CA, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3519939.3523725

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9265-5/22/06.
https://doi.org/10.1145/3519939.3523725

1 Introduction

Information flow control (IFC) [34] systems protect the con-
fidentiality of sensitive data during program execution. They
do so by enforcing a property called non-interference which
ensures the absence of leaks of secret information (say, a
user location) through public observations (say, information
being sent to the network socket).

Real-world programs, however, often need to reveal infor-
mation about sensitive data. For instance, a location based
web application needs to suggest restaurants or friends that
are nearby the Secret user location. Such computations,
which leak information about the Secret location, would
be prevented by IFC systems that enforce non-interference.
To support them, IFC systems provide declassification state-
ments [35] that can be used to weaken non-interference by al-
lowing the selective disclosure of some Secret information.

Declassification statements, however, are typically part of
an application’s trusted computing base and developers are
responsible for properly declassifying information. In partic-
ular, mistakes in declassification statements can easily com-
promise a system’s security because declassified information
bypasses standard IFC checks. Implementing declassifica-
tion statements can be difficult for developers to implement
correctly. For example, Cabañas et al. [7] showed that non-
Personally Identifiable Information (PII) in an advertising
system could be combined to uniquely identify and target
an individual. Developers may declassify seemingly non-
sensitive non-PII, but accidentally leak sensitive information
about a person’s identity. Instead of trusting the developer
to correctly declassify information, an alternative approach
is to enforce declassification policies [8] that regulate the use
of declassification statements.

In this paper, we present Anosy, a framework for enforc-
ing declassification policies on IFC systems where policies
regulatewhat information can be declassified [35] by limiting
the amount of information an attacker could learn from the
declassification statements. Specifically, declassification poli-
cies are expressed as constraints over knowledge [2], which
semantically characterizes the set of secrets an attacker con-
siders possible given the prior declassification statements.
To enforce such policies, we develop (1) a novel encoding
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of knowledge approximations using Liquid Haskell’s [44]
refinement types which we use to (2) automatically synthe-
size correct-by-construction knowledge approximations for
Haskell queries. We then (3) implement and (4) evaluate
a knowledge tracking and policy enforcing declassification
function that can easily extend existing IFCmonadic systems.
Next, we discuss these four contributions in detail.

Verified knowledge approximations. We define a novel
encoding for knowledge approximations over abstract do-
mains using Liquid Haskell (ğ 4). The novelty of our encoding
is that approximation data types are indexed by two pred-
icates that respectively capture the properties of elements
inside and outside of the domain. Using these indexes, we
encode correctness of over- and under-approximations, with-
out using quantification, permitting SMT-decidable verifica-
tion. With this encoding, we implement and machine check
Haskell approximations of two abstract domains: intervals
over multi-dimensional spaces (where each dimension is ab-
stracted using an interval) and powersets on these intervals,
that increase the precision of our approximations. This veri-
fied knowledge encoding is general and can be used, beyond
declassification, also as building block for dynamic [14, 41],
probabilistic [15, 20, 25, 40], and quantitative policies [3, 19].

Synthesis of knowledge approximations. We develop
a novel approach for automatically synthesizing correct-
by-construction posteriors given any prior knowledge and
user-specified boolean query over multi-dimensional inte-
ger secret values (ğ 5). Our approach combines type-based
sketching with SMT-based synthesis and it is implemented
as a Haskell compiler plugin, i.e., it operates at compile-time
on Haskell programs. Given a user-defined query, Anosy
generates a synthesis template (a so-called sketch) where the
values of the abstract domain elements are left as holes to be
filled later with values, combinedwith the correctness specifi-
cation encoded as refinement types. It then reduces the high-
level correctness property into integer constraints on bounds
of the abstract domain elements and uses an SMT solver to
synthesize optimal correct-by-construction values. Replac-
ing these values in the sketch, Anosy synthesizes Haskell
executable programs of the approximated knowledge and
automatically checks their correctness with Liquid Haskell.

Enforcing declassification policies. We implement a
policy-based declassification function that can be used by
any monadic Haskell IFC framework (ğ 2, ğ 3). In this setting,
users write declassification policies as Haskell functions that
constrain the (approximated) attacker knowledge, whereas
declassification queries are written as regular Haskell func-
tions over secret data. At compile time, Anosy synthesizes
and verifies the knowledge approximations for all declassifi-
cation queries. At runtime, declassification is called in the
AnosyT monad that tracks knowledge overmultiple declassifi-
cation queries and checks, using the synthesized knowledge

approximations, whether performing the declassification
would lead to violating the user-specified policy. Importantly,
AnosyT is defined as a monad transformer, thus can be staged
on top of existing IFC monads like LIO [39] and STORM [21].

Evaluation. We evaluated precision and running time
of Anosy using two benchmarks (ğ 6). First, we compared
with Prob’s [25] benchmark suite to conclude that Anosy
is slower but more precise. Second, to demonstrate Anosy
enables secure declassification of sequential queries, we eval-
uate how many queries Anosy allows to declassify before a
policy violation. For the interval abstract domain, we found
a policy violation was detected after a maximum of 7 queries
and after 14 queries for the more precise powerset domain.

2 Overview

We start by motivating the need for declassification policies
(ğ 2.1): repeated downgrades can weaken non-interference
until leaking the secret is allowed. Next, we present how
the knowledge revealed by queries can be computed (ğ 2.2).
Finally (ğ 2.3), we describe how Anosy synthesizes correct-
by-construction knowledge, by combining refinement types,
SMT-based synthesis, and metaprogramming.

2.1 Motivation: Bounded Downgrades

SecureMonads. IFC systems, e.g., LIO [39] and LWeb [28],
define a secure monad to ensure that security policies are
enforced over sensitive data, like a user’s physical location.
For instance here, we define the data type UserLoc to capture
the user location as its x and y coordinates.

data UserLoc = UserLoc {x :: Int, y :: Int}

A Secure monad will return such a location wrapped in
a protected łboxž to ensure that only code with sufficient
privileges can inspect it. For example, a function that gets
the user’s location will return a protected value:

getUserLoc :: User → Secure (Protected UserLoc)

In the LIO monad, for example, data are protected by a se-
curity label data type and the monad ensures, based on the
application, that only the intended agents can observe (or
unlabel) the user’s exact location.

Queries. A query is any boolean function over secret val-
ues. As an example, we consider the user location to be the
secret value and the nearby function below checks proximity
to this secret value from (x_org, y_org).

type S = UserLoc

nearby :: (Int, Int) → S → Bool

nearby (x_org, y_org) (UserLoc x y)

= abs (x - x_org) + abs (y - y_org) ≤ 100

where abs i = if i < 0 then -i else i

The nearby query is using Manhattan distance to check if a
user is located within 100 units of the input origin location.
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Downgrades. Even though locations protected by the
Secure monad cannot be inspected by unprivileged code, in
practice many applications need to allow selective leaks of
secret information to unprivileged code. For instance, many
web applications need to check location of users to provide
useful information, such as restaurant, friend, or dating sug-
gestions that are physically nearby the user.
The showAdNear function below shows a restaurant ad-

vertisement to the user only if they are nearby. To do so,
the function uses downgrade (from the Secure monad) to
downgrade (to public) the result of the nearby check over
the protected user location.

downgrade :: Protected S → (S → Bool)

→ Secure Bool

showAd :: User → Restaurant → Secure ()

showAdNear :: User → Restaurant → Secure ()

showAdNear user res = do

ul ← getUserLoc user

isNear ← downgrade ul (nearby (res_loc res))

if isNear then showAd user res else return ()

Downgrades are a common feature of real-world IFC sys-
tems. For example, in LIO downgrades happen with the
unlabelTCB trusted codebase function, which is exposed to
the application developers. At the same time, downgraded
information bypasses security checks by design. In the code
above, isNear is unprotected and can now be leaked to an
attacker. Therefore, declassification statements need to be
correctly placed to avoid unintended leaks of information
that would bypass IFC enforcement.

Declassification knowledge. To semantically character-
ize the information declassified by downgrades, we use the
notion of attacker knowledge [2], i.e., the set of secrets that
are consistent with an attacker’s observations, where at-
tackers can observe the results of downgrade. That is, we
consider the worst-case scenario where any declassified in-
formation is always leaked to an attacker. This knowledge
can be refined by consecutively running downgrade queries
and ultimately can reveal the exact value of the secret. In
the example below, a piece of code downgrades two queries
asking if the user is located nearby to both (200,200) and
(400,200) to infer if the exact user location is (300,200) .

secret ← getUserLoc user

kn1 ← downgrade secret (nearby (200,200))

kn2 ← downgrade secret (nearby (400,200))

−− if kn1 ∧ kn2, then secret = (300,200)

The posterior is the knowledge obtained after executing a
query. Consider again the code above. If nearby (200,200)

is true, the knowledge after the first downgrade statement is
the green region of Figure 1a. Using this information as prior
knowledge for the second downgrade query, which asks
nearby (400,200) , might result in a knowledge containing

only the user location (300,200) , i.e., the intersection of the
green and red posterior knowledge regions.

Quantitative Policies. A quantitative policy is a pred-
icate on knowledge which, for instance, ensures that the
accumulated knowledge is not specific enough, i.e., the se-
cret cannot be revealed. As an example, qpolicy below states
that the knowledge should contain at least 100 values.

qpolicy dom = size dom > 100

This policy will allow declassifying nearby (200,200)

and nearby (300,200) , since the intersections of the green
and blue regions in Figure 1a contain at least 100 poten-
tial locations, but not nearby (400,200) since the resulting
knowledge contains exactly one secret.

Bounded Downgrade. We define a bounded downgrade
operator that allows the computation of queries on secret
data, while enforcing quantitative policies. For example, the
operator tracks declassification knowledge during an exe-
cution and allows downgrading the nearby (200,200) and
nearby (300,200) queries, but terminates with an error on
the sequence of nearby (200,200) and nearby (400,200) .
The downgrade operation is the method of the AnosyT

monad (ğ 3) which is defined as a state monad transformer.
As a state monad, it preserves the protected secret, the quan-
titative policy, and the prior declassification knowledge. To
downgrade a new query, the monad checks if the posterior
knowledge of this query satisfies the policy. If not, it ter-
minates with a policy violation error. Otherwise, it updates
the knowledge to the posterior and returns the query result.
Since AnosyT is also a monad transformer, it can be combined
with existing security monads, which provide the underly-
ing IFC enforcement mechanism, to enrich them with extra
quantitative guarantees on the inevitable downgrades.

2.2 Approximating knowledge from queries

Precisely computing, representing, and checking quantita-
tive policies over a (potentially infinite) knowledge requires
reasoning about all points in the input space, which is an
uncomputable task in general. So, we use abstract domains
(here intervals [11]) to approximate knowledge.

Indistinguishability sets. The proximity query nearby

(200,200) partitions the space of secret locations into two
partitions (for the two possible responses: True and False),
called indistinguishability sets (ind. sets), i.e., all secrets in
each partition produce the same result for the query. Fig-
ure 1b depicts the two ind. sets for our query. The inner
diamondÐdepicted in light grayÐis the ind. set for the re-
sult True, i.e., all its elements respond True to the query. In
contrast, the outer regionÐdepicted in dark grayÐis the ind.
set for False . Figure 1c depicts the under-approximated (i.e.,
subset) ind. sets for the query as defined by under_indset :

data AInt = AInt {lower :: Int, upper :: Int}
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(a) Posteriors on x = 200, 300, 400 and y = 200. (b) Indistinguishability Sets (c) Under-Approximation

Figure 1. Posteriors, Indistinguishability Sets and their Approximations with respect to nearby query.

data A = A [AInt]

under_indset :: (A, A)

under_indset = (A [AInt 121 279, AInt 179 221],

A [AInt 0 400, AInt 0 99])

The dataAInt abstracts integers as intervals between a lower
and an upper value. A is our abstract knowledge data type
that is defined as a list of abstract integers, which can be
used to abstract data with any number of integer fields. The
under_indset is a tuple, where the first element corresponds
to the True response and the second element to the False re-
sponse. It says all secrets in 𝑥 ∈ [121, 279] and 𝑦 ∈ [179, 221]

evaluate to True for the query and all secrets in 𝑥 ∈ [0, 400]

and 𝑦 ∈ [0, 99] evaluate to False .

Knowledge under-approximation. We use ind. sets to
compute the posterior knowledge after the query, i.e., the
set of secrets considered possible after observing the query
result. To do so, we simply take the intersection∩ of the prior
knowledge with the ind. sets associated with the query [2, 3].
If the intersection happens with the exact ind. sets, then
we derive the exact posterior. For our example, we intersect
with the under-approximate ind. set to produce an under-
approximation of the posterior knowledge i.e., an under-
approximation of the information learned when observing
the query result.

underapprox :: A → (A, A)

underapprox p = (p ∩ trueInd, p ∩ falseInd)

where (trueInd, falseInd) = under_indset

The intersection ∩ refers to the set-theoretic intersection of
two domains. We formally define these operations in ğ 4.

2.3 Verification and Correct-by-Construction

Synthesis of Knowledge

Our goal is to generate a knowledge approximation for each
downgrade query, which as shown by our nearby example
is a strenuous and error prone process. To automate this pro-
cess Anosy uses refinement types, metaprogramming, and
SMT-based synthesis to automatically generate correct-by-
construction knowledge approximations of queries in four

steps. First, for each query Anosy generates a refinement
type specification that denotes knowledge approximation.
Next, it uses metaprogramming to generate a partial pro-
gram, called a sketch, i.e., a function definition with holes
(to be eventually substituted with terms) that computes the
knowledge. Then, it uses an SMT solver to fill in the inte-
ger value holes in the sketch. Finally, it delegates to Liquid
Haskell’s refinement type checker to verify that our synthe-
sized knowledge indeed satisfies its specification.
Here, we explain a simplified version of these steps for

our nearby (200,200) example query.

Step I: Refinement Type Specifications. Anosy uses ab-
stract refinement types to index abstract domains with a
predicate that all its elements should satisfy (ğ 4). For exam-
ple, A <{\l → 0 < l}> denotes the abstract domain whose
elements are positive values. Using this abstraction, Anosy
specifies the ind. set and knowledge approximations:

under_indset :: (A <{\l → nearby l}>,

A <{\l → ¬ nearby l}>)

underapprox :: p: A

→ (A <{\x → nearby x ∧ (x ∈ p)}>,

A <{\x → ¬ nearby x ∧ (x ∈ p)}>)

under_indset returns a tuple of abstract domains. The first
abstract domain can only contain elements that satisfy the
query and the second that falsify it. The function underapprox

computes the posterior given some prior knowledge p. The
posterior is further refined to contain only elements that
originally existed in the prior knowledge.

Step II: Sketch Generation. Using syntax directed meta-
programming Anosy defines underapprox as in ğ 2.2 to be
the intersection of the ind. set and the prior knowledge. For
the definition of the ind. set it relies on the secret type to
be translated to generate a sketch with integer value holes.
Since UserLoc contains two integer fields, the sketch [38] for
under_indset is the following, where all l and u are holes:

under_indset = (A [AInt l𝑡1 u𝑡1, AInt l𝑡2 u𝑡2],

A [AInt l𝑓 1 u𝑓 1, AInt l𝑓 2 u𝑓 2])
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Step III: SMT-Based Synthesis. Finally, it combines the
refinement type with the program sketch to generate, using
an SMT solver, solutions for the integer holes (ğ 5). By com-
bining values from the above sketch for under_indset with
its refinement type, the below constraints are generated:

∀𝑥,𝑦. 𝑙𝑡1 ≤ 𝑥 ≤ 𝑢𝑡1 ∧ 𝑙𝑡2 ≤ 𝑦 ≤ 𝑢𝑡2 =⇒ 𝑛𝑒𝑎𝑟𝑏𝑦 (𝑥,𝑦)

(Under-approx, True)

∀𝑥,𝑦. 𝑙𝑓 1 ≤ 𝑥 ≤ 𝑢𝑓 1 ∧ 𝑙𝑓 2 ≤ 𝑦 ≤ 𝑢𝑓 2 =⇒ ¬𝑛𝑒𝑎𝑟𝑏𝑦(𝑥,𝑦)

(Under-approx, False)

The first constraint indicates all points in the domain
should satisfy the nearby function, whereas the second con-
straint means the all points inside the domain should not sat-
isfy the nearby function. The definition of nearby (200,200)
and the abs function is mechanically translated to logic as
follows:

𝑞𝑢𝑒𝑟𝑦 (𝑥,𝑦) = 𝑎𝑏𝑠 (𝑥 − 200) + 𝑎𝑏𝑠 (𝑦 − 200) ≤ 100

𝑎𝑏𝑠 (𝑖) = if 𝑖 < 0 then − 𝑖 else 𝑖

These constraints have multiple correct solutions, but, for
precision, Anosy prefers the tightest bounds. Specifically,
when under-approximating, it aims for the maximal domain
that satisfies the above two constraints. Anosy uses Z3 [5]
as the SMT solver of choice because it supports optimization
directives for maximizing𝑢1−𝑙1 and𝑢2−𝑙2 together, for both
the true and false cases. Finally, it uses the SMT synthesized
solutions to fill in the holes and derive complete programs,
like the under_indset of ğ 2.2.

Step IV: Knowledge Verification. Anosy uses Liquid-
Haskell to verify the synthesized result. To achieve this step,
we implemented (ğ 4) verified abstract domains for intervals
and their powersets that, as shown in our evaluation ğ 6,
greatly increase the precision of the abstractions. These im-
plementations are independent of the synthesis step and can
be used to verify manually user-written, knowledge approx-
imations as well.

3 Bounded Downgrade

Here we present the bounded downgrade operation, first by
an example that showcases how downgrades that violate
the quantitative declassification policy are rejected, next by
providing its exact implementation, and finally by showing
correctness of policy enforcement.

Bounded Downgrade by Example. The bounded down-
grade function checks, before running a downgrade query
using the underlying Secure monad, that the approximation
of the revealed knowledge satisfies the quantitative policy. To
do so, it preserves a state that maps each secret that has been
involved in downgrading operations to its current knowl-
edge. As an example, below we present how the knowledge
is updated to prevent the example from ğ 2.1.

secret ← lift (getUserLoc user)

−− secret = Protected (UserLoc 300 200)

−− secrets = []

r1 ← downgrade secret "nearby (200,200)"

−− secrets = [(secret, post1 = {121...279,179...221})], |post1| = 6837

r2 ← downgrade secret "nearby (300,200)"

−− secrets = [(secret, post2 = {221...279,179...221})], |post2| = 2537

r3 ← downgrade secret "nearby (400,200)"

−− secrets = [(secret, post3 = {∅ , 179 ... 221})], |post3| = 0

−− Policy Violation Error

The user location is taken by lifting the getUserLoc function
of the underlying monad (any computation of the underly-
ing monad can be lifted). Assume that the user is located at
(300,200) . Originally, there is no prior knowledge for this
secret (and protected) location, i.e., the secrets map associ-
ating secrets to knowledge approximations is empty. After
downgrading the nearby (200,200) query (which as we
will explain next, is passed to downgrade as a string) we get
the posterior post1 with size 6837. Since this size is greater
than 100, the qpolicy (defined in ğ 2.1) is satisfied and the
result of the query (here true) is returned by the bounded
downgrade. Similarly, downgrade of the nearby (300,200)

query refines the posterior to size 2537. But, when downgrad-
ing the nearby (400,200) query the posterior size becomes
zero, thus our system will refuse to perform the query (and
downgrading its result) and return a policy violation error,
instead of risking the leak of the secret.

Definition of Bounded Downgrade. Figure 2 presents
the definition of the bounded downgrade function. It takes
as input a protected secret, which should be able to get
unprotected by an instance of the Unprotectable class, a
string that uniquely determines the query to be executed,
and returns a boolean value in the AnosyT state monad trans-
former [23]. As discussed in ğ 2.1, we used a transformer to
stage our downgrade on top of an existing secure monad.

The state of Anosy AState contains the quantitative policy,
the map secrets of secret values to their current knowledge,
and themap queries that maps strings that represent queries
to query information QInfo that, in turn, contain both the
query itself and an under-approximation function (like the
synthesized underapprox) that given the prior knowledge
approximates the posterior, after the query is executed. Even
though tracking of multiple secrets is permitted, we require
all the secrets and abstractions to have the same type; this
limitation can be lifted using heterogeneous collections [18].

Having access to this state, downgrade will throw an error
if it cannot find the query information of the string input,
since it has no way to generate the posterior knowledge1.
Then, it will compute the posterior and throw an error if
it violates the quantitative policy. Otherwise, it will update
the posterior of the secret and return the result of the query.

1On-the-fly synthesis albeit possible would be very expensive.
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type AnosyT a s m = StateT (AState a s) m

data AState a s = AState {

policy :: a → Bool,

secrets :: Map s a,

queries :: Map String (QInfo a s)}

data QInfo a s = QInfo {

query :: s → Bool,

approx :: p: a

→ (a <{\x → query x ∧ (x ∈ p)}>,

a <{\x → ¬ query x ∧ (x ∈ p)}>)}

class Unprotectable p where

unprotect :: p t → t

downgrade :: ( Monad m, Unprotectable protected

, AbstractDomain a s) −− Defined in § 4.1

⇒ protected s

→ String −− (s → Bool)

→ AnosyT a s m Bool

downgrade secret' qName = do

st ← get

let qinfo = lookup qName (queries st)

if isJust qinfo then do

let secret = unprotect secret'

let prior = fromMaybe ⊤

$ lookup secret (secrets st)

let (QInfo query approx) = fromJust qinfo

let (postT, postF) = approx prior

if policy st postT ∧ policy st postF then do

let response = query secret

let posterior = if response then postT

else postF

modify $ \st → st {secrets =

insert secret posterior (secrets st)}

return $ response

else throwError "Policy Violation"

else throwError ("Can't downgrade " ++ qName)

Figure 2. Implementation of bounded downgrade.

Note that detection of violations of the quantitative policy is
independent of the actual secret value.

Correctness: Policy Enforcement. Suppose a secret s that
has been downgraded 𝑛 times by the queries query1, . . . ,
query𝑛 . After each downgrade, the knowledge is refined. So,
starting from the top knowledge (K0 � ⊤), after 𝑛 queries,
the knowledge evolves as follows: K0 ⊆ K1 ⊆ · · · ⊆ K𝑖 ⊆

· · · ⊆ K𝑛 , where K𝑖 = K𝑖−1 ∩ {𝑥 | query𝑖 𝑥 = query𝑖 s}.
We can show that for each 𝑖-th downgrade of the secret s,

there exists a posterior P𝑖 so that (s,P𝑖) is in the secrets

map and also P𝑖 is an under-approximation of the knowl-
edge K𝑖 , that is P𝑖 ⊆ K𝑖 . The proof goes by induction on
𝑖 , assuming that the attacker and the downgrade implemen-
tation start from the same ⊤ knowledge, and the inductive
step relies on the specification of the approx function and
the way downgrades modifies secrets , i.e., using postT or
postF depending on the response of the query.
Thus if our quantitative policy enforces a lower bound on

the size of the leaked knowledge, (e.g., qpolicy dom = size

dom > k) it is correctly enforced by downgrade : since P𝑖 ⊆

K𝑖 , then qpolicy P𝑖 implies qpolicy K𝑖 at each stage of the
execution. Note that for correctness of policy enforcement,
the policy should be an increasing function in the size of
the input for underapproximations. The exact definition of
such a policy domain specific language is left as a future
work. Further, even though our implementation can trace
knowledge overapproximations, we have not yet studied
applications or policy enforcement for this case. Last but not
least, it is important that the policy is checked irrespective
of the query result, i.e., on both postT and postF , to prevent
potential leaks due to the security decision.

Security Guarantees. Anosy enforces declassification
policies that limit the amount of information an attacker
can learn from declassification statements. For this, Anosy
directly checks that downgrades are bounded (ğ3) and it
relies on the underlying security monad to ensure that the
adversary’s knowledge remains constant, i.e., there are no
leaks, between two downgrade s. As a result, the underly-
ing security monad needs to enforce termination-sensitive
non-interference. Alternatively, one can use a monad en-
forcing termination-insensitive non-interference, such as
LIO [39], and additionally prove termination, e.g., using Liq-
uid Haskell’s termination checker.

4 Refinement Types Encoding

We saw that our bounded downgrade function is correct, if
each query is coupled with a function approx that correctly
computes the underapproximation of posterior knowledge.
Here, we show how refinement types can specify correctness
of approx , in a way that permits decidable refinement type
checking. First (ğ 4.1), we define the interface of abstract
domains as a refined type class that in ğ 4.2 we use to specify
the abstractions of ind. sets and knowledge. Next, we present
two concrete instances of our abstract domains: intervals
(ğ 4.3) and powersets of intervals (ğ 4.4).

4.1 Abstract Domains

Figure 3 shows the AbstractDomain 𝑎 𝑠 refined type class
interface stating that 𝑎 can abstract, i.e., represent a set of val-
ues of, 𝑠. For example, an instance instance AbstractDomain

A𝐼 UserLoc states that the data type A𝐼 (that we will define
in ğ 4.3) abstracts UserLoc (of ğ 2.1). The interface contains
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class AbstractDomain 𝑎 𝑠 where

⊤ :: 𝑎 <{\_ → True , \_ → False}>

⊥ :: 𝑎 <{\_ → False, \_ → True }>

∈ :: 𝑠 → 𝑎 → Bool

⊆ :: 𝑎 → 𝑎 → Bool

∩ :: d1:𝑎 <p1, n1> → d2:𝑎 <p2, n2>

→ {d3:𝑎 <p1∧p2, n1∨n2> | d1 ⊆ d3 ∧ d2 ⊆ d3}

size :: 𝑎 → {i:Int | 0 ≤ i}

−− class laws

sizeLaw :: d1:𝑎 → {d2:𝑎 | d1 ⊆ d2}

→ {size d1 ≤ size d2}

subsetLaw :: c:𝑠 → d1:𝑎 → {d2:𝑎 | d1 ⊆ d2}

→ {c ∈ d1 ⇒ c ∈ d2}

Figure 3. Abstract Domain Type Class

method definitions and class laws, and when required the
abstract domain is indexed by abstract refinements.

Class Methods. The class contains six, standard, setÐ
theoretic methods. Top (⊤) and bottom (⊥), respectively rep-
resent the full and empty domains. Member 𝑐 ∈ 𝑑 tests if the
concrete value 𝑐 is included in the abstract domain 𝑑 . Subset
𝑑1 ⊆ 𝑑2 tests if the abstract domain 𝑑1 is fully included in the
abstract domain 𝑑2. Intersect 𝑑1∩𝑑2 computes an abstract do-
main that includes all the concrete values that are included in
both its input domains. Finally, size d computes the number
of concrete values represented by an abstract domain.

Class Laws. We use refinement types to specify two class
laws that should be satisfied by the ⊆ and size methods.
sizeLaw states that if d1 is a subset of d2, then the size of
d1 should be less than or equal to the size of d2. subsetLaw
states that if d1 is a subset of d2, then any concrete value
in d1 is also in d2. These methods have no computational
meaning (i.e., they return unit) but should be instantiated by
proof terms that satisfy the denoted laws. Even though we
could have expressed more set-theoretic properties as laws,
these two were the ones required to verify our applications.

Abstract Indexes. In the types of top, bottom, and inter-
section, the type 𝑎 is indexed by two predicates p and n (both
of type 𝑠 → Bool). The positive predicate p describes prop-
erties of concrete values that are members of the abstract
domain. Dually, the negative predicate n describes proper-
ties of the values that do not belong to the abstract domain.
Intuitively, the meaning of these predicates is the following:

𝑎 <p,n> ~ {d:𝑎 | ∀x. x∈d ⇒ p x ∧ ∀x. x∉d ⇒ n x}

Yet, the right-hand side definition is using quantifiers which
lead to undecidable verification. Instead, we used abstract
refinements [43] and the left-hand side encoding, to ensure
decidable verification.

The specification of the full domain ⊤ states that the posi-
tive predicate is True, i.e., all elements belong to the domain,

query :: 𝑠 → Bool

under_indset :: (𝑎 <{\x → query x, true}>,

𝑎 <{\x → ¬ query x, true}>)

over_indset :: (𝑎 <{true, \x → ¬ query x}>,

𝑎 <{true, \x → query x}>)

underapprox :: p:𝑎 →

(𝑎 <{\x → query x ∧ (x ∈ p), true}>,

𝑎 <{\x → ¬ query x ∧ (x ∈ p), true}>)

underapprox p = (dT ∩ p,dF ∩ p)

where (dT,dF) = over_indset

overapprox :: p:𝑎 →

(𝑎 <{true, \x → ¬ query x ∨ (x ∉ p)}>,

𝑎 <{true, \x → query x ∨ (x ∉ p)}>)

overapprox p = (dT ∩ p,dF ∩ p)

where (dT,dF) = over_indset

Figure 4. Specifications of Approximations for concrete 𝑎
and 𝑠 that instantiate AbstractDomain.

and the negative False , i.e., no elements are outside of the
domain. Similarly, the empty domain ⊥ has a False positive
predicate, i.e., no elements are in the domain, and True neg-
ative predicate, i.e., all elements can be outside the domain.
Finally, the type signature for intersect d1 ∩ d2 returns a
domain d3 whose positive predicate indicates it includes ele-
ments included in d1 and d2 i.e., p1∧p2. The negative predicate
indicates points excluded from d3 are points excluded from
either d1 or d2, i.e., n1∨n2. The refinement on d3 ensure that
d3 is a subset ⊆ of both d1 and d2. For abstract types in which
these two predicates are omitted, the \_ → True predicate
is assumed, which we will from now on abbreviate as true

and imposes no verification constraints.

4.2 Approximations of ind. sets and knowledge

In Figure 4, we use the positive and negative abstract indexes
to encode the specifications of over- and under-approxima-
tions for ind. sets and knowledge. We assume concrete types
for 𝑎 and 𝑠 with an instance AbstractDomain 𝑎 𝑠 and a
query on the secret. (In the previous sections for simplicity,
we omitted the negative predicates and overapproximations.)

Approximations of ind. sets. A query’s ind. sets is a tu-
ple whose first element is an abstract domain that represents
secrets that satisfying the query and the second element is an
abstract domain that represents secrets that falsify the query.
The specification of the ind. sets under_indset says the

first domain only includes secrets for which the query is
True and the second domain only includes secrets for which
the query is False (the positive predicates). The negative
predicates do not impose any constraints on the elements
that do not belong to the domain. This means the domains
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can exclude any number of secrets, as long as the secrets that
are included are correct, i.e., it is an under-approximation.

Dually, the over-approximation over_indset sets the neg-
ative predicate to exclude all points for which the query

evaluates to False for the domain corresponding to the True

response and the second domain (corresponding to the False

response) excludes all points for which the query evaluates
to False . The positive predicates are just true. The domains
can include any number of secrets as long as they are not
leaving out any secrets that are correct, i.e., it is an over-
approximation.

Approximations of knowledge. By combining the prior
knowledge of the attacker with the ind. set for the query, we
derive an approximation of the attacker’s knowledge after
they observe the query. Figure 4 shows the specifications
for the knowledge under-approximation underapprox and
the over-approximation overapprox . underapprox is similar
to the type of under_indset , except the positive predicate
is strengthened to express that all the elements of the do-
main should also belong to the prior knowledge p. Similarly,
overapprox specifies that the elements that do not belong
in the posterior knowledge, should neither be in the prior
nor the ind. set. Each approximation is implemented by a
pair-wise intersection with the respective ind. sets and can
be verified thanks to the precise type we gave to intersection.

Precision. The refinement types ensure our definitions
are correct, but they do not reason about the precision of
the abstract domains. For example, the bottom and top do-
mains are vacuously correct solutions for under- and over-
approximations, respectively. But, these domains are of little
use as ind. sets, since they ignore all the query information.
It is unclear if precision can be encoded using refinement
types. Instead, we empirically evaluate precision in ğ 6.

4.3 The Interval Abstract Domain

Next we define A𝐼 , the interval abstract domain that can
abstract any secret type S, constructed as a product of inte-
gers (like the UserLoc of ğ 2) or types that can be encoded to
integers (e.g., booleans or enums). A𝐼 is defined as follows:

−− S = Int × Int × ...

data AInt = AInt {lower :: Int, upper :: Int}

type Proof p x = {v:S<p> | v = x }

data A𝐼 <p::S → Bool, n::S → Bool>

= A𝐼 { dom :: [AInt]

, pos :: x:{S| x ∈ dom } → Proof p x

, neg :: x:{S| x ∉ dom } → Proof n x }

| ⊤𝐼 { pos :: x:S → Proof p x }

| ⊥𝐼 { neg :: x:S → Proof n x }

A𝐼 has three constructors. ⊤𝐼 and ⊥𝐼 respectively denote
the complete and empty domains. A𝐼 represents the domain
of any n-dimensional intervals, where n is the length of dom.

An interval AInt represents integers between lower and
upper . For a secret 𝑠 = 𝑠1 × 𝑠2 × . . . 𝑠𝑛 , an A𝐼 represents
each 𝑠𝑖 by the ith element of its dom (𝑠𝑖 ∈ (dom!i)) in the
n dimensional space. For example, domEx = [(AInt 188

212), (AInt 112 288)] is the rectangle of 𝑥 ∈ [188, 212]

and 𝑦 ∈ [112, 288] in the two dimensional space of UserLoc .

Proof Terms. The pos and neg components in theA𝐼 def-
inition are proof terms that give meaning to the positive p

and negative n abstract refinements. The complete domain
⊤𝐼 contains the proof field pos that states that every secret 𝑠
should satisfy the positive predicate p (i.e., x: S → Proof

p x) and the empty domain contains only the proof neg for
the negative predicate n. Due to syntactic restrictions that
abstract refinements can only be attached to a type for SMT-
decidable verification [43], the proof terms are encoded as
functions that return the secret, while providing evidence
that the respective predicates are inhabited by possible se-
crets. In A𝐼 this is encoded by setting preconditions to the
proof terms: the type of the pos field states that each s that
belongs to dom should satisfy p, while the neg field states that
each x that does not belong to dom should satisfy n.
When an A𝐼 is constructed via its data constructors, the

proof terms should be instantiated by explicit proof functions.
For example, belowwe show that the domEx (described above)
only represents elements that are nearby (200,200) .

example :: A𝐼 <{\s → nearby (200,200) s, true}>

example = A𝐼 domEx exPos (\x → x)

exPos :: s:{UserLoc | s ∈ domEx }

→ {o:UserLoc | nearby (200,200) s ∧ o = s}

exPos (UserLoc x y) = UserLoc x y

The proof term exPos is an identity function refined to sat-
isfy the pos specification. Once the type signature of exPos
is explicitly written, Liquid Haskell is able to automatically
verify it. Automatic verification worked for all non-recursive
queries, but for more sophisticated properties (e.g., in the def-
inition of the intersection function) we used Liquid Haskell’s
theorem proving facilities [42] to establish the proof terms.
Importantly, when A𝐼 is used opaquely (like in approx in
Figure 4), the proof terms are automatically verified.

AbstractDomain Instance. We implemented the meth-
ods of the AbstractDomain class for the A𝐼 data type as in-
terval arithmetic functions lifted to n-dimensions. ∈ checks if
any secret is between lower and upper for every dimension.
⊆ checks if the intervals representing the first argument is
included in the intervals representing the second argument.
∩ computes a new list of intervals to represent the abstract
domain, that includes only the common concrete values of
the arguments. Size just computes the number of secrets
in the domain, which can be interpreted as the domain’s
volume. Our implementation consists of 360 lines of (Liquid)
Haskell code, the vast majority of which constitutes explicit
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proof terms for pos and neg fields and the class law methods.
By design, A𝐼 uses a list to abstract secrets that are sums
of any number of elements, thus this class instance can be
reused by an Anosy user to abstract various secret types.

4.4 The Powersets of Intervals Abstract Domain

To address the internal imprecision of the interval abstract
domains, we follow the technique of [4, 31] and define the
powerset abstract domain AP, i.e., a set of interval domains.
Similar to intervals, the powerset AP is also parameterized
with the positive and negative predicates:

data AP <p::S → Bool, n::S → Bool> = AP {

dom𝑖 :: [A𝐼 ] , dom𝑜 :: [A𝐼 ]

, pos :: x:{S| x ∈ dom𝑖 ∧ x ∉ dom𝑜} → Proof p x

, neg :: x:{S| x ∉ dom𝑖 ∨ x ∈ dom𝑜} → Proof n x }

AP contains four fields. dom𝑖 is the set (represented as a list)
of intervals that are contained in the powerset. dom𝑜 is the
set of intervals that are excluded from the powerset. This
representation backed by two lists gives flexibility to define
powersets by writing regions that should be included and
excluded, without sacrificing generality or correctness (as
guaranteed by our proofs). Moreover, this encoding of the
powerset makes our synthesis algorithm simpler (ğ 5). The
proof terms provide the boolean predicates that give seman-
tics to the secrets contained in the powerset, similar to the
interval abstract domain (ğ 4.3). We do not need a separate
top ⊤ and bottom ⊥ forAP as they can be represented using
⊤𝐼 or ⊥𝐼 in the pos list.

AbstractDomain Instance. We implemented the meth-
ods of the AbstractDomain class for the powerset abstraction
in 171 lines of code. A concrete value belongs to (∈) the pow-
erset AP if it belongs to any individual interval of the dom𝑖

list but not to any individual interval of the dom𝑜 list. The
subset d1 ⊆ d2 operation checks if each individual interval
in the inclusion list dom𝑖 of d1 is a subset of at least one inter-
val in the inclusion list dom𝑖 of d2 and also that none of the
individual intervals in the exclusion list dom𝑜 of d1 is a subset
of any interval in dom𝑜 of d2. This operation returns True if
the first powerset is a subset of the second, but if it returns
False it may or may not be powerset. We have not found
this to be limiting in practice, as this criteria is sufficient
for verification. We plan to improve the accuracy via better
algorithms in future work. Intersection d1 ∩ d2 produces
a new powerset, whose inclusion list is made of pairwise
intersecting intervals from dom𝑖 of d1 and dom𝑖 of d2 and the
exclusion interval list is simply the union of all intervals in
the individual exclusion lists dom𝑜 of d1 and dom𝑜 of d2. Size is
the sum of the size of all intervals in the inclusion list minus
the size of all intervals in the exclusion list.

5 Synthesis of Optimal Domains

We use synthesis in Anosy to automatically generate ind.
sets that satisfy the correctness types of Figure 4 for each
downgrade query. Our synthesis technique proceeds in three
steps: first, Anosy extracts the sketch of the posterior com-
putation (ğ 5.2). Second, it translates this to SMT constraints
with relevant optimization directives to synthesize the ab-
stract domains (ğ 5.3). Finally, the SMT synthesis is iterated
to allow synthesis of powersets of any size (ğ 5.4). To effi-
ciently perform these synthesis steps using SMT, we used a
very restrictive form of the query language (ğ 5.1).

5.1 The query language

The queries analyzed by Anosy are Haskell functions that
take one input, of the secret type, and return a boolean:
query :: 𝑠 → Bool (as per Figure 4).
For algorithm and efficient synthesis and verification, all

the queries we tried are restricted to linear arithmetic, bool-
eans, and data types that have a direct, syntactic translation
to SMT functions restricted to decidable logic fragments.
Concretely, the queries can call other functions that belong
to the same fragment, but recursive definitions of queries
are rejected by Anosy.

Supporting other query classes. The query language
can be easily extended to support non-boolean queries with
finitely many outputs. This can be done by computing one
ind. set per possible output. Further, our secrets currently and
for simplicity are restricted to integer products, but they can
be easily extended to other domains with decidable decision
procedures (e.g., datatypes). Extensions to undecidable secret
types (e.g., floating points, strings) has unclear implications
and is deferred to future work.

5.2 Synthesis Sketch

We use syntax-directed synthesis by starting with a partial
program i.e., sketch [38], for the ind. sets based on their type
specifications in Figure 4. For example, the sketch for the
under-approximate ind. sets would be:

under_indset = (□::A <{\x → query x, true}>,

□::A <{\x → ¬ query x, true}>)

Following the structure of the type we simply introduce
typed holes of the form □::𝜏 for each abstract domain, which
for this case is (refined) A.

5.3 Synth: SMT-based Synthesis of Intervals

We define the procedure Synth that given a typed hole of an
abstract domain, the number of fields in the secret 𝑛, and the
kind of approximation (over or under), it returns a solution,
i.e., an abstract domain that satisfies the hole’s type. As an
example, consider the below solution to first typed hole of
under_indset . All l and u are symbolic integers.

□ :: A𝐼 <{\x → query x, \_ → True}>
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□ = A𝐼 dom pos neg

dom = [AInt l1 u1, ..., AInt l𝑛 u𝑛]

The above solution is using the A𝐼 applied to the domain
list dom and the pos and neg proof terms. The proof terms for
our (non recursive) queries follow concrete patterns (as the
example of ğ 4.3) and are generated from syntactic templates.
The dom is a list of ranges AInt that contains symbolic inte-
gers as lower (l𝑖 ) and upper (u𝑖 ) bounds, while the length 𝑛
of the list is the number of fields of the secret data type.
To find concrete values for the symbolic integers l𝑖 and

u𝑖 , Synth mechanically generates SMT implications based
on the type indexes. Since the positive index states that
all elements x on the domain should satisfy query x and
the negative index states that all elements outside of the
domain should satisfy True, the following SMT constraint is
mechanically generated:

∀ x. (x∈ dom ⇒ query x) ∧ (x∉ dom ⇒ True)

Such constraints (see ğ 2.3 for a concrete example) are
sent to the SMT, by a direct, syntactic translation of the
Haskell instance method ∈ and the query definitions into Z3
functions (ğ 5.1).
Solving such constraints gives us a value for dom if a so-

lution exists. In practice, however, such solutions are often
just a point, i.e., the abstract domain contains only one se-
cret. Although this is a correct solution, it is not precise. To
increase precision we add optimization directives to con-
straints depending on the type of our approximation. That
is, for 𝑖 ∈ {1 . . . 𝑛} we add maximize u𝑖 - l𝑖 or minimize

u𝑖 - l𝑖 for under-approximations and over-approximations
respectively. These optimization constraints are handed to
an SMT solver that supports optimization directives [5] and
the produced model is an intended solution for dom. We used
the Pareto optimizer of Z3 [5], such that no single optimiza-
tion objective dominates the solution. For example, if two
domains of sizes 400 × 1 and 20 × 20 are valid solutions,
Anosy will prefer the latter.

5.4 IterSynth: Iterative Synthesis of PowerSets

Powerset abstract domains (ğ 4.4) are synthesized by Al-
gorithm 1 that iteratively increments the powersets with
individual intervals to avoid scalability problems faced by
Z3 when optimizing multiple intervals at once.

The algorithm takes as arguments the number of intervals
k to be included in the powerset, the number of fields in
the secret 𝑛, the refinement type of the powerset domain 𝜏 ,
and the kind of approximation apx (under or over). It first
runs Synth (ğ 5.3) to generate the first interval, with the top
level type properly propagated to the hole. If this is for an
under-approximation, more such intervals can be added to
the powerset to boost the precision. Conversely, if the first
synthesized interval is an over-approximation, then more
intervals can be eliminated from the powerset to return a

Algorithm 1 Iterative Synthesis of Powersets

1: procedure IterSynth(k, 𝑛, 𝜏 , apx)
2: dom_i ← [Synth (AP [□] [] _ _)::𝜏 n apx]
3: dom_o ← []

4: for i = 2 to k do

5: if apx == under then
6: dom_t ← Synth (AP (dom_i ++ □) dom_o _ _)::𝜏 n apx
7: dom_i ← dom_i ++ [dom_t]
8: else

9: dom_t ← Synth (AP dom_i (dom_o ++ □) _ _)::𝜏 n apx
10: dom_o ← dom_o ++ [dom_t]
11: end if

12: end for

13: return (AP dom_i dom_o _ _)
14: end procedure

more precise over-approximation. At each iteration, the algo-
rithm creates a new placeholder interval □ and Synth solves
it, incrementally building up the inclusion list dom_i , or the
exclusion list dom_o . Finally, the powerset is returned after 𝑘
iterations. This is Anosy’s general synthesis algorithm since
for 𝑘 = 1 the returned powerset has a single interval.
As a final step, the returned powerset is lifted to the

Haskell source and substituted in the sketch in ğ 5.2, which
as a sanity check is validated by Liquid Haskell.

Discussion. Traditional abstract interpretation based tech-
niques will refine the domains, as the query is evaluated with
small step semantics, leading to imprecision at each step. In
contrast, Anosy is more precise (as we show in ğ 6), because
the final abstract domain is synthesized in the final step after
accumulating constraints. However, Z3 does not give pre-
cise solutions when there are too many maximize/minimize
directives (more than 6 in our experience) and it does not
handle non-linear objectives well. We leave exploration of
better optimization algorithms to future work.

6 Evaluation

We empirically evaluated Anosy’s performance using two
case studies. In the first one (ğ 6.1), we analyze efficiency
and precision ofAnosywhen verifying and synthesizing ind.
sets using a set of micro-benchmarks from prior work. In the
second one (ğ 6.2), we use the Anosy monad to construct an
application that performs multiple queries (similar to those
of ğ 2) while enforcing a security policy on the attacker’s
knowledge. With this case study, we evaluate how losses of
precision introduced by Anosy’s abstract domains affect the
ability of answering multiple queries.

Experimental setup. Anosy is a GHCplugin built against
GHC 8.10.1. All refinement types were verified with Liquid-
Haskell 0.8.10. Z3 4.8.10 was used to synthesize the bounds of
the abstract domains. All experiments were performed on a
Macbook Pro 2017 with 2.3 GHz Intel Core i5 and 8GB RAM.
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Table 1. Number of fields in the secret, and size of the precise ind.
sets 𝑥/𝑦 for our benchmarks, where 𝑥 and 𝑦 denotes the number of
secrets that evaluate to True and False, respectively.

# Name No. of fields Size of ind. sets

B1 Birthday 2 259 / 13246
B2 Ship 3 1.01e+06 / 2.43e+07
B3 Photo 3 4 / 884
B4 Pizza 4 1.37e+10 / 2.81e+13
B5 Travel 4 2160 / 6.72e+06

6.1 Verification & Synthesis of ind. sets

In this case study, we analyze the Anosy’s performance with
respect to the verification and synthesis of ind. sets.

BenchmarkPrograms. Our benchmarks consist of 5 prob-
lems from Mardziel et al. [25], which represent a diverse set
of queries (B3 and B4 come from a targeted advertisement
case study from Facebook [10]). We selected these bench-
marks to illustrate that Anosy supports similar classes of
queries as existing prior work and to compare performance
and precision with available tools.

(B1) Birthday checks if a user’s birthday, the secret, is
within the next 7 days of a fixed day2.

(B2) Ship calculates if a ship can aid an island based on
the island’s location and the ship’s onboard capacity.

(B3) Photo checks if a user would be possibly interested
in a wedding photography service by checking if they are
female, engaged, and in a certain age range.

(B4) Pizza checks if a user might be interested in ads of a
local pizza parlor, based on their birth year, the level of school
attended, their address latitude and longitude (scaled by 106).
(B5) Travel tests for a user interest in travels by checking

if the user speaks English, has completed a high level of edu-
cation, lives in one of several countries, and is older than 21.

For each problem, we encode the query as a Haskell func-
tion with the appropriate refinement type [45] where the
secret domain is represented as a Haskell datatype for which
we use the same bounds as [25]. Table 1 reports the number
of fields in the secret, and the size of the precise ind. sets
for each benchmark as 𝑥/𝑦, where 𝑥 denotes the size of the
precise ind. set for the True response from query and 𝑦 is
the size when the query responds False .

Experiment. For each benchmark, we use Anosy to (1)
synthesize the under- and over-approximated ind. sets for
both results True and False and (2) verify that the synthe-
sized approximations match the refinement types from ğ 4.
We run each benchmark 11 times to collect synthesis and
verification times. We use a 10 second timeout for each Z3
call. The goal is to evaluate the precision of the synthesized
ind. set and time taken for synthesis and verification to run.

2We only use the deterministic version of the Birthday problem.

Intervals. Figure 5a reports the results of our experiments
for both the under- and over-approximated ind. sets using
the interval abstract domain. Specifically, the column Size

reports the number of secrets in the approximated ind. set,
the column Verif. time reports the time (in seconds) Liquid-
Haskell takes to verify the posteriors, and the column Synth.

time reports the time (in seconds) taken for synthesizing the
approximate ind. sets. The % diff. column lists the difference
in size of the approximate ind. sets with the exact ones from
Table 1. The lower the % diff. column value, the more precise
is the synthesized ind. set, i.e., it is closer to the ground truth.
For all our benchmarks, LiquidHaskell quickly verifies

the correctness of the posteriors, in less than 4 seconds on
average. In some cases, like B1 and B3,Anosy can synthesize
the exact ind. set for the True result using a single interval
(for both approximations). For the False set, however, the
tool returns an approximated result because the precise ind.
set is not representable using intervals.

In 7 out of 10 synthesis problems, Anosy synthesizes the
approximations in less than 5 seconds. The three outliers
are the synthesis of under-approximations for B2 and the
synthesis of both approximations for B4. B2 uses a relational
query that creates a dependency between two secret fields,
where the multi-objective maximization employed by Z3
runs longer. B4 uses very large bounds (in the orders of 108)
which result in Z3 quickly finding a sub-optimal model but
timing-out before finding an optimal solution.

Powersets of intervals. Figure 5b reports the results of
our experiments using the powersets domainwith 3 intervals.
A higher number gives more precision for representation of
the ind. set at the cost of taking more time for synthesis, due
to our iterative synthesis algorithm (ğ 5.4).
For under-approximations, Anosy successfully synthe-

sizes both exact ind. sets for B1 using powersets, even though
the False set was not representable using just a single in-
terval. For B2 and B3, the powersets significantly improve
precision, i.e., we synthesize larger under-approximations.

This can be seen by comparing the % diff. column between
Figure 5a and 5b, where the latter reports lower percentage
differences from ground truth. In fact, for B3, Anosy can al-
most synthesize the entire ind. set for False with powersets
of size 3 and it can synthesize the exact ind. set with pow-
ersets of size 4 (not shown in Figure 5b). For B4, powersets
only marginally improve precision due to SMT optimization
timing out. For over-approximations, we observe a similar
increase in precision, in particular in B3 and B5 where the
synthesized approximations are close to the exact values. B4
slows down drastically because synthesis of each interval
takes almost 10 seconds due to SMT timeouts.

Discussion. Anosy synthesizes ind. sets, and a function
to compute a posterior for any prior, incurring one-time
cost for synthesis but making posterior computation free
at runtime. In contrast, prior tools like Prob [25] need to
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Under-approximation Over-approximation

# Size % diff. Verif. time Synth. time Size % diff. Verif. time Synth. time

B1 259 / 9620 0 / 27 2.78 ± 0.03 1.11 ± 0.01 259 / 13505 0 / 2 2.64 ± 0.03 1.07 ± 0.01
B2 2.21e+05 / 1.01e+07 78 / 58 3.62 ± 0.02 9.26 ± 0.04 2.02e+06 / 2.54e+07 100 / 5 3.17 ± 0.02 4.00 ± 0.12
B3 4 / 664 0 / 25 3.12 ± 0.06 0.90 ± 0.07 4 / 888 0 / 0 2.83 ± 0.03 0.90 ± 0.01
B4 3.53e+04 / 1.35e+05 100 / 100 3.66 ± 0.04 20.92 ± 0.11 9.22e+12 / 2.81e+13 67200 / 0 3.29 ± 0.08 10.87 ± 0.01
B5 360 / 5.04e+06 83 / 25 3.81 ± 0.04 1.38 ± 0.04 35460 / 6.72e+06 1542 / 0 3.47 ± 0.04 0.89 ± 0.01

(a) Interval abstract domain

Under-approximation Over-approximation

# Size % diff. Verif. time Synth. time Size % diff. Verif. time Synth. time

B1 259 / 13246 0 / 0 4.51 ± 0.05 1.13 ± 0.02 259 / 13505 0 / 2 4.34 ± 0.03 1.08 ± 0.01
B2 6.78e+05 / 1.62e+07 33 / 33 5.32 ± 0.09 14.34 ± 0.11 1.80e+06 / 2.54e+07 78 / 5 5.17 ± 0.02 4.89 ± 0.09
B3 4 / 880 0 / 0 5.29 ± 0.09 1.07 ± 0.03 4 / 888 0 / 0 4.99 ± 0.03 1.03 ± 0.01
B4 3.88e+05 / 4.00e+05 100 / 100 5.78 ± 0.03 54.89 ± 0.23 9.22e+12 / 2.81e+13 67200 / 0 5.48 ± 0.08 30.57 ± 0.07
B5 720 / 6.70e+06 67 / 0 6.02 ± 0.07 13.26 ± 0.09 6300 / 6.72e+06 192 / 0 5.96 ± 0.04 15.25 ± 0.03

(b) Powerset of intervals with size 3

Figure 5. Ind. sets synthesis and verification of posteriors. Column Size reports the size of the synthesized ind. sets, where 𝑥 is the size of
the True set and 𝑦 of the False set in 𝑥/𝑦. % diff shows the percentage difference of the size from precise ind. set in Table 1 (lower value is
better). Verif. time and Synth. time columns report (in seconds) the median and the semi-interquartile over 11 runs.

run an expensive static analysis each time when computing
the posterior knowledge. While the synthesis takes 54.2x
longer on average than running Prob each time, this cost is
amortized over multiples runs of the program with Anosy.
Moreover, Anosy is more precise than Prob, as demon-

strated by difference from ground truth in benchmarks like
B3 (Figure 5b). A difference of 0 indicates that Anosy synthe-
sized an exact ind. set. In contrast Prob’s belief was 0.1429
(i.e., had some uncertainty; 0 is exact) for the same example
in same conditions. Anosy is more precise because it can
automatically split regions into intervals (ğ 5.4) whose union
in the powerset gives a better accuracy. For instance, in Fig-
ure 5b, a powerset of size 3 is enough to synthesize the exact
ind. set (% diff. is 0) for several benchmarks.
In our experience, iterative synthesis (ğ 5.4) works bet-

ter than existing techniques [3, 25] for queries (benchmarks
B1, B3, and B5) that contain point-wise comparisons, i.e.,
the query checks if a secret 𝑥 is one of several constant
values 𝑐1, 𝑐2, . . ., or in other words, formulas of the form
𝑥 = 𝑐1 ∨ 𝑥 = 𝑐2 ∨ . . . . These queries split the indistinguish-
able sets into a union of disjoint sets, and the SMT solver
efficiently identified the best possible solution for the abstract
domain. However, benchmarks that do not use point-wise
comparisons (like B2) perform equivalent to prior work [25]
in our experience.

6.2 Secure Advertising System

In this case study, we go back to the advertisement example
in ğ 2 which we implement using Anosy to restrict the infor-
mation leaked through downgrade . The goal of this case study
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Figure 6. The lines show the number of execution instances (Y-
axis) that were authorized for the 𝑖-th declassification query (X-
axis). Each line corresponds to the under-approximated ind. set of
powersets of size 𝑘 .

is evaluating how the choice of abstract domains affects the
number of declassification queries authorized by Anosy.

Application. We implemented the advertising query sys-
tem from ğ 2 in Haskell using the AnosyT monad, with the
UserLoc type as the secret. The system executes a sequence
of 50 queries (one per restaurant branch): we use the nearby

query from ğ 2 with the origin, denoting in this experiment
the location of the restaurant, being a randomly generated
point in the 400 × 400 space.

Security policy and enforcement. Our program imple-
ments the security policy qpolicy from ğ 2, which restricts
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the restaurant chain from learning the user location below a
set of 100 possible locations. To easily enforce the security
policy, we wrapped the advertising query in the downgrade

operation of AnosyT as in ğ 3.
Initially, our system starts with a prior knowledge equiva-

lent to the entire secret domain 400 × 400 (i.e., the attacker
does not have any information about the secret). As the
system executes queries, the AnosyT monad tracks an under-
approximation of the attacker’s posterior knowledge based
on the query result and on the prior. If the posterior com-
plies with the policy, then themonad outputs the query result
and the system continues with the next query. If a policy
violation is detected, the system terminates the execution.

Experiment. For each experiment, we generate a new
user location randomly, used as the secret, in the 400 × 400

space, and we run through the 50 queries for every restaurant
location. For each execution, we measure after how many
queries the system stops due to a policy violation. We re-
peat this experiment 20 times, to get the mean and standard
deviation of query count and discuss them below.

Results. Figure 6 reports the results of our experiments.
The line for each 𝑘 , i.e., the number of synthesized intervals
in the powerset, depicts the number of experiment instances
that are still running (Y-axis) after executing the 𝑖-th query
(X-axis). For example, in the 𝑘 = 1 powerset (equivalent to
an interval), the system was able to answer the first 3 queries
in all 20 instances without violating the policy, but only 2
instances were able to answer the 6th query.

As the size of powersets increases (from 3 to 10), the sys-
tem can compute more precise under-approximations and,
therefore, securely answer more queries, as can be seen in
the figure. Specifically, for powerset of size 𝑘 = 3, the system
answers a maximum of 10 queries over 20 runs, with only 1
run reaching the 10th query. Similarly, the maximum number
of queries answered increases to 14, due to increased preci-
sion by using powersets of size 10. Moreover, more than 10
instances answer more than 6 queries if the size of powersets
goes above 3. This shows that Anosy can be used to build a
system, that can answer multiple queries sequentially with
precision without violating the declassification policy.

Figure 6 shows a tradeoff between number of queries an-
swered and the precision of the powersets. Higher sized
powersets (𝑘 = 7 or 10) under-perform in the intermediate
declassifcations from 5 to 7 (on the X-axis) when compared
to 𝑘 = 5. The intersection of powersets made of 𝑘1 and 𝑘2
intervals produces a powerset of 𝑘1𝑘2 intervals, of which
many intervals are small or empty (as individual powersets
might have very little overlap). Hence a slightly more impre-
cise powerset 𝑘 = 5 declassifies allows more instances of the
query to run. However, over a longer sequence of queries
a higher sized powerset performs better due to improved
precision in tracking knowledge (as can be seen from 𝑘 = 10

allowing 14 declassifcations).

7 Related Work

Information-flow control. Language-based information-
flow control (IFC) [34] provides principled foundations for
reasoning about program security. Researchers have pro-
posed many enforcement mechanisms for IFC like type sys-
tems [1, 6, 12, 22, 30, 32, 33], static analyses [17], and runtime
monitors [14] to verify and enforce security properties like
non-interference. The ind. sets and knowledge approxima-
tions computed by Anosy can be used as a building block
to enforce both non-interference as well as more complex
security policies, as we discuss below.

Use of knowledge in IFC. The notion of attacker knowl-
edge has been originally introduced to reason about dy-
namic IFC policies, where the notion of łpublicž and łsecretž
information can vary during the computation [2, 14, 41].
The notion of belief consists of a knowledge, i.e., set of
possible secret values, equipped with a probability distri-
bution describing how likely each secret is. Existing ap-
proaches [15, 20, 25, 40] can enforce security policies involv-
ing probabilistic statements over an attacker’s belief, e.g.,
łan attacker cannot learn that a secret holds with probability
higher than 0.7ž. We plan to deal with probability distribu-
tions in future work. However,Anosy synthesizes a function
that computes the posterior given a prior, eliminating the
need to run the full static analysis for each query execu-
tion. This enables applications to directly use knowledge
based policies without expensive static analysis at runtime.
Additionally Anosy’s posterior knowledge is correct-by-
construction andmechanically verified using LiquidHaskell’s
refinement types, unlike existing tools [25] which rely on
(often complex) pen-and-paper proofs.

Quantitative Information Flow approaches provide quan-
titative metrics, e.g., Shannon entropy [36], Bayes vulnera-
bility [37], and guessing entropy [26], that summarize the
amount of leaked information. For this, several approaches [3,
9, 19] first compute a representation of a program’s indistin-
guishability equivalence relation, whereas we represent the
partition induced by the indistinguishability relation, where
each ind. set is one of the relation’s equivalence classes.

There are several approaches for approximating the indis-
tinguishability relation in the literature. Clark et al. [9] pro-
vide techniques to approximate the indistinguishability rela-
tion for straight line programs. Backes et al. [3] automates the
synthesis of such equivalence relations using program veri-
fication techniques, and Köpf and Rybalchenko [19] further
improve the approach by combining it with sampling-based
techniques. Similarly to [3], we automatically synthesize ind.
sets from programs. In contrast to [3, 9, 19], the correctness
of our ind. sets is also automatically and machine-checked.

Declassification. Declassification is used in IFC systems
to selectively allow leaks, and several extensions of non-
interference account for it [2, 14, 41]; we refer the reader
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to [35] for a survey of declassification in IFC. Most systems
treat declassification statements as trusted. Our work focuses
on thewhat dimension of declassification, that is, our policies
restrict what information can be declassified. In contrast,
Chong and Myers [8] enforce declassification policies that
target other aspects of declassification, specifically, limiting
in which context declassification is allowed and how data
can be handled after declassification.

ProgramSynthesis. Anosy’s synthesis technique follows
sketch-based synthesis [38], where traditionally users pro-
vide a partial implementation with holes and some specifica-
tions based on which the synthesizer fills in the holes. Stan-
dard types have extensively served as a synthesis template
often combined with tests, examples, or user-interaction [13,
16, 24, 27]. Refinement types provide stronger specifications,
thus, as demonstrated by Synqid [29], do not require fur-
ther tests or user information. In Anosy, we use the refine-
ment type synthesis idea of Synqid, but also mechanically
generate the knowledge specific refinement types.

8 Conclusion & Further Applications

We presented Anosy, a novel technique that uses the ab-
stractions of refinement types to synthesize and statically
machine-check correct approximations of knowledge and
ind. sets. Using these approximations of knowledge, we de-
fined a bounded downgrade function that can be staged
on top of existing IFC systems to enforce declassification
policies. We implemented Anosy and demonstrated it runs
across a variety of benchmarks from prior work and can se-
curely answer multiple sequential queries without losing pre-
cision. We believe Anosy represents a promising approach
to embedding declassification policies in applications.

Though we only usedAnosy’s precise, explicit representa-
tion of knowledge for declassification, such a representation
is at the core of many information flow control tasks. En-
forcing probabilistic policies requires combining knowledge,
computed by Anosy, with a probability distribution [25].
Moreover, dynamic security policies can be enforced by
keeping track of attacker knowledge and comparing it with
the current policy [14]. Finally, approximations of classical
quantitative information flow measures, such as Shannon
entropy [36], can be derived from the user’s knowledge, i.e.,
by counting the number of concrete elements represented
by the knowledge.

Acknowledgments

Thanks to Michael Hicks, David Van Horn, and Jeffrey S. Fos-
ter for their valuable advice and feedback. We would also like
to thank our shepherd Yu Feng and the anonymous review-
ers for their helpful comments. This work was supported
by a gift from Intel Corporation, NSF grants CCF-1846350,
CCF-1900563, and CNS-1801545, the Juan de la Cierva grants

FJC2018-036513-I and IJC2019-041599-I, Madrid regional gra-
nts S2018/TCS-4339 BLOQUES and 2019-T2/TIC-13455, Span-
ish national project RTI2018-102043-B-I00 SCUM, HaCrypt
ONR project N00014-19-1-2292, and the ERC Starting grant
CRETE (101039196).

References
[1] Owen Arden, Michael D. George, Jed Liu, K. Vikram, Aslan Askarov,

and Andrew C. Myers. 2012. Sharing Mobile Code Securely with Infor-
mation Flow Control. In IEEE Symposium on Security and Privacy, (S&P

2012), 21-23 May 2012, San Francisco, California, USA. IEEE Computer
Society, 191ś205. https://doi.org/10.1109/SP.2012.22

[2] Aslan Askarov and Andrei Sabelfeld. 2007. Gradual Release: Uni-
fying Declassification, Encryption and Key Release Policies. In 2007

IEEE Symposium on Security and Privacy (S&P 2007), 20-23 May 2007,

Oakland, California, USA. IEEE Computer Society, 207ś221. https:

//doi.org/10.1109/SP.2007.22

[3] Michael Backes, Boris Köpf, and Andrey Rybalchenko. 2009. Auto-
matic Discovery and Quantification of Information Leaks. In 30th

IEEE Symposium on Security and Privacy (S&P 2009), 17-20 May 2009,

Oakland, California, USA. IEEE Computer Society, 141ś153. https:

//doi.org/10.1109/SP.2009.18

[4] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. 2007. Widening
operators for powerset domains. International Journal on Software

Tools for Technology Transfer 9, 3-4 (2007), 413ś414. https://doi.org/10.

1007/s10009-007-0029-y

[5] Nikolaj Bjùrner, Anh-Dung Phan, and Lars Fleckenstein. 2015. 𝜈Z - An
Optimizing SMT Solver. In Tools and Algorithms for the Construction

and Analysis of Systems - 21st International Conference, TACAS 2015,

Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings

(Lecture Notes in Computer Science, Vol. 9035). Springer, 194ś199. https:

//doi.org/10.1007/978-3-662-46681-0_14

[6] Niklas Broberg, Bart van Delft, and David Sands. 2017. Paragon -
Practical programming with information flow control. Journal of

Computer Security 25, 4-5 (2017), 323ś365. https://doi.org/10.3233/JCS-
15791

[7] José González Cabañas, Ángel Cuevas, Rubén Cuevas, Juan López-
Fernández, and David García. 2021. Unique on Facebook: formulation
and evidence of (nano)targeting individual users with non-PII data.
In IMC ’21: ACM Internet Measurement Conference, Virtual Event, USA,

November 2-4, 2021. ACM, 464ś479. https://doi.org/10.1145/3487552.

3487861

[8] Stephen Chong and Andrew C Myers. 2004. Security policies for
downgrading. In Proceedings of the 11th ACM conference on Computer

and communications security. 198ś209. https://doi.org/10.1145/1030083.
1030110

[9] David Clark, Sebastian Hunt, and Pasquale Malacaria. 2005. Quantita-
tive Information Flow, Relations and Polymorphic Types. Journal of
Logic and Computation 15, 2 (2005), 181ś199. https://doi.org/10.1093/

logcom/exi009

[10] Adele Cooper. 2011. Facebook Ads: A Guide to Targeting and
Reporting. https://web.archive.org/web/20110521050104/http:

//www.openforum.com/articles/facebook-ads-a-guide-to-targeting-

and-reporting-adele-cooper.
[11] Patrick Cousot and Radhia Cousot. 1976. Static determination of

dynamic properties of programs. In Proceedings of the 2nd International

Symposium on Programming, Paris, France. Dunod.
[12] Dominique Devriese and Frank Piessens. 2011. Information flow

enforcement in monadic libraries. In Proceedings of TLDI 2011: 2011

ACM SIGPLAN International Workshop on Types in Languages Design

and Implementation, Austin, TX, USA, January 25, 2011. ACM, 59ś72.
https://doi.org/10.1145/1929553.1929564

28

https://doi.org/10.1109/SP.2012.22
https://doi.org/10.1109/SP.2007.22
https://doi.org/10.1109/SP.2007.22
https://doi.org/10.1109/SP.2009.18
https://doi.org/10.1109/SP.2009.18
https://doi.org/10.1007/s10009-007-0029-y
https://doi.org/10.1007/s10009-007-0029-y
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.3233/JCS-15791
https://doi.org/10.3233/JCS-15791
https://doi.org/10.1145/3487552.3487861
https://doi.org/10.1145/3487552.3487861
https://doi.org/10.1145/1030083.1030110
https://doi.org/10.1145/1030083.1030110
https://doi.org/10.1093/logcom/exi009
https://doi.org/10.1093/logcom/exi009
https://web.archive.org/web/20110521050104/http://www.openforum.com/articles/facebook-ads-a-guide-to-targeting-and-reporting-adele-cooper
https://web.archive.org/web/20110521050104/http://www.openforum.com/articles/facebook-ads-a-guide-to-targeting-and-reporting-adele-cooper
https://web.archive.org/web/20110521050104/http://www.openforum.com/articles/facebook-ads-a-guide-to-targeting-and-reporting-adele-cooper
https://doi.org/10.1145/1929553.1929564


Anosy: Approximated Knowledge Synthesis with Refinement Types for Declassification PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

[13] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat
Chaudhuri. 2017. Component-based synthesis of table consolidation
and transformation tasks from examples. In Proceedings of the 38th

ACM SIGPLANConference on Programming Language Design and Imple-

mentation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. ACM, 422ś436.
https://doi.org/10.1145/3062341.3062351

[14] Marco Guarnieri, Musard Balliu, Daniel Schoepe, David A. Basin, and
Andrei Sabelfeld. 2019. Information-Flow Control for Database-Backed
Applications. In IEEE European Symposium on Security and Privacy,

EuroS&P 2019, Stockholm, Sweden, June 17-19, 2019. IEEE, 79ś94. https:

//doi.org/10.1109/EuroSP.2019.00016

[15] Marco Guarnieri, Srdjan Marinovic, and David Basin. 2017. Securing
Databases from Probabilistic Inference. In Proceedings of the 30th IEEE

Computer Security Foundations Symposium. IEEE, 343ś359. https:

//doi.org/10.1109/CSF.2017.30

[16] Sankha Narayan Guria, Jeffrey S. Foster, and David Van Horn. 2021.
RbSyn: Type- and Effect-Guided Program Synthesis. In Proceedings

of the 42nd ACM SIGPLAN International Conference on Programming

Language Design and Implementation (Virtual, Canada) (PLDI 2021).
Association for Computing Machinery, New York, NY, USA, 344ś358.
https://doi.org/10.1145/3453483.3454048

[17] Andrew Johnson, Lucas Waye, Scott Moore, and Stephen Chong. 2015.
Exploring and Enforcing Security Guarantees via Program Depen-
dence Graphs. In Proceedings of the 36th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’15). ACM.
https://doi.org/10.1145/2737924.2737957

[18] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. 2004. Strongly Typed
Heterogeneous Collections. In Proceedings of the 2004 ACM SIGPLAN

Workshop on Haskell (Snowbird, Utah, USA) (Haskell ’04). Association
for Computing Machinery, New York, NY, USA, 96ś107. https://doi.

org/10.1145/1017472.1017488

[19] Boris Köpf and Andrey Rybalchenko. 2010. Approximation and Ran-
domization for Quantitative Information-Flow Analysis. In Proceedings
of the 23rd IEEE Computer Security Foundations Symposium, CSF 2010,

Edinburgh, United Kingdom, July 17-19, 2010. IEEE Computer Society,
3ś14. https://doi.org/10.1109/CSF.2010.8

[20] Martin Kucera, Petar Tsankov, Timon Gehr, Marco Guarnieri, and Mar-
tin Vechev. 2017. Synthesis of Probabilistic Privacy Enforcement. In
Proceedings of the 24th ACM Conference on Computer and Communica-

tions Security. ACM, 391ś408. https://doi.org/10.1145/3133956.3134079
[21] Nico Lehmann, Rose Kunkel, Jordan Brown, Jean Yang, Niki Vazou,

Nadia Polikarpova, Deian Stefan, and Ranjit Jhala. 2021. STORM:
Refinement Types for Secure Web Applications. In 15th USENIX Sym-

posium on Operating Systems Design and Implementation, OSDI 2021,

July 14-16, 2021. USENIX Association, 441ś459. https://www.usenix.

org/conference/osdi21/presentation/lehmann

[22] Peng Li and Steve Zdancewic. 2006. Encoding Information Flow in
Haskell. In 19th IEEE Computer Security Foundations Workshop, (CSFW-

19 2006), 5-7 July 2006, Venice, Italy. IEEE Computer Society, 16. https:

//doi.org/10.1109/CSFW.2006.13

[23] Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers
and Modular Interpreters. In Proceedings of the 22nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (San
Francisco, California, USA) (POPL ’95). Association for Computing
Machinery, New York, NY, USA, 333ś343. https://doi.org/10.1145/

199448.199528

[24] Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. 2020. Program
sketching with live bidirectional evaluation. Proceedings of the ACM
on Programming Languages 4, ICFP (2020), 109:1ś109:29. https://doi.

org/10.1145/3408991

[25] Piotr Mardziel, Stephen Magill, Michael Hicks, and Mudhakar Srivatsa.
2013. Dynamic enforcement of knowledge-based security policies
using probabilistic abstract interpretation. Journal of Computer Security

21, 4 (2013), 463ś532. https://doi.org/10.3233/JCS-130469

[26] J.L. Massey. 1994. Guessing and entropy. In Proceedings of 1994 IEEE

International Symposium on Information Theory. 204ś. https://doi.org/

10.1109/ISIT.1994.394764

[27] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-
directed program synthesis. In Proceedings of the 36th ACM SIG-

PLAN Conference on Programming Language Design and Implemen-

tation (PLDI), Portland, OR, USA, June 15-17, 2015. ACM, 619ś630.
https://doi.org/10.1145/2737924.2738007

[28] James Parker, Niki Vazou, and Michael Hicks. 2019. LWeb: information
flow security for multi-tier web applications. Proceedings of the ACM
on Programming Languages 3, POPL (2019), 75:1ś75:30. https://doi.

org/10.1145/3290388

[29] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Pro-
gram synthesis from polymorphic refinement types. In Proceedings of

the 37th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,

2016. ACM, 522ś538. https://doi.org/10.1145/2908080.2908093

[30] Nadia Polikarpova, Deian Stefan, Jean Yang, Shachar Itzhaky, Travis
Hance, and Armando Solar-Lezama. 2020. Liquid information flow
control. Proceedings of the ACM on Programming Languages 4, ICFP
(2020), 105:1ś105:30. https://doi.org/10.1145/3408987

[31] Corneliu Popeea and Wei-Ngan Chin. 2006. Inferring Disjunctive
Postconditions. In Advances in Computer Science - ASIAN 2006. Secure

Software and Related Issues, 11th Asian Computing Science Conference,

Tokyo, Japan, December 6-8, 2006, Revised Selected Papers (Lecture Notes

in Computer Science, Vol. 4435). Springer, 331ś345. https://doi.org/10.

1007/978-3-540-77505-8_26

[32] François Pottier and Vincent Simonet. 2002. Information flow inference
for ML. In Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, Portland, OR, USA,

January 16-18, 2002. ACM, 319ś330. https://doi.org/10.1145/503272.

503302

[33] Alejandro Russo. 2015. Functional pearl: two can keep a secret,
if one of them uses Haskell. In Proceedings of the 20th ACM SIG-

PLAN International Conference on Functional Programming, ICFP 2015,

Vancouver, BC, Canada, September 1-3, 2015. ACM, 280ś288. https:

//doi.org/10.1145/2784731.2784756

[34] Andrei Sabelfeld and Andrew C. Myers. 2003. Language-based
information-flow security. IEEE Journal on Selected Areas in Commu-

nications 21, 1 (2003), 5ś19. https://doi.org/10.1109/JSAC.2002.806121

[35] Andrei Sabelfeld and David Sands. 2009. Declassification: Dimensions
and principles. Journal of Computer Security 17, 5 (2009), 517ś548.
https://doi.org/10.3233/JCS-2009-0352

[36] Claude E. Shannon. 2001. A mathematical theory of communication.
ACM SIGMOBILE Mobile Computing and Communications Review 5, 1
(2001), 3ś55. https://doi.org/10.1145/584091.584093

[37] Geoffrey Smith. 2009. On the Foundations of Quantitative Information
Flow. In Foundations of Software Science and Computational Structures,

12th International Conference, FOSSACS 2009, Held as Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS 2009,

York, UK, March 22-29, 2009. Proceedings (Lecture Notes in Computer

Science, Vol. 5504). Springer, 288ś302. https://doi.org/10.1007/978-3-

642-00596-1_21

[38] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Se-
shia, and Vijay A. Saraswat. 2006. Combinatorial sketching for finite
programs. In Proceedings of the 12th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems,

ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006. ACM, 404ś415.
https://doi.org/10.1145/1168857.1168907

[39] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières.
2011. Flexible dynamic information flow control in Haskell. In Pro-

ceedings of the 4th ACM SIGPLAN Symposium on Haskell, Haskell 2011,

Tokyo, Japan, 22 September 2011. ACM, 95ś106. https://doi.org/10.

1145/2034675.2034688

29

https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1109/EuroSP.2019.00016
https://doi.org/10.1109/EuroSP.2019.00016
https://doi.org/10.1109/CSF.2017.30
https://doi.org/10.1109/CSF.2017.30
https://doi.org/10.1145/3453483.3454048
https://doi.org/10.1145/2737924.2737957
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1109/CSF.2010.8
https://doi.org/10.1145/3133956.3134079
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://www.usenix.org/conference/osdi21/presentation/lehmann
https://doi.org/10.1109/CSFW.2006.13
https://doi.org/10.1109/CSFW.2006.13
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/3408991
https://doi.org/10.1145/3408991
https://doi.org/10.3233/JCS-130469
https://doi.org/10.1109/ISIT.1994.394764
https://doi.org/10.1109/ISIT.1994.394764
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/3290388
https://doi.org/10.1145/3290388
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/3408987
https://doi.org/10.1007/978-3-540-77505-8_26
https://doi.org/10.1007/978-3-540-77505-8_26
https://doi.org/10.1145/503272.503302
https://doi.org/10.1145/503272.503302
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.1145/584091.584093
https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/2034675.2034688
https://doi.org/10.1145/2034675.2034688


PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Sankha Narayan Guria, Niki Vazou, Marco Guarnieri, and James Parker

[40] Ian Sweet, José Manuel Calderón Trilla, Chad Scherrer, Michael Hicks,
and Stephen Magill. 2018. What’s the Over/Under? Probabilistic
Bounds on Information Leakage. In Principles of Security and Trust - 7th
International Conference, POST 2018, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2018, Thessa-

loniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer

Science, Vol. 10804). Springer, 3ś27. https://doi.org/10.1007/978-3-319-

89722-6_1

[41] Bart van Delft, Sebastian Hunt, and David Sands. 2015. Very static
enforcement of dynamic policies. In Principles of Security and Trust - 4th
International Conference, POST 2015, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2015, London,

UK, April 11-18, 2015, Proceedings. Springer, 32ś52. https://doi.org/10.

1007/978-3-662-46666-7_3

[42] Niki Vazou, Joachim Breitner, Rose Kunkel, David Van Horn, and
Graham Hutton. 2018. Theorem Proving for All: Equational Reasoning
in Liquid Haskell (Functional Pearl). In Proceedings of the 11th ACM

SIGPLAN International Symposium on Haskell (St. Louis, MO, USA)
(Haskell 2018). Association for Computing Machinery, New York, NY,

USA, 132ś144. https://doi.org/10.1145/3242744.3242756

[43] Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. 2013. Abstract
Refinement Types. In Programming Languages and Systems - 22nd

European Symposium on Programming, ESOP 2013, Held as Part of

the European Joint Conferences on Theory and Practice of Software,

ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes

in Computer Science, Vol. 7792). Springer, 209ś228. https://doi.org/10.

1007/978-3-642-37036-6_13

[44] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and
Simon Peyton-Jones. 2014. Refinement Types for Haskell. In Pro-

ceedings of the 19th ACM SIGPLAN International Conference on Func-

tional Programming (Gothenburg, Sweden) (ICFP ’14). Association
for Computing Machinery, New York, NY, USA, 269ś282. https:

//doi.org/10.1145/2628136.2628161

[45] Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott,
Ryan R. Newton, Philip Wadler, and Ranjit Jhala. 2018. Refinement
reflection: complete verification with SMT. Proceedings of the ACM on

Programming Languages 2, POPL (2018), 53:1ś53:31. https://doi.org/

10.1145/3158141

30

https://doi.org/10.1007/978-3-319-89722-6_1
https://doi.org/10.1007/978-3-319-89722-6_1
https://doi.org/10.1007/978-3-662-46666-7_3
https://doi.org/10.1007/978-3-662-46666-7_3
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1145/3158141

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivation: Bounded Downgrades
	2.2 Approximating knowledge from queries
	2.3 Verification and Correct-by-Construction Synthesis of Knowledge

	3 Bounded Downgrade
	4 Refinement Types Encoding
	4.1 Abstract Domains
	4.2 Approximations of ind. sets and knowledge
	4.3 The Interval Abstract Domain
	4.4 The Powersets of Intervals Abstract Domain

	5 Synthesis of Optimal Domains
	5.1 The query language
	5.2 Synthesis Sketch
	5.3 Synth: SMT-based Synthesis of Intervals
	5.4 IterSynth: Iterative Synthesis of PowerSets

	6 Evaluation
	6.1 Verification & Synthesis of ind. sets
	6.2 Secure Advertising System

	7 Related Work
	8 Conclusion & Further Applications
	Acknowledgments
	References

