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Generators for the cohomology ring of the moduli
of 1-dimensional sheaves on P2

Weite Pi and Junliang Shen

ABSTRACT

We explore the structure of the cohomology ring of the moduli space of stable 1-di-
mensional sheaves on P? of any degree. We obtain a minimal set of tautological genera-
tors, which implies an optimal generation result for both the cohomology and the Chow
ring of the moduli space. Our approach is through a geometric study of tautological
relations.

1. Introduction

1.1 Overview and motivation

Throughout, we work over the complex numbers C and fix two integers d and x satisfying d > 1
and ged(d, x) = 1.

The moduli space My, of stable 1-dimensional sheaves F on P? with
[supp(F)] = dH € Hz(P*,Z), x(F) =x

is a nonsingular irreducible projective variety of dimension d? + 1; see [LeP93]. Here H is the
class of a line, supp(—) denotes the Fitting support, and the stability is with respect to the slope
x(€)
&) =—"F+—¢€Q.
(&) (&)1 Q

Geometry and topology of the moduli spaces My, have been studied intensively for decades
from the perspectives of strange duality [Yual7, Yua20, Yua2l], birational geometry [Wool3],
enumerative geometry of local P? [CC15, Bou22, Bou20, BFGW21, MS20, Yua23], and so on.
Much effort has been made to explicitly describe My, for low values of d; see for example
[DM11, Maill, Mail3, CM14, CM17, BMW14, Yual4].

The moduli spaces M, , share similar features with another type of interesting moduli
spaces—moduli of Higgs bundles. By the Beauville-Narashimhan-Ramanan (BNR) correspon-
dence [BNR89], the moduli of stable Higgs bundles on a Riemann surface C' can be viewed
as the moduli of stable 1-dimensional sheaves on the surface T*C, and the Hitchin system
[Hit87a, Hit87b] is exactly the Hilbert—-Chow morphism sending a 1-dimensional sheaf to its
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COHOMOLOGY RING OF MODULI OF 1-DIMENSIONAL SHEAVES

Fitting support; this is analogous to the map
h: Mg, — PHO (IP’Q, OPQ(d)) , F > supp(F) (1.1)

associated with the moduli space Mg . The recent work [MS20] provides further evidence to this
analogy; in it the decomposition theorem [BBD82] and the support theorem [Ng610, CL16, MS20]
were applied to study (intersection) cohomology groups for both types of moduli spaces.

On the other hand, the ring structure of the cohomology of the Higgs moduli space has formed
a rich subject to study. The cohomology of the Higgs moduli space is known to be generated
by tautological classes [Mar02]. A complete set of relations was found in the case of rank 2;
see [HT03], which relies on earlier work on the tautological relations for the moduli of vector
bundles [Kir92]. All these results play an important role in some recent progress of the P = W
conjecture [{CHM12], which is a deep connection between the cohomology of the Higgs moduli
space and the Hodge theory of the character variety; see also [dCMS22, dCMSZ21].

Our main interest here is to explore the ring structure for the cohomology of M, , in terms of
the tautological classes. A better understanding for My, may shed new light on understanding
the cohomology ring of the moduli of stable 1-dimensional sheaves on a surface, which includes
the moduli space of Higgs bundles.

Before introducing more notation, we first state a brief version of our main result. As explained
in Remark 2.6, the ring H*(Mg,, ) has no odd class. Furthermore, by [Mar07, Theorem 2], the cycle
class map from the Chow ring to cohomology is an isomorphism. Hence we use A*(—) to denote
the even cohomology H?*(—,Q), or equivalently the Chow ring CH*(—) with Q-coefficients. We
denote by R¥(—) the subalgebra of A*(—) generated by the classes in ASF(—).

THEOREM 1.1. For d > 3, we have

RY™3(Myy) G RT72(Myy) = A*(May) -

Remark. When d = 1,2, the moduli space My, is a projective space PH 0 (PZ,OPQ (d)) whose
cohomological structure is clear.

The theorem asserts that the entire cohomology of the (cl2 + 1)—dimensional variety Mg
is generated by classes of (algebraic) degree at most d — 2, and this bound is optimal. A more
detailed version of Theorem 1.1 is given by Theorem 1.2, where we describe a minimal set of
tautological generators for A*(Mg ).

1.2 Tautological classes

Let F be a universal family over P? x M,; it is a torsion sheaf supported on a divisor. For
a stable sheaf [F] € My, the restriction of F to the fiber P? x [F] recovers F.

A natural way to construct classes in A*(My, ) is to integrate chy;(F) over a class H/€AJ (IP)Q).
While the choice of a universal family is not unique, we may normalize the universal class
chyy1 (F) € AF (]P>2 X Md,x) and integrate it over H/; this gives rise to the tautological classes

Ck<j> € Ak+j_1(Md,X)7 ] € {07 17 Q}a

see Section 2.1. Here the normalization is characterized by ¢1(0) = ¢1(1) = 0. These classes
behave nicely under natural symmetries of the moduli spaces Mg, (see Proposition 2.4).

Our main result is the following.
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THEOREM 1.2. Assume d > 3.

(a) The ring A*(Mg,) is generated over Q by the 3d — 7 classes of degree at most d — 2:
c0(2),¢2(0) € A'(May),  cx(0),cp1(1),cr2(2) € AN (Myy), ke{3,....d—1}.(1.2)

(b) There is no relation among these 3d — 7 classes of (1.2) in degree at most d — 2.

Theorem 1.2 implies that any set of generators of A*(My, ) contains at least 3d — 7 elements,
and (1.2) provides a minimal one. It is clear that Theorem 1.1 follows immediately from Theo-
rem 1.2. As we discuss further in Section 4.2, numerical data for low values of d suggest that
there also is no relation in degree d — 1 and that nontrivial relations start in degree d.!

The proof of Theorem 1.2 consists of the following main ingredients: (i) By a result of Beau-
ville [Bea95], the ring A*(Mjg,,) is generated by tautological classes. (ii) Using the geometry of
stable 1-dimensional sheaves, we produce tautological relations; this allows us to express any
tautological class in terms of the first 3d — 7 ones. (iii) Finally, we obtain the freeness of these
3d — 7 classes by a Betti number constraint, where we apply a recent result of Yuan [Yua23].

1.3 Enhanced cohomological x-independence

The moduli spaces M, admit a mysterious symmetry predicted by a consideration from enumer-
ative geometry [Bou22, Tod22, MS20] called the cohomological x-independence. More precisely,
it was proven in [MS20] that for any two integers x, x’ (not necessarily coprime to d), we have

TH* (Mg, ~ IH*(My,y)

preserving the perverse and Hodge filtrations. Here IH*(—) stands for intersection cohomology.
If we restrict ourselves to the case (x,d) = (x/,d) = 1, intersection cohomology coincides with
singular cohomology, which admits a canonical Q-algebra structure. It is natural to ask if in this
case, the cohomological y-independence can be strengthened to an isomorphism of Q-algebras.

Question 1.3. For any Y, X’ coprime to d, is there an isomorphism of Q-algebras

H*(MCLX) ~ H*(Mdyx/) ?

Since we have obtained a minimal set of generators whose number is independent of ¥y, it
suffices to understand the dependence on x of the tautological relations among the classes in
(1.2).

The parallel statements of Question 1.3 and its enhancements hold for moduli of Higgs bundles
as predicted by the P = W conjecture; their proofs [dCZ22, dCMSZ21] rely on techniques in
characteristic p.

2. Tautological classes and normalizations

Throughout, we assume d > 3. We introduce (normalized) tautological classes for M. The
construction of the normalization is parallel to [dCMS22, Section 0.3].

'See Remark 4.4 for an update on this.
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COHOMOLOGY RING OF MODULI OF 1-DIMENSIONAL SHEAVES

2.1 Normalizations

Under the assumption ged(d, x) = 1, there is a universal family (see [HL97, Theorem 4.6.5]) over
P? x My ., which we denote by F. Let

mp: P2 x My, — P?,  mar: P2 x My, — Mg,

be the projections. The choice of F is not unique; for another universal family F’, there exists
a line bundle L € Pic(My, ) with

F=F L.

Nevertheless, as a universal sheaf F is a torsion sheaf on P? x Mg, supported on a divisor,
its first Chern character, which records its support, is uniquely determined.

LEMMA 2.1. Let F be a universal family. We have
chy (F) = h*c1(O(d, 1)) € AY(P? x My,) .

Here h: P? x Mg, — P? x PH°(IP?, Op2(d)) is induced by (1.1). In particular, ch;(F) does not
depend on the choice of F.

Proof. A universal sheaf I is a torsion sheaf on P? x M, supported on a divisor. Hence its first

Chern character recovers its support, which is the pullback via h of the incidence variety whose
class is given by ¢1(0(d, 1)) € A (P? x PH°(P?, Opz2(d))). O

The class cha(IF) is dependent on the choice of F, which we use to conduct the normalization.
For a universal family F and a class
o =Thap 4+ mhoy € Al (P2 X Mgy), withap € Al (IP’Q), an € AY(My,),
we consider the twisted Chern character
ch® (F) := ch(F) - exp(a).
and we denote its degree k part by chf(F). For any v € A* (IP’Q), we set

/chz‘(IF) i= T (Tpy - chi (F)) € A" (Ma,y) -

PROPOSITION 2.2. Let F be a universal family. There exists a unique class « as above such that
/ chg(F) =0, / chg(F)=0.
H 1p2

Proof. We have ch§ (F) = cha(F) + « - chy (F). Hence the conditions read

/Hchg(IF):—/Ha-chl(F), /1 Chg(F):—/l a - chy (F). (2.1)

P2
By [LeP93, Wool3], the Picard group of My, is spanned by two classes, which we denote by Dy
and D;. Without loss of generality, we set Dy to be the pullback of the hyperplane class via (1.1)
and D to be a relative ample class. Therefore, Lemma 2.1 implies that ch; (F) = d-7m5H 47}, Do.
We may assume that

P2

a:)\l-W}H—F)\Q-W}k\/lDo—{—)\g'WLDl.
Then by a direct calculation, A\; is determined by the second equation of (2.1), and then the first
equation determines Ao and As. O
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We define the tautological class

en(j) = /H chd,y (F) € M1 (M),
J

where « is the class characterized by Proposition 2.2.

2.2 Properties
We first summarize some properties of the tautological classes. The following is an immediate
consequence of Lemma 2.1 and Proposition 2.2.

PROPOSITION 2.3. Let cx(j) be the tautological classes defined above from a universal family F
over P? x Mg,
(a) The class c(j) does not depend on the choice of F.
(b) We have ¢1(0) =0 € A°(My,), c1(1) =0 € AY(My,), co(1) =d € A°(My,).
(c) The Picard group of My, is spanned by co(2) and c2(0); the class co(2) recovers Dy in the
proof of Proposition 2.2, and c2(0) is a relative ample class with respect to (1.1).

Proof. The first two claims and the equality ¢o(2) = Dy follow from the definition together with
Lemma 2.1 and Proposition 2.2. We now prove that c2(0) is a relative ample class. Since the
Picard group of My, is spanned by two classes, it suffices to verify that the restriction of c(0)
to a smooth fiber of h is nontrivial in cohomology.

We take C' C P? to be a nonsingular degree d curve which represents a point [C] on the
target of h. The fiber h=1([C]) is isomorphic to the Jacobian Jac(C). Moreover, the restriction
of a universal family to P? x Jac(C) is recovered by i.(P @ n},L¢), where i is the embedding
C x Jac(C) < P? x Jac(C), P is the normalized Poincaré line bundle on C x Jac(C), and L¢
is a line bundle on C. The desired property follows from the fact that c;(P)? has nontrivial
Kiinneth component in H%(C) ® H?(Jacc). O

Secondly, we note that the tautological classes behave nicely under the following two types
of symmetry carried by the moduli spaces Mg,,:

(i) The first type of symmetry is given by the isomorphism
¢1: My = Myyia, FrrF®@O0p(l).
(ii) The second type of symmetry is given by the isomorphism [Mail()]
bo: My, — My_y, F s Ext!(F,wpe).
PROPOSITION 2.4. We have ¢ici(j) = ci(j) and ¢hcx(s) = (—1)Fer()).

Proof. The first identity follows from the fact that the pullback of a universal family over Mg 14
along

id x¢1: P? x My, — P* x My,ta
is of the form F ® 75Op2(1) with F a universal family for the moduli space My ,. To see the

second identity, we note that the pullback of a universal family over My _, along id X ¢3 is of the
form RHom(FF, mjwp2)[1] in the bounded derived category; see [Mail0]. Its Chern character is

ch(~ RHom(F, whws2)) = (Z<—1>’fchl+k<w>) exp (mher (wp2)) -

120

The claim then follows from the definition of the normalization. O
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We conclude this section by recalling the following theorem by Beauville [Bea95]; see also
Ellingsrud-Strgmme [ES93].

THEOREM 2.5 ([Bea95]). The ring A*(Mg,,) is generated over Q by the tautological classes cy(j).

Proof. Take a universal family F over P? x My,. It was proven in [Bea95] that A*(Mg,) is
generated by the classes

/ AChk-i-l(]F) = TMx (F}Hj . Chk+1(F)) S A*(Md»() .
HI

By a direct calculation (see also Proposition 3.2), these classes can be expressed in terms of the
normalized tautological classes c;(j) and the classes in A'(My, ); the latter are also tautological
by Proposition 2.3(c). O

Remark 2.6. As an immediate consequence of Theorem 2.5, we obtain that H?**1(M,,) = 0 for
any k; moreover, H"J(Mg,) = 0 if i # j. Using the x-independence result [MS20], this further
implies that

IHY (My,) =0 ifi#j
for any x not necessarily coprime to d. We refer to [Bou22, Theorem 0.4.1] for another proof of
this result.

In view of Theorem 2.5, we explain in Section 3 a method to extract a minimal set of generators
from all tautological classes.

2.3 An example: d = 3

We work out the case d = 3 in detail and prove Theorem 1.2 in this case. By the symmetry of
Proposition 2.4, we only need to treat the case y = —1. We write M := M3 _; for notational
convenience.

PROPOSITION 2.7. We have

A*(Ms,-1) = Q[eo(2), e2(0)]/1,
where I is a homogeneous ideal generated by two elements in degrees 3 and 9, respectively.

In particular, A*(M) is generated by the two classes in A'(M), and the lowest-degree nontriv-
ial relation occurs in degree 3. This matches the prediction of Theorem 1.2 (and Conjecture 4.3
below).

Recall that by [LeP93], the moduli space Mz 2 (hence also M) is isomorphic to the universal
cubic

C CP? x PHO(P?, Op2(3)) = P* x P?,
where we use Hy and Hy to denote the hyperplane classes in the first and the second factors,

respectively. Projecting over the second factor, we see that M is the projective bundle P(E)
associated with a rank 9 vector bundle £. Here the vector bundle £ is characterized by

Ele = H°(P?, I, ® Op2(3))
with Z, C Op2 the ideal sheaf of the point x. In particular, we have the short exact sequence

0—E&— O0F° = Op2(3) = 0,
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which yields ¢1(£) = —3H; and c(€) = 9H?. Denote by ¢ € Al(M) the relative hyperplane
class over P2. By the projective bundle formula, we obtain that
AX(M) = A*(C) = Q[Hy, &)/ (HT, & — 3H1€® + 9HTET) .
This already implies Proposition 2.7 in view of Proposition 2.3(c).

For completeness, we give an explicit expression of the ideal I in terms of the tautological
generators c¢(2) and c2(0). Consider the incidence subvarieties

W= {(z,2,y) e PP xP* x P: (,y) €C} CP* x M,
V={(z,y,2) e P> xP* x P: (z,2) €C, (y,2) €C} CP*x M.

Clearly W C V. Recall that H is the class of a line on the first factor P2. The Chern character of
the structure sheaf Oy can be obtained by applying the Grothendieck—Riemann—Roch theorem
to the closed embedding iy : V < P? x M:

ch(Ov) = iv.td(Tyy,) = (3H + Hz) — 5(3H + Hz)* + §(3H + Ha)* —---
Similarly, we also have, for iy : W — P? x M,
ch(Ow) = (H + HHy + HY) — 3(H*Hy + HH}) + - -+ .
The ideal sheaf associated with W C V yields a universal family over P2 x M:
0—-F—=0y—=0w—0
from which we may calculate the Chern characters:
ch;(F) =3H + Ho,
cho(F) = — L H? — (H, + 3H,)H — (Hi + $H3) ,
chy(F) = :(3H + H,)* + 3(H*H, + HHY),
We obtain that the class of the normalization is
a=HH+LIH + LH,,
and the tautological classes are
c(2) = Hy, c(0)=—-1H+3H,, ci(2)=-H{++HH,—$Hy, ... (2.2)
Finally, we note that & = Hy. Therefore, the ideal
I = (H}, & —3H£% + 9HFE")
can be expressed in terms of ¢o(2) and c2(0) via (2.2).

Remark 2.8. For the case d = 4, the Chow ring of My ; was calculated by Chung-Moon [CM17]. In
particular, they showed that A*(My ;) is generated as a Q-algebra by two generators in A'(My 1)
and three generators in A%(My 1), which matches Theorem 1.2.

3. Tautological relations

3.1 Overview

The goal of this section is to prove Theorem 1.2(a). As the structure for A*(Ms3,) is clear by
Section 2.3, from now on we focus on the case d > 4.
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In view of Theorem 2.5, we show that every class
cx(j) € AN My,), k+j—-1>d-1

can be expressed in terms of (1.2).

For convenience, we fix a universal family IF and define the classes

i) i= (D [t () € 44 My ).
Hi

which are dependent on F. (The factor (—1)**! comes from taking the dual, as we shall see
below.) We introduce a total ordering < on the double indices (k, j): we say that (k,j) < (k',7)
ifandonlyif k+j—1<k' +j57 —1l,ork+j—1=k +7 —1and k < k. Thus, we can talk
about the leading term of a homogeneous polynomial in the classes eg(j), respectively ck(j), in
A*(Mgy)-

Consider the 3d — 6 classes

er(0),ex_1(1),er2(2) € A N(My,), ke{23,...,d—1}. (3.1)
LEMMA 3.1. We have eg(1) = —d € A%(My,,) and e1(0) = x — 3d € A% (Mg,).

Proof. The first claim is established in Lemma 2.1. For the second, consider a sheaf [F] € Mg ,;
the Hirzebruch—Riemann—Roch formula gives

X(F) = deg, (ch(]-") -td (IP’2)) = deg (% chi(F)-H+ Chg(]:)) .
Hence chy(F) = (x — 3d)H? € A%(My,), and the claim follows. O

The next proposition follows from a direct calculation via the expansion
ch, 1 (F) = chy1(F) + - chy(F) + 3o chy_1 (F) + - --
as for the proof of Theorem 2.5.

PROPOSITION 3.2. The 3d— 7 tautological classes in (1.2) and the 3d —6 classes in (3.1) generate
each other. Moreover, every class ci(j) € A¥J “H(Mgy,y) with k+j — 1 > 2 can be expressed as
a polynomial in (1.2) with leading term ey(j), and vice versa.

For any k, j with k +j —1 > d — 1, we will produce a relation in A*(My, ) with leading
term ey (j). We say that such a relation kills e(7). Theorem 1.2(a) follows from the existence of
the relations that kill e;(k) as above.

3.2 Producing relations
By Proposition 2.4, we only need to consider the case 0 < x < d, so that any F € M, satisfies
0<pu(F) <Ll

We consider the triple product Y := P? x Mg, X P? with P2 the dual projective plane. Let
7r: Y — P? be the projection to the third factor. We write p = mp X mar, ¢ = Tp X g, and
r = my X TR, where by abuse of notation, we also denote by mp and s the projections from Y
to P? and M, ., respectively:

Y
/ l \
T
P2 x Mg, My, x P2 P2 x P2,

)
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Let Z C P2 x P? be the incidence subscheme, and let @4 be the structure sheaf of Z viewed as
a coherent sheaf on P? x P2. Let 5 € A! (]P’Q) be the class of a line in P2.

LEMMA 3.3. We have ch(¢*Oz) =1 — exp(—(npH + 133)).
Proof. This follows from the ideal sheaf sequence
0= Opaype(—Z) = Opaypr = Oz =0
and the fact that the divisor class [Z] € A'(P? x ]P;2) is mpH + 3, 3. O

We consider the complex
H(n) :== RHom(p*F, ¢*Oz @ m5Op2(—n)) € D* Coh(Y)
for n € {1,2,3}. Since r: Y — M, x P2 is a trivial P2-bundle, the derived pushforward of H(n),
Rr,H(n) € D’ Coh (My,, x P?),
admits a three-term resolution K — K' — K? by vector bundles.

LEMMA 3.4. For each n € {1,2,3}, we can choose K* such that K° = K? = 0 and K" is free of
rank d.

Proof. For a point P = ([F],p) € My, x P2, we denote by Hp C P? the line corresponding to
p € P2, Then over this point P, the cohomology of the complex of

K%P) - KY(P) - K*(P) (3.2)
computes the extension groups
Ext'(F,Ou,(-n)), i=1,2,3,

on P%; see [Bea95]. Note that (O, (—n)) = 1—n, so that u(Og,(—n)) < u(F) for n € {1,2,3}.
Therefore, by stability, we have Hom(F, Og,(—n)) = 0. On the other hand, Serre duality gives

ExtQ(]:, Onp(—n)) ~ Hom(Oy,(—n), F ® wy)Y = Hom(OHP(—n),]:(—B))V.

Note that u(F(-3)) < =2 < 1 —n for n € {1,2,3}, and hence Hom(Og,(—n), F(—3)) = 0,
again from stability. It follows that the zeroth and the second cohomology groups of (3.2) vanish
for every P. Hence Rr.H(n) can be represented by a single vector bundle K! concentrated in
degree 1 whose rank is determined by the Hirzebruch-Riemann—-Roch calculation

X(Hom(F, Opp(—n))) = degy (ch (FY) - ch(Op,p(—n)) - td (P?)) = —d. O
The next corollary follows immediately.
COROLLARY 3.5. For £ > d+ 1 and n € {1,2,3}, we have c;(—Rr.H(n)) = 0 € A*(M, x P?).
Corollary 3.5 is the main source producing relations, which we explain as follows.
By the Grothendieck—Riemann—Roch theorem, we have
ch(RryH(n)) = r(ch(H(n)) - td (IP)Q))
=r.(ch (p*F) - ch(¢* Oz @ 7pOp2(—n)) - td (P?)) .

If we expand the right-hand side, Corollary 3.5 gives relations among the pullbacks of the e ()
and ° in A* (Md,x X IP’Q). This will be the main result we use in Section 3.3, so we state it as
a proposition below.
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PROPOSITION 3.6. For every ¢ > d + 1, the following identity holds:

4 mg * { . e ~
SITC (rt - 3 T copmiom) —0eancB). oo

7!

m s=1 i+j=s
0<i<2
Here, the first sum is over all (-tuples of nonnegative integers m = (my, ms,...,my) such that

mi+2mg +---+¥€my = ¢, and As; and By are given by
As = e511(0) + (% — n) es(1) + (%n2 — %n + 1) es—1(2) € A*(My,),
Bs :=e541(0) + (% — n) es(1) + (%n2 — %n) es—1(2) € A°(Mg,) .
Proof. We expand ch(Rr,#H(n)) as above, which gives
ch(RryH(n)) = r(ch (FY) - ch (Oz ® Op2(—n)) - td (P?))
=r.(ch (FY) - (1 —exp(—H — B)) - exp(—nH) - td (]P’2)) (3.4)
=r.(ch (FY) - exp(—nH) - td (P?)) — r.(ch (FV) - exp(—(n + 1)H — B) - td (P?)) .

Here the second equality follows from Lemma 3.3, and we temporarily suppress the various
pullback maps in the expression for notational convenience.

We set

L= Zek(Q), M = Zek(l), N = Zek((]),

k>0 k>0 k>1
which are all finite sums. From the definition of the classes ey (j), we have

ch(F¥)=L+M-H+N-H”.
Recall that td (P?) = 1+ 3H + H?; the first term in (3.4) reads
7o (ch (FY) - exp(—nH) - td (P?)) = r.((L+ M- H + N - H?) - exp(—nH) - td (P?))
=N+EB-nM+(En?-3n+1)L

=> A,

s=>0

Similarly, the second term reads

ro(ch (FY) -exp(—(n+ 1)H — j3) - td (}P’Q)) =exp(—f)- N+ (3 —n) M+ %(n2 —n)L)
= exp(—0) - ZBS )
s=>0
Putting these together, we arrive at
_ o W}EBZ 1%
chs(Rr,H(n)) = mipAs — Y —E—(=1)"n},B;.
T (2
1+7=s
0<i<2
Let 21,29, ..., x4 be the Chern roots of the vector bundle X' in Lemma 3.4. Then we have

ce(—RriH(n)) = Cg(Kl) =ey(z1,...,2q),

where e(x1,...,z4) denotes the {th elementary symmetric polynomials in the x;. We write

d
pu(on.va) = !
=1
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for the usual /th power sums. Newton’s identity then gives

T (=p)™
_ L —bs
eg_(_l) ZH m 'Sms ’
m s=1 i

with the summation taken over m as in the proposition. The desired vanishing now follows from
Corollary 3.5 and the identity ps = —s! - chs(RrH(n)). O

Before going into details in Section 3.3, we briefly explain our strategy to produce relations.

The expression in (3.3) is a polynomial in the variable 753 of degree at most 2. We can
integrate it with respect to ﬂ}‘?ﬂj over Mg, x P2

Tars (7RB7 - (expansion of LHS of (3.3))) = 0.

This amounts to picking out the coefficient of the term 7['}%,82_]‘ for j € {0,1,2}. The projection
formula then gives relations among the ey (j) in A*(My, ). Moreover, for a fixed j, we take n in
{1, 2, 3}; this provides three expressions of similar types. Taking linear combinations of these, we
obtain the desired relations that kill certain leading terms.

3.3 Explicit computations

Although the expression (3.3) looks complicated, it is not hard to read the coefficients of leading
terms in a given degree. We illustrate in the following that we can kill all ex(j) in degree at least
d — 1 via the relations produced by (3.3).

Step 1: Kill AZ41 (M) and eq41(0) € A4(My,). TForeach £ > d+1, we first integrate (3.3)
with respect to FE,Bz for n =1, 2,3 and consider the coefficients of the three leading terms (with
respect to the order <) ep11(0), es(1), er—1(2).

Since these classes only appear in A, and By, the single relevant ¢-tuple m in the sum is just
m = (0,0,...,1). We look at the corresponding summand in (3.3), and the coefficients of the
three classes come from integrating the term

(=1 (3 Ae — 73 Boe)

Denoting by R; the expression obtained by setting n = i, we obtain via a direct calculation
the following table of coefficients for the leading terms, where we scale all coefficients below by
1/(¢ — 2)! for convenience:

[ DR
er+1(0) 0 0 0
ee(1) -1 (-1 (-1
e1(2) 0 —((—1) —2({—1)

In particular Ry kills the class e;(1), while Ry — Ry kills the class ey_1(2). As this holds for
(> d+1, we kill all classes ex(j) € AZ4T1(My,) with j € {1,2}.

We still need to treat e (0) € AZ?F1(M, ). For this purpose, we integrate (3.3) with respect
to my B for n = 1,2, 3. This produces relations in Aefl(Md,X). Similarly, we look at the coefficients
of the three leading terms e;(0), e;—1(1), eg—2(2). These classes appear in Ay_; and By_1, so there
are two relevant m, namely (0,0,...,0,1) and (1,0,...,1,0). The coefficients of the three terms
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come from integrating
(E - 1)' . WEB . ﬂth_l + (Z - 2)‘ . 71'?_35 . WX/[BO . (71';/[14(_1 — W}k\/[Bg_l) .
We see that the coefficient of e¢(0) in Ry is £ — 1, so this kills the classes e (0) € AZ4(M, )
by the definition of the order <.

Step 2: Kill eg—1(2) € A4(My,). We have already killed all classes ey (j) lying in AZ4T1(My,,,).
In addition, we have also killed e;41(0), as explained at the end of Step 1. We now kill e4_1(2).

We integrate the relation (3.3) for £ = d 4 1 over the class 7},3. From the same calculation
as above, the coefficients of e;41(0), e4(1), eq—1(2) come from the terms

d'-7mpB-myBg+ (d— 1) 7xB -7y Bo - (myAd — 7y Ba) -
Using Lemma 3.1, we easily compute that
71'3/130 =X+ (n - 2)d S AO(MdVX X P2) .

This gives the following table of coefficients:

H B R Ry |
ca1(0)  d d d
ea(1) x-35d x-3d x—3d
ed—1(2) 0 d—x d—2x

Since d # ¥, the linear combination Ry — Ry kills e;_1(2); on the other hand, we see from the
table that the classes e4(1) cannot be killed using the relations R; above as the first two rows
are proportional.

Step 3: Kill A%1(My,). Next, we integrate (3.3) with respect to 75 (1p2), leading to rela-
tions in AZ’Q(Md»(). There are four relevant m, namely
m € {(0,0,...,0,0,1),(1,0,...,0,1,0),(0,1,...,1,0,0), (2,0,...,1,0,0)} .

Looking at £ = d + 1, a direct computation gives the following table of coefficients. The compu-
tations are similar to those above but involve more terms, so we leave the details to the readers.
Note that we used d > 4 here to ensure that (0,1,...,1,0,0) # (0,2,0,0).

Ry Ry Rs
3 1 1
eq(0) X — 5d X — 5d X+ 5d
e (1) —2x°4+6xd—5d>+d  —2x?4+6xd—4x—3d>+3d —2x%>4+6xd—8x+3d>—3d
d-1 4(1—d) 4(1—d) 4(1—d)
2 2 2 2
x“—2xd+x+d“—d 2x°—2xd+4x—d“+d
ea—2(2) 0 2(1—d) 2(1—d)

Denote this 3 x 3 matrix by M. To kill all three classes e4(0), eq—1(1), eq—2(2), it suffices to
show that M is nonsingular; that is, det(M) # 0. In fact, a direct calculation yields
1

det(M) = mx(d —2)(d—x)(d—2x) #0.
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Step 4: Kill the remaining class eg(1). We look at £ = d 4+ 2 and now integrate (3.3) with
respect to 75 (1p2). A similar calculation gives

Ry Ry R3
ed+1(0) x—3d—1 x—%-1 x+4-1

ea(1) 5d?—6xd+3d+2x2—2x  3d>—6xd+3d+2x?—2x  —3d%>—6xd+3d+2x>—2x
d 4d 4d 4d

Consider the linear combination
S=(x—3d-3)Ri—(x—35d—3)Ra.
A computation shows that the coefficient of eq(1) in S is 2(d — x)(d — x + 1). Since we have
assumed 0 < x < d, this coefficient will never vanish. Thus we can kill e4(1) as well.
In conclusion, we have produced relations in A*(Mg ) with leading terms ey (j) for every tau-
tological class ey (j) € AZ?1(M,, ). Combined with Proposition 3.2, this proves Theorem 1.2(a).

Henceforth, we will call the 3d — 7 classes in (1.2) the tautological generators. O

4. Freeness and further discussions

4.1 Freeness

In this section, we prove Theorem 1.2(b), that is, that there is no relations among the cx(j) in
Agd_Z(MCLX). Recall that the cycle class map

cl: CH*(Mg,) — H** (Mg, Q)
is an isomorphism [Mar07]. Therefore, to prove the freeness results, it suffices to work with the

cohomology ring.

We first recall the following theorem recently obtained by Yuan [Yua23] concerning the Betti
numbers, which relies on a dimension estimate of [MS20].

THEOREM 4.1 ([Yua23, Theorem 1.5]). For even integers 0 < i < 2d — 4, we have an equality
between Betti numbers

Lad—3)—
(M) = (PO

where P2 denotes the Hilbert scheme of n-points on P2, and xo = x mod d with —2d — 1 <
Xo < —d+ 1.

This theorem allows us to compute the Betti numbers for My , by the (known) Betti numbers
of the Hilbert scheme of points. Note that by [MS20], to apply Theorem 4.1, we can take x =1,
so that xyo = —d+1 and 2d(d — 3) — xo = 3(d + 1)(d — 2). In particular, for fixed d > 4, we have

1 _
baaa(May) = bags (BB (4.1)

Our goal is to show that the invariant (4.1) matches exactly the number of monomials formed
by the ¢ (j) of cohomological degree 2d — 4, where there are two generators of degree 2 and three
generators for each degree 4,6, ...,2d — 4. Combined with Proposition 2.5, this will imply the
freeness in H<?44(M,,, Q).

To this end, we invoke Go&ttsche’s formula on Betti numbers of Hilbert schemes of points.
Denote by P(—,z) :=Y_,(—1)%;(—)z* the Poincaré polynomial.
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THEOREM 4.2 ([G6t90]). Let S be a nonsingular projective surface. We have an identity between
two series in the variables z and t:

4 A
Z p(S[n}’ 2)t" = H H (1- Z2k—2+z’tk)(—1)z“bi(5) .

n=0 k>11i=0

Specializing to S = P?, Theorem 4.2 yields
Z <Z(_1)ibi(X[n})Zi> o H (1 _ 22k72tk)—1(1 _ sztk)—l(l _ Z2k+2tk)—1.
n>0 N i k>1
In order to look at the coefficient of z24—4¢3(d+1)(
into a power series, which gives

4=2) on the right-hand side, we expand it

RHS = (1+t+#*+--)(L+ 2%+ 4+ ) (1 + 2%+ 252 + )
K (L4224 24+ )1+ 22 B )1+ 252 2120 )
Note that 2d — 4 < 3(d + 1)(d — 2) whenever d > 4. Taking into account the first term (1 + ¢+

2+ -), we see that it suffices to count the number of monomials with degree 2d — 4 in the
expansion

(T+22 424+ )L+t + 284 ) A+ 22+ 2 4 ) (L2 + 285+ ) (L5422 )

The result then follows from the combinatorial operation to “replace” z by the tautological
generators ¢k (7). More precisely, we compare the above expansion with the generating series

][5l o ]
=0 >0 >0 =0 >0

where we have two generators in cohomological degree 2 and three in each degree among
4,6,...,2d — 4. We conclude that bag_4(My,) matches the mazimal possible dimension, which
implies that no relations can occur among the tautological generators. This completes the proof
of Theorem 1.2(b).

4.2 Numerical data and further discussions

Numerically Betti numbers for low values of d can be obtained using various methods [CKK14,
CC15, CC16, Bou22]. The following tables summarize the numerical data for 4 < d < 9 and
x = 1. The second rows list the actual Betti numbers, and the third rows compute the dimensions
assuming freeness (that is, there is no relation) of the tautological generators.

My, H° H?> H* HS H®
actual dim 1 2 6 10 14
freeness 1 2 6 10 20

Ms 4 HY H? H* HS H® H
actual dim 1 2 6 13 26 45
freeness 1 2 6 13 26 48
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M6,1 HO H2 H4 H6 HS HlO H12
actual dim 1 2 6 13 29 54 101
freeness 1 2 6 13 29 54 104

M7 1 HO H2 H4 H6 HS HlO H12 H14
actual dim 1 2 6 13 29 57 110 196
freeness 1 2 6 13 29 57 110 199

M8 1 HO HQ H4 H6 H8 HIO H12 H14 H16
actual dim 1 2 6 13 29 57 113 205 369
freeness 1 2 6 13 29 57 113 205 372

M9 1 HO H2 H4 H6 HS HlO H12 H14 H16 H18
actual dim 1 2 6 13 29 57 113 208 378 657
freeness 1 2 6 13 29 57 113 208 378 660

From these data, it is reasonable to form the following conjecture.

CONJECTURE 4.3. The relations of the least degree among the tautological generators (1.2) in
A*(My,) occur in A%(My, ). In particular, there is no relation in degree d — 1 as well.

The freeness in degree d — 1 is equivalent to
1 _
b2d—2(Md7x) — b2d—2 (PQb(dJrl)(d 2)]) _ 3 .

In particular, if one can calculate this Betti number using the algorithm of [Bou22] or the motivic
method of [Yual8], then the freeness part of the conjecture follows. In general, a more systematic
study of tautological relations is needed to fully understand the relations among the classes in
(1.2).

Remark 4.4. Conjecture 4.3 has already been proven recently by Yuan [Yua22].

ACKNOWLEDGEMENTS

We would like to thank Pierrick Bousseau, Jinwon Choi, and Kiryong Chung for very helpful
discussions, and in particular Jinwon Choi for help on some numerical data relevant to the
discussion in Section 4.2. We also thank the anonymous referee for the careful reading of the
paper. W.P. would like to thank Yuxiao Feng for a helpful code.

REFERENCES

Bea95 A. Beauville, Sur la cohomologie de certains espaces de modules de fibrés vectoriels, Geometry
and Analysis (Bombay, 1992) (Tata Inst. Fund. Res., Bombay, 1995), 37-40.

BNR&9 A. Beauville, M. S. Narasimhan, and S. Ramanan, Spectral curves and the generalised theta
divisor, J. reine angew. Math. 398 (1989), 169-179; doi:10.1515/cr11.1989.398.169.

BBD&2 A. A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on
singular spaces, I (Luminy, 1981), Astérisque 100 (1982), 5-171.

518



BMW14

Bou20

Bou22

BFGW21

dCHM12

dCMS22

dCMSZ21

dCZ22

CL16

CC15

CC16

CKK14

CM14

CM17

DM11

ES93

Go6t90

HTO03

Hit87a

Hit87b

HL97

Kir92

COHOMOLOGY RING OF MODULI OF 1-DIMENSIONAL SHEAVES

A. Bertram, C. Martinez, and J. Wang, The birational geometry of moduli spaces of sheaves on
the projective plane, Geom. Dedicata 173 (2014), 37—64; doi:10.1007/s10711-013-9927-1.
P. Bousseau, A proof of N. Takahashi’s conjecture for (IP’Q, E) and a refined sheaves/Gromov—
Witten correspondence, 2020, arXiv:1909.02992v2.

, Scattering diagrams, stability conditions, and coherent sheaves on P?, J. Alg. Geom.,
to appear, arXiv:1909.02985v2.

P. Bousseau, H. Fan, S. Guo, and L. Wu, Holomorphic anomaly equation for (IP2,E) and
the Nekrasov-Shatashvili limit of local P2, Forum Math. Pi 9 (2021), 1-57; doi:10.1017/
fmp.2021.3.

M. A.A. de Cataldo, T. Hausel, and L. Migliorini, Topology of Hitchin systems and Hodge
theory of character varieties: the case Ay, Ann. of Math. (2) 175 (2012), no. 3, 1329-1407;
do0i:10.4007/annals.2012.175.3.7.

M. A. de Cataldo, D. Maulik, and J. Shen, Hitchin fibrations, abelian surfaces, and the P =W
conjecture, J. Amer. Math. Soc. 35 (2022), no. 3, 911-953; doi:10.1090/jams/989.

M. A. de Cataldo, D. Maulik, J. Shen, and S. Zhang, Cohomology of the moduli of Higgs
bundles via positive characteristic, J. Eur. Math. Soc., to appear, arXiv:2105.03043.

M. A. de Cataldo and S. Zhang, A cohomological nonabelian Hodge theorem in positive char-
acteristic, Algebr. Geom. 9 (2022), no. 5, 606-632; doi:10.14231/AG-2022-018.

P. H. Chaudouard and G. Laumon, Un théoréme du support pour la fibration de Hitchin, Ann.
Inst. Fourier (Grenoble) 66 (2016), no. 2, 711-727; doi:10.5802/aif.3023.

J. Choi and K. Chung, The geometry of the moduli space of one-dimensional sheaves, Sci.
China Math. 58 (2015), no. 3, 487-500; doi:10.1007/s11425-014-4889-9.

, Moduli spaces of a-stable pairs and wall-crossing on P2, J. Math. Soc. Japan 68
(2016), no. 2, 685-709; doi:10.2969/jmsj/06820685.

J. Choi, S. Katz, and A. Klemm, The refined BPS index from stable pair invariants, Comm.
Math. Phys. 328 (2014)7 no. 3, 903-954; doi:10.1007/s00220-014-1978-0.

J. Choi and M. Maican, Torus action on the moduli spaces of torsion plane sheaves of multi-
plicity four, J. Geom. Phys. 83 (2014), 18-35; doi:10.1016/j.geomphys.2014.05.005.

K. Chung and H.-B. Moon, Chow ring of the moduli space of stable sheaves supported on
quartic curves, Q. J. Math. 68 (2017), no. 3, 851-887; doi:10.1093/qmath/haw062.

J.-M. Drézet and M. Maican, On the geometry of the moduli spaces of semi-stable sheaves sup-
ported on plane quartics, Geom. Dedicata 152 (2011), 17-49; doi:10.1007/s10711-010-
9544-1.

G. Ellingsrud and S. A. Strgmme, Towards the Chow ring of the Hilbert scheme of P?, J. reine
angew. Math. 441 (1993), 33-44; doi:10.1515/cr11.1993.441.33.

L. Gottsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface,
Math. Ann. 286 (1990), no. 1-3, 193-207; doi:10.1007/BF01453572.

T. Hausel and M. Thaddeus, Relations in the cohomology ring of the moduli space of rank 2
Higgs bundles, J. Amer. Math. Soc. 16 (2003), no. 2, 303-329; doi:10.1090/S0894-0347-02~
00417-4.

N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3)
55 (1987), no. 1, 59-126; doi:10.1112/plms/s3-55.1.59.

_, Stable bundles and integrable systems, Duke Math. J. 54 (1987), no. 1, 91-114; doi:
10.1215/50012-7094-87-05408-1.

D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Asp. Math., vol. E31
(Friedr. Vieweg & Sohn, Braunschweig, 1997).

F. Kirwan, The cohomology rings of moduli spaces of bundles over Riemann surfaces, J. Amer.
Math. Soc. 5 (1992), no. 4, 853-906; doi:10.2307/2152712.

519



LeP93

Mail0

Maill

Mail3

Mar02

Mar07

MS20

Ngol0

Tod22
Wool3

Yual4d

Yual7

Yual8

Yua20

Yua2l

Yua22

Yua23

Weite Pi

W. P1 AND J. SHEN

J. Le Potier, Fuaisceauzr semi-stables de dimension 1 sur le plan projectif, Rev. Roumaine Math.
Pures Appl. 38 (1993), no. 7-8, 635-678.

M. Maican, A duality result for moduli spaces of semistable sheaves supported on projective
curves, Rend. Semin. Mat. Univ. Padova 123 (2010), 55-68; doi:10.4171/RSMUP/123-3.

, On the moduli spaces of semi-stable plane sheaves of dimension one and multiplicity
five, linois J. Math. 55 (2011), no. 4, 1467-1532, http://projecteuclid.org/euclid.ijm/
1373636694.

, The classification of semistable plane sheaves supported on sextic curves, Kyoto J.
Math. 53 (2013), no. 4, 739-786; doi :10.1215/21562261-2366086.

E. Markman, Generators of the cohomology ring of moduli spaces of sheaves on symplectic
surfaces, J. reine angew. Math. 544 (2002), 61-82; doi:10.1515/cr11.2002.028.

, Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson
surfaces, Adv. Math. 208 (2007), no. 2, 622-646; doi:10.1016/j.2im.2006.03.006.

D. Maulik and J. Shen, Cohomological x-independence for moduli of one-dimensional sheaves
and moduli of Higgs bundles, Geom. Topol., to appear, arXiv:2012.06627.

B.C. Ngb, Le lemme fondamental pour les algébres de Lie, Publ. Math. Inst. Hautes Etudes
Sci. 111 (2010), 1-169; doi:10.1007/s10240-010-0026-7.

Y. Toda, Gopakumar—Vafa invariants and wall-crossing, 2022, arXiv:1710.01843v3.

M. Woolf, Nef and effective cones on the moduli space of torsion sheaves on the projective
plane, 2013, arXiv:1305.1465.

Y. Yuan, Moduli spaces of semistable sheaves of dimension 1 on P2, Pure Appl. Math. Q. 10
(2014), no. 4, 723-766; doi:10.4310/PAMQ.2014.v10.n4.a5.

, Moduli spaces of 1-dimensional semi-stable sheaves and strange duality on P2, Adv.
Math. 318 (2017), 130-157; doi:10.1016/j.2im.2017.07.014.

, Motivic measures of moduli spaces of 1-dimensional sheaves on rational surfaces, Com-
mun. Contemp. Math. 20 (2018), no. 3, 1750019, 32 pp.; doi:10.1142/S0219199717500195.

, Strange duality on rational surfaces, J. Differential Geom. 114 (2020), no. 2, 305-336;
doi:10.4310/jdg/1580526017.

, Strange duality on P? wvia quiver representations, Adv. Math. 377 (2021), 107469,
35 pp.; doi:10.1016/j.aim.2020.107469.

, Some Betti numbers of the moduli of 1-dimensional sheaves on P?, 2022, arXiv:
2207.08060.

, Sheaves on non-reduced curves in a projective surface, Sci. China Math. 66 (2023),
237-250; doi:10.1007/s11425-021-1964-4.

weite.pi@yale.edu

Department of Mathematics, Yale University, New Haven, CT 06520, USA

Junliang Shen junliang.shen@yale.edu
Department of Mathematics, Yale University, New Haven, CT 06520, USA

520



