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Generators for the cohomology ring of the moduli

of 1-dimensional sheaves on P2

Weite Pi and Junliang Shen

Abstract

We explore the structure of the cohomology ring of the moduli space of stable 1-di-
mensional sheaves on P2 of any degree. We obtain a minimal set of tautological genera-
tors, which implies an optimal generation result for both the cohomology and the Chow
ring of the moduli space. Our approach is through a geometric study of tautological
relations.

1. Introduction

1.1 Overview and motivation

Throughout, we work over the complex numbers C and fix two integers d and χ satisfying d ⩾ 1
and gcd(d, χ) = 1.

The moduli space Md,χ of stable 1-dimensional sheaves F on P2 with

[supp(F)] = dH ∈ H2

(
P2,Z

)
, χ(F) = χ

is a nonsingular irreducible projective variety of dimension d2 + 1; see [LeP93]. Here H is the
class of a line, supp(−) denotes the Fitting support, and the stability is with respect to the slope

µ(E) =
χ(E)

c1(E) ·H
∈ Q .

Geometry and topology of the moduli spaces Md,χ have been studied intensively for decades
from the perspectives of strange duality [Yua17, Yua20, Yua21], birational geometry [Woo13],
enumerative geometry of local P2 [CC15, Bou22, Bou20, BFGW21, MS20, Yua23], and so on.
Much effort has been made to explicitly describe Md,χ for low values of d; see for example
[DM11, Mai11, Mai13, CM14, CM17, BMW14, Yua14].

The moduli spaces Md,χ share similar features with another type of interesting moduli
spaces—moduli of Higgs bundles. By the Beauville–Narashimhan–Ramanan (BNR) correspon-
dence [BNR89], the moduli of stable Higgs bundles on a Riemann surface C can be viewed
as the moduli of stable 1-dimensional sheaves on the surface T ∗C, and the Hitchin system
[Hit87a, Hit87b] is exactly the Hilbert–Chow morphism sending a 1-dimensional sheaf to its
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Cohomology ring of moduli of 1-dimensional sheaves

Fitting support; this is analogous to the map

h : Md,χ → PH0
(
P2,OP2(d)

)
, F 7→ supp(F) (1.1)

associated with the moduli space Md,χ. The recent work [MS20] provides further evidence to this
analogy; in it the decomposition theorem [BBD82] and the support theorem [Ngô10, CL16, MS20]
were applied to study (intersection) cohomology groups for both types of moduli spaces.

On the other hand, the ring structure of the cohomology of the Higgs moduli space has formed
a rich subject to study. The cohomology of the Higgs moduli space is known to be generated
by tautological classes [Mar02]. A complete set of relations was found in the case of rank 2;
see [HT03], which relies on earlier work on the tautological relations for the moduli of vector
bundles [Kir92]. All these results play an important role in some recent progress of the P = W
conjecture [dCHM12], which is a deep connection between the cohomology of the Higgs moduli
space and the Hodge theory of the character variety; see also [dCMS22, dCMSZ21].

Our main interest here is to explore the ring structure for the cohomology of Md,χ in terms of
the tautological classes. A better understanding for Md,χ may shed new light on understanding
the cohomology ring of the moduli of stable 1-dimensional sheaves on a surface, which includes
the moduli space of Higgs bundles.

Before introducing more notation, we first state a brief version of our main result. As explained
in Remark 2.6, the ringH∗(Md,χ) has no odd class. Furthermore, by [Mar07, Theorem 2], the cycle
class map from the Chow ring to cohomology is an isomorphism. Hence we use A∗(−) to denote
the even cohomology H2∗(−,Q), or equivalently the Chow ring CH∗(−) with Q-coefficients. We
denote by Rk(−) the subalgebra of A∗(−) generated by the classes in A⩽k(−).

Theorem 1.1. For d ⩾ 3, we have

Rd−3(Md,χ) ⫋ Rd−2(Md,χ) = A∗(Md,χ) .

Remark. When d = 1, 2, the moduli space Md,χ is a projective space PH0
(
P2,OP2(d)

)
whose

cohomological structure is clear.

The theorem asserts that the entire cohomology of the
(
d2 + 1

)
-dimensional variety Md,χ

is generated by classes of (algebraic) degree at most d − 2, and this bound is optimal. A more
detailed version of Theorem 1.1 is given by Theorem 1.2, where we describe a minimal set of
tautological generators for A∗(Md,χ).

1.2 Tautological classes

Let F be a universal family over P2 × Md,χ; it is a torsion sheaf supported on a divisor. For
a stable sheaf [F ] ∈ Md,χ, the restriction of F to the fiber P2 × [F ] recovers F .

A natural way to construct classes inA∗(Md,χ) is to integrate ch1+k(F) over a classHj∈Aj
(
P2
)
.

While the choice of a universal family is not unique, we may normalize the universal class
chk+1(F) ∈ Ak

(
P2 ×Md,χ

)
and integrate it over Hj ; this gives rise to the tautological classes

ck(j) ∈ Ak+j−1(Md,χ), j ∈ {0, 1, 2};

see Section 2.1. Here the normalization is characterized by c1(0) = c1(1) = 0. These classes
behave nicely under natural symmetries of the moduli spaces Md,χ (see Proposition 2.4).

Our main result is the following.
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Theorem 1.2. Assume d ⩾ 3.

(a) The ring A∗(Md,χ) is generated over Q by the 3d− 7 classes of degree at most d− 2:

c0(2), c2(0) ∈ A1(Md,χ) , ck(0), ck−1(1), ck−2(2) ∈ Ak−1(Md,χ) , k ∈ {3, . . . , d− 1} . (1.2)

(b) There is no relation among these 3d− 7 classes of (1.2) in degree at most d− 2.

Theorem 1.2 implies that any set of generators of A∗(Md,χ) contains at least 3d−7 elements,
and (1.2) provides a minimal one. It is clear that Theorem 1.1 follows immediately from Theo-
rem 1.2. As we discuss further in Section 4.2, numerical data for low values of d suggest that
there also is no relation in degree d− 1 and that nontrivial relations start in degree d.1

The proof of Theorem 1.2 consists of the following main ingredients: (i) By a result of Beau-
ville [Bea95], the ring A∗(Md,χ) is generated by tautological classes. (ii) Using the geometry of
stable 1-dimensional sheaves, we produce tautological relations; this allows us to express any
tautological class in terms of the first 3d − 7 ones. (iii) Finally, we obtain the freeness of these
3d− 7 classes by a Betti number constraint, where we apply a recent result of Yuan [Yua23].

1.3 Enhanced cohomological χ-independence

The moduli spacesMd,χ admit a mysterious symmetry predicted by a consideration from enumer-
ative geometry [Bou22, Tod22, MS20] called the cohomological χ-independence. More precisely,
it was proven in [MS20] that for any two integers χ, χ′ (not necessarily coprime to d), we have

IH∗(Md,χ) ≃ IH∗(Md,χ′)

preserving the perverse and Hodge filtrations. Here IH∗(−) stands for intersection cohomology.
If we restrict ourselves to the case (χ, d) = (χ′, d) = 1, intersection cohomology coincides with
singular cohomology, which admits a canonical Q-algebra structure. It is natural to ask if in this
case, the cohomological χ-independence can be strengthened to an isomorphism of Q-algebras.

Question 1.3. For any χ, χ′ coprime to d, is there an isomorphism of Q-algebras

H∗(Md,χ) ≃ H∗(Md,χ′) ?

Since we have obtained a minimal set of generators whose number is independent of χ, it
suffices to understand the dependence on χ of the tautological relations among the classes in
(1.2).

The parallel statements of Question 1.3 and its enhancements hold for moduli of Higgs bundles
as predicted by the P = W conjecture; their proofs [dCZ22, dCMSZ21] rely on techniques in
characteristic p.

2. Tautological classes and normalizations

Throughout, we assume d ⩾ 3. We introduce (normalized) tautological classes for Md,χ. The
construction of the normalization is parallel to [dCMS22, Section 0.3].

1See Remark 4.4 for an update on this.
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2.1 Normalizations

Under the assumption gcd(d, χ) = 1, there is a universal family (see [HL97, Theorem 4.6.5]) over
P2 ×Md,χ, which we denote by F. Let

πP : P2 ×Md,χ → P2 , πM : P2 ×Md,χ → Md,χ

be the projections. The choice of F is not unique; for another universal family F′, there exists
a line bundle L ∈ Pic(Md,χ) with

F = F′ ⊗ π∗

ML .

Nevertheless, as a universal sheaf F is a torsion sheaf on P2 ×Md,χ supported on a divisor,
its first Chern character, which records its support, is uniquely determined.

Lemma 2.1. Let F be a universal family. We have

ch1(F) = h̃∗c1(O(d, 1)) ∈ A1
(
P2 ×Md,χ

)
.

Here h̃ : P2 ×Md,χ → P2 × PH0
(
P2,OP2(d)

)
is induced by (1.1). In particular, ch1(F) does not

depend on the choice of F.

Proof. A universal sheaf F is a torsion sheaf on P2×Md,χ supported on a divisor. Hence its first

Chern character recovers its support, which is the pullback via h̃ of the incidence variety whose
class is given by c1(O(d, 1)) ∈ A1

(
P2 × PH0

(
P2,OP2(d)

))
.

The class ch2(F) is dependent on the choice of F, which we use to conduct the normalization.
For a universal family F and a class

α = π∗

PαP + π∗

MαM ∈ A1
(
P2 ×Md,χ

)
, with αP ∈ A1

(
P2
)
, αM ∈ A1(Md,χ) ,

we consider the twisted Chern character

chα(F) := ch(F) · exp(α) ,

and we denote its degree k part by chαk (F). For any γ ∈ A∗
(
P2
)
, we set

∫

γ

chαk (F) := πM∗

(
π∗

Pγ · chαk (F)
)
∈ A∗(Md,χ) .

Proposition 2.2. Let F be a universal family. There exists a unique class α as above such that
∫

H

chα2 (F) = 0 ,

∫

1
P2

chα2 (F) = 0 .

Proof. We have chα2 (F) = ch2(F) + α · ch1(F). Hence the conditions read
∫

H

ch2(F) = −

∫

H

α · ch1(F) ,
∫

1
P2

ch2(F) = −

∫

1
P2

α · ch1(F) . (2.1)

By [LeP93, Woo13], the Picard group of Md,χ is spanned by two classes, which we denote by D0

and D1. Without loss of generality, we set D0 to be the pullback of the hyperplane class via (1.1)
and D1 to be a relative ample class. Therefore, Lemma 2.1 implies that ch1(F) = d·π∗

PH+π∗

MD0.
We may assume that

α = λ1 · π
∗

PH + λ2 · π
∗

MD0 + λ3 · π
∗

MD1 .

Then by a direct calculation, λ1 is determined by the second equation of (2.1), and then the first
equation determines λ2 and λ3.
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We define the tautological class

ck(j) :=

∫

Hj

chαk+1(F) ∈ Ak+j−1(Md,χ) ,

where α is the class characterized by Proposition 2.2.

2.2 Properties

We first summarize some properties of the tautological classes. The following is an immediate
consequence of Lemma 2.1 and Proposition 2.2.

Proposition 2.3. Let ck(j) be the tautological classes defined above from a universal family F
over P2 ×Md,χ.

(a) The class ck(j) does not depend on the choice of F.

(b) We have c1(0) = 0 ∈ A0(Md,χ), c1(1) = 0 ∈ A1(Md,χ), c0(1) = d ∈ A0(Md,χ).

(c) The Picard group of Md,χ is spanned by c0(2) and c2(0); the class c0(2) recovers D0 in the

proof of Proposition 2.2, and c2(0) is a relative ample class with respect to (1.1).

Proof. The first two claims and the equality c0(2) = D0 follow from the definition together with
Lemma 2.1 and Proposition 2.2. We now prove that c2(0) is a relative ample class. Since the
Picard group of Md,χ is spanned by two classes, it suffices to verify that the restriction of c2(0)
to a smooth fiber of h is nontrivial in cohomology.

We take C ⊂ P2 to be a nonsingular degree d curve which represents a point [C] on the
target of h. The fiber h−1([C]) is isomorphic to the Jacobian Jac(C). Moreover, the restriction
of a universal family to P2 × Jac(C) is recovered by i∗(P ⊗ π∗

CLC), where i is the embedding
C × Jac(C) ↪→ P2 × Jac(C), P is the normalized Poincaré line bundle on C × Jac(C), and LC

is a line bundle on C. The desired property follows from the fact that c1(P)2 has nontrivial
Künneth component in H2(C)⊗H2(JacC).

Secondly, we note that the tautological classes behave nicely under the following two types
of symmetry carried by the moduli spaces Md,χ:

(i) The first type of symmetry is given by the isomorphism

ϕ1 : Md,χ
≃
−→ Md,χ+d , F 7→ F ⊗OP2(1) .

(ii) The second type of symmetry is given by the isomorphism [Mai10]

ϕ2 : Md,χ
≃
−→ Md,−χ , F 7→ Ext1(F , ωP2) .

Proposition 2.4. We have ϕ∗
1ck(j) = ck(j) and ϕ∗

2ck(j) = (−1)kck(j).

Proof. The first identity follows from the fact that the pullback of a universal family over Md,χ+d

along

id×ϕ1 : P2 ×Md,χ → P2 ×Md,χ+d

is of the form F ⊗ π∗

POP2(1) with F a universal family for the moduli space Md,χ. To see the
second identity, we note that the pullback of a universal family over Md,−χ along id×ϕ2 is of the
form RHom(F, π∗

PωP2)[1] in the bounded derived category; see [Mai10]. Its Chern character is

ch(−RHom(F, π∗

PωP2)) =

(∑

i⩾0

(−1)k ch1+k(F)
)
· exp (π∗

P c1(ωP2)) .

The claim then follows from the definition of the normalization.
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We conclude this section by recalling the following theorem by Beauville [Bea95]; see also
Ellingsrud–Strømme [ES93].

Theorem 2.5 ([Bea95]). The ring A∗(Md,χ) is generated over Q by the tautological classes ck(j).

Proof. Take a universal family F over P2 × Md,χ. It was proven in [Bea95] that A∗(Md,χ) is
generated by the classes

∫

Hj

chk+1(F) = πM∗

(
π∗

PH
j · chk+1(F)

)
∈ A∗(Md,χ) .

By a direct calculation (see also Proposition 3.2), these classes can be expressed in terms of the
normalized tautological classes ck(j) and the classes in A1(Md,χ); the latter are also tautological
by Proposition 2.3(c).

Remark 2.6. As an immediate consequence of Theorem 2.5, we obtain that H2k+1(Md,χ) = 0 for
any k; moreover, H i,j(Md,χ) = 0 if i ̸= j. Using the χ-independence result [MS20], this further
implies that

IHi,j(Md,χ) = 0 if i ̸= j

for any χ not necessarily coprime to d. We refer to [Bou22, Theorem 0.4.1] for another proof of
this result.

In view of Theorem 2.5, we explain in Section 3 a method to extract a minimal set of generators
from all tautological classes.

2.3 An example: d = 3

We work out the case d = 3 in detail and prove Theorem 1.2 in this case. By the symmetry of
Proposition 2.4, we only need to treat the case χ = −1. We write M := M3,−1 for notational
convenience.

Proposition 2.7. We have

A∗(M3,−1) = Q[c0(2), c2(0)]/I ,

where I is a homogeneous ideal generated by two elements in degrees 3 and 9, respectively.

In particular, A∗(M) is generated by the two classes in A1(M), and the lowest-degree nontriv-
ial relation occurs in degree 3. This matches the prediction of Theorem 1.2 (and Conjecture 4.3
below).

Recall that by [LeP93], the moduli space M3,2 (hence also M) is isomorphic to the universal
cubic

C ⊂ P2 × PH0
(
P2,OP2(3)

)
= P2 × P9 ,

where we use H1 and H2 to denote the hyperplane classes in the first and the second factors,
respectively. Projecting over the second factor, we see that M is the projective bundle P(E)
associated with a rank 9 vector bundle E . Here the vector bundle E is characterized by

E|x = H0
(
P2, Ix ⊗OP2(3)

)

with Ix ⊂ OP2 the ideal sheaf of the point x. In particular, we have the short exact sequence

0 → E → O⊕10
P2 → OP2(3) → 0 ,
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which yields c1(E) = −3H1 and c2(E) = 9H2
1 . Denote by ξ ∈ A1(M) the relative hyperplane

class over P2. By the projective bundle formula, we obtain that

A∗(M) = A∗(C) = Q[H1, ξ]/
(
H3

1 , ξ
9 − 3H1ξ

8 + 9H2
1ξ

7
)
.

This already implies Proposition 2.7 in view of Proposition 2.3(c).

For completeness, we give an explicit expression of the ideal I in terms of the tautological
generators c0(2) and c2(0). Consider the incidence subvarieties

W =
{
(x, x, y) ∈ P2 × P2 × P9 : (x, y) ∈ C

}
⊂ P2 ×M ,

V =
{
(x, y, z) ∈ P2 × P2 × P9 : (x, z) ∈ C, (y, z) ∈ C

}
⊂ P2 ×M .

Clearly W ⊂ V . Recall that H is the class of a line on the first factor P2. The Chern character of
the structure sheaf OV can be obtained by applying the Grothendieck–Riemann–Roch theorem
to the closed embedding iV : V ↪→ P2 ×M :

ch(OV ) = iV ∗ td(TiV ) = (3H +H2)−
1
2(3H +H2)

2 + 1
6(3H +H2)

3 − · · · .

Similarly, we also have, for iW : W ↪→ P2 ×M ,

ch(OW ) =
(
H +HH1 +H2

1

)
− 3

2

(
H2H1 +HH2

1

)
+ · · · .

The ideal sheaf associated with W ⊂ V yields a universal family over P2 ×M :

0 → F → OV → OW → 0

from which we may calculate the Chern characters:

ch1(F) = 3H +H2 ,

ch2(F) = −11
2 H

2 − (H1 + 3H2)H −
(
H2

1 + 1
2H

2
2

)
,

ch3(F) = 1
6(3H +H2)

3 + 3
2

(
H2H1 +HH2

1

)
, . . . .

We obtain that the class of the normalization is

α = 11
6 H + 1

3H1 +
7
18H2 ,

and the tautological classes are

c0(2) = H2 , c2(0) = −1
3H1 +

49
72H2 , c1(2) = −H2

1 + 1
3H1H2 −

1
9H

2
2 , . . . . (2.2)

Finally, we note that ξ = H2. Therefore, the ideal

I =
(
H3

1 , ξ
9 − 3H1ξ

8 + 9H2
1ξ

7
)

can be expressed in terms of c0(2) and c2(0) via (2.2).

Remark 2.8. For the case d = 4, the Chow ring ofM4,1 was calculated by Chung–Moon [CM17]. In
particular, they showed that A∗(M4,1) is generated as a Q-algebra by two generators in A1(M4,1)
and three generators in A2(M4,1), which matches Theorem 1.2.

3. Tautological relations

3.1 Overview

The goal of this section is to prove Theorem 1.2(a). As the structure for A∗(M3,χ) is clear by
Section 2.3, from now on we focus on the case d ⩾ 4.
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In view of Theorem 2.5, we show that every class

ck(j) ∈ Ak+j−1(Md,χ) , k + j − 1 ⩾ d− 1

can be expressed in terms of (1.2).

For convenience, we fix a universal family F and define the classes

ek(j) := (−1)k+1

∫

Hj

chk+1(F) ∈ Ak+j−1(Md,χ) ,

which are dependent on F. (The factor (−1)k+1 comes from taking the dual, as we shall see
below.) We introduce a total ordering ≺ on the double indices (k, j): we say that (k, j) ≺ (k′, j′)
if and only if k + j − 1 < k′ + j′ − 1, or k + j − 1 = k′ + j′ − 1 and k < k′. Thus, we can talk
about the leading term of a homogeneous polynomial in the classes ek(j), respectively ck(j), in
A∗(Md,χ).

Consider the 3d− 6 classes

ek(0), ek−1(1), ek−2(2) ∈ Ak−1(Md,χ) , k ∈ {2, 3, . . . , d− 1} . (3.1)

Lemma 3.1. We have e0(1) = −d ∈ A0(Md,χ) and e1(0) = χ− 3
2d ∈ A0(Md,χ).

Proof. The first claim is established in Lemma 2.1. For the second, consider a sheaf [F ] ∈ Md,χ;
the Hirzebruch–Riemann–Roch formula gives

χ(F) = deg2
(
ch(F) · td

(
P2
))

= deg
(
3
2 ch1(F) ·H + ch2(F)

)
.

Hence ch2(F) = (χ− 3
2d)H

2 ∈ A2(Md,χ), and the claim follows.

The next proposition follows from a direct calculation via the expansion

chαk+1(F) = chk+1(F) + α · chk(F) + 1
2α

2 chk−1(F) + · · ·

as for the proof of Theorem 2.5.

Proposition 3.2. The 3d−7 tautological classes in (1.2) and the 3d−6 classes in (3.1) generate
each other. Moreover, every class ck(j) ∈ Ak+j−1(Md,χ) with k + j − 1 ⩾ 2 can be expressed as

a polynomial in (1.2) with leading term ek(j), and vice versa.

For any k, j with k + j − 1 ⩾ d − 1, we will produce a relation in A∗(Md,χ) with leading
term ek(j). We say that such a relation kills ek(j). Theorem 1.2(a) follows from the existence of
the relations that kill ej(k) as above.

3.2 Producing relations

By Proposition 2.4, we only need to consider the case 0 < χ < d, so that any F ∈ Md,χ satisfies
0 < µ(F) < 1.

We consider the triple product Y := P2 ×Md,χ × P̌2 with P̌2 the dual projective plane. Let
πR : Y → P̌2 be the projection to the third factor. We write p = πP × πM , q = πP × πR, and
r = πM × πR, where by abuse of notation, we also denote by πP and πM the projections from Y
to P2 and Md,χ, respectively:

Y

P2 ×Md,χ Md,χ × P̌2 P2 × P̌2 .

p
r

q
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Let Z ⊂ P2 × P̌2 be the incidence subscheme, and let OZ be the structure sheaf of Z viewed as
a coherent sheaf on P2 × P̌2. Let β ∈ A1

(
P̌2
)
be the class of a line in P̌2.

Lemma 3.3. We have ch(q∗OZ) = 1− exp(−(π∗

PH + π∗

Rβ)).

Proof. This follows from the ideal sheaf sequence

0 → OP2×P̌2(−Z) → OP2×P̌2 → OZ → 0

and the fact that the divisor class [Z] ∈ A1
(
P2 × P̌2

)
is π∗

PH + π∗

Rβ.

We consider the complex

H(n) := RHom(p∗F, q∗OZ ⊗ π∗

POP2(−n)) ∈ DbCoh(Y )

for n ∈ {1, 2, 3}. Since r : Y → Md,χ× P̌2 is a trivial P2-bundle, the derived pushforward of H(n),

Rr∗H(n) ∈ DbCoh
(
Md,χ × P̌2

)
,

admits a three-term resolution K0 → K1 → K2 by vector bundles.

Lemma 3.4. For each n ∈ {1, 2, 3}, we can choose Ki such that K0 = K2 = 0 and K1 is free of

rank d.

Proof. For a point P = ([F ], p) ∈ Md,χ × P̌2, we denote by HP ⊂ P2 the line corresponding to
p ∈ P̌2. Then over this point P , the cohomology of the complex of

K0(P ) → K1(P ) → K2(P ) (3.2)

computes the extension groups

Exti(F ,OHP
(−n)) , i = 1, 2, 3 ,

on P2; see [Bea95]. Note that µ(OHP
(−n)) = 1−n, so that µ(OHP

(−n)) < µ(F) for n ∈ {1, 2, 3}.
Therefore, by stability, we have Hom(F ,OHP

(−n)) = 0. On the other hand, Serre duality gives

Ext2(F ,OHP
(−n)) ≃ Hom(OHP

(−n),F ⊗ ωX)∨ = Hom(OHP
(−n),F(−3))∨ .

Note that µ(F(−3)) < −2 ⩽ 1 − n for n ∈ {1, 2, 3}, and hence Hom(OHP
(−n),F(−3)) = 0,

again from stability. It follows that the zeroth and the second cohomology groups of (3.2) vanish
for every P . Hence Rr∗H(n) can be represented by a single vector bundle K1 concentrated in
degree 1 whose rank is determined by the Hirzebruch–Riemann–Roch calculation

χ(Hom(F ,OHP
(−n))) = deg2

(
ch
(
F∨
)
· ch(OHP

(−n)) · td
(
P2
))

= −d .

The next corollary follows immediately.

Corollary 3.5. For ℓ ⩾ d+ 1 and n ∈ {1, 2, 3}, we have cℓ(−Rr∗H(n)) = 0 ∈ A2ℓ
(
Md,χ × P̌2

)
.

Corollary 3.5 is the main source producing relations, which we explain as follows.

By the Grothendieck–Riemann–Roch theorem, we have

ch(Rr∗H(n)) = r∗
(
ch(H(n)) · td

(
P2
))

= r∗
(
ch
(
p∗F∨

)
· ch(q∗OZ ⊗ π∗

POP2(−n)) · td
(
P2
))

.

If we expand the right-hand side, Corollary 3.5 gives relations among the pullbacks of the ek(j)
and βi in A∗

(
Md,χ × P̌2

)
. This will be the main result we use in Section 3.3, so we state it as

a proposition below.

512



Cohomology ring of moduli of 1-dimensional sheaves

Proposition 3.6. For every ℓ ⩾ d+ 1, the following identity holds:

∑

m

ℓ∏

s=1

((s− 1)!)ms

(ms)!

(
π∗

MAs −
∑

i+j=s
0⩽i⩽2

π∗

Rβ
i

i!
(−1)iπ∗

MBj

)ms

= 0 ∈ A∗
(
Md,χ × P̌2

)
. (3.3)

Here, the first sum is over all ℓ-tuples of nonnegative integers m = (m1,m2, . . . ,mℓ) such that

m1 + 2m2 + · · ·+ ℓmℓ = ℓ, and As and Bs are given by

As := es+1(0) +
(
3
2 − n

)
es(1) +

(
1
2n

2 − 3
2n+ 1

)
es−1(2) ∈ As(Md,χ) ,

Bs := es+1(0) +
(
1
2 − n

)
es(1) +

(
1
2n

2 − 1
2n
)
es−1(2) ∈ As(Md,χ) .

Proof. We expand ch(Rr∗H(n)) as above, which gives

ch(Rr∗H(n)) = r∗
(
ch
(
F∨
)
· ch

(
OZ ⊗OP2(−n)

)
· td

(
P2
))

= r∗
(
ch
(
F∨
)
· (1− exp(−H − β)) · exp(−nH) · td

(
P2
))

(3.4)

= r∗
(
ch
(
F∨
)
· exp(−nH) · td

(
P2)
)
− r∗(ch

(
F∨
)
· exp(−(n+ 1)H − β) · td

(
P2
))

.

Here the second equality follows from Lemma 3.3, and we temporarily suppress the various
pullback maps in the expression for notational convenience.

We set

L :=
∑

k⩾0

ek(2) , M :=
∑

k⩾0

ek(1) , N :=
∑

k⩾1

ek(0) ,

which are all finite sums. From the definition of the classes ek(j), we have

ch
(
F∨
)
= L+M ·H +N ·H2 .

Recall that td
(
P2
)
= 1 + 3

2H +H2; the first term in (3.4) reads

r∗
(
ch
(
F∨
)
· exp(−nH) · td

(
P2
))

= r∗
((
L+M ·H +N ·H2

)
· exp(−nH) · td

(
P2
))

= N +
(
3
2 − n

)
M+

(
1
2n

2 − 3
2n+ 1

)
L

=
∑

s⩾0

As .

Similarly, the second term reads

r∗
(
ch
(
F∨
)
· exp(−(n+ 1)H − β) · td

(
P2
))

= exp(−β) ·
(
N +

(
1
2 − n

)
M+ 1

2

(
n2 − n

)
L
)

= exp(−β) ·
∑

s⩾0

Bs .

Putting these together, we arrive at

chs(Rr∗H(n)) = π∗

MAs −
∑

i+j=s
0⩽i⩽2

π∗

Rβ
i

i!
(−1)iπ∗

MBj .

Let x1, x2, . . . , xd be the Chern roots of the vector bundle K1 in Lemma 3.4. Then we have

cℓ(−Rr∗H(n)) = cℓ
(
K1
)
= eℓ(x1, . . . , xd) ,

where eℓ(x1, . . . , xd) denotes the ℓth elementary symmetric polynomials in the xi. We write

pℓ(x1, . . . , xd) :=
d∑

i=1

xℓi
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for the usual ℓth power sums. Newton’s identity then gives

eℓ = (−1)ℓ
∑

m

ℓ∏

s=1

(−ps)
ms

ms!sms
,

with the summation taken over m as in the proposition. The desired vanishing now follows from
Corollary 3.5 and the identity ps = −s! · chs(Rr∗H(n)).

Before going into details in Section 3.3, we briefly explain our strategy to produce relations.

The expression in (3.3) is a polynomial in the variable π∗

Rβ of degree at most 2. We can
integrate it with respect to π∗

Rβ
j over Md,χ × P̌2:

πM∗

(
π∗

Rβ
j · (expansion of LHS of (3.3))

)
= 0 .

This amounts to picking out the coefficient of the term π∗

Rβ
2−j for j ∈ {0, 1, 2}. The projection

formula then gives relations among the ek(j) in A∗(Md,χ). Moreover, for a fixed j, we take n in
{1, 2, 3}; this provides three expressions of similar types. Taking linear combinations of these, we
obtain the desired relations that kill certain leading terms.

3.3 Explicit computations

Although the expression (3.3) looks complicated, it is not hard to read the coefficients of leading
terms in a given degree. We illustrate in the following that we can kill all ek(j) in degree at least
d− 1 via the relations produced by (3.3).

Step 1: Kill A⩾d+1(Md,χ) and ed+1(0) ∈ Ad(Md,χ). For each ℓ ⩾ d+1, we first integrate (3.3)
with respect to π∗

Rβ
2 for n = 1, 2, 3 and consider the coefficients of the three leading terms (with

respect to the order ≺) eℓ+1(0), eℓ(1), eℓ−1(2).

Since these classes only appear in Aℓ and Bℓ, the single relevant ℓ-tuple m in the sum is just
m = (0, 0, . . . , 1). We look at the corresponding summand in (3.3), and the coefficients of the
three classes come from integrating the term

(ℓ− 1)! · (π∗

MAℓ − π∗

MBℓ) .

Denoting by Ri the expression obtained by setting n = i, we obtain via a direct calculation
the following table of coefficients for the leading terms, where we scale all coefficients below by
1/(ℓ− 2)! for convenience:

R1 R2 R3

eℓ+1(0) 0 0 0

eℓ(1) ℓ− 1 ℓ− 1 ℓ− 1

eℓ−1(2) 0 −(ℓ− 1) −2(ℓ− 1)

In particular R1 kills the class eℓ(1), while R1 − R2 kills the class eℓ−1(2). As this holds for
ℓ ⩾ d+ 1, we kill all classes ek(j) ∈ A⩾d+1(Md,χ) with j ∈ {1, 2}.

We still need to treat ek(0) ∈ A⩾d+1(Md,χ). For this purpose, we integrate (3.3) with respect
to π∗

Rβ for n = 1, 2, 3. This produces relations in Aℓ−1(Md,χ). Similarly, we look at the coefficients
of the three leading terms eℓ(0), eℓ−1(1), eℓ−2(2). These classes appear in Aℓ−1 and Bℓ−1, so there
are two relevant m, namely (0, 0, . . . , 0, 1) and (1, 0, . . . , 1, 0). The coefficients of the three terms
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come from integrating

(ℓ− 1)! · π∗

Rβ · π∗

MBℓ−1 + (ℓ− 2)! · π∗

Rβ · π∗

MB0 · (π
∗

MAℓ−1 − π∗

MBℓ−1) .

We see that the coefficient of eℓ(0) in R1 is ℓ− 1, so this kills the classes ek(0) ∈ A⩾d(Md,χ)
by the definition of the order ≺.

Step 2: Kill ed−1(2)∈Ad(Md,χ). We have already killed all classes ek(j) lying in A⩾d+1(Md,χ).
In addition, we have also killed ed+1(0), as explained at the end of Step 1. We now kill ed−1(2).

We integrate the relation (3.3) for ℓ = d + 1 over the class π∗

Rβ. From the same calculation
as above, the coefficients of ed+1(0), ed(1), ed−1(2) come from the terms

d! · π∗

Rβ · π∗

MBd + (d− 1)! · π∗

Rβ · π∗

MB0 · (π
∗

MAd − π∗

MBd) .

Using Lemma 3.1, we easily compute that

π∗

MB0 = χ+ (n− 2)d ∈ A0
(
Md,χ × P̌2

)
.

This gives the following table of coefficients:

R1 R2 R3

ed+1(0) d d d

ed(1) χ− 3
2d χ− 3

2d χ− 3
2d

ed−1(2) 0 d− χ d− 2χ

Since d ̸= χ, the linear combination R1−R2 kills ed−1(2); on the other hand, we see from the
table that the classes ed(1) cannot be killed using the relations Ri above as the first two rows
are proportional.

Step 3: Kill Ad−1(Md,χ). Next, we integrate (3.3) with respect to π∗

R(1P2), leading to rela-
tions in Aℓ−2(Md,χ). There are four relevant m, namely

m ∈ {(0, 0, . . . , 0, 0, 1), (1, 0, . . . , 0, 1, 0), (0, 1, . . . , 1, 0, 0), (2, 0, . . . , 1, 0, 0)} .

Looking at ℓ = d+ 1, a direct computation gives the following table of coefficients. The compu-
tations are similar to those above but involve more terms, so we leave the details to the readers.
Note that we used d ⩾ 4 here to ensure that (0, 1, . . . , 1, 0, 0) ̸= (0, 2, 0, 0).

R1 R2 R3

ed(0) χ− 3
2d χ− 1

2d χ+ 1
2d

ed−1(1)
−2χ2+6χd−5d2+d

4(1−d)
−2χ2+6χd−4χ−3d2+3d

4(1−d)
−2χ2+6χd−8χ+3d2−3d

4(1−d)

ed−2(2) 0 χ2−2χd+χ+d2−d
2(1−d)

2χ2−2χd+4χ−d2+d
2(1−d)

Denote this 3 × 3 matrix by M. To kill all three classes ed(0), ed−1(1), ed−2(2), it suffices to
show that M is nonsingular; that is, det(M) ̸= 0. In fact, a direct calculation yields

det(M) =
1

4(1− d)2
χ(d− 2)(d− χ)(d− 2χ) ̸= 0 .
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Step 4: Kill the remaining class ed(1). We look at ℓ = d + 2 and now integrate (3.3) with
respect to π∗

R(1P2). A similar calculation gives

R1 R2 R3

ed+1(0) χ− 3
2d−

1
2 χ− d

2 − 1
2 χ+ d

2 − 1
2

ed(1)
5d2−6χd+3d+2χ2−2χ

4d
3d2−6χd+3d+2χ2−2χ

4d
−3d2−6χd+3d+2χ2−2χ

4d

Consider the linear combination

S :=
(
χ− 1

2d−
1
2

)
R1 −

(
χ− 3

2d−
1
2

)
R2 .

A computation shows that the coefficient of ed(1) in S is 1
2(d − χ)(d − χ + 1). Since we have

assumed 0 < χ < d, this coefficient will never vanish. Thus we can kill ed(1) as well.

In conclusion, we have produced relations in A∗(Md,χ) with leading terms ek(j) for every tau-
tological class ek(j) ∈ A⩾d−1(Md,χ). Combined with Proposition 3.2, this proves Theorem 1.2(a).
Henceforth, we will call the 3d− 7 classes in (1.2) the tautological generators.

4. Freeness and further discussions

4.1 Freeness

In this section, we prove Theorem 1.2(b), that is, that there is no relations among the ck(j) in
A⩽d−2(Md,χ). Recall that the cycle class map

cl : CH∗(Md,χ) → H2∗(Md,χ,Q)

is an isomorphism [Mar07]. Therefore, to prove the freeness results, it suffices to work with the
cohomology ring.

We first recall the following theorem recently obtained by Yuan [Yua23] concerning the Betti
numbers, which relies on a dimension estimate of [MS20].

Theorem 4.1 ([Yua23, Theorem 1.5]). For even integers 0 ⩽ i ⩽ 2d − 4, we have an equality

between Betti numbers

bi(Md,χ) = bi

(
P2[

1

2
d(d−3)−χ0]

)
,

where P2[n] denotes the Hilbert scheme of n-points on P2, and χ0 ≡ χ mod d with −2d − 1 ⩽

χ0 ⩽ −d+ 1.

This theorem allows us to compute the Betti numbers for Md,χ by the (known) Betti numbers
of the Hilbert scheme of points. Note that by [MS20], to apply Theorem 4.1, we can take χ = 1,
so that χ0 = −d+1 and 1

2d(d− 3)−χ0 =
1
2(d+ 1)(d− 2). In particular, for fixed d ⩾ 4, we have

b2d−4(Md,χ) = b2d−4

(
P2[

1

2
(d+1)(d−2)]

)
. (4.1)

Our goal is to show that the invariant (4.1) matches exactly the number of monomials formed
by the ck(j) of cohomological degree 2d−4, where there are two generators of degree 2 and three
generators for each degree 4, 6, . . . , 2d − 4. Combined with Proposition 2.5, this will imply the
freeness in H⩽2d−4(Md,χ,Q).

To this end, we invoke Göttsche’s formula on Betti numbers of Hilbert schemes of points.
Denote by P (−, z) :=

∑
i(−1)ibi(−)zi the Poincaré polynomial.
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Theorem 4.2 ([Göt90]). Let S be a nonsingular projective surface. We have an identity between

two series in the variables z and t:

∑

n⩾0

P
(
S[n], z

)
tn =

∏

k⩾1

4∏

i=0

(
1− z2k−2+itk

)(−1)i+1bi(S) .

Specializing to S = P2, Theorem 4.2 yields

∑

n⩾0

(∑

i

(−1)ibi(X
[n])zi

)
tn =

∏

k⩾1

(
1− z2k−2tk

)−1(
1− z2ktk

)−1(
1− z2k+2tk

)−1
.

In order to look at the coefficient of z2d−4t
1

2
(d+1)(d−2) on the right-hand side, we expand it

into a power series, which gives

RHS =
(
1 + t+ t2 + · · ·

)(
1 + z2t+ z4t2 + · · ·

)(
1 + z4t+ z8t2 + · · ·

)

×
(
1 + z2t2 + z4t4 + · · ·

)(
1 + z4t2 + z8t4 + · · ·

)(
1 + z6t2 + z12t4 + · · ·

)
· · · .

Note that 2d− 4 < 1
2(d+ 1)(d− 2) whenever d ⩾ 4. Taking into account the first term

(
1 + t+

t2 + · · ·
)
, we see that it suffices to count the number of monomials with degree 2d − 4 in the

expansion
(
1+ z2+ z4+ · · ·

)(
1+ z4+ z8+ · · ·

)(
1+ z2+ z4+ · · ·

)(
1+ z4+ z8+ · · ·

)(
1+ z6+ z12+ · · ·

)
· · · .

The result then follows from the combinatorial operation to “replace” z by the tautological
generators ck(j). More precisely, we compare the above expansion with the generating series

[
∑

i⩾0

c0(2)
i

][
∑

i⩾0

c1(2)
i

][
∑

i⩾0

c2(0)
i

][
∑

i⩾0

c2(1)
i

][
∑

i⩾0

c2(2)
i

]
· · · ,

where we have two generators in cohomological degree 2 and three in each degree among
4, 6, . . . , 2d − 4. We conclude that b2d−4(Md,χ) matches the maximal possible dimension, which
implies that no relations can occur among the tautological generators. This completes the proof
of Theorem 1.2(b).

4.2 Numerical data and further discussions

Numerically Betti numbers for low values of d can be obtained using various methods [CKK14,
CC15, CC16, Bou22]. The following tables summarize the numerical data for 4 ⩽ d ⩽ 9 and
χ = 1. The second rows list the actual Betti numbers, and the third rows compute the dimensions
assuming freeness (that is, there is no relation) of the tautological generators.

M4,1 H0 H2 H4 H6 H8

actual dim 1 2 6 10 14

freeness 1 2 6 10 20

M5,1 H0 H2 H4 H6 H8 H10

actual dim 1 2 6 13 26 45

freeness 1 2 6 13 26 48
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M6,1 H0 H2 H4 H6 H8 H10 H12

actual dim 1 2 6 13 29 54 101

freeness 1 2 6 13 29 54 104

M7,1 H0 H2 H4 H6 H8 H10 H12 H14

actual dim 1 2 6 13 29 57 110 196

freeness 1 2 6 13 29 57 110 199

M8,1 H0 H2 H4 H6 H8 H10 H12 H14 H16

actual dim 1 2 6 13 29 57 113 205 369

freeness 1 2 6 13 29 57 113 205 372

M9,1 H0 H2 H4 H6 H8 H10 H12 H14 H16 H18

actual dim 1 2 6 13 29 57 113 208 378 657

freeness 1 2 6 13 29 57 113 208 378 660

From these data, it is reasonable to form the following conjecture.

Conjecture 4.3. The relations of the least degree among the tautological generators (1.2) in
A∗(Md,χ) occur in Ad(Md,χ). In particular, there is no relation in degree d− 1 as well.

The freeness in degree d− 1 is equivalent to

b2d−2(Md,χ) = b2d−2

(
P2[

1

2
(d+1)(d−2)]

)
− 3 .

In particular, if one can calculate this Betti number using the algorithm of [Bou22] or the motivic
method of [Yua18], then the freeness part of the conjecture follows. In general, a more systematic
study of tautological relations is needed to fully understand the relations among the classes in
(1.2).

Remark 4.4. Conjecture 4.3 has already been proven recently by Yuan [Yua22].
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