
Computational Thinking in the Formation of Engineers: Year 3 

Over the past three years we have been exploring not only how computational thinking impacts 

the first-year student experience but also persistence to graduation and enculturation to 

engineering. Students matriculate to engineering degrees with different academic preparation in 

mathematics and computing. We began our work by designing a computational thinking 

diagnostic that can be administered to students as they enter the engineering program in order to 

determine student's ability to use the principles and practices that are learned by studying 

computing. We can report that 3584 students were participants during the development of the 

Engineering Computational Thinking Diagnostic (ECTD) and the last 469 were involved in 

exploratory and confirmatory analysis.  

Engineers use computing to design, analyze, and improve systems or processes. ABET cites 

computing as a foundational skill for engineering proficiency [1], [2]. The Taxonomy for the 

Field of Engineering Education Research also reflects the importance of computational thinking 

as a research area within engineering education [3], [4]. To many, computing equates to 

programming a computer using a high-level language. However, computing frameworks identify 

computational thinking as much deeper than just language proficiency. Students must apply 

critical thinking skills to abstract problems into manageable units, decompose the units into 

solvable problems, learn to use standard data representations to map and manage data, write 

algorithms that manipulate data to solve the problem, and evaluate the impact of engineered 

solutions on society [5]–[9]. Engineers often begin learning these skills in introductory 

engineering or programming classes. The structure of engineering curricula is not standardized 

but standards are maintained by periodic program accreditation linked to professional licensure.  

A challenge for first-year engineers is unequal entry-level preparation. Educational privilege in 

K-12 STEM training systemically marginalizes students from many groups including first-

generation, people of low socioeconomic status, certain racial and ethnic groups, women, and 

people with disabilities [10]–[21]. To support these populations, our team of researchers 

developed and validated the ECTD to identify at-risk students so that curriculum interventions or 

course-level interventions can be applied to enable student success, persistence, and 

enculturation as professional engineers.  

We use both quantitative and qualitative methods to determine how computational thinking is 

impacting enculturation of first-year engineering students. We seek to understand the many 

factors impacting professional enculturation. During our investigations we have found that prior 

programming experience is a privilege that should be added to the long list of previously known 

privileges that benefit some engineering students, such as calculus-readiness, advanced 

placement courses, and computing-related extracurriculars like robotics [22].  

First Major Result 

Our first major result of the past year is validation of our quantitative instrument. Approximately 

900 students across the three institutions completed ECTD testing at the start of the 2021-2022 

academic year. Our consulting psychometrician used this data to complete confirmatory factor 

analysis on the ECTD [23]. This confirmatory factor analysis fully validated the ECTD as 



predictive of student performance in classes containing computational thinking and computer 

programming. Using the ECTD, instructors can identify at-risk students and plan interventions to 

help them succeed and enculturate as an engineer. 

Second Major Result 

Our second major result is the documentation of the impact of a wide variety of privileges on 

engineering student enculturation. In the past year, we performed semi-structured interviews at 

all three institutions. The semi-structured interview protocol consisted of prompts designed to 

encourage conversation about curricular and extracurricular pre-university background in 

programming, mathematics, and science. The prompts also addressed student motivations for 

engineering study, reasons behind confidence or lack of confidence in their choice of major, and 

how social identity was impacting their confidence. Participants were recruited from students 

that had previously agreed to complete the ECTD. A $25 gift card was offered to incentivize 

continued participation and as compensation for time. Trained interviewers conducted interviews 

via teleconference only after participants agreed to audio-only recording for transcription. We 

then transcribed the interviews, coded the interview transcripts, and performed a qualitative 

thematic analysis of the data. We found many forms of academic and socioeconomic privilege 

that ease student transitions into engineering, usually by hearing from students who lacked the 

privilege [24], [25]. Examples of academic privileges we found include the availability of AP 

courses in high school, prior computer programming experience through structured high school 

classes, and prior programming experience through extracurricular activities. Examples of 

socioeconomic privilege include the ability to afford to live on campus instead of commuting, 

not having childcare responsibilities for siblings, and being able to limit work hours to avoid 

interfering with academic goals. These results show a pattern of how integrating computer 

programming into introductory engineering classes can exacerbate existing inequities.  

Additional analysis highlighted some institutional policies that may be exacerbating inequities in 

engineering. One institution has restricted access to many engineering majors primarily by GPA, 

resulting in greatly increased grade stress among students. This increased stress landed especially 

hard on the students who lacked academic and socio-economic privileges [25].  

Third Major Result 

A third major result from the past year is the unexpected racial/ethnic imbalances in participant 

demographics. White and Asian students self-selected to be participants in the study at much 

higher rates than members of other racial/ethnic groups, and far beyond their representation in 

the institutional demographics. This pattern was especially strong in the interviews, which are a 

bigger social risk although also a greater financial reward. Two of our three interviewers identify 

as white, although the students would not have been aware of this when they were scheduling 

interviews. In short, members of many systemically marginalized racial/ethnic groups were more 

reluctant to tell their story to researchers. We have not yet correlated reluctance to participate 

with lack of success in computational thinking courses.  

 



Fourth Major Result 

The fourth major result from the past year is that we have found that data collected from 

position-of-stress surveys do not show significant correlation to other indicators of success in 

computational thinking. 

Fifth Major Result 

The fifth major result from the past year occurred through added survey questions administered 

with the ECTD instrument. These questions asked students to reflect on artificial intelligence and 

its impact on their career prospects. Students found to be more confident through position-of-

stress surveys administered later in the academic term were found to be more positive about their 

future in a world more influenced by artificial intelligence. The figures below show this result.  

 

 

Figure 1. Boxplots for the confidence levels. 

 

 

Figure 2. Three groups of confidence levels and their associated ECTD scores (Y axis)  

and confidence levels (X axis). 



In short, students who lack confidence see themselves as being impacted and possibly even 

controlled by artificial intelligence. Students who are more confident see themselves controlling 

artificial intelligence and are therefore more positively inclined towards it. 

Future Work and Broader Impact 

Our challenges in recruiting students from systemically marginalized racial and ethnic groups 

lead us to examine other ways in which our participant sampling was not representative. We 

found, not unexpectedly, that students who appeared to be struggling in introductory engineering 

courses were not willing to be interviewed. This pattern mirrors that found in previous work 

where only four students who had left engineering were willing to be interviewed about the 

experience [14]. We will next reach out to students who did not pass the introductory courses 

where the ECTD was given and ask them for interviews about their experiences in introductory 

engineering courses. It is likely that a substantial financial incentive will have to be provided. 

Balancing the need for a financial incentive with the necessity of avoiding coercion of 

participants will have to be negotiated with our Institutional Review Board.  

In year three, we accomplished a major goal of this NSF funded project by validating a 

diagnostic instrument that can be used to assess entry level computational thinking skills. Over 

the next year, we will begin disseminating this diagnostic through a publicly visible website 

( https://ectd.engr.tamu.edu/ ) and invite institutions to utilize it. We plan to maintain and update 

our diagnostic items according to national and international dissemination results, so this 

instrument becomes a long-lasting resource to engineering trainers. 
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