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Abstract

The design of machine learning systems often requires trading off different objectives,
for example, prediction error and energy consumption for deep neural networks (DNNs).
Typically, no single design performs well in all objectives; therefore, finding Pareto-optimal
designs is of interest. The search for Pareto-optimal designs involves evaluating designs in
an iterative process, and the measurements are used to evaluate an acquisition function that
guides the search process. However, measuring different objectives incurs different costs.
For example, the cost of measuring the prediction error of DNNs is orders of magnitude
higher than that of measuring the energy consumption of a pre-trained DNN as it requires
re-training the DNN. Current state-of-the-art methods do not consider this difference in
objective evaluation cost, potentially incurring expensive evaluations of objective functions
in the optimization process. In this paper, we develop a novel decoupled and cost-aware
multi-objective optimization algorithm, which we call Flexible Multi-Objective Bayesian
Optimization (FlexiBO) to address this issue. For evaluating each design, FlexiBO selects
the objective with higher relative gain by weighting the improvement of the hypervolume
of the Pareto region with the measurement cost of each objective. This strategy, therefore,
balances the expense of collecting new information with the knowledge gained through
objective evaluations, preventing FlexiBO from performing expensive measurements for
little to no gain. We evaluate FlexiBO on seven state-of-the-art DNNs for image recognition,
natural language processing (NLP), and speech-to-text translation. Our results indicate
that, given the same total experimental budget, FlexiBO discovers designs with 4.8% to
12.4% lower hypervolume error than the best method in state-of-the-art multi-objective
optimization.

1. Introduction

Recent developments of deep neural networks (DNNs) have sparked a growing demand for
pushing the deployment of artificial intelligence applications from the cloud to a wide variety
of edge and IoT devices. These devices are closer to data and information generation sources,
so they provide a better user experience, for instance, latency and throughput sensitivity,
security, etc. Compared to data centers, the edge devices are more resource-constrained and
may not even be able to host these compute expensive DNN models. Therefore, designing
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Figure 1: (a) The system stack of a DNN comprises six components. (b) Performance
variation of several hundred designs for an image recognition DNN system, SQUEEZENET,
deployed on resource-constrained NvIDIA JETSON TX2 hardware while performing inference
on 5,000 test images. We observe a substantial variation for each performance objective
across different designs; in particular, prediction error varies 3x, and energy consumption
varies 4x. Designs marked with blue rectangles optimally trade off both objectives.

energy-efficient DNNs is critical for the successful deployment of DNNs to these devices
with limited resources. On the one hand, high inference error often leads to application
failures (Pei et al., 2017; Sun et al., 2018), but on the other hand, it is essential to reduce the
number of computation cycles and/or memory footprints of DNNs to conserve energy (Sze
et al., 2017). In addition to DNN models, a number of components in the DNN system stack
(see Figure la) must work together for the seamless deployment of energy-efficient DNNs
without compromising inference accuracy (Gadepally et al., 2019; Reuther et al., 2019).

There exist 100s, if not 1000s, of design options from each component across the DNN
system stack that impact the computational and memory requirements of DNNs and make
them difficult to deploy effectively. Omne of the key challenges in designing an optimal
DNN system is to efficiently explore the vast design space, with non-trivial interactions of
options from different components across the system stack, for example, CPU frequency,
GPU frequency, number of epochs, etc. Additionally, no single design usually performs well
for all performance objectives (see Figure 1b). Therefore, we must identify designs that
provide optimal trade-offs — Pareto optimal designs.

Previous work has focused on neural architecture search (NAS) techniques that can ef-
ficiently locate Pareto optimal designs. NAS approaches like NEMO (Kim et al., 2017),
hierarchical representations (HR) (Liu et al., 2017), and DPP-NET (Dong et al., 2018) can
be categorized according to three different criteria: (i) the Search Space, (ii) the Optimiza-
tion Method, and (iii) the Candidate Evaluation Method. Unfortunately, the effectiveness of
NAS approaches largely depends on selecting a quality search space to reduce the complex-
ity of search that requires significant prior knowledge that is difficult to find in practice,
which also indicates that they are not suitable for different platforms. Much recent work
has focused on multi-objective Bayesian optimization (MOBO) approaches like PAREGO
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Table 1: Comparison of FLEXIBO to related state-of-the-art methods that can be used to
identify Pareto optimal solutions.

| METHOD MeTHOD TYPE SEARCH STRATEGY EVALUATION STRATEGY COST AWARENESS
NEMO (Kim et al., 2017) NAS Gradient Based Coupled X
DPP-NET (Dong et al., 2018) NAS Gradient Based Coupled X
HR (Liu et al., 2017) NAS Gradient Based Coupled X
PAREGO (Knowles, 2006) MOBO Random Scalarization Coupled X
SMSeco (Ponweiser et al., 2008) MOBO Hypervoume Improvement Coupled X
PAL (Zuluaga et al., 2013) MOBO Predictive Uncertainty Coupled X
MESMO (Belakaria et al., 2019) MOBO Output Space Entropy Coupled X
PESMO (Hernandez-Lobato et al., 2015) MOBO Input Space Entropy Coupled X
PESMO-DEC (Hernandez-Lobato et al., 2015) MOBO Input Space Entropy De-coupled X
CA-MOBO (Abdolshah et al., 2019a) MOBO Chebyshev Scalarization Coupled v
FLexiBO MOBO Volume of the Pareto region De-coupled v

(Knowles, 2006), SMSEGO (Ponweiser et al., 2008), PAL (Zuluaga et al., 2013), PESMO
(Hernandez-Lobato et al., 2016), MESMO (Belakaria et al., 2019), MESMOC (Belakaria
et al., 2020) etc. to find the Pareto optimal designs that can be used for hyperparameter
tuning. MOBO approaches iteratively use the uncertainty captured by a probabilistic model
(also known as the surrogate model) of the process to be optimized to compute the values
of an acquisition function. The acquisition function is an approximation of the complex un-
known function to be optimized, which is much faster and cheaper to evaluate. The optimum
of the acquisition function provides an effective heuristic for identifying a promising design
for which to evaluate the objectives. Nevertheless, there are limitations to these MOBO
approaches. For instance, scalarization-based approaches (PAREGO) tend to suffer from
sub-optimality, algorithms to optimize hypervolume-based acquisition function (SMSEGO)
scale poorly when the input dimensionality increases, methods that rely on entropy-based
acquisition functions (PESMO, MESMO, MESMOC) are computationally expensive, and
PAL is simple to design but also requires a lot of computation at each iteration.

Furthermore, most of these MOBO methods are cost unaware and consider the objective
evaluation costs uniform. As a result, existing approaches use a coupled evaluation strat-
egy to evaluate the design selected by the optimizers across all objectives at each iteration.
However, the cost of objective evaluations can be non-uniform in practice, for example, op-
timizing prediction error in DNN systems is much more expensive than making predictions
with a pre-trained DNN with different deployment system design options as that involves
re-training the whole DNN. For higher optimization performance, one challenge for iterative
optimizers is to balance exploiting the knowledge gained from the evaluations with ezploring
regions in the search space where the landscape is unknown and might hold better designs.
The cost-unawareness of objective functions evaluation makes this even more challenging
under a limited experimentation budget, such as when using DNNs deployed on production
or resource-constrained devices. To overcome this issue, CA-MOBO (Abdolshah et al.,
2019a) recently proposed a cost-aware approach to identify the Pareto optimal designs by
avoiding the designs with high evaluation costs in the design space. Nonetheless, this can
lead to aggressive exploitation behavior and generate sub-optimal designs. PESMO-DEC
introduces a decoupled evaluation strategy where only a subset of objectives at any given
location is evaluated instead of evaluating all the objectives at each iteration. It shows that
the decoupled evaluation strategy provides significant improvements over a coupled evalua-
tion, particularly when the experimentation budget is limited. This improvement is because
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in the decoupled setting, PESMO-DEC identifies the most difficult objectives and evalu-
ates them more times. However, selecting designs for evaluation without considering their
individual objective evaluation costs can result in inefficient resource utilization, especially
when the difference in complexity is insignificant.

To address these limitations, we propose the cost-aware decoupled MOBO approach
FLEx1BO, which explicitly considers non-uniform objective evaluation costs and evaluates
expensive objectives only if the gain of information is worth it. FLEXIBO extends the
concepts of the state-of-the-art active learning algorithm PAL (Zuluaga et al., 2013) and
PESMO-DEC (Hernandez-Lobato et al., 2015). To our knowledge, this is the first approach
to propose a cost-aware decoupled evaluation strategy for MOBO. To formalize the notion
of non-uniform evaluation costs of objectives, we define objective evaluation cost in terms of
computation time. Qur acquisition function incorporates the uncertainty of the surrogate
model’s predictions and objective evaluation costs to balance exploration and exploitation
and iteratively improve the quality of the Pareto optimal design space, also known as the
Pareto region. It selects the objectives across which the design will be evaluated in addition
to selecting the next design to evaluate. Consequently, we explicitly trade off the additional
information obtained through an evaluation with the cost of obtaining it, ensuring we do
not perform costly evaluations for little potential gain. By avoiding costly evaluations, we
improve the efficiency of the search for Pareto optimal designs. We demonstrate FLEXIBO’s
promise through a comprehensive experimental evaluation on a range of different bench-
marks. While we focus on DNNs, our proposed approach is general and can be extended to
other applications.

1.1 Contributions

In summary, our contributions are as follows.

» We propose FLEXIBO: a cost-aware approach for multi-objective Bayesian optimiza-
tion that selects a design and an objective for evaluation. It makes a trade-off between
the additional information gained through an evaluation and the cost incurred as a
result of the evaluation (Section 5).

» We comprehensively evaluate FLEXIBO on seven DNN architectures from three dif-
ferent domains and compare its performance to PAREGO (Knowles, 2006), SM-
SEGO (Ponweiser et al., 2008), PAL (Zuluaga et al., 2013), and PESMO,PESMO-
DEC (Hernandez-Lobato et al., 2016), and CA-MOBO (Abdolshah et al., 2019a).
(Section 6). The dataset and scripts to reproduce our findings are available at https:
//github.com/softsysdai/FlexiB0.

2. Motivation

In this section, we discuss our motivation to propose a cost-aware and decoupled evalua-
tion strategy. Based on the cost distribution assumptions and evaluation strategy, existing
MOBO techniques can be subdivided into the following categories: (I) cost-unaware coupled,
(IT) cost-aware coupled, and (III) cost-unaware decoupled approaches. Unlike cost-unaware

648



FLEXIBO: A DEcoOUPLED COST-AWARE MULTI-OBJECTIVE OPTIMIZATION

45 45
S 3658 52 3.65 &
= =7 =
g 3 4 £ 3 =
= = o 2
g = 8 =
2 3 2 3
o 3.50 b4 3.50
2 25 =2 =
=1 ¥ g g
& S A 3
15 i 3.35 15 ' 3.35
3000 6000 9000 12000 3000 6000 9000 12000
Energy Consumption (mJ) Energy Consumption (mJ)
(a) (b)
45 45
S 3655 = 3.65 &
X G X 65
oy St e
g 3 5 e 35 )
5 s A 3
= s “ S
g 5 8 =
= 3.503 + 3.503
o o
= 25 = 25
E p ®
al — al —
15 A 3.35 15 : 3.35
3000 6000 9000 12000 3000 6000 9000 12000
Energy Consumption (mJ) Energy Consumption (mJ)

(c) (d)

Figure 2: (a) Cost-unaware coupled approaches waste resources by evaluating designs with
higher evaluation costs. (b) Cost-aware coupled approaches can suffer poor performance if
the Pareto optimal designs can only be found by evaluating objectives with high evaluation
costs. (c) Cost-unaware decoupled approaches can invest a lot of resources in evaluating
designs with low quality (high prediction error and high energy consumption) and do not
perform well across both objectives. (d) Cost-aware decoupled approaches find designs with
better quality compared to other approaches. Yellow stars indicate the location of Pareto
optimal designs. The color indicates the evaluation cost (log wall clock time) of a particular
design.

approaches, cost-aware approaches assume the cost of evaluating different objectives is non-
uniform. Decoupled approaches consider only a subset of objectives for evaluation at each
iteration in the Bayesian optimization loop whereas coupled approaches evaluate all ob-
jectives. To our knowledge, the approach proposed in this paper addresses a gap in the
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existing MOBO literature on cost-aware decoupled techniques. To show the clear advantage
of our proposed cost-aware decoupled approach, we performed a sandbox experiment to op-
timize the prediction error and energy consumption of the image recognition DNN system
SqueezeNet for the CIFAR-10 dataset deployed on an Nvipia JETSON TX2 device for
inference on 5,000 test images. We use 8 NviDIA TESLA K80 GPUs deployed on Google
Cloud for training with 45,000 training images. We tunned a small subset of design op-
tions from different layers of the system stack — CPU frequency and GPU frequency from
the hardware layer, swappiness from the operating system layer, memory growth from the
model compiler layer, and filter size, number of filters, and number of epochs from the DNN
model layer. We use PAL as a cost-unaware coupled approach, CA-MOBO as a cost-aware
coupled approach, PESMO-DEC as a cost-unaware decoupled approach, and FLEXIBO as
a cost-aware decoupled approach.

Cost-unaware coupled approaches are not sample (design) efficient for budget-constrained
applications as they do not make the best utilization of resources by evaluating the selected
designs across all objectives even for little or no gain. Figure 2a shows that most of the
designs selected by the cost-unaware coupled approach are not close to the Pareto front and
are concentrated in regions with high evaluation costs. It also has poor coverage of the
objective space.

Cost-aware coupled approaches consider different evaluation costs for different designs.
As such approaches only evaluate cheap designs, good parts of the search space may be
missed. Figure 2b shows that the cost-aware coupled strategy focuses on the cheap regions
of the search space here and misses Pareto’s optimal designs in expensive regions.

Cost-unaware decoupled approaches evaluate the more complex objectives a higher num-
ber of times than the less complex objectives. However, Figure 3a and Figure 3b show that
both the objectives (e.g., prediction error and energy consumption) have the same com-
plexity. Cost-unaware approaches are not particularly effective in such cases and produce
suboptimal results as shown in Figure 2c. This occurs as a result of them not making the
best use of resources by evaluating a large number of low-quality designs (high prediction
error and high energy consumption) for little information gain.

Cost-aware decoupled approaches evaluate designs in any region if the information gain is
large enough given the objective evaluation cost. We observe that our cost-aware decoupled
approach performs better than the other approaches and identifies more points on the Pareto
front (see Figure 2d).

3. Related Work

We now discuss different directions of related work for multi-objective optimization.

Hardware-aware optimization of DNNs. One of the largest difficulties in producing
energy-efficient DNNs is the disconnect between the platform where the DNN is designed,
developed, and tested, and the platform where it will eventually be deployed and the energy
it consumes there (Guo, 2017; Chen et al., ; Cai et al., 2017; Qi et al., 2016; Manotas
et al., 2014; Sze et al., 2017; Chen et al., 2016). Therefore, hardware-aware multi-objective
optimization approaches have been introduced (Zhu et al., 2018; Lokhmotov et al., 2018; Cai
et al., 2018; Wu et al., 2019; Whatmough et al., 2019) that enable automatic optimization of
DNNs in the joint space of architectures, hyperparameters, and even the computer system
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Figure 3: Contour curves for (a) prediction error and (b) energy consumption of SqueezeNet
by varying CPU Frequency and Number of Filters while keeping the other design options
fixed. Decoupled unaware approaches perform poorly when objectives with different costs
have the same complexity (both non-linear).

stack (Zela et al., 2018; Igbal et al., 2019; Nardi et al., 2019; Hernandez-Lobato et al.,
2016). Like these approaches, FLEXIBO enables efficient multi-objective optimization in
such joint configuration spaces. Multi-objective neural architecture search (NAS) (Kim
et al., 2017; Dong et al., 2018; Liu et al., 2017, 2018) aims to optimize accuracy and limit
resource consumption, for example, by limiting the search space (Kim et al., 2017). Several
approaches characterize runtime, power, and the energy consumption of DNNs via analytical
models, for example, Paleo (Qi et al., 2016), NeuralPower (Cai et al., 2017), Eyeriss (Chen
et al.,, 2016), and Delight (Rouhani et al., 2016). However, they either rely on proxies
like inference time for energy consumption or extrapolate energy values from energy-per-
operation tables. They, therefore, cannot be used across different deployment platforms.

Multi-Objective Optimization with Different Acquisition Functions. A large body
of research identifies the complete Pareto front using entropy-based acquisition functions.
For example, MESMO (Wang & Jegelka, 2017; Belakaria et al., 2019), MESMOC (Be-
lakaria et al., 2020), and PESMO (Hernandez-Lobato et al., 2016) determine the Pareto
front by reducing posterior entropy. SMSEGO uses the maximum hypervolume improvement
acquisition function to choose the next sample (Ponweiser et al., 2008). Different gradient-
based multi-objective optimization algorithms have been proposed to optimize objectives
more efficiently (Schaffler et al., 2002; Désidéri, 2012). These methods were extended to use
stochastic gradient descent (Poirion et al., 2017; Peitz & Dellnitz, 2018). Active learning
approaches have been proposed to approximate the surface of the Pareto front (Campigotto
et al., 2013) through the use of acquisition functions such as expected hypervolume im-
provement (Emmerich & Klinkenberg, 2008) and sequential uncertainty reduction (Picheny,
2015). Contemporary active learning approaches like PAL and e-PAL tend to approximate
the Pareto front (Zuluaga et al., 2013, 2016) using the maximum diagonal of the uncertain-
ties in the objective space as the acquisition function. However, these methods do not take
into account the varying costs of the evaluations of the objective functions are expensive.
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Multi-Objective Optimization With Preferences. Some methods use preferences in
multi-objective optimization with evolutionary methods (Deb & Sundar, 2006; Thiele et al.,
2009; Kim et al., 2011); although these methods enable the user to guide the exploration of
the design space of systems (Kolesnikov et al., 2019), they are not sample-efficient, which is
essential for optimizing highly-configurable systems (Pereira et al., 2019; Jamshidi & Casale,
2016; Jamshidi et al., 2017, 2018; Nair et al., 2018), particularly for very large configuration
spaces (Acher et al., 2019). Recently, methods that use surrogate models for optimization
with preferences have been proposed (Paria et al., 2018; Abdolshah et al., 2019b). These
methods require the user to specify a preference manually and are not cost-efficient.

Multi-Objective Optimization With Scalarizations. Different multi-objective opti-
mization methods have been developed that use scalarizations to combine multiple objectives
into one such that optimal solutions correspond to Pareto-optimal solutions. Examples in-
clude PAREGO, which uses random scalarizations (Knowles, 2006), weighted product meth-
ods (Deb, 2001), and utility functions (Roijers et al., 2013, 2017, 2018; Zintgraf et al., 2018).
A major disadvantage of the scalarization approach is that not all Pareto optimal solutions
can be recovered without further assumptions (e.g., convexity) on the objectives. Therefore,
solutions obtained by scalarization approaches tend to be sub-optimal.

Cost-Aware Multi-Objective Optimization Approaches. Recently, different cost-
aware methods (Abdolshah et al., 2019a; Lee et al., 2020) have been proposed that incor-
porate the evaluation costs of objectives into account. They assign costs to designs in the
design space and attempt to identify an optimal Pareto front by avoiding costly designs,
thereby selecting cheap designs for evaluation. These methods are either orthogonal or com-
plementary to our approach. FLEX1IBO is a decoupled approach where we trade off the
evaluation cost of an objective with the amount of information that can be gained.

4. Background and Definitions

In this section, we review MOBO and Pareto optimality and introduce the terminology and
notation used in the rest of the paper. Table 9 in the appendix lists the symbols and their
descriptions used throughout the paper.

Bayesian Optimization. Bayesian Optimization (BO) is an efficient framework to solve
global optimization problems using black-box evaluations of expensive objective functions
(Jones, Schonlau, & Welch, 1998). Let X C R?, where d € N, be a finite design space.
For single-objective Bayesian optimization (SOBO), we are given a real-valued objective
function f : X — R, which can be evaluated at each design & € X to produce an evaluation
y = f(x). Each evaluation of x is expensive in terms of the consumed resources. The
main goal is to find a design «* € X that optimizes f by performing a limited number of
function evaluations. BO approaches use a cheap surrogate model learned from training data
obtained using past function evaluations. They intelligently select designs for evaluation by
searching over the surrogate model, trading off exploration and exploitation to quickly direct
the search toward an optimal design.

Acquisition Function. This is used to score the utility of evaluating a candidate design
x € X based on the statistical model. Some popular acquisition functions in the SOBO litera-
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ture include expected improvement (EI) (Emmerich & Klinkenberg, 2008), upper confidence
bound (UCB) (Srinivas et al., 2012), predictive entropy search (PES) (Hernandez-Lobato
et al., 2014), and max-value entropy search (MES) (Wang & Jegelka, 2017).

MOBO. In MOBO, the aim is to find a set of designs that simultaneously optimizes n
possibly conflicting objective functions f = fi1,..., fn, where n > 2 and f; : X — R for
1 < i < n. Each evaluation of a design & € X produces a vector of objective values
y = (Y1, ..., Yn), where y; = fi(zx) for 1 <i < n.

Pareto-Optimality. It is generally not possible to find a design that optimizes each objec-
tive equally, but instead, there is a trade-off between them. Pareto optimal designs represent
the best compromises across all objectives. In the context of maximization, a design x is
said to dominate another design «/, formally, x > &' if fi(x) > fi(z') for 1 <i<n. A
design x € X is called Pareto-optimal if it is not dominated by any other designs @’ € X,
where  # x’. The set of designs X* is called the optimal Pareto set and a hyperplane'
passing through the corresponding set of function values §* is called the Pareto front.

Surrogate Model Surrogate models 9 for 1 < i < n are used to approximate the func-
tion to optimize, which is usually computationally expensive to evaluate and not available
in closed form. Surrogate models are trained with evaluations of a small subset of the design
space X and are used to predict the value of the objective function using f (x) = p(x) with
estimation uncertainty o (x) for each design . The uncertainty region R(x) of a design x
is defined as a hyper-rectangle of the width of the confidence region using p(x) and o(x)
(formally defined later).

Optimistic and Pessimistic Pareto front. Each design @ in the design space X is
assigned an uncertainty region R(x) using the predictions of the objective functions f from
the surrogate models 9. Figure 4 shows an example of uncertainty region of a design and
its maximum value max(R(x)) and minimum value min(R(x)) for n = 2 objectives. The
maximum value of the uncertainty region max(R(z)) and minimum value of the uncertainty
region min(R(x)) of a design x are regarded as the optimistic and pessimistic value of x,
respectively. A hyperplane passing through the non-dominated optimistic values of x is
considered the optimistic Pareto front §,,;. Similarly, a pessimistic Pareto front §peqs is
constructed by a hyperplane passing through the pessimistic values of .

Pareto Region. The region bounded by the optimistic Pareto front §,, and pessimistic
Pareto front §pess is defined as the Pareto region Pr (shown as the blue shaded region in
Figure 5).

Objective evaluation cost. Objective evaluation cost 0;(x) of a design x is the compu-
tational effort required to evaluate design « for an objective f;.

5. FLEXIBO: Flexible Multi-Objective Bayesian Optimization

In this section, we explain the technical details of our proposed Flexible Multi-Objective
Bayesian Optimization (FLEXIBO) algorithm. FLEXIBO aims to identify the optimal Pareto
front §* by evaluating a small subset of designs in the design space X that uses a cost-aware

1. A subspace of the design space whose dimension is one less than the design space.

653



IgBAL, Su, KOTTHOFF, & JAMSHIDI

Ch 4 f2(x)
I
° ]
. o L max(R(x))
® "“"’________, ,@
e do o —",_x" u u s min(R(x))
® e-----""" E—
e °

» O > fi(x)
/ Design Space X Objective Space §
Cs

Figure 4: The design space X is mapped to the objective space § for n = 2. The objective
space shows examples of uncertainty regions R(x) for different designs .

» fa(x)

Foom> A
Objective Space §

Figure 5: The objective space is showing examples of Pareto fronts §pess and §opt passing
through a subset of non-dominated designs. Here, non-dominated designs are shown in gray
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acquisition function to incorporate the evaluation costs of each objective in the standard
Bayesian optimization framework. Given the same budget 7, the cost-awareness of the
acquisition function enables FLEXIBO to sample the search space more efficiently compared
to other state-of-the-art approaches.

5.1 Algorithm Design

FLEXIBO is an active learning algorithm that selects a sequence of designs (x1, ..., 1) in the
design space X for evaluation to determine the Pareto-optimal designs; the designs classified
as Pareto-optimal are then returned as the prediction §* for §*. Rather than evaluating
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each design x against all objectives f; for 1 < i < n, our cost-aware approach iteratively
evaluates a selected design « only across the most informative objective. FLEXIBO evaluates
a design & across an objective f; if the change in hypervolume of the Pareto region is
large enough compared to the objective evaluation cost #;. This allows FLEXIBO to avoid
expensive measurements for little or no change in hypervolume and to only evaluate across
an objective when the change in hypervolume is worthy compared to the evaluation cost.
Formally, FLEXIBO is a cost-aware multi-objective optimization approach that iteratively
and adaptively selects a sequence of designs and objectives ((x1, fi4),..., (®7, fr;)) for 1 <
1 < n across which the selected designs are evaluated to predict the Pareto front 3’*

We then fit a separate surrogate model 9 for each objective function f; for 1 <i < n.
We select m designs set X, from the design space X using Monte-Carlo sampling (Shapiro,
2003). The objective values of a design « that has not been evaluated across any objective
are estimated by f(z) = p(x) = (1(x),...,pn(x)), and the associated uncertainty is
estimated by o(x) = (o1(x),...,0,(x)). If a design x is evaluated across an objective f;,
the associated uncertainty is zero against f;. At each iteration ¢, we use the p;(x) and oy(x)
values to determine the uncertainty region R;(x) for each design & € Xn. We define the
uncertainty region associated with a prediction of the surrogate model as follows:

Ri(z) ={y : p() — /Biow(z) <y < () + /Biou(2)}, (1)

where (3, is a scaling parameter that controls the exploration-exploitation trade-off. Similar
to PAL (Zuluaga et al., 2013, 2016), we use 3; = 2/9log(n|%Xm|7?t?/65) for § € (0,1).The
dimension of R;(x) depends on the number of objectives n. Later, we exploit the information
about the uncertainty regions to determine the non-dominated designs set {. We then use the
optimistic and pessimistic values of the non-dominated designs in i to build the optimistic
Pareto front §,p: and pessimistic Pareto front

We now employ our cost-aware acquisition function, which makes use of an information
gain based on objective space entropy. Being cost-aware, our proposed acquisition function
ay,i(x) considers the evaluation cost 6;; across each objective f;:

_ AV ({z, fri(x)}, &%)

oi(z) e (2)
VEPRIE) =V (Palfh )@ \
- 0 3)
AV
=0, (4)

Here, a ;(x) computes the amount of information that can be gained per cost for a design
x to be evaluated for an objective f;. In Equation 3, we compute the gain of information as
the change of volume of the Pareto region if the Pareto front 1’}"* = Sopt U pess is updated by
setting the uncertainty values Ry ;(x) of & to its mean p ;(x) for the corresponding designs
in A};,. Our acquisition function computes the change of volume AV} ; of the Pareto region
Ppr across each objective f; to judiciously determine the gain of information that would be
achieved if design x is evaluated for f;. We select a design ; and an objective f; ; using the
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following:

Ty, fri = argmaXgexx for each f; a-’»,i(m) (5)

Here, we identify the most promising design for an objective function that gains the most
information given the cost of evaluating it. Finally, we update the surrogate model M;
corresponding to the chosen objective function f; by incorporating the newly-evaluated
design and objective value. We stop when the maximum budget 8r is exhausted or the
maximum change of volume of the Pareto region becomes zero (indicating that all designs in
the Pareto region have been evaluated for each objective ), whichever occurs earlier. Finally,
we return the Pareto front obtained. Every iteration ¢ consists of three stages: (1) modeling,
(2) construction of the Pareto region, and (3) sampling. To initialize FLEXIBO, we evaluate
Ny samples for each objective f; to and populate corresponding evaluated designs set S;
for 1 < ¢ < n. We also determine the average computational effort 8; for each objective f;
before proceeding to the iterative procedure. We outline the pseudocode for the FLEXIBO
implementation in Algorithm 1.

5.1.1 MODELING

At each iteration ¢, we train a surrogate model 901; using the samples in the evaluated designs
set S; for objective f;. As FLEXIBO selects one objective f; for evaluation per iteration,
only the surrogate model 9; corresponding to the selected objective f; needs to be updated.
Then, we determine X,,, from X using Monte-Carlo sampling (Shapiro, 2003). At this point,
we determine the uncertainty region R;(x) of each design & € Xy, using Equation 1. The 2-
dimensional objective space § in Figure 4 shows examples of uncertainty regions for different
designs . As shown in Figure 4, the uncertainty region R;(x) of a design = that is not
evaluated across any of the two objectives, f; and fs, is a rectangle. If « is evaluated across
one objective, say fo, the uncertainty across fo will be eliminated (assuming measurements
contain no noise) and R¢(x) will become a line across fi. Once, x is evaluated across both
objectives, Ry(x) is expressed by a point (indicating no uncertainty across fi and fa).

5.1.2 PARETO REGION CONSTRUCTION
After the uncertainty region R;(x) for each design & € Xn, we identify the set of non-
dominated designs i using the following rule:

x € 4 if min(R;(x)) = max(Ry(x')) for z # 2’ and =, z’ € X (6)

Figure 5 shows examples of non-dominated designs (gray color) and dominated designs (black
color) in the objective space for n = 2. Next, we identify the set of Pareto-optimal solutions
Xn™ and Pareto front 1’}"* = {Fopt U Fpess} for the purpose of constructing the Pareto region
Pr by pruning designs in {. A design x € il is only included in §,p if the optimistic value
max(R;(x)) of « is not dominated by the optimistic value max(R,(x')) of another design a’
across all objectives as follows.

x € Fopt if max(Ry(x)) > max(R,(z')) for © # = and x,z’ € U (7)
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Figure 6: Example showing pruning of non-dominated points to construct §,,; and Fpess-

Figure 6 shows an example where non-dominated designs F' or G are not included in Fopt
as the optimistic values of F' or GG are dominated by the optimistic values of non-dominated
designs B or C.

We directly add the pessimistic value min(R¢(x)) of a design @ to §pess if it remains
non-dominated by the pessimistic value min(R;(x')) of any other point =’ as follows.

T € Fpess if min(Ry(x)) = min(Ry(x')) for z # ' € U (8)

As shown in Figure 6, pessimistic values of B, D, E etc. are added to §pess using the above
rule in Equation 8. However, the uncertainty regions R;(x’) of some designs ' € U ruled
out of Fpess using Equation 8 can have some degree of overlap with the uncertainty region
R,(x) of a design & € Fpess. Consider the uncertainty regions of F' and G in Figure 6.
Though their pessimistic values are dominated by the pessimistic values of B and C, there
is some overlap of the uncertainty regions of F' and G with the uncertainty regions of B
and C across an objective, in this case, f;. Overlapping uncertainty regions of F and G
with C are gray as they remain non-dominated by the pessimistic value of C in Figure 6.
In such cases, the pessimistic values of F' and G are updated with the minimum values of
the overlapping non-dominated uncertainty region using the following rule:

min(Ryi(x)) = min(Ryi(x)) if min(R¢(x)) = min(R(x’)) and

9
min(R, ;(z)) # max(R;;(x')) for each f; where, z # =’ and z, 2’ € U (9)

Later, updated pessimistic values of I’ or G are added to the pessimistic Pareto front §pess
if it remains non-dominated. Note that there can be more than one design in §,.ss Whose
pessimistic value can dominate the pessimistic value of another design not yet included in
Spess and has an overlap. Therefore, we need to repeat the above process for each of those
designs and finally update to a value that remains non-dominated. This process of identifying
Spess ensures that any design that has the potential to be included in the pessimistic Pareto
front is not discarded from our consideration. Finally, the Pareto region Pr bounded by
Sopt and Fpess is constructed.
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Algorithm 1: The FLEXIBO algorithm.

Input: design space X; maximum budget fp; number of initial designs Np;
1 Initialization
2 5; = Evaluate Ny designs for each objective f;

3 Determine average computational effort 0; = (Zi\i’l 0:,:)/No for each f;
at=Nyand =0
5 while 6 < 0y do

6 Modeling
7 Train surrogate models 9% ; using corresponding evaluated designs set S; for f;
8 | Obtain py(x) = (pi(x))1<i<n and oy(x) = (04i(x))1<i<n using (M ;)1<i<n for
all x € X,;,.
9 Compute uncertainty region R;(x) of each design & € X using Equation 1
10 Pareto region construction
11 U=0g

12 for all x € X, do
13 L if no x # «' for ' € X, exists such that min(R(x)) = max(R;(z')) then

14 | U=4U{x}

15 Identify optimistic Pareto front §,,; and pessimistic Pareto front §ess using {4
and Ry(x) with Equation 7, Equation 8, and Equation 9

16 Sampling

17 Compute acquisition function oy ;(x) across each objective f; using & € X"

with Equation 3

18 Updatet =t+1

19 Choose the next sample x; and objective f;; using Equation 10
20 Evaluate @ : y1i = fi.i(2¢)

21 Aggregate data S; = S; U {(, 1)}

22 Update 0, ; = ((t — 1) % 0; + 6,;)/t

23 Update 6 = 0 + 0;;

24 return Return the non-dominated designs from the evaluated designs set (S;)1<i<n
as the Pareto front using Equation 6

5.1.3 SAMPLING

At this stage, we select the next design x; and objective f; ; for evaluation using our proposed
acquisition function a4 () by the following:

Ty, ft,i = argmaXgex, . * for each f; aﬂ,f(m) (10)

Here, we only use the designs in the Pareto optimal set X;,* whose function values
constitute the Pareto fronts §,, and §pess in our acquisition function calculation. We
exclude designs not located on the hyperplanes passing through §,,; and §pess as they do
not contribute to the change of the volume of Pareto region Pr when their uncertainty across
any objective is reduced to zero. Intuitively, this helps us to speed up computation.

At every iteration, the evaluated design leads to a decrease in the volume of the Pareto
region, as illustrated in Figure 7. We update the set of evaluated designs S; for f;; by adding
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Figure 7: Decrease the volume of the Pareto region with each iteration.

{1, fr.i(x¢)}. Additionally, we update the computational effort 8; for objective f;; using
0; = ((t — 1) % 0; + 0,;)/t, where 6;; is the computational effort to evaluate x; across fi;.
Once the maximum budget 01 is exhausted, FLEXIBO returns the non-dominated designs
as approximate Pareto front using the evaluated designs @ € S; for each objective f;. Note
that the estimated mean p;(x) is used as the objective value for f; if a design « € S; is not
evaluated across f; while determining the Pareto front.

6. Evaluation

In this section, we evaluate the following research questions (RQs):

» RQ1: How to select the objective evaluation function for FLEXIBO to optimize mul-
tiple objectives for DNNs?

» RQ2: How effective is FLEXIBO in comparison to state-of-the-art multi-objective
optimization approaches for

v’ different DNNSs of different applications?
v  different DNNs of varying sizes (e.g., number of hyperparameters)?

» RQ3: How sensitive is FLEXIBO when different surrogate models are used?

6.1 Experimental Setup

We discuss the baselines, datasets, and experimental setup to evaluate FLEXIBO in this
section.

6.1.1 BASELINES
We compare FLEXIBO to the following baselines:

PESMO, PESMO-DEC (Hernandez-Lobato et al.,, 2015). These methods em-
ploy an acquisition function based on input space entropy and iteratively select the design
that maximizes the information gained about the optimal Pareto set. Both of these meth-
ods are cost-aware, with PESMOemploying a coupled evaluation strategy and PESMO-
DECemploying a decoupled evaluation strategy.
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Figure 8: Experimental Setup used for FLEXIBO.

Table 2: The DNN architectures and datasets used in the experimental evaluation.

DOMAIN  ARCHITECTURE DATASET CoMPILER NUM. LAYERS NUM. PARAMS TRAIN SizE TEST SIZE
XCEPTION IMAGENET Keras 71 22M 100K 10K
MOBILENET IMAGENET Keras 28 4.2M 100K 10K

IMAGE LENET MNIST Keras 7 60K 50K 10K
RESNET CIFAR-10 Keras 50 25M 45K 5K
SQUEEZENET CIFAR-10 Keras 3 1.2M 45K 5K

NLP BERT SQUAD 2.0 PyTorch 12 110M 56K 5K
BERT IMDB SENTIMENT PyTorch 12 110M 25K 2K

SPEECH DEEPSPEECH CoMMON VOICE PyTorch 9 68M 300 (hrs) 2 (hrs)

PAL (Zuluaga et al., 2013). An active learning algorithm that samples the design space
by classifying designs as Pareto optimal or not to identify the Pareto front. This method
uses a cost unaware coupled evaluation strategy.

PAREGO (Knowles, 2006). Transforms the multi-objective problem into a single-objective
problem using a scalarization technique.

SMSEGO (Ponweiser et al., 2008). This method is given by the gain in hyper-volume
obtained by the corresponding optimistic estimate after an € correction has been made. The
hypervolume is simply the volume of points in functional space above the Pareto front (this
is simply the function space values associated with the Pareto set), with respect to a given
reference.
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CA-MOBO (Abdolshah et al., 2019a). The acquisition function in CA-MOBO uses
Chebyshev scalarization for objective functions to ensure the solutions satisfy Pareto opti-
mality and a cost function as a component of the acquisition function that incorporates the
user’s prior knowledge of the search space. This multi-objective optimization method uses
a cost-aware coupled evaluation scheme.

For PAREGO, SMSEGo, PESMO, and PESMO-DEC implementation, we employ the
code from the MOBO library Spearmint?. For CA-MOBO, we use the code from the
repository® provided in the paper. For PAL implementation, we develop our own version in
Python by carefully following the algorithm presented in the paper (Zuluaga et al., 2013).
We run each optimization pipeline 5 times using different initial evaluations, where the initial
evaluations in one run are the same for all methods. The initial evaluations are sampled at
random from a Sobol grid which is the same as the one in the Spearmint library.

6.1.2 DATASETS

We use seven DNN architectures from three different problem domains; IMAGE, NLP, and
SPEECH. For each architecture, we select the most common dataset and compiler typically
used in practice. Table 2 lists the architectures, datasets, compilers, and sizes of the training
and test sets used in our experiments.

IMAGE. To evaluate the performance of FLEXIBO for image recognition applications, we
use the Xception (Chollet, 2017), MobileNet (Sandler et al., 2018), LeNet (LeCun et al.,
2015), ResNet (He et al., 2016), and SqueezeNet (Iandola et al., 2016) architectures. For both
Xception and MobileNet, we use the ImageNet ILSVRC2017 challenge dataset (Russakovsky
et al., 2015) and randomly select 100,000 train and 10,000 test images for our experiments.
We use the MNIST dataset (LeCun & Cortes, 2010) of handwritten images for LeNet. Our
training and test datasets consist of 45,000 and 5,000 images, respectively. For our evaluation
of FLEXIBO on ResNet and SqueezeNet, we use the CIFAR-10 dataset (Krizhevsky et al.,
2009), which consists of 60,000 images of size 32x32 with 10 classes (6,000 images per class).
We use 50,000 images for training and the remaining 10,000 images for testing.

NLP. We use the popular BERT (Devlin et al., 2018) architecture for our evaluation of
FLEXIBO for NLP applications. We combine BERT on 2 benchmark datasets: a question-
answering dataset, SQuAD 2.0 (Rajpurkar et al., 2016), and the IMDB Movie Review Sen-
timent Analysis dataset. Out of 130,319 training and 8,863 testing examples of the original
SQuAD 2.0 dataset, we randomly select 56,000 training and 5,000 testing examples for
our experiments with BERT (termed BERT-SQuAD). For the IMDB movie review dataset
(termed BERT-IMDB), we use all 25,000 binary sentiment analysis training examples for
training and randomly select 2,000 examples for testing out of the 25,000 testing examples
provided in the IMDB dataset.

SPEECH. To evaluate the performance of FLEXIBO for speech recognition, we use Deep-
Speech (Hannun et al., 2014) with the Common Voice dataset (Mozilla, 2019). We randomly
extract 300 hours of voice data for 5 different languages (English, Arabic, Chinese, German,

2. https://github.com/HIPS/Spearmint/tree/PESM
3. https://github.com/MajidAbdolshah/CA-MOBO
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and Spanish) from nearly 3,700 hours of voice data of the Common Voice dataset for training.
To evaluate the prediction error we test on 2 hours of voice data.

Table 3: DNN-specific design options and their values.

ARCHITECTURE DESIGN OPTION

Number of Filters Entry Flow
Number of Filters Middle Flow

VALUE/RANGE
16, 32, 64, 128, 256
16, 32, 64, 128, 256

XCEPTION Filter Size Entry Flow (1x1), (3%3), (5x5), (Tx7), (9x9)
Filter Size Middle Flow (1x1), (3%3), (5x5), (Tx7), (9x9)
Filter Size Exit Flow (1x1), (3x3)
Number of Filters Stem 16, 32, 64, 128, 256
Filter Size Stem (1x1), (3%3), (5x5), (Tx7), (9x9)
MOBILENET Number of Filters Depthwise Block One 16, 32, 64, 128, 256, 512, 1024
Number of Filters Depthwise Block Two 16, 32, 64, 128, 256, 512, 1024
Number of Filters Depthwise Block Three 16, 32, 64, 128, 256, 512, 1024
Number of Filters Depthwise Block Four 16, 32, 64, 128, 256, 512, 1024
Number of Filters Layer 1 16, 32, 64, 128, 256, 512, 1024
Filter Size Layer 1 (1x1), (3%3), (5x5), (Tx7), (9x9)
Number of Filters Layer 2 16, 32, 64, 128, 256, 512, 1024
LENET Filter Size Layer 2 (1x1), (3%3), (5x5), (Tx7), (9x9)
Number of Filters Layer 3 16, 32, 64, 128, 256, 512, 1024
Filter Size Layer 3 (1x1), (3%3), (5x5), (Tx7), (9x9)
Number of Filters Layer 4 16, 32, 64, 128, 256, 512, 1024
Filter Size Layer 4 (1x1), (3%3), (5x5), (Tx7), (9x9)
Number of Filters Stem 16, 32, 64, 128, 256, 512, 1024
Number of Filters Projection Block 16, 32, 64, 128, 256, 512, 1024
RESNET Filter Size Projection Block (1x1), (3%3), (5x5), (Tx7), (9x9)
Number of Filters Bottleneck Block 16, 32, 64, 128, 256, 512, 1024
Filter Size Bottleneck Block (1x1), (3%3), (5x5), (Tx7), (9x9)
Number of Filters Stem 16, 32, 64, 128, 256, 512, 1024
Number of Filters Stem 16, 32, 64, 128, 256, 512, 1024
SQUEEZENET Filter Size Fire Group One (1x1), (3%3), (5x5), (Tx7), (9x9)
Number of Filters Fire Group Two 16, 32, 64, 128, 256, 512, 1024
Number of Filters Fire Block 16, 32, 64, 128, 256, 512, 1024
Dropout 0.1, 0.3, 0.5, 0.7, 0.9
Maximum Batch Size 6, 12, 16, 32, 64
BERT Maximum Sequence Length 13, 16, 32, 64, 128, 256
Learning Rate le™®, 275, 3¢, 4e™®, be®
Weight Decay 0,0.1, 0.2, 0.3
Num of epochs 2,4, 8, 16, 32
Dropout 0.1, 0.3, 0.5, 0.7, 0.9
DEEPSPEECH Maximum Batch Size 16, 32, 64, 128, 256

Maximum Sequence Length
Learning Rate

16, 32, 64, 128, 256, 512, 1024
le™®, 275, 3¢, 4e™®, be®
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Table 4: OS-specific design options and their values.

DEesicN OPTION VALUE/RANGE
Scheduler Policy CFP, NOOP
Swappiness 10, 30, 60, 100
Dirty Background Ratio 10, 50, 80
Dirty Ratio 5, 50

Cache Pressure 100, 500

Table 5: Hardware-specific design options and their values.

DEesicN OPTION VALUE/ RAN(%E
Jetson Xavier
Num Active CPU 1-6

CPU Frequency (GHz) 03-23
GPU Frequency (GHz) 03-18
EMC Frequency (GHz) 0.3-20

6.1.3 OBJECTIVES AND DESIGN OPTIONS

We select two objectives: energy consumption and prediction error for optimization for each
architecture in our experiments. While we restrict ourselves to two objectives, our method-
ology can be applied to an arbitrary number of objectives. Depending on the particular
hardware platform and DNN architecture, we select 14-17 design options. Each platform
and DNN has its own specific hardware and DNN design options; OS-specific options are
the same. We consider 4 hardware-specific design options, 5 OS-specific options, and 5-8
DNN-specific options. Our chosen DNN-specific, OS-specific, and hardware-specific design
options are listed in Tables 3, 4, and 5, respectively. We choose these options based on sim-
ilar hardware configuration guides,/tutorials and (Halawa et al., 2017). The choice of these
design options presents an interesting scenario for optimization based on how they influence
performance objectives because of the complex interactions of the options. Hardware- and
OS-specific options like the number of active CPUs or the scheduler policy affect only energy
consumption, whereas DNN options like filter size or the number of filters affect both en-
ergy consumption and prediction error. Depending on the DNN architecture, we use either
Keras (Tensorflow as the backend) or PyTorch as the compiler for training and prediction
(see Table 2 for details).

6.1.4 SETTING

To initialize FLEXIBO, we measure the prediction error and energy consumption of 20
randomly selected designs from the design space of a particular DNN system. As energy
consumption measurements tend to be noisy, we take 10 repeated measurements for a par-
ticular design  and consider the median. We do not repeat prediction error measurements
as they are not noisy. We use two different surrogate models, Gaussian process (GP) and

663



IgBAL, Su, KOTTHOFF, & JAMSHIDI

Table 6: The list of hyperparameters used for the surrogate models.

SURROGATE HYPERPARAMETERS VALUE

Kernel Squared Exponential
GP Num Restarts 20

Optimizer L-BFGS-B

la} le~ 10

Num Trees 128
RF Min Split Variable 2

Min Impurity Split le~ 7

Random Forest (RF), termed FLEXIBO-GP and FLEXIBO-RF, respectively. Details of the
hyperparameters used for both GP and RF are provided in Table 6. We use the Wall-Clock
Time t.ci required to evaluate an objective f; as the computational effort and run exper-
iments with three different objective evaluation cost functions: (i) Logarithmic cost (LC):
0; = log (twe), (ii) Ratio cost (RC): 0; = mﬁm and, (iii) Constant cost (CC): §; =1
to simulate a method that is not cost-aware. At each iteration, FLEXIBO recommends a
design and an objective for evaluation. Depending on the objective selected for evaluation,

we take the following actions.

» The recommended objective is prediction error.

v" We retrain a DNN with the DNN-specific options of the selected design if no
pre-trained model for the DNN-specific options exists. We reuse the pre-trained
model otherwise. We measure prediction error by running inference using the
test dataset for each DNN architecture.

» The recommended objective is energy consumption.

v If no pre-trained model with the DNN-specific options of the selected design exist,
we use a model whose size is the same as that of the model obtained after random
initialization of the weights using the DNN-specific design options, else we reuse
the pre-trained model. We measure energy consumption on Jetson Xavier for the
selected design during the inference of the test dataset for each DNN architecture.
The built-in sensor on the Jetson Xavier records voltage and current readings in
the SsysFs nodes. We read the power data every 50 milliseconds and combine
them to determine energy consumption.

Figure 8 gives a high-level overview of our experimental setup. We implement FLEXIBO
in a distributed manner where the training of a DNN is done remotely on virtual machine
instances with 8 NVIDIA Tesla K80 GPU deployed on the Google cloud, and the measure-
ments and optimization algorithms run locally on resource-constrained Jetson devices, such
as, Xavier. Our experiments took a total of 5552.4 hours of wall-clock time to complete.
We ensure the DVFS setting is off and that no other jobs are running in the background
while the experiments are running for accurate measurements.
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Hypervolume Error. The Pareto hypervolume (hv) is commonly used to measure the
quality of an estimated Pareto front @*(Cao et al., 2015; Zitzler & Thiele, 1999). As seen
in Equation 11, it is defined as the volume enclosed by the estimated Pareto front 1’}”* and a
user-defined reference point r in the objective space, in our case the origin of the coordinate
system.

bo(§°,7) = V(U,ezfalr < q < s}) (11)

The hypervolume error 5 is defined as the difference between the hypervolumes of the true
Pareto front §* and the estimated Pareto front §*.

n="bo(3*,r) — ho(F",r) (12)

We evaluate the quality of the obtained Pareto fronts using the hypervolume error and the
cumulative log wall-clock time as the objective evaluation cost required to obtain it. In a real-
world setting, the true Pareto fronts §* are unknown. Therefore, we use an approximation of
the true Pareto front by combining the Pareto fronts obtained by the different optimization
methods considered in our experiments for evaluation. We use the algorithm presented in
(Fonseca et al., 2006) for hypervolume computation.

6.2 Experimental Results

Given the same wall clock time, we observe the hypervolume error obtained by Pareto
fronts identified by the different optimization methods. Furthermore, to assess the quality
of the Pareto fronts, we compare the number of designs in the target region of the objective
space. Our target region is where the prediction error is less than 25%, and the energy
consumption is less than the first quartile. Note that energy consumption is specific to the
hardware platform.

6.2.1 RQ1: DETERMINATION OF OBJECTIVE EVALUATION COST FUNCTION

Figures 9 and 10 show the results for optimizing prediction error and energy consumption
with different cost functions. FLEXIBO-GPLC has lower hypervolume error (shown in
Figure 9) and a higher number of designs in the target region (shown in Figure 10) than
FLEXxIBO-GPRC and FLEXIBO-GPCC. To better understand the effect of different cost
functions, we also look at the behavior of FLEXIBO in Figure 11(a) and 11(b). Cost-unaware
FLEXIBO-GPCC greedily selects the design and objective across which the volume change
is maximal for evaluation. As a result, FLEXIBO-GPCC wastes resources by selecting
expensive evaluations for little gain. This is evident from 11(b), which indicates that the
reduction of volume by the designs selected by FLEXIBO-GPCC is lower considering the
evaluation cost. A larger change in the volume of the Pareto region is desired as it indicates
higher information gain. The objective evaluation cost function in FLEXIBO-GPRC is
skewed towards selecting the objective with lower evaluation cost and evaluates a higher
number of designs for the less expensive objective, such as, energy consumption (shown
in Figure 11(a)). However, it achieves a lower change in the volume of the Pareto region
than FLEXIBO-GPLC. FLExXIBO-GPLC on the other hand, selects designs that achieved a
larger volume change across the Pareto region (Figure 11(b)) and, therefore, a better choice
than others.
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Figure 9: Comparison of hypervolume error obtained by FLEXIBO using different cost
functions.
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Figure 10: Comparison of Pareto optimal designs obtained by FLEXIBO using different cost
functions.

6.2.2 RQ2: EFFECTIVENESS OF FLEXIBO

Effectiveness across DNNs of different applications. Figures 12 and 13 show the ef-
fectiveness analysis of FLEXIBO across different applications. In Figure 12 we observe that
FLEXIBO-GPLC outperforms other methods in finding Pareto fronts with lower hypervol-
ume error for each of the applications. For example, FLEXIBO achieves 22.4% lower hyper-
volume error than CA-MOBO in DEEPSPEECH. In Figure 13, we observe that FLEXIBO-
GPLC is able to find a higher number of designs in the target region than other methods
for RESNET, BERT-SQUAD, and DEEPSPEECH.

Effectiveness across DNNs of different sizes. Figures 14 and 15 show the effectiveness
analysis of FLEXIBO across different-size DNNs. We make the following observations: (a)
as shown in Figure 14, we find that FLEXIBO-GPLC outperforms other methods in finding
Pareto fronts with lower hypervolume error across all applications (e.g., 22.3% lower for
IMDB than CA-MOBO), (b) in Figure 15, we observe that FLEXIBO-GPLC is able to
find a higher number of designs in the target region than other methods for Xception,
MobileNet, and BERT-IMDB. For LeNet, PAL achieves a 3.6% lower hypervolume error
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Figure 11: (a) Number of evaluations across each objective by FLEXIBO using different cost
functions (b) FLEXIBO-GPLC achieved a higher change of volume of the Pareto region
with the recommended design and objective when compared to others.

BERT-SQuAD DeepSpeech

055

.50 050

o

1080
= PESMO.DEC
—— FLEXIBO-GPLC

iy i e
"ﬂll.n;'ﬁiiiiii%!mhi*ﬁ.

.30 030

.25 020 025
0 Bl 10 150 200 o £ 100 150 200 i 50 wn 1 200 2
Cumulative Log WallClock Time Curmlative Log WallClock Time Cumulative Log WallClock Time

Figure 12: Comparison of hypervolume error obtained by FLEXIBO and other approaches
for DNNs for object detection, NLP, and speech recognition applications.

than FLEXIBO-GPLC. LeNet is a small architecture, and FLEXIBO performs poorly for
such small architectures as the effect of selecting designs based on the change of volume

of the Pareto region per cost is less pronounced than for larger architectures (Xception or
BERT-IMDB, etc.).

Table 7: Time (in seconds) required for one iteration with and without objective evaluation
across all architectures.

FLEXIBO PESMO PESMO-DEC PAL CA-MOBO PAREGO SMSEGO

No EVALUATION 79.9+7.4 64.845.1 66.94 5.4 178.24 10.6 712+ 8.4 56.2 48.444.3
Wit EvaLuaTiON 1417.2+ 97.6  9133.7+£448.8  4400.4+225.9  8764.3+£469.5 8411.54+365.4 8656.9+£220.3 9020.9+306.3

We observe that approaches other than FLEXIBO cannot make the best use of the allo-
cated budget as they evaluate the more expensive objectives more than the cheap objectives.
As the expensive objectives can be selected any time (even for little gain), this strategy is
wasteful when limited resources are available. FLEXIBO makes better use of the resources

667



IQBAL, Su, KOTTHOFF, & JAMSHIDI

BERT-5(JuAD

PESMO.DEC
= FLEXIBOMGPLC

o Error (%)
on Error (%)

Predicti

10000 15000 20000 25000 0000 4500 20000 3000 400 5 GO0 TOMH  S0000 90000 20000 AN A0KI00 000 GO
Energy Consumption (m.J) E: [ (mJ) Energy Consumnption (mJ)

Figure 13: Comparison of Pareto fronts obtained by FLEXIBO and other approaches for
DNNs for object detection, NLP, and speech recognition applications.
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Figure 14: Comparison of hypervolume error obtained by FLEXIBO and other approaches
for DNNs of different sizes.

by evaluating the cheaper objectives more in the earlier iterations and thus gaining a better
understanding of the design space and only later evaluating the costly objective (Figure 16).
We also find that FLEXIBO is able to evaluate more designs by prudently selecting the ob-
jectives across which to evaluate it (Figures 14 and 15). A cost-aware decoupled approach
is clearly useful for scenarios where the evaluation budget is limited.

Comparison of average time required for modeling. Table 7 shows the average time
required for one iteration for different multi-objective optimization methods, averaged across
all architectures. Though FLEXIBO requires more time to compute the acquisition function
(no evaluation) than others, the time required for one iteration including the objective
evaluation time in FLEXIBO is 5.6 x lower than the next best method PAREGO.

6.2.3 RQ3: SENSITIVITY ANALYSIS

Different surrogate models. We compare the performance of the different variants of
FLEXIBO: FLEXIBO-GPLC and FLEXIBO-RFLC that use log objective evaluation cost.
We used this cost function as it is a better choice than ratio and constant cost functions. Fig-
ures 17 and 18 show the hypervolume error and quality of the obtained Pareto fronts. We find
that across all architectures, FLEXIBO-GPLC outperforms FLEXIBO-RFLC (FLEXIBO-

GPLC has lower hypervolume error and a higher number of designs in the target region).
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Figure 15: Comparison of Pareto fronts obtained by FLEXIBO and other approaches for
DNNs of different sizes.
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Figure 16: FLEXIBO utilizes resources more efficiently than other approaches when the
difference of evaluation cost between objectives is high. The colors indicate the evaluation
cost. FLEXIBO is able to run for more iterations as it expends less of the evaluation budget
at each one.

To understand the effect of the surrogate models used on the overall optimization perfor-
mance, we compare FLEXIBO-GPLC and FLEXIBO-RFLC with PESMO-DEC (uses GP
surrogate model) and PESMO-DEC-RF (uses RF surrogate model) in ResNet. We choose
PESMO-DEC for this comparison as it achieves the next best performance after FLEX-
IBO (see Figure 12). The results presented in Figure 19 (left) show that FLEXIBO-RFLC
has 12.6% lower hypervolume error than PESMO-DEC-RF. However, PESMO-DEC out-
performs FLEXIBO-RFLC slightly by 0.5%, which indicates that the choice of surrogate
model is crucial for MOBO, like, FLEXIBO. The reason behind the performance discrepancy
of the MOBO algorithms with different surrogate models can be explained by the results
presented in Table 8 and Figure 19 (middle and right). Table 8 shows that predictions from

Table 8: Width of the confidence band for the predicted values of the surrogate models for
both objectives: energy consumption and prediction error.

Surrogate Confidence Interval for Confidence Interval for
Model Energy Consumption (mJ) Prediction Error (%)
GP 491.2 1.8

RF 768.4 2.7
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Figure 17: Comparison of hypervolume error obtained by FLEXIBO with different surrogate
models.
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Figure 18: Comparison of Pareto fronts obtained by FLEXIBO with different surrogate
models.

RF surrogate models have a wider confidence band (higher uncertainty) than GP predic-
tions for a certain MOBO approach. From Figure 19 (middle and right), we note that as the
number of designs used to train a surrogate model increases, the prediction accuracy for RF
does not improve much compared to GP, particularly for the prediction error of the DNN
objective. This explains why GP surrogate models based MOBO techniques perform better
than RF surrogate models based MOBO techniques. Given the limited resources available
for the experiment, models that achieve higher accuracy using fewer training samples are
better candidates for optimization.

7. Conclusion

In this work, we proposed a novel cost-aware acquisition function for Bayesian multi-
objective optimization called FLEXIBO. Instead of evaluating all objective functions, FLEX-
1IBO automatically chooses the one that provides the highest benefit, weighted by the evalu-
ation cost. We showed the promise of our approach through an extensive and thorough eval-
uation of seven different DNN architectures over a large design space on resource-constrained
hardware platforms. Our experimental results show that FLEXIBO performs better than
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Figure 19: (left) Comparison of hypervolume for the Pareto fronts obtained by FLEXIBO and
PESMO-DEC when different surrogate models are used in ResNet. (middle) Comparison
of surrogate models’ prediction accuracy for energy consumption. (right) Comparison of
surrogate models’ prediction accuracy for prediction error of the DNN.

current state-of-the-art approaches in most cases, both in terms of the quality of the obtained
Pareto fronts and the cost necessary to obtain them.
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Appendix A. Theoretical Analysis

In this section, we analyze the sample complexity of FLEXIBO. Let us assume that the
maximum iteration within budget 67 is T'. By extending the theory from PAL, we derive the
convergence rate of our proposed FLEXIBO algorithm. (Zuluaga et al., 2013) demonstrated
that the critical quantity governing the convergence rate is given by the following:

yr = max I(yy..yr; f), (13)
Yi---Yyr

which indicates the maximum reduction of uncertainty achievable by sampling 7' designs.
For FLEx1BO, the maximum reduction of uncertainty corresponds to the maximum change
of the volume of the Pareto region AV and the above equation can be written as:

yr = max AV(yi..yr; f), (14)

yi.-y1

Similar to (Srinivas et al., 2012; Zuluaga et al., 2013), we also establish y7 as the key
quantity in bounding the hypervolume error 7 in our analysis. The following theorem is our
main theoretical result.
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Table 9: List of symbols and their descriptions.

Symbol Description

t Number of iteration

Pr Pareto region

T Total number of iterations
Spess Pessimistic Pareto front

n Number of objectives

Vi Volume of Pg at iteration t

I Posterior mean

o Posterior standard deviation

u Non-dominated points set

O Evaluation cost of an objective f;

x A design

r A reference point

k4 Design space

AV, Change of volume of the Pg at iteration ¢
f An objective

Ri(x) Uncertainty region of a point & at iteration ¢
By Scaling parameter value at iteration ¢
m Surrogate model

Si Evaluated points set for objective f;
F* Optimal Pareto front

x* Pareto-optimal set

N Number of initial samples

n Pareto hypervolume error

ho Pareto hypervolume

Op Total objective evaluation cost

4 Probability

¥ Maximum information gain

«a Acquisition function

A" n-simplex

V(A")  Volume of an n-simplex

k Co-variance

Yi Actual value of an objective f;

v Measurement noise

1’?;* Approximate optimal Pareto front

Theorem 1. Let § € (0,1). FLEXIBO running with 8, = 2/9log(n|X|r?t2/66) would
achieve a maximum hypervolume error of  of the Pareto front obtained inside total cost Op
with probability 1 — 6.

ﬁa?i—l o 2(015,1.71,)7;/2(3—:(71 + 1))1f2

<
=7 2 n!

n—1) (15)
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fi(x)

Figure 20: Example of hypervolume error bound for two objectives.

Here, a; = maxgex,, 1<i<n 0i(x)yv/P1, C1 = W’ = @ and yr It depends on the
type of surrogate because the predicted uncertainty can differ depending on a model’s ability

to handle noisy measurements.

This indicates that by specifying § and a total budget 87, FLEXIBO can be configured
to achieve a hypervolume error 7 with confidence 1 — 4.

Proof. Imtla,]ly, using Lemma 1 and 2, we show how the change of volume of the Pareto

region Zs L AVy; is related to the total budget O7:

r /2 (22 (n 4 1))1/2
S v <o W) R

- n!
t=1

Now, we relate hypervolume error n and 6. Let 1, = (1,...,1)T and let e; denote the
ith canonical base vector. (Zuluaga et al., 2013) that considers a; to be the maximum value
for each f;(z), with probability 1 — 6. Here, a; = maxgzex,, 1<i<n 0i(€)\/B1 obtained from
the width of the confidence regions, as shown in Figure 20. We obtain this by replacing the
co-variance term k;(x, ) used for measuring the width of the confidence region only for GP
in Lemma 12 by (Zuluaga et al., 2013) with variance o2(z) to extend our proof for both
GP and RF surrogate models. PAL (Zuluaga et al., 2013) also showed that the projection
a;, where 1 < i < n, onto the hyperplane H,, is an n-simplex S,, has a volume of %
Hypervolume error 7 depends on the distance between the boundaries defined by §pess and

Sopt at any iteration that is bounded by 3{;—1),1/1 (Zuluaga et al., 2013). At any iteration
t, V; can be written as the difference between the initial volume of the Pareto region V; and
the sum of change of volume AV,. At iteration T', hypervolume error n can be written as

the following:
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Figure 21: Example Pareto region Pi for n = 2 objectives (left). The Pareto region is a
sum of n-simplexes (middle). The change of volume after evaluation across objective f is
shown by the yellow region (right).

Lemma 1. Given § € (0,1) and B = 2/9log(n|Xm|mt2/65), the following holds with
probability <1 — § with C) = @1?—7—2)'
,1‘ I al o2l n
Y A2 < A ryrfint1 (16)
s ’ (n!)? n

Proof. The change of volume of the Pareto region at any iteration ¢ would be across only
one objective f;, where 1 < ¢ < n. Therefore, we need to determine the change of volume
AV, ; for f; only. Let us assume that m is the centroid of the Pareto region Pg. If we add

each vertex of the uncertainty region R;(x) of each design & with centroid m an n-simplex
is formed. So, the Pareto region Pr can be shown as the sum of all these n-simplexes similar
to Figure 21 (middle). When a design x; is evaluated across an objective, the volume of the
Pareto region is reduced by the volume of two n-simplexes as shown by the yellow region in

n+1
2?1. ]

Figure 21 (right). Volume of an n-simplex is given by % where s is the length of the

side.
AV,; <2V(A™)
25" In+1
=V 2n

By using the width of the uncertainty region 253’201_111;(3:1) across an objective f; as the
side length s we get the following:

1/2

2(2 14 n 1

AV, < (28, U.‘,!l,t(mt)) n -+
' n! 2n
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where 1 <i < n. As /3, is increasing the above equation can be written similar to (Zuluaga
et al., 2013) by the following:

4(4Bro*(o %07y j(x1))" n+ 1

(n!)? 2n
< 4(4B71a%Cs log(1 + 0_20'!'2_1,?:(3:{‘)))” n+1
- (n!)? on

AVE <

where Cy = =2y Applying summation on the above we get

o
log(l+4o

I,y 440G L Tog(1+ 0%, ()" n+ 1
; " (nl)2 2"

With C) = 802C5 we get the following:

T 2 B AN
ZA‘/&' < 4(4/@10’ C2Av(y1 3 .f_f sﬁ)) n+1
t=1

(HI)Q on
< HC1BrAV (yr; fr))" n +1
= (nl)? T
< UC1Bryr)"n+1
- (m)2 o2

O

Lemma 2. Given § € (0,1) and B; = 2/9log(n|Xm|7?t?/66), the following holds with
probability <1 — 4.

n./z(%f(:awrl))lf2

n!

I C1Bryr
> Aav <o 12”1) for T>1 (17)
t=1

Proof. Similar to Lemma 6 in (Zuluagra: et al., 2013), by applying Cauchy-Schwarz inequality
on Lemma 1 as (3}, AV,,)2 < T, AV}%, we obtain the following:

T 5 Bepryy, /2 1/2
t=1

n!

Z?:l 0

In the worst case, T’ < g—:, where 0, = ==

A.1 Runtime Complexity of FLEXIBO

We analyze the run-time complexity of FLEXIBO using Gaussian Processes (GP) and ran-
dom forests (RF) as surrogate models, separately, in this section. The total complexity of
FLEX1IBO can be determined by combining complexities of FLEXIBO from modeling, Pareto
region construction, and sampling stages.
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Let |X| = g be the total number of designs in the design space. However, we only
consider |X,,| = m designs sampled by Monte-Carlo sampling in this approach. We also
consider Ny + t designs to train the surrogate models at each iteration ¢. Let us consider
s = m + Np + t. Note that by design, s << gq. As a result, our FLEXIBO algorithm is
significantly faster.

Modeling. In the modeling stage, only a small subset of designs is used to train the sur-
rogate models at each iteration. Training a GP with s number of designs takes O(s® + ms?)
(Rasmussen, 2003) time. Training an RF with s designs takes O(n;n,s?logs) time where
n, is the number of trees, and n, is the number of features used at each level. Determining
the uncertainty region of each design & € X, takes an additional O(m) time. Therefore, the
total complexity of the modeling stage for using GP surrogate model is O(s® + ms? + m)
and for RF surrogate model is O(nnys?log s + m).

Pareto Region Construction. In the Pareto region construction stage, we initially de-
termine the non-dominated designs in the design space and later use the non-dominated
designs « € 4 to construct the Pareto fronts. The complexity of finding the non-dominated
designs is O(m?). The complexity of constructing the Pareto fronts is similar to the com-
plexity of determining the number of designs on the boundary of the convex hull, which
can be performed in O(mlogm)| time if the number of objectives n = 2. When n > 2, the
Pareto fronts are constructed in O(m(logm)" 2 + mlogm) time (Kung et al., 1975).

Sampling. In the sampling stage, FLEXIBO determines the next sample x; and objective
ft,i for evaluation. To do so, FLEXIBO computes the acquisition function oy ;(x) for each
design in X,;,* and selects the maximum. To compute «; ; () across an objective f;, FLEXIBO
needs to compute the volume of the Pareto region Py by updating the uncertainty values of
x in X", This would take O(m) time as |Xn|* = m in the worst case. After measuring the
selected design x; across objective f; ;, we update the evaluated designs set S; and objective
evaluation cost 6; ;. All of these are done in constant time and we can safely ignore them in
our analysis. Therefore, the total run-time complexity of FLEXIBO in the sampling stage
is O(m), regardless of the surrogate model.

Overall. Finally, we determine the overall complexity of FLEXIBO using GP and RF for
n objectives by combining the complexities of the three stages discussed above. When GP
is used as the surrogate model, the total complexity of FLEXIBO for n = 2 objectives is
O(s® + ms? + m? + mlogm + 2m) and for n > 3 objectives the total complexity is O(s® +
ms?+m?+m(logm)" 2 +mlogm+2m). To simplify these expressions, we consider s = m.
Now, the total complexity for n = 2 objectives using GP surrogate model is approximately
O(s® + 52 + slog s + s) and for n = 3 objectives is O(s + 5% + s(log s)" 2 + slog s + s).

Similarly, when RF is used as a surrogate model, the total complexity of FLEXIBO
for n = 2 objectives is O(nynys®logs + m? + mlogm + 2m) and for n > 3 objectives is
O(nynys?log s +m? +m(logm)" 2 +mlogm+2m). After simplification the complexity for
n = 2 objectives can be written as O(s?log s + s + slog s + s) and for n = 3 objectives the
complexity can be rewritten as O(s?log s + s + s(log s)" 2 + slog s + ).

Upon further simplification, we observe that the complexity of FLEXIBO with the GP
surrogate model is approximately O(s®) and for the RF surrogate model the complexity is
O(s?log s), where s is significantly lower than the total number of designs q.
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