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CARE: Finding Root Causes of Configuration Issues
in Highly-Configurable Robots

Md Abir Hossen
Ellen C. Czaplinski

Abstract—Robotic systems have subsystems with a combina-
torially large configuration space and hundreds or thousands of
possible software and hardware configuration options interacting
non-trivially. The configurable parameters are set to target specific
objectives, but they can cause functional faults when incorrectly
configured. Finding the root cause of such faults is challenging due
to the exponentially large configuration space and the dependencies
between the robot’s configuration settings and performance. This
paper proposes CARE—a method for diagnosing the root cause of
functional faults through the lens of causality. CARE abstracts the
causal relationships between various configuration options and the
robot’s performance objectives by learning a causal structure and
estimating the causal effects of options on robot performance indi-
cators. We demonstrate CARE’s efficacy by finding the root cause
of the observed functional faults and validating the diagnosed root
cause by conducting experiments in both physical robots (Husky
and Turtlebot 3) and in simulation (Gazebo). Furthermore, we
demonstrate that the causal models learned from robots in sim-
ulation (e.g., Husky in Gazebo) are transferable to physical robots
across different platforms (e.g., Husky and Turtlebot 3).

Index Terms—Robotics and autonomous systems, causal
inference, robotics testing.
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I. INTRODUCTION

OBOTIC systems are highly configurable, typically
R composed of multiple subsystems (e.g., localization,
navigation), each of which has numerous configurable
components (e.g., selecting path planning algorithms in the plan-
ner). Once an algorithm has been selected for a component, its
associated parameters must be set to the appropriate values (e.g.,
use grid path = True). The configuration space in such robotic
systems is combinatorially large, with hundreds if not thousands
of software and hardware configuration choices that interact
non-trivially with one another. Indeed, incorrectly specified con-
figuration options are one of the most common causes of system
failure [1]. The configuration space in robotic systems directly
impacts mission objectives (e.g., navigating from one place to
another), enabling trade-offs in the objective space (e.g., the time
that it takes to reach the target location(s) vs. the energy con-
sumption for the task). The magnitude of the trade-off (even for
the same configuration option) is dictated by the characteristics
of the operating environment (e.g., the roughness of the surface).
Unfortunately, configuring robotic systems to meet specified
requirements is challenging and error-prone [2]. Incorrect con-
figuration (called misconfiguration) can cause buggy behavior,
resulting in functional and/or non-functional faults." Misconfig-
ured parameters specified during design time can cause unex-
pected behavior at run time [3]. In addition, the operating envi-
ronment may change during a mission [4], [5] and may require
changing the configuration values on the fly [6]. The aforemen-
tioned challenges make debugging robots a difficult task.

To handle the challenges in performance debugging and anal-
ysis, performance influence models [7], [8], [9] have received
significant attention. Such models predict the performance be-
havior of systems by capturing the important options and in-
teractions that influence the performance behavior. However,
performance influence models built using predictive methods
suffer from several shortcomings, including (i) failing to cap-
ture changes in the performance distribution when deployed in
unexpected environments [10], (ii) producing incorrect expla-
nations as illustrated in Fig. 1(b), (iii) lack of transferability
among common hardware platforms that use the same software
stack [11], and (iv) collecting the training data for predictive
models from physical hardware is expensive and requires con-
stant human supervision [12]. Traditional statistical debugging

"We define functional faults as failures to accomplish the mission objec-
tive (e.g., the robot could not reach the target location(s) specified in the mission
specification). The non-functional faults (interchangeably used as performance
Jaults) refer to severe performance degradation (e.g., the robot reached the target
location(s); however, it consumed more energy, or it took more time than the
specified performance goal in the mission specification).
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Fig. I.  An example showing the effectiveness of causality. (a) Incorrect rea-
soning (b) correct correlation after incorporating obstacle cost as a confounder;
(c) the causal model correctly captures obstacle cost as a common cause to
explain the robot’s behavior.
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Fig. 2. Different functional faults. (a) Delay in data transformation results in
a functional fault where the robot stops 0.5 m away from the target location
and transmits incorrect artifact locations; (b) Change in environment results in
an indecisive robot stuck in place. Circles surrounding the robot represent the
inflation radius.

techniques [13] based on correlational predicates, such as Co-
operative Bug Isolation (CBI), can be used to debug system
faults. However, statistical debugging is hindered by the need for
large-scale data and the inherent difficulty of pattern recognition
in high-dimensional spaces [14], which can be challenging for
robotic systems with non-linear interactions between variables.

To address this problem, we present an approach called
CARE (Causal Robotics DEbugging) to diagnose the root causes
of functional faults caused by misconfigurations in highly-
configurable robotic systems through the lens of causality.
Causal models enable interventional and counterfactual analy-
ses [15] and can accommodate for unobserved confounders [16].
These factors are important because certain variables that cannot
be modified or have not been directly observed may exist,
avoiding spurious correlations [17]. Debugging using causal
models can also help with designing robust policies [18] that
can adapt to different environments by identifying causal re-
lationships between variables and testing policy effectiveness.
These advantages make using a causal model more effective than
traditional statistical debugging (e.g., CBI).

CARE works in three phases: In Phase I, we first learn a
causal model from observational data—dynamic traces mea-
suring the performance objectives (e.g., energy, mission suc-
cess, etc.) while the robot performs a mission under different
configuration settings. The causal model captures the causal
relationships between configuration options and the robot’s
performance objectives. In Phase II, we use the causal graph
to identify the causal paths—paths that lead from configuration
options to a performance objective. Next, in Phase III, we de-
termine the configuration options with the highest causal effect
on a performance objective by measuring each path’s average
causal effect to diagnose the functional faults’ root causes. Our
numerical studies confirm that CARE obtains 87% accuracy,
83% precision, and 81% recall on the target platform (Zurtle-
bot 3) when reusing the causal model constructed from a source
platform (Husky in simulation). Moreover, CARE achieved 27%
more accuracy and 24% more F1-score compared to CBI. Our
contributions are as follows:
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e We propose CARE (§1I11), a novel framework for finding the
root causes of the configuration bugs in robotic systems.

® We evaluate CARE, conducting a comprehensive empirical
study (§IV) in a controlled environment across multiple
robotic platforms, including Husky and Turtlebot 3 both in
simulation and physical robots.

® We demonstrate the transferability of the causal models
by learning the causal model in the Husky simulator and
reusing it in the Turtlebot 3 physical platform (§IV-C).

II. PROBLEM DESCRIPTION

A. Motivating Scenarios

To motivate the approach, we use the DARPA Subterranean
Challenge [19] to illustrate the following scenarios. This setting
requires autonomous ground robots to work in adverse envi-
ronments such as fog, debris, dripping water, or mud and to
navigate sloped, declining, and confined passageways. In this
case, the mission objective is to stop the robot perpendicular to
the position of a particular artifact and transmit its location to
the control station.

a) Functional fault due to configuration bug: Fig. 2(a) shows
a scenario where the robot stops 0.5 m away from the target
location and transmits incorrect artifact locations to the control
station. A cause for this fault might be a delay in data transforma-
tion. For instance, the sensor transmits data at 1 Hz, and the robot
travels at 0.5 m/s. As a result, when the costmap (which stores
and updates information about obstacles in the environment
using sensor data) receives data from the sensor, it is a second
old, and the robot has already traveled 0.5 m away from that
position.

b) Functional fault due to change in environment: Extend-
ing the previous scenario, suppose the obstacle locations are
unknown to the robot. Fig. 2(b) shows a scenario where at ¢3 the
robot encounters unique obstacles that are too close together,
violating the inflation radius (which specifies the object’s maxi-
mum sensing distance), defined before deployment, resulting in
an indecisive robot that is stuck in place.

¢) Incorrect reasoning about the robot’s behavior: We per-
form a simple experiment for robot navigation, recording the
number of failures in path planning (planner failed) and proba-
bility of mission success. Fig. 1(c) shows the distribution of the
P(mission success) with respect to planner failed. We observe
that an increase in planner failed leads to a higher P(mission
success), which is counter-intuitive. Such a trend is typically
captured by statistical reasoning in ML models. Incorporating
obstacle cost along the trajectory as a confounder (Fig. 1(b))
correctly shows an increase in planner failed corresponding to
a decrease in the P(mission success) (negative correlation).
The causal model (Fig. 1(c)) correctly captures obstacle cost
as a common cause to explain the correct relation between the
planner failed and P(mission success). The arrows denote the
assumed direction of causation, whereas the absence of an arrow
shows the absence of direct causal influence between variables.

d) Challenges: A typical debugging approach to finding the
root causes of such functional faults might be trial-and-error.
However, this process requires non-trivial human effort due to
the large configuration space. Even after finding the optimal
fix (e.g., a new value for a configuration option), the new fix
is not guaranteed to function in different environments (as in
Fig. 2(b)). Another typical performance debugging strategy
is building performance influence models, such as regression
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models. However, performance influence models are unable to
capture changes in the performance distribution when deployed
in an unseen environment (non-transferable) and produce incor-
rect explanations, as illustrated in Fig. 1.

B. Causal Reasoning for Robotics

We formulate the problem of finding root causes for functional
faults in robotic systems using an abstraction of a causal model
utilizing Directed Acyclic Graphs (DAGs) [17]. The causal
model encodes performance variables, functional nodes (which
define functional dependencies between performance variables,
such as how variations in one or multiple variables determine
variations in other variables), causal links that interconnect
performance nodes with each other via functional nodes, and
constraints to define assumptions we require in performance
modeling (e.g., the configuration options cannot be the child
node of performance objectives). Given a robotic system that
intermittently encounters functional faults, we aim to find the
root causes of such faults by querying a causal model learned
from observational data. We start by formalizing the problem of
finding the causal directions from configuration options to per-
formance objectives that indicate a functional fault. This prob-
lem can be subdivided into two parts: (a) learning—discovery
of the causal relationship between nodes, and (b) inference—
identification of the root causes for a functional fault using the
learned causal model. Consider a configurable robotic system A
which has a set of manipulable (or configurable) variables X
that can be intervened upon, a set of non-manipulable vari-
ables S (non-functional properties of the system such as metrics
that evaluate the performance) that can not be intervened, and
a set of performance objectives ). We define the causal graph
discovery problem formally:

Problem 2.1 (Learning): Given the observational data D,
recover the causal graph Cg that encodes the dependency
structure between X', S, and Y of V such that the following
structural constraints are satisfied:

Ui%UjV’UZ‘GXClA V’U]EyC{V\X\S}

The second part of the problem is to find the root cause of
functional fault using the learned causal model. We formulate
the inference problem to estimate the average causal effect of
the configuration option on the performance objectives as:

Problem 2.2 (Inference): Given the causal graph Cg, deter-
mine the configuration option in X', which is the root cause for
the observed functional fault characterized by performance
objectives ) as follows:

{vi} = arg max, ACE(v;, v}),

where {v} C X is the set of root causes (configuration
options), {v } C Y are the performance objectives charac-
terizing the funct10nal fault, and AC E represents the average
causal effect—the average difference between potential out-
comes under different treatments [15].

III. CARE: CAUSAL ROBOTICS DEBUGGING

We propose a novel approach, called CARE, to find and reason
about the intricate relations between configuration options and
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Fig. 3. Overview of CARE.

their effect on the performance objectives in highly configurable
robotic systems. CARE works in three phases: (i) The obser-
vational data is generated by measuring the performance met-
rics and performance objectives under different configuration
settings (see (1) in Fig. 3) to construct the graphical causal
model (see 3) in Fig. 3) enforcing the structural constraints
(see @ in Fig. 3). (ii) The causal model is used to determine the
paths that lead from configuration options to the performance
objectives (see (4) in Fig. 3). (iii) The configuration options that
have the highest causal effect on the performance objective were
determined, measuring the average causal effect of each path to
diagnose the functional faults (see (5) in Fig. 3).

A. Learning the Causal Model

We design a three-layer structure causal model defining three
variable types: (i) software-level configuration options associ-
ated with different algorithms (e.g., goal distance bias [20]), and
hardware-level options (e.g., sensor frequency), (ii) intermediate
performance variables (non-manipulable variables) that map the
influence of the configuration options to the performance objec-
tives (e.g., position accuracy), and (iii) end-to-end performance
objectives (e.g., energy). We classify the performance variables
as non-manipulable and manipulable variables to reduce the
number of variables that require intervention. Note that the level
of debugging can vary [11], and the abstraction level of the
variables in the causal model depends on the debugger and can
go all the way down, even to the hardware level [21]. To build
the three-layer structure, we define two specific constraints over
causal models: (i) variables that can be manipulated (e.g., using
prior experience, the user may want to restrict the variables that
do not have a significant impact on performance objectives);
(ii) structural constraints (e.g., configuration options do not
cause other options). Such constraints enable incorporating do-
main knowledge that facilitates learning with low sample sizes.
Several methods are proposed to extract the causal graphical
model from data in the literature. These belong to two cate-
gories: constraint-based techniques and score-based techniques.
We specifically use Fast Causal Inference (hereafter, FCI) [16],
a constraint-based technique for identifying the causal model
guiding robot performance. We select FCI because it identifies
the unobserved confounders (common latent causes that have
not been, or cannot be, measured); it can handle various data
types (e.g., nominal, ordinal, and categorical) given a valid con-
ditional independence test. When the FCI algorithm is applied
to observational data, a Partial Ancestral Graph (PAG) [17],
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Algorithm 1: CM(data, V, G).

Algorithm 2: CPWE(V, D, B).

Input: data, dense graph G, Vertex set V
Output: Set of D and B to build the ADMG
1 D<@, B<w
2 while V € G do

3 S < Apply structural constraints on G

4 Gs = FCI(data, Fisher z-test, S.)

5 for each 0 € Gy do

6 Compute entropies H(v;), H(v;), H(Z)

7 0, = 0.8min{H (v;), H(v;)}

8 if H(Z) <6, then

9 | Replace v; o— v; with v; «— v; in B

10 else

11 vj = f(vs, E) where [E L v;]

12 v; = g(v;, E) where [E 1 v;]

13 Compute the entropies H(F) and H(E)
14 if H(E)< H(E) then

15 | Replace v; o—o v; with v; —» v; in D
16 else

17 | Replace v; o—o v; with v; —» v; in D
18 return D, B

representing a causal structure in the presence of latent variables,
is produced. Each edge in the PAG denotes the ancestral con-
nections between the vertices. For a comprehensive theoretical
foundation, we refer the reader to [22], [23]. To discover the
true causal relationship between two variables, the causal graph
must be fully resolved [21] such that there are no v; o — v;
(v; causes vj, or there are unmeasured confounders that cause
both v; and v;), and v; o—e v; (v; causes v;, Or v; causes v;,
or there are unmeasured confounders that cause both v; and v;)
edges. We define the partial edge resolving problem formally as
follows:

Problem 3.1 (Resolve Partially Directed Edges): Given a
causal partial ancestral graph [17] Gy = (V,0), the par-
tial edge resolving problem involves replacing each partial
edge O with a directed edge D or a bi-directed edge 5 based
on some threshold 6.

We use Algorithm 1 for learning the causal model (CM).
First, we build a dense graph G by connecting all pairs of
configuration options, performance metrics, and performance
objectives with an undirected edge. Unlike configuration op-
tions, the intermediate layer’s variables can not be modified.
However, they can be observed and measured to understand
how the causal effect of changing configurations propagates
to a performance objective. The skeleton of the causal model
is recovered by enforcing the structural constraints (e.g., no
connections between configuration options, as in line 3 of
Algorithm 1). Next, we evaluate the independence of all pairs of
variables conditioned on all remaining variables using Fisher’s
exact test [24]. A PAG is generated, orienting the undirected
edges by employing the edge orientation rules [17] (line 4 of
Algorithm 1). The obtained PAG must be fully resolved (no 0
between two vertices) to discover the true causal relationships.

Input: data, V, D, B

Output: Rank of the causal paths
1P« o, K « @
2 ADMG « {V,D, B}
3 while V[Y] € ADMG do
4 P « All causal paths from an V[)] node
for i < P, to P, do

Compute P 4o g using Equation 2
L K « SORTDESCENDING(Psc )

N W

return K

o

We resolve the FCI-generated PAG by evaluating if an unmea-
sured confounder (Z) is present between two partially oriented
nodes (v;,v;). Employing the information-theoretic approach
based on entropy [25] produces a joint distribution ¢(v;, v, Z).
We compute the entropy H(Z) of Z. Comparing the H(Z)
with 6, (entropy threshold, 6, = 0.8 min{H (v;), H(v;)}), we
determine VPP if 3Z € 0, as shown in lines 6-17 of Algorithm 1,
where E and E are the extrinsic variables responsible for system

noise (v; L F, v; 1L E). The final causal model is an Acyclic
Directed Mixed Graph (ADMG) [26].

B. Causal Effect Estimation

To determine the root cause of a functional fault from the
causal graph, we need to extract the paths (referred to as causal
paths) from Cg. A causal path is a directed path originating from
X (e.g., configuration options) to a subsequent non-functional
property S (e.g., performance metrics) and terminating at )
(e.g., performance objectives). Our goal is to find an ordered
subset of P that defines the causal path from the root cause
of the functional fault (a manipulable variable that causes the
functional fault) to the performance objective indicating the
functional fault (say x; causes a functional fault F' through a sub-
sequent node s; in the path, assuming (Jz; € X') A (3s; € S);
e.g., r; — S; — Yr). We define the causal path discovery
problem as follows:

Problem 3.2 (Causal Path Discovery): Given a causal graph
Cg = (V, D, B) that encodes the dependency structure be-
tween A, S and ), and a performance objective Vp € V
indicating a specific functional fault, the causal path discov-
ery problem seeks a path P = (v, vy, ..., v,) such that the
following conditions hold:

® 1, is the root cause of the functional fault and v,, = Vr.

e V0<i<n, v;eVandV 0<i<n, (vivi11)€

(DV B).
e V0 <i<j<mn,v;isacounterfactual cause of v;.
¢ |P| is maximized.

We extract the causal paths and measure the average causal
effect of the extracted causal paths on the performance ob-
jectives ()), and rank the paths from highest to lowest using
Algorithm 2: Causal Paths With Effect (CPWE). CPWE simpli-
fies the complicated causal graph using path extraction and rank-
ing to a few useful causal paths to determine the configurations
that most influence the performance objectives. Causal paths
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(b) Real environment

(a) Simulated environment

Fig. 4. Experimental environments, (a) simulated in Gazebo, (b) a real envi-
ronment located at the University of South Carolina.

are discovered by backtracking from the nodes corresponding
to each performance objective until we reach a node with no
parents. The discovered paths are then ranked by measuring the
causal effect of a node’s value change (say V1) on its subsequent
node V5 in the path. We express this using the do-calculus [15]
notation: E[V5 | do(V; = z)| that represents the expected value
of V5 if we set the value of node V; to z. The average causal
effect (ACE) of V; — V5 is calculated across all acceptable V)
values as follows:

1
ACE(V2, Vi) = D E[Valdo(Vi =)
Vz,yeVi
— E [Va]do (Vi = 2)], (1

where N is the total number of acceptable values of Vj.
ACE(Va, V1) will be larger if V; yields a larger change in V5.
We calculate the ACE for the entire causal path extending (1)
as follows:

1
Pace = 3 > ACE(vj,v;) 2)

The configuration options found on paths with larger P4c g
are likely to have a higher causal effect on the corresponding
performance objective. The top K paths with the largest P4
values were selected for each performance objective.

IV. EXPERIMENTS AND RESULTS

Using the Husky and Turtlebot 3 platforms as case study
systems, we answer the following research questions (RQ):

® RQI (Accuracy): To what extent are the root causes de-
termined by CARE the true root causes of the observed
functional faults?

¢ RQ2 (Transferability): To what extent can CARE accu-
rately detect misconfigurations when deployed in a dif-
ferent platform?

A. Experimental Setup

We simulate Husky in Gazebo to collect the observational data
by measuring the performance metrics (e.g., traveled distance)
and performance objectives (e.g., energy consumption) under
different configuration settings to train the causal model. Note
that we use simulator data to evaluate the transferability of the
causal model to the physical robots, but CARE also works with
data from physical robots. We deployed the robot in a controlled
indoor environment and directed the robot to autonomously
navigate to the five target locations (Fig. 4). The robot was
expected to encounter obstacles and narrow passageways, where
the locations of the obstacles were unknown before deploy-
ment. The mission was considered successful if the Husky robot
reached each of the five target locations. We used Euclidean
distance between the commanded and measured positions as a

4119

threshold to determine if a target was reached. We generated the
values for the configurable parameters using random sampling.
We recorded the performance metrics for different values of the
configurable parameters. We used the navigation task as a test
case and defined the following performance metrics for the ROS
navigation stack [20]:

1) Traveled distance (TD): Traveled distance from start to
destination.

2) Robustness in narrow space (RNS): We define
narrow space = Robotiotprint + Footprintpadding
and RNS = NL Zi\ﬁl Passed_, where N; is the total
number of narrow spaces in the known environment, and
Passed v, is the narrow spaces that the robot successfully
passed.

3) Mission time: Total time (minute) to complete a mission.

4) Recovery executed (RE): Number of rotate recovery and
clear costmap recovery executed per mission.

5) Replanning path (RP): Number of replanning paths per-
formed by the planner during a mission.

6) Error rotating to the goal (ERG): Number of errors when
rotating to a goal per mission execution. If the robot
reaches the goal and stops, we check if there is a potential
collision while rotating.

Additionally, we integrate the Gazebo battery plugin [27] to
the Husky simulator to measure energy consumption. We de-
veloped Reval>—a tool to evaluate ROS-based robotic systems,
and collected observational data while the Husky performed a
mission. Additional details about our experiments can be found
in the supplementary materials®.

B. RQI: Accuracy

We answer RQ1, validating the root causes determined by
CARE for both Husky in simulation and the physical robot
by comparing the variance (%) of the performance objectives
and performance metrics for different configuration options.
Recall that our overall goal is to determine the parameters that
influence the performance objective most. By comparing the
o2, we analyze whether changing the value of a configuration
option noticeably affects the performance distribution (options
that have a stronger influence are likely to have high variability).
We train the causal model using Algorithm 1 on observational
data obtained by running a mission 400 times under different
configuration settings. A partial causal model resembles the one
in Fig. 5(a). Next, we compute the P4 g for each causal path
from the causal model using Algorithm 2. The rank of the causal
paths is depicted in Fig. 5(b)—(c). Parameters that achieve a
higher rank are likely to have spurious values, hence the root
cause of the functional fault. We selected two configuration
options from Rank 1, Rank 3, and Rank 4 and defined three sets
(see Fig. 5(d)). In our experiment, Rank 2 was discarded because
the values of P4¢o g (for Rank 2) are too close to Rank 1 and
Rank 3. We conducted 50 trials for each rank and recorded the
energy, mission success, and performance metrics by altering
only those parameter values contained in the sets (Fig. 5(d))
while leaving all other parameters to their default values (sup-
plementary materials*). For instance, from Rank 1, we only
changed the values of occdist scale and goal distance bias. Fig. 6
shows violin plots to demonstrate the distribution of the trails for
each rank, where the width of each curve corresponds with the
frequency of y—axis values. During optimization or debugging,

2[Online]. Available: https://github.com/softsys4ai/Reval.git
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(a) A partial causal model for ROS navigation stack discovered in our
experiments using the Husky simulator.
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success (b), where (c), (d), (e) represent the performance metrics of energy, and
(), (g), (h) represent the performance metrics of mission success.

we aimed to prioritize the configuration options which had
the strongest influence on the performance objective (e.g., to
debug energy fault, ACE of occdist scale > transform toler-
ance > update frequency) As depicted in Fig. 6(a) and (b) for
both energy and mission success Ufank > fank >0 mnk

The performance metrics are the confoundmg variables that
influence the performance objectives (e.g., traveled distance—
energy, RNS— mission success) and can be treated as the
performance variance indicators. For instance, Rank 1 : 02., >

Rank 3 : ov;pD > Rank 4 : J%D (Fig. 6(c), (d), (e)) causes T
Rank 1 : O’energy (Fig. 6(a)). Similarly, for mission success,
Rank 1 : gNS > Rank 3 : 0%y > Rank 4 : 0% ¢ causes |
Rank 4 : o Table I summarizes the variance for

R mission '?’U,CCESS
dlfferent ranks achleved usmg the Husky platform. We observe

thato?,, . > 02, > Umnk for all performance metrics and
performance ob]ectlves both in the Husky simulator and phys-
ical robot, demonstrating that configuration options which rank
higher (Fig. 5(d)) have the strongest influence on the perfor-
mance objectives. Moreover, CARE achieved 95% accuracy

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 7, JULY 2023

TABLE I
COMPARISON OF THE VARIANCE (0’2) OF DIFFERENT RANKS FOR ENERGY AND
MISSION SUCCESS USING THE HUSKY PLATFORM

[ o o ranks ]

rank; rank:
o Energy 2432 13.78 727
é Objective Mission success 11.77 11.22 8.01
3 - Traveled distance 493 314 2.90
g 20 Replanning path 123.39 100.97 97.73
; E Recovery executed 3.63 2.88 2.70
4 Mission time 46.96 29.21 20.93
Z = RNS 0.26 0.25 0.20
'z 8 Recovery executed 3.21 2.94 2.79
= Error rotating to goal | 44.01 40.59 16.13
=2 Mission time 153.93 57.75 38.85
o Energy 64.43 26.57 12.43
g Objective | ricsion success 246 2.17 1.60
2 - Traveled distance 9.84 522 423
= % Replanning path 126.38 109.07 108.87
> 5 Recovery executed 3.50 2.98 2.67
é Mission time 34.39 25.90 16.93
==t £a RNS 0.29 023 0.2T
z 8 Recovery executed 3.17 2.83 1.26
= Error rotating to goal | 56.11 33.59 22.14
=2 Mission time 62.85 42.43 35.39
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Fig.7. Comparing CARE against CBI (a), and demonstrating CARE’s transfer-
ability (b), (c) by reusing the causal model constructed from Husky in simulation,
to diagnose the root causes of the functional faults in the Turtlebot 3 physical
robot.

when comparing the predicted root causes with the ground truth
data (see Fig. 7(b)).

C. RQ2: Transferability

The configuration options that specify the hardware character-
istics of the physical platform differ across robotic systems (e.g.,
sensor frequency), and these hardware characteristics can sig-
nificantly impact the performance of the tasks carried out by
the robotic systems. We answer RQ2 by reusing the causal
model in a different robotic platform. We reuse the causal model
constructed from a source platform, e.g., the Husky simulator, to
diagnose the root causes of a functional fault in a target platform,
e.g., Turtlebot 3. We follow the identical experimental setup
outlined in §IV-A to record the performance metrics for the
Turtlebot.

a) Ground truth: We measured 400 samples, varying the
configuration options for both Husky in simulation and Turtle-
bot 3. We used a threshold of 0.02 over the RMSE to determine
the number of samples required for accurately learning the causal
model. We curated a ground truth of functional faults using the
ground truth data. In particular, we curated the ground truth for
the two performance objectives: (i) configurations that result in
a mission failure (functional fault), and (ii) configurations that
achieved energy consumption worse than the 99" percentile
are labeled as ‘faulty’ (non-functional fault). The ground truth
contains 20 functional faults (10 mission success, 10 energy),
and each has two to four root causes.

b) Baseline: We compared CARE against the state-of-the-art
Cooperative Bug Isolation (CBI) [28]—a statistical debugging
method that uses a feature selection algorithm. We selected CBI
for its use of statistical methods similar to ours and its ability
to identify multiple root causes. However, unlike our approach,
CBI relies on correlations instead of causation to identify the
root causes of the fault. We computed the Importance score [28]
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by computing Failure(P), Context(P), and Increase(P)
for different configuration options and objectives. Based on the
importance score, we ranked the configuration options similarly
to Fig. 5. In our experiments, we set the confidence intervals to
95% to eliminate configuration options with low confidence due
to few observations but a high Increase(P).
¢) Results: Given aset of test data, ground truth, and CARE’s
predictions on the test data, we evaluated the predictions by
dividing them into true and false positives and negatives (TP,
FP, TN, and FN). Subsequent metrics include:
® Accuracy: The measure of the predicted root causes that
match the ground truth root causes, (TP +TN)/(TP +
FP+ TN+ FN).
® Precision: Theratio of true root causes among the predicted
ones, TP/(TP + FP).
® Recall: The ratio of true root causes that are correctly
predicted, TP/(TP + FN).
® F[-score: The harmonic mean of precision and recall, 2 x
(precision x recall) /(precision + recall).
® RMSE: Weighted difference between the predicted and true
root causes. For example, if 3 is the predicted root cause
of a functional fault and y is root cause in the ground truth,

V& SN (ACE(y) — ACE()))*.
where ACE is computed using (1).
Fig. 7 shows the results in diagnosing the root causes of

the mission success and energy faults. The total accuracy is

. 1 Nopj
computed using & — >,
obj

of performance objectives; similarly for precision and recall.
CARE achives 27% more accuracy, and 24% more F1-score
compared to CBI (Fig. 7(a)). We computed the accuracy in
Fig. 7(a) using (Husky, ;0; ace. + Turtlebot3;otar_ace.)/2; simi-
larly for Fl-score. We observe that reusing CARE in Turtlebot 3
obtains 8% less accuracy, 4% less precision, and 6% less recall
compared to the source platform (Husky simulator). We also
observe higher RMSE in the Turtlebot 3 platform (the total RMSE
is computed using Zfi"i” RM SE). However, if we increase the
sample size, CARE incrementally updates the internal causal
model with new samples from the target platform to learn the
new relationships, and we observe a decrease in RMSE (see
Fig. 7(c)). Therefore, the model does transfer reasonably well.

we measure RMSE =

acc., where N,y,; is the number

V. DISCUSSION
A. Usability of CARE

While our proposed design is general and can be extended
to include new variables and other robotics systems, it would
require some additional engineering efforts. In particular, to add
anew variable to the causal model, the following steps would be
required: (i) identifying the manipulable and non-manipulable
variables, (ii) profiling the observational data related to the new
variable, including its corresponding performance objectives,
(iii) learning and adding the causal relationships of the new
variable to the existing model. Furthermore, to support a new
robotic system, in addition to step 1, profiling the observational
data for the entire configuration space would be required to train
the causal model. We provide a tool for this in our codebase®,
but it is currently limited to ROS-based systems.

B. Why did CARE outperform CBI?

CARE discovers the root causes of the configuration bugs
by learning a causal model that focuses on the configurations
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that have the highest causal effect on the performance ob-
jectives, eliminating the irrelevant configuration options. For
instance, while finding the root causes of the functional and
non-functional faults on the performance objectives, CBI re-
ported 116 FP, whereas CARE reported only 13 FP (Huksy
and Turtlebot 3 combined), hence, achieving a higher F1-score
compared to CBI (Fig. 7(a)). CBI reported a higher number of
FP because it determines the root causes based on the correlation
between variables. For instance, it identified planner failure
rates increase the P(mission success), which is counter-intuitive.
Therefore, an engineer would spend less time debugging and
optimizing the parameters when using CARE.

C. Limitations

The efficacy of CARE depends on several factors, including
the representativeness of the observational data and the presence
of unmeasured confounders, which deteriorate the accuracy. In
some cases, the causal model may be missing some important
connections, resulting in identifying spurious root causes.

D. Future directions

For future work, we envision two possible avenues: empirical
and technical. For the empirical aspect, CARE could be applied
to improve autonomy in robotic spacecraft missions. The tech-
nical aspect could involve performing static analyses to extract
the configurable parameters in an automated manner.

VI. RELATED WORK

A. Debugging Approaches

Prior work on highly configurable systems has revealed that
the majority of functional faults are related to configuration
space [29]. Previous approaches for debugging software sys-
tems have used performance influence models [7], [8], [9]
to model configuration options as features and learn a corre-
sponding prediction function. To debug and enhance robotic
systems’ performance, researchers use random testing such as
fuzzing [30] and delta debugging [31] approaches. Moreover,
several studies have proposed different methods to deal with the
configuration bugs, such as discovering and fixing configuration
bugs in co-robotic systems [32], statically identifying run-time
architectural misconfigurations [2], and automatic parameter
tuning [33]. Data-driven machine learning techniques [34], [35],
[36] have also been widely applied to improve performance by
fine-tuning configuration parameters or diagnosing misconfig-
urations, as opposed to heavily relying on human expertise.
However, these techniques may not be effective at applying
knowledge in different environments and may have difficulty
retaining past information [10].

B. Causal learning for systems

Machine learning techniques have been proven effective at
identifying correlations in data, though they are ineffective
at identifying causes [15]. To address this challenge, several
studies, including detecting and understanding the defect’s root
causes [37], improving fault localization [38], and reasoning
about system’s performance [21], utilize causal learning. Using
the encoded information, we can benefit from analyses that
are only possible when we explicitly employ causal models,
in particular, interventional and counterfactual analyses [15],
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[16]. More recently, Swarmbug [39], a method for debugging
configuration bugs in swarm robotics, utilized a causality-based
approach to find and fix the misconfigurations in swarm algo-
rithms. However, the Swarmbug method is specifically designed
for use in swarm robotics and is therefore only useful for
diagnosing configuration bugs in swarm algorithms.

VII. CONCLUSION

We proposed CARE, a novel approach to determining the
root causes of functional faults in robotic systems. CARE learns
and exploits the robotic system’s causal structure consisting of
manipulable variables (configuration options), non-manipulable
variables (performance metrics), and performance objectives.
Then, given the causal model, CARE extracts the paths that
lead from configuration options to the performance objectives
and determines the configuration options that have the highest
causal effect on the performance objective by computing the
average causal effect of each path. Our evaluation shows that
CARE effectively diagnoses the root cause of functional faults,
and the learned causal model is transferable across different
robotic systems.
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