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ABSTRACT
The use of machine learning (ML) inference for various appli-
cations is growing drastically. ML inference services engage
with users directly, requiring fast and accurate responses.
Moreover, these services face dynamic workloads of requests,
imposing changes in their computing resources. Failing to
right-size computing resources results in either latency ser-
vice level objectives (SLOs) violations or wasted computing
resources. Adapting to dynamic workloads considering all
the pillars of accuracy, latency, and resource cost is challeng-
ing. In response to these challenges, we propose InfAdapter,
which proactively selects a set of ML model variants with
their resource allocations to meet latency SLO while maxi-
mizing an objective function composed of accuracy and cost.
InfAdapter decreases SLO violation and costs up to 65% and
33%, respectively, compared to a popular industry autoscaler
(Kubernetes Vertical Pod Autoscaler).
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1 INTRODUCTION
The computing demand for machine learning (ML) has ex-
ponentially increased over the past decade [11]. For exam-
ple, di�erent ML applications, including computer vision,
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Table 1: InfAdapter is superior compared to the state-
of-the-art solutions. (⇤) Cocktail uses model ensem-
bling leading to cost ine�ciencies in particular scenar-
ios (see Section 6).
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Cost Optimization 5 3 3⇤ 3 3
Accuracy Maximization 3 5 3 5 3
Predictive Decision-Making 3 5 3 3 3
Container as a Service (CaaS) 5 5 5 3 3
Latency SLO-aware 3 3 3 5 3

machine translation, chatbots, medical, and recommender
systems, are running in data centers [13, 28, 32, 34], com-
prising more than 90% of computing resources allocated to
ML [10, 13, 25]. ML inference services are user-facing, which
mandates high responsiveness [18, 37]. Moreover, high accu-
racy is crucial for these services [20, 26]. Consequently, infer-
ence systems must deliver highly accurate predictions with
fewer computing resources (cost-e�cient) while meeting la-
tency constraints under workload variations [18, 19, 29, 37].
The dynamic nature of inference serving workloads re-

quires di�erent resource allocations for ML services [18, 37].
Failing to right-size the services results in over or under-
resource provisioning. Under-provisioning leads to service
level objective (SLO) violations (e.g., 99C⌘ percentile of la-
tency distribution, P99-latency)[18, 36]. Conversely, over-
provisioning wastes computing resources [30, 36]. To ad-
dress these problems caused by dynamic workloads, A����
������� [2, 9, 17, 18, 30, 36] resizes the resources of the
service, and M�������������� [26, 38] switches between
ML model variants that di�er in their inference latency and
accuracy (higher accuracy, higher latency); the former tries
to be cost-e�cient, and the latter tries to be more accurate,
while both guarantee latency SLOs.
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