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Abstract

We explore the cohomological structure for the (possi-

bly singular) moduli of SL𝑛-Higgs bundles for arbitrary

degree on a genus g curve with respect to an effective

divisor of degree > 2g − 2. We prove a support theo-

rem for the SL𝑛-Hitchin fibration extending de Cataldo’s

support theorem in the nonsingular case, and a version

of the Hausel–Thaddeus topological mirror symmetry

conjecture for intersection cohomology. This implies

a generalization of the Harder–Narasimhan theorem

concerning semistable vector bundles for any degree.

Our main tool is an Ngô–type support inequality estab-

lished recently which works for possibly singular ambi-

ent spaces and intersection cohomology complexes.
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INTRODUCTION

Overview

Throughout, we work over the complex numbers ℂ. Let 𝐶 be a nonsingular irreducible projec-

tive curve of genus g ⩾ 2. The purpose of this paper is to explore cohomological structures for the

moduli space of degree 𝑑 semistable SL𝑛-Higgs bundles on 𝐶 with respect to an effective divisor𝐷

of degree deg(𝐷) > 2g − 2. More precisely, we show that the support theorem [5] and the topolog-

ical mirror symmetry conjecture [13, 18, 27], which were proven in the case gcd(𝑛, 𝑑) = 1, actually

hold for arbitrary 𝑑.

For this more general setting, the essential difference with the coprime case is that the mod-

uli space may be singular due to the presence of strictly semistable locus. Hence it is natural

for us to consider intersection cohomology. Our main tool is an Ngô–type support inequality for

weak abelian fibrations recently established in [28] which works for singular ambient spaces and

intersection cohomology complexes.

As an immediate application of our results, we also give a proof of a generalized version of the

Harder–Narasimhan theorem [14] for intersection cohomology and arbitrary degree.

Moduli of 𝐒𝐋𝒏-Higgs bundles

We fix𝐷 to be an effective divisor of degree deg(𝐷) > 2g − 2 and we fix 𝐿 ∈ Pic𝑑(𝐶) to be a degree

𝑑 line bundle on 𝐶. We denote by𝑀𝑛,𝐿 the moduli space of semistable Higgs bundles

( , 𝜃) ∶ 𝜃 ∶  →  ⊗ 𝐶(𝐷), rank() = 𝑛, det() ≃ 𝐿, trace(𝜃) = 0,

where the (semi-)stability is with respect to the slope𝜇( , 𝜃) = deg()∕rank(). Themoduli space

𝑀𝑛,𝐿 admits a proper surjective morphism

ℎ ∶ 𝑀𝑛,𝐿 → 𝐴 =

𝑛⨁

𝑖=2

𝐻0(𝐶,𝐶(𝑖𝐷)), ( , 𝜃) ↦ char(𝜃) (1)

known as the Hitchin fibration [19, 20]. Here char(𝜃) denotes the characteristic polynomial of the

Higgs field 𝜃 ∶  →  ⊗ 𝐶(𝐷):

char(𝜃) = (𝑎2, 𝑎3, … , 𝑎𝑛), 𝑎𝑖 = trace(∧𝑖𝜃) ∈ 𝐻0(𝐶,𝐶(𝑖𝐷)).

Alternatively, we may view a closed point 𝑎 ∈ 𝐴 as a spectral curve 𝐶𝑎 ⊂ Tot𝐶(𝐶(𝐷))which is a

degree 𝑛 cover over the zero section𝐶. Let the elliptic locus𝐴ell ⊂ 𝐴 be the open subset consisting

of integral spectral curves. The fibers of the restricted Hitchin fibration over 𝐴ell

ℎell ∶ 𝑀ell
𝑛,𝐿 → 𝐴ell (2)

are compactified Prym varieties of the integral spectral curves 𝐶𝑎. In particular, the open

subvariety𝑀ell
𝑛,𝐿

is nonsingular and contained in the stable locus𝑀𝑠
𝑛,𝐿
:

𝑀ell
𝑛,𝐿 ⊂ 𝑀𝑠

𝑛,𝐿 ⊂ 𝑀𝑛,𝐿.
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1036 MAULIK and SHEN

Support theorem for 𝐒𝐋𝒏

By [2], we have the decomposition for the direct image complex of the intersection cohomology

complex

𝑅ℎ∗IC𝑀𝑛,𝐿
≃
⨁

𝛼,𝑖

IC𝑍𝛼,𝑖
(𝛼,𝑖)[−𝑟𝑖] ∈ 𝐷𝑏

𝑐 (𝐴), 𝑟𝑖 ∈ ℤ

into (shifted) simple perverse sheaves. Here 𝐷𝑏
𝑐 (−) denotes the bounded derived category of con-

structible sheaves, 𝑍𝛼,𝑖 ⊂ 𝐴 are irreducible closed subvarieties, each 𝛼,𝑖 is a simple local system

on an open subset of 𝑍𝛼.𝑖 , and IC𝑍𝛼,𝑖
(𝛼,𝑖) is the intermediate extension of 𝛼,𝑖 in 𝑍𝛼,𝑖 . We call

𝑍𝛼,𝑖 the supports of the direct image complex 𝑅ℎ∗IC𝑀𝑛,𝐿
that are important invariants for the map

ℎ ∶ 𝑀𝑛,𝐿 → 𝐴.

The following theorem, which generalizes de Cataldo’s SL𝑛-support theorem [5] in the case of

gcd(𝑛, 𝑑) = 1, shows that the decomposition theorem of the Hitchin fibration ℎ ∶ 𝑀𝑛,𝐿 → 𝐴 is

governed by the elliptic locus (2).

Theorem 0.1 (Support theorem). The generic point of any support of 𝑅ℎ∗IC𝑀𝑛,𝐿
lies in the elliptic

locus 𝐴ell.

In fact, by combining the techniques of [5, 8] and [28], we prove in Sections 1 and 2 a more

general support theorem (Theorem 1.1) for certain relative moduli space of Higgs bundles asso-

ciated with a cyclic étale Galois cover 𝜋 ∶ 𝐶′ → 𝐶. These moduli spaces are tightly connected to

the endoscopic theory for SL𝑛 [31, 32] and the topological mirror symmetry for Hitchin systems

[13, 18, 27].

Topological mirror symmetry

Motivated by the Strominger–Yau–Zaslow mirror symmetry, Hausel–Thaddeus [18] conjectured

that themoduli of semistable SL𝑛- and PGL𝑛-Higgs bundles should have identical (properly inter-

preted)Hodge numbers. In the case of gcd(𝑛, 𝑑) = 1, thematch of theHodge numbers for the SL𝑛-

and PGL𝑛-Higgs moduli spaces was formulated precisely in [18] using singular cohomology, and

was proven recently in [13, 26, 27] by different methods. From the viewpoint of 𝑆-duality [16, Sec-

tion 5.4] and the approach of [27], the Hausel–Thaddeus conjecture is closely connected to the

endoscopy theory and the fundamental lemma for SL𝑛.

In this paper, we explore the Hausel–Thaddeus conjecture for arbitrary degree 𝑑. Under the

assumption deg(𝐷) > 2g − 2, we prove that an analog of the Hausel–Thaddeus conjecture holds

for intersection cohomology and arbitrary degree 𝑑. Our approach follows the spirit of [27], that

we view the (refined) Hausel–Thaddeus conjecture [16, Conjeture 4.5] as an extension of Ngô’s

geometric stabilization theorem [32] in his proof of the fundamental lemma of the Langlands pro-

gram. Our new input is the support theorem for SL𝑛 and its endoscopic groups (see Theorem 1.1),

relying on the framework of [28].

Now in the following we introduce some notation and state the main theorem.

Let Γ = Pic0(𝐶)[𝑛] be the group of 𝑛-torsion line bundles on𝐶. The finite group Γ admits a non-

degenerate Weil pairing [27, Section 1.3], which after identifying Γ with 𝐻1(𝐶,ℤ∕𝑛ℤ), coincides
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with the intersection pairing. Hence we obtain a canonical isomorphism between Γ and the group

of characters Γ = Hom(Γ,𝔾𝑚):

Γ = Γ̂. (3)

For the SL𝑛-Higgs moduli space 𝑀𝑛,𝐿 associated with the line bundle 𝐿, the corresponding

PGL𝑛-Higgs moduli space [𝑀𝑛,𝐿∕Γ] is a Deligne–Mumford stack obtained as the quotient of the

natural finite group action of Γ = Pic0(𝐶)[𝑛] on𝑀𝑛,𝐿:

 ⋅ ( , 𝜃) = ( ⊗ , 𝜃),  ∈ Γ, ( , 𝜃) ∈ 𝑀.

Note that when gcd(𝑛, 𝑑) ≠ 1, both the SL𝑛- and the PGL𝑛-Higgs moduli spaces are singular as a

variety and a Deligne–Mumford stack, respectively. For an element 𝛾 ∈ Γ, we denote by 𝑀
𝛾
𝑛,𝐿

⊂

𝑀𝑛,𝐿 the subvariety of the 𝛾-fixed locus. Assume that

ℎ𝛾 ∶ 𝑀
𝛾
𝑛,𝐿

→ 𝐴𝛾 ∶= Im(ℎ𝛾) ⊂ 𝐴

is the morphism induced by the Hitchin fibration (1), which recovers ℎ when 𝛾 = 0. We denote

by 𝑖𝛾 ∶ 𝐴𝛾 ↪ 𝐴 the closed embedding and 𝑑𝛾 the codimension of 𝐴𝛾 in 𝐴. The Γ-action on𝑀𝑛,𝐿

induces a Γ-action on the fixed locus𝑀
𝛾
𝑛,𝐿
. This action is fiberwise with respect to the morphism

ℎ𝛾, which induces a canonical decomposition

𝑅ℎ𝛾∗IC𝑀
𝛾
𝑛,𝐿

=
⨁

𝜅

(
𝑅ℎ𝛾∗IC𝑀

𝛾
𝑛,𝐿

)

𝜅
∈ 𝐷𝑏

𝑐 (𝐴𝛾), 𝜅 ∈ Γ̂

into eigen-subcomplexes [25, Lemma 3.2.5]. The following theorem is a sheaf-theoretic version of

the Hausel–Thaddeus conjecture for the divisor 𝐷, which resembles the fundamental lemma.

Theorem 0.2. Assume that 𝛾 ∈ Γ and 𝜅 ∈ Γ̂ are matched via the Weil pairing (3).

(a) (Endoscopic decomposition) We have an isomorphism

(
𝑅ℎ∗IC𝑀𝑛,𝐿

)

𝜅
≃ 𝑖𝛾∗

(
𝑅ℎ𝛾∗IC𝑀

𝛾
𝑛,𝐿

)

𝜅
[−2𝑑𝛾] ∈ 𝐷𝑏

𝑐 (𝐴). (4)

(b) (Transfer) Assume 𝐿′ ∈ Pic𝑑
′
(𝐶) with gcd(𝑑, 𝑛) = gcd(𝑑′, 𝑛). Then we have

(
𝑅ℎ𝛾∗IC𝑀

𝛾
𝑛,𝐿

)

𝜅
≃

(
𝑅ℎ𝛾∗IC𝑀

𝛾

𝑛,𝐿′

)

𝑞𝜅

∈ 𝐷𝑏
𝑐 (𝐴𝛾),

where 𝑞 is an integer coprime to 𝑛 satisfying that

𝑑 = 𝑑′𝑞 mod 𝑛. (5)

Moreover, both (a) and (b) hold in the bounded derived categories 𝐷𝑏MHM(−) of mixed Hodge

modules refining 𝐷𝑏
𝑐 (−).
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Theorem 0.2 concerns Higgs bundles with respect to 𝐷 satisfying deg(𝐷) > 2g − 2. By taking

global cohomology, it recovers an identity between the (stringy) intersectionE-polynomials for the

SL𝑛- and the PGL𝑛-Higgs moduli spaces:

IE(𝑀𝑛,𝐿; 𝑢, 𝑣) = IEst,twisted

(
[𝑀𝑛,𝐿′∕Γ]; 𝑢, 𝑣

)
.

Here the intersection E-polynomial IE(−; 𝑢, 𝑣) is given in [29, Section 1], and the twisted stringy

intersection E-polynomial is

IEst,twisted

(
[𝑀𝑛,𝐿′∕Γ]; 𝑢, 𝑣

)
=

∑

𝛾∈Γ

IE(𝑀
𝛾

𝑛,𝐿′
; 𝑢, 𝑣)𝑞𝜅(𝑢𝑣)

2𝑑𝛾 ;

for each term on the right-hand side the character 𝜅 is matched with 𝛾 via the Weil pairing and

𝑞, 𝐿, 𝐿′ are as in Theorem 0.2. This is analogous to the original Hausel–Thaddeus conjecture [16,

18]. A natural question is if the intersection E-polynomial version of the Hausel–Thaddeus con-

jecture holds for 𝐷 = 𝐾𝐶 . This was recently conjectured by Mauri [29], who also verified it for the

case of 𝑛 = 2. We refer to Section 3.6 for more discussions.

Remark 0.3. In [16, Remark 3.30], Hausel proposed that a version of the topological mirror sym-

metry conjecture [18] should hold without the coprime assumption between the degrees and the

rank, and he asked what is the cohomology theory we should use to formulate this. As mentioned

above,Mauri proposed to use intersection cohomology. Theorem0.2 provides further evidence that

intersection cohomology is the correct theory to formulate the topological mirror symmetry for

possibly singular moduli spaces. Our reasons come naturally from the decomposition theorem [2]

and the support theorem (Theorem 1.1).

The Harder–Narasimhan theorem

The moduli space 𝑁𝑛,𝐿 of (slope-)semistable vector bundles on 𝐶 of rank 𝑛 and determinant iso-

morphic to 𝐿 is an irreducible projective variety which has been studied intensively for decades.

Similar to the Higgs case, the finite group Γ = Pic0(𝐶)[𝑛] acts on 𝑁𝑛,𝐿 via tensor product

 ⋅  = ⊗  ,  ∈ Γ = Pic0(𝐶)[𝑛],  ∈ 𝑁𝑛,𝐿. (6)

Harder and Narasimhan [14] proved that, when gcd(𝑛, 𝑑) = 1, the Γ-action on the cohomology

𝐻∗(𝑁𝑛,𝐿,ℂ) induced by (6) is trivial. Other proofs of the Harder–Narasimhan theorem have been

found by Atiyah–Bott [1] and Hausel–Pauly [17].

The following theorem is a generalization of the Harder–Narasimhan theorem for arbitrary

degree 𝑑. It is an immediate consequence of Theorem 0.2.

Theorem 0.4. The Γ-action on IH∗(𝑁𝑛,𝐿,ℂ) induced by (6) is trivial. Consequently, we obtain the

match of the intersection cohomology groups for the varieties𝑁𝑛,𝐿 and 𝑁̌𝑛,𝐿 ∶= 𝑁𝑛,𝐿∕Γ:

IH∗(𝑁𝑛,𝐿,ℂ) = IH∗(𝑁̌𝑛,𝐿,ℂ). (7)

The varieties 𝑁𝑛,𝐿 and 𝑁̌𝑛,𝐿 may be viewed as the moduli spaces of semistable SL𝑛- and PGL𝑛-

bundles on the curve𝐶, andTheorem0.4 shows that they share the same intersection cohomology.

 1
7

5
3

8
4

2
4

, 2
0

2
2

, 3
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n

d
m

ath
so

c.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1
2
/to

p
o
.1

2
2
5
0
 b

y
 Y

ale U
n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

0
/0

8
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



ON THE INTERSECTION COHOMOLOGY OF THE MODULI OF SL𝑛-HIGGS BUNDLES ON A CURVE 1039

An alternative proof of Theorem 0.4 may be obtained by Kirwan’s surjectivity for intersection

cohomology [21, 23].†Our approach is to realize Theorem0.4 as a consequence of (a version of) the

Hausel–Thaddeus topological mirror symmetry for Hitchin systems. This is close to [17] in spirit.

The proof of Theorem 0.4 here suggests that the isomorphism (7) is essentially a consequence of

the fact that the Hitchin systems for SL𝑛 and PGL𝑛 share the same Hitchin base over which the

decomposition theorems coincide restricting to the generic point. Hence a version of (7) may hold

for general 𝐺 and its Langlands dual 𝐺∨ which we will explore in subsequent work.

1 SUPPORT THEOREMS FOR HITCHIN FIBRATIONS

Throughout the rest of the paper, we fix a curve 𝐶 of genus g ⩾ 2, an integer 𝑛 ⩾ 2, and a line

bundle 𝐿 ∈ Pic𝑑(𝐶). Let 𝐷 be an effective divisor of degree deg(𝐷) > 2g − 2.

1.1 Support theorem

Assume 𝑛 = 𝑚𝑟. Following [27], we introduce the endoscopic moduli space 𝑀𝑟,𝐿(𝜋) associated

with a cyclic étale Galois cover 𝜋 ∶ 𝐶′ → 𝐶 which plays a crucial role in the cohomological study

of𝑀𝑛,𝐿.

Let 𝜋 ∶ 𝐶′ → 𝐶 be a degree 𝑚 cyclic étale Galois cover with Galois group 𝐺𝜋 ≃ ℤ∕𝑚ℤ. We

denote by𝑀𝑟,𝐿(𝜋) the moduli of rank 𝑟 semistable Higgs bundles ( , 𝜃) on 𝐶
′ with respect to the

divisor 𝐷′ ∶= 𝜋∗𝐷 satisfying that

det(𝜋∗) ≃ 𝐿, trace(𝜋∗𝜃) = 0.

Here trace(𝜋∗𝜃) is an element in𝐻
0(𝐶,𝐶(𝐷)) which can be viewed as the projection of

trace(𝜃) ∈ 𝐻0(𝐶′,𝐶′(𝐷′)) = 𝐻0(𝐶, 𝜋∗𝐶′(𝐷′))

to the direct summand component𝐻0(𝐶,𝐶(𝐷)):

trace(𝜋∗𝜃) ∈ 𝐻0(𝐶,𝐶(𝐷)) ⊂ 𝐻0(𝐶′, 𝜋∗𝐶′(𝐷′)).

The moduli space 𝑀𝑟,𝐿(𝜋) lies in the moduli of semistable GL𝑟-Higgs bundles on 𝐶′, and the

Hitchin fibration associated with the latter induces a Hitchin fibration

ℎ𝜋 ∶ 𝑀𝑟,𝐿(𝜋) → 𝐴(𝜋); (8)

see [27, Section 1.2] for more details. The Hitchin base 𝐴(𝜋) naturally sits inside the GL𝑟-Hitchin

base 𝐴′ associated with the curve 𝐶′,

𝐴(𝜋) ⊂ 𝐴′ ∶=

𝑟⨁

𝑖=1

𝐻0(𝐶′,𝐶′(𝑖𝐷′)).

†We are grateful to Young-Hoon Kiem and Mirko Mauri for very interesting and helpful discussions on this.
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1040 MAULIK and SHEN

We define the elliptic locus 𝐴ell(𝜋) ⊂ 𝐴(𝜋) to be the restriction of the elliptic locus of 𝐴′

parameterizing integral spectral curves over 𝐶′.

Our main result of Sections 1 and 2 is a support theorem for the Hitchin fibration (8) associated

with the endoscopic moduli spaces.

Theorem 1.1 (Support Theorem). The generic point of any support of 𝑅ℎ𝜋∗IC𝑀𝑟,𝐿(𝜋)
lies in the

elliptic locus 𝐴ell(𝜋).

When𝑚 = 1 and𝜋 = id, themoduli space𝑀𝑟,𝐿(𝜋) and its Hitchin fibration (8) recover the SL𝑛-

Higgsmoduli space𝑀𝑛,𝐿 and (1). Hence Theorem 1.1 recovers Theorem 0.1. It also generalizes [27,

Theorem 2.3] for nonsingular ambient spaces.

Theorem 1.1 is a first step toward the study of the global topology for SL𝑛-Higgs moduli space

𝑀𝑛,𝐿 and the associated endoscopic moduli spaces. It shows that their global intersection coho-

mology groups are governed by the (nonsingular) elliptic parts. A similar phenomenon was

proven for theGL𝑛-Higgs moduli spaces andmoduli of 1-dimensional semistable sheaves on toric

del Pezzo surfaces [28].

1.2 Weak abelian fibrations

Since in general the total moduli space 𝑀𝑟,𝐿(𝜋) may be singular, we use the framework devel-

oped in [28] to study the Hitchin fibration ℎ𝜋 ∶ 𝑀𝑟,𝐿(𝜋) → 𝐴(𝜋). We first show that ℎ𝜋 admits the

structure as a weak abelian fibration.

For a smooth 𝐴(𝜋)-group scheme g𝜋 ∶ 𝑃(𝜋) → 𝐴(𝜋) with geometrically connected fibers act-

ing on𝑀𝑟,𝐿(𝜋), we say that the triple (𝑀𝑟,𝐿(𝜋), 𝑃(𝜋), 𝐴(𝜋)) is a weak abelian fibration of relative

dimension 𝑒, if

(a) every fiber of the map g𝜋 is pure of dimension 𝑒, and𝑀𝑟,𝐿(𝜋) has pure dimension

dim𝑀𝑟,𝐿(𝜋) = 𝑒 + dim𝐴(𝜋);

(b) the action of 𝑃(𝜋) on𝑀𝑛,𝐿(𝜋) has affine stabilizers; and

(c) the Tate module 𝑇
ℚ𝑙
(𝑃(𝜋)) associated with the group scheme 𝑃(𝜋) is polarizable.

We refer to [28, Section 2] for more details about these conditions.

In the following, we complete ℎ𝜋 ∶ 𝑀𝑛,𝐿(𝜋) → 𝐴(𝜋) into a weak abelian fibration by

constructing the group scheme 𝑃(𝜋) following [5, Section 4] and [27, Section 2.4].

Let  → 𝐴(𝜋) be the universal spectral curve given by the restriction of the universal spectral

curve on 𝐴′. The relative degree 0 Picard scheme†Pic0(∕𝐴(𝜋)) admits a map

Pic0(∕𝐴(𝜋)) → Pic0(𝐶) × 𝐴(𝜋)

between 𝐴(𝜋)-group schemes as the composition (see the paragraph following [27, Proposition

2.5]):

Pic0(∕𝐴(𝜋)) → Pic0(𝐶′) × 𝐴(𝜋) → Pic0(𝐶) × 𝐴(𝜋).

† It parameterizes line bundles on the closed fibers whose restrictions to each irreducible components are of degree 0. By

[3, Section 8], Pic0(∕𝐴(𝜋)) an an algebraic space over 𝐴(𝜋); furthermore, as explained in the last paragraph of [8, p. 715]

it is indeed a scheme since it sits inside the (quasi-projectve) moduli space of semistable Higgs bundles on 𝐶.
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We define 𝑃(𝜋) to be the identity component of the kernel of this map, which is naturally an

𝐴(𝜋)-group scheme.† By viewing a Higgs bundle in 𝑀𝑟,𝐿(𝜋) as a pure 1-dimensional semistable

sheaf on the spectral curve 𝐶𝑎, the 𝐴(𝜋)-group scheme 𝑃(𝜋) acts on 𝑀𝑟,𝐿(𝜋) via tensor product

(cf. [10, Lemma 3.4.1]). It was proven in [27, Proposition 2.6] that (𝑀𝑟,𝐿(𝜋), 𝐴(𝜋), 𝑃(𝜋)) is a weak

abelian fibration of relative dimension 𝑒 ∶= dim𝑀𝑟,𝐿(𝜋) − dim𝐴(𝜋) when gcd(𝑛, 𝑑) = 1. In fact,

this holds also in the singular case:

Proposition 1.2 (cf. [27, Proposition 2.6]). The triple (𝑀𝑟,𝐿(𝜋), 𝐴(𝜋), 𝑃(𝜋)) is a weak abelian

fibration of relative dimension 𝑒 = dim𝑀𝑟,𝐿(𝜋) − dim𝐴(𝜋).

Proof. The condition (a) is obvious. The condition (c) only concerns the group scheme 𝑃(𝜋)which

was already verified in (ii) of [27, Proof of Proposition 2.6]. As in (i) of [27, Proof of Proposition 2.6],

the affineness of the stabilizers for the 𝑃(𝜋)-action on𝑀𝑛,𝐿(𝜋) follows from the same statement

for the correspondingGL𝑟-Higgsmoduli space [10, Lemma 3.5.4], since the stabilizers of the 𝑃(𝜋)-

actions are closed subgroups of the stabilizers of the Pic0(∕𝐴′)-action. Hence the condition (b)

holds as well. □

1.3 𝜹-inequalities

For a closed point 𝑎 ∈ 𝐴(𝜋), we denote by 𝛿(𝑎) the dimension of the affine part of the algebraic

group 𝑃(𝜋)𝑎 over 𝑎. This defines an upper semi-continuous function

𝛿 ∶ 𝐴(𝜋) → ℕ, 𝑎 ↦ 𝛿(𝑎).

For a closed subvariety𝑍 ⊂ 𝐴(𝜋), we define 𝛿𝑍 to be theminimal value of the function 𝛿 on𝑍. Fol-

lowing the strategy of [5, 8], it was proven in [27, Section 2] that 𝛿-inequalities of the group scheme

𝑃(𝜋) effectively control the decomposition theorem for ℎ𝜋 ∶ 𝑀𝑟,𝐿(𝜋) → 𝐴(𝜋), as we now review.

A key observation of [27] is that, when deg(𝐷) > 2g − 2, a combination of the multi-variable

𝛿-inequality [27, Proposition 2.7] and the support inequality (9) below implies that the decom-

position theorem of ℎ𝜋 ∶ 𝑀𝑟,𝐿(𝜋) → 𝐴(𝜋) has no support with generic point lying in 𝐴(𝜋) ⧵

𝐴ell(𝜋).

Proposition 1.3 ([27] Section 2.5: Proof of Theorem 2.3 (a)). Assume that for any support 𝑍 of

𝑅ℎ𝜋∗IC𝑀𝑟,𝐿(𝜋)
, we have

codim𝐴(𝜋)𝑍 ⩽ 𝛿𝑍 . (9)

Then the generic points of all supports are contained in 𝐴ell(𝜋).

When the ambient space𝑀𝑟,𝐿(𝜋) is nonsingular, the support inequality (9) follows from Ngô’s

work [32]. A singular version was established recently in [28] which generalizes Ngô’s original

support inequality.

Recall that 𝑒 is the relative dimension for the weak abelian fibration (𝑀𝑟,𝐿(𝜋), 𝐴(𝜋), 𝑃(𝜋)) of

Proposition 1.2.

†We note that the group scheme 𝑃(𝜋) is denoted by 𝑃0 in [27].
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1042 MAULIK and SHEN

Theorem 1.4 ([28] Theorem 1.8). Suppose we have the vanishing

𝜏>2𝑒

(
𝑅ℎ𝜋∗IC𝑀𝑟,𝐿(𝜋)

[−dim𝑀𝑟,𝐿(𝜋)]
)
= 0, (10)

where 𝜏>∙(−) denotes the standard truncation functor. Then the inequality (9) holds for any support

𝑍.

As a consequence of Proposition 1.3 and Theorem 1.4, Theorem 1.1 follows from the relative

dimension bound (10), which we prove in the next section.

2 PROPER APPROXIMATIONS AND SUPPORT THEOREMS

2.1 Overview

The main purpose of this section is to complete the proof of Theorem 1.1. As we explained at

the end of Section 1, it suffices to prove the relative dimension bound (10) which we complete in

the following.

2.2 Proper approximations

We follow the strategy of [28, Section 3] to prove (10).

Let 𝑞 ∶  → 𝑊 be a morphism from a nonsingular Artin stack of finite type to an algebraic

variety. Modelled on [28, Proposition 3.6], we say that 𝑞 has a proper approximation if, for any

𝑅 > 0, there exists a nonsingular scheme𝑊𝑅 and an Artin stack 𝑅 with a commutative diagram

(11)

satisfying the following properties.

(a) 𝑝 is an affine space bundle.

(b) 𝑗 ∶ 𝑊𝑅 ↪ 𝑅 is an open immersion.

(c) The composition 𝑞𝑅 ∶ 𝑊𝑅

𝑝𝑊
bbb→ 

𝑞
b→ 𝑊 is projective.

(d) For the complement 𝑅 ∶= 𝑅 ⧵𝑊𝑅, we have

codim𝑅
(𝑅) > 𝑅.

Proposition 2.1. Assume that 𝑞 ∶  → 𝑊 has a proper approximation. Then the following

statements hold.

(1) We have a splitting

𝑅𝑞∗ℂ ≃ IC𝑊[−dim𝑊] ⊕ ∈ 𝐷+
𝑐 (𝑊). (12)
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(2) Let 𝑞′ ∶  ′ → 𝑊′ be the pullback of 𝑞 along a morphism 𝑓 ∶ 𝑊′ → 𝑊 with ′ a nonsingular

stack. Then 𝑞′ has a proper approximation.

Proof.

(1) follows from [28, Section 3.4]. In fact, although [28, Proposition 3.4] concerns a more specific

geometry, the proof only relies on the diagram (11) and the properties (a)–(d) above. More

precisely, we view the complex

𝑅𝑞∗ℂ = 𝑅(𝑞◦𝑝 )∗ℂ

as a homotopy colimit of truncations of the direct image complexes𝑅𝑞𝑅∗ℂ, and use the decom-

position theorem for the projective morphism 𝑞𝑅 ∶ 𝑊𝑅 → 𝑊 to deduce the desired splitting

(12).

(2) is deduced by pulling back the diagram (11) along 𝑓 ∶ 𝑊′ → 𝑊. □

2.3 Connnecting to 𝐆𝐋𝒓-Hitchin fibrations

Recall the Hitchin fibration ℎ𝜋 ∶ 𝑀𝑟,𝐿(𝜋) → 𝐴(𝜋) associated with 𝜋 ∶ 𝐶′ → 𝐶 with relative

dimension

𝑒 = dim𝑀𝑟,𝐿(𝜋) − dim𝐴(𝜋).

To verify the relative dimension bound (10) for 𝑀𝑟,𝐿(𝜋), we consider the stack 𝑟,𝐿(𝜋) of

semistable Higgs bundles ( , 𝜃) with det(𝜋∗) ≃ 𝐿 ∈ Pic𝑑(𝐶) and trace(𝜋∗𝜃) = 0. We denote by

𝑞 ∶ 𝑟,𝐿(𝜋) → 𝑀𝑟,𝐿(𝜋) the map from the stack to the good moduli space.

For our purpose, we also consider theGL𝑟-Hitchin fibration ℎ̃ ∶ 𝑀̃′
𝑟,𝑑

→ 𝐴′ associated with the

curve 𝐶′. Here 𝑀̃′
𝑟,𝑑

is the moduli space of semistable Higgs bundles

( , 𝜃), 𝜃 ∶  →  ⊗ 𝐶′(𝐷′), 𝐷′ = 𝜋∗𝐷

of rank 𝑟 and degree 𝑑 on 𝐶′, and ℎ̃ is the Hitchin fibration sending ( , 𝜃) to its characteristic

polynomial

char(𝜃) ∈ 𝐴′ = ⊕𝑟
𝑖=1𝐻

0(𝐶′,𝐶′(𝑖𝐷′)).

We denote by ̃′
𝑟,𝑑
the correspondingmoduli stack with the natural morphism 𝑞 ∶ ̃′

𝑟,𝑑
→ 𝑀̃′

𝑟,𝑑
.

We recall the following proposition from [28] concerning ̃′
𝑟,𝑑
.

Proposition 2.2 ([28] Proposition 2.9 (2) and Proposition 3.6). The stack ̃′
𝑟,𝑑
is nonsingular, and

𝑞 ∶ ̃′
𝑟,𝑑

→ 𝑀̃′
𝑟,𝑑

has a proper approximation.

Now we connect the moduli spaces and stacks for the endoscopic groups and GL𝑟 via the

construction of [27, Section 5].
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1044 MAULIK and SHEN

We consider the moduli space 𝑀̃1,0 (respectively, moduli stack ̃1,0) of Higgs bundles on 𝐶

with rank 1 and degree 0. More concretely, they can be described as

𝑀̃1,0 = Pic0(𝐶) × 𝐻0(𝐶,𝐶(𝐷)), ̃1,0 =  𝑖𝑐0(𝐶) × 𝐻0(𝐶,𝐶(𝐷)),

where Pic0(−) and 𝑖𝑐0(−) stand for the degree 0 Picard scheme and stack respectively.We denote

by

𝑞𝑃 ∶ ̃1,0 → 𝑀̃1,0

the natural morphism. The group scheme 𝑀̃1,0 acts on 𝑀̃
′
𝑟,𝑑
:

(, 𝜎) ⋅ ( , 𝜃) = (𝜋∗⊗  , 𝜋∗𝜎 + 𝜃), (, 𝜎) ∈ 𝑀̃1,0, ( , 𝜃) ∈ 𝑀̃′
𝑟,𝑑
,

which induces a morphism

𝑡 ∶ 𝑀̃1,0 ×𝑀𝑟,𝐿(𝜋) → 𝑀̃′
𝑟,𝑑

by restricting the action to𝑀𝑟,𝐿(𝜋) ⊂ 𝑀̃′
𝑟,𝑑
. The map 𝑡 can be interpreted as the quotient map by

the finite groupΓ = Pic0(𝐶)[𝑛] acting diagonally on the two factors; see [27, Section 5.3]. Similarly,

we have the Γ-quotient map for the moduli stacks:

̃1,0 ×𝑟,𝐿(𝜋) → ̃′
𝑟,𝑑

inducing the following Cartesian diagram

(13)

where the horizontal arrows are quotient maps by the Γ-actions and the vertical arrows are the

maps from the stacks to the good moduli spaces.

Proposition 2.3. The moduli stack𝑟,𝐿(𝜋) is nonsingular, and the left vertical map of (13)

g ∶= 𝑞𝑃 × 𝑞 ∶ ̃1,0 ×𝑟,𝐿(𝜋) → 𝑀̃1,0 ×𝑀𝑟,𝐿(𝜋)

has a proper approximation.

Proof. By the discussion in the proof of [27, Proposition 4.1], the obstruction space for an element

( , 𝜃) ∈ 𝑟,𝐿(𝜋) is the second cohomology group of the following complex

[
(𝜋∗𝑛𝑑())0

𝜋∗ad(𝜃)
bbbbbbb→ (𝜋∗𝑛𝑑())0 ⊗ 𝐶(𝐷)

]
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obtained by removing the trace from the pushforward of the complex

[
𝑛𝑑()

ad(𝜃)
bbbbb→ 𝑛𝑑() ⊗ 𝐶′(𝐷′)

]
. (14)

Here (𝜋∗𝑛𝑑())0 denotes the kernel with respect to the trace on the curve 𝐶:

tr𝐶 ∶ 𝜋∗𝑛𝑑()
𝜋∗tr𝐶′
bbbbbb→ 𝜋∗𝐶′ → 𝐶 .

In particular, the obstruction space for ( , 𝜃) ∈ 𝑟,𝐿(𝜋) is a subspace of the second cohomology

group of (14) on 𝐶′ which is actually the obstruction space for ( , 𝜃) ∈ ̃′
𝑟,𝑑

by viewing ( , 𝜃) as

a GL𝑟-Higgs bundle on 𝐶′. Its vanishing follows from the (the proof of) Proposition 2.2 on the

smoothness of ̃′
𝑟,𝑑
. This shows that𝑟,𝐿(𝜋) is nonsingular.

Consequently, we obtain the smoothness of ̃1,0 ×𝑟,𝐿(𝜋). The second part is a corollary of

Proposition 2.1 (2) and Proposition 2.2. □

By Propositions 2.1 (1) and 2.3, we get the following result.

Corollary 2.4. We have a splitting

𝑅g∗ℂ ≃ IC𝑀̃1,0×𝑀𝑟,𝐿(𝜋)
[−dim𝑀̃1,0 − dim𝑀𝑟,𝐿(𝜋)] ⊕ (15)

with some complex bounded from below.

2.4 Proof of Theorem 1.1

We verify (10) in this section which completes the proof of Theorem 1.1. For convenience, we use

the following simplified notation (only) in Section 2.4:

𝐻 ∶= 𝑀̃1,0, 𝑀 ∶= 𝑀𝑟,𝐿(𝜋), 𝑀̃′ ∶= 𝑀̃′
𝑟,𝑑
,

 ∶= ̃1,0,  ∶= 𝑟,𝐿(𝜋), ̃′ ∶= ̃′
𝑟,𝑑
.

Fact 1. For the morphism 𝑞 ∶  → 𝑀, we have a splitting

𝑅𝑞∗ℂ ≃ IC𝑀[− dim𝑀] ⊕′.

Proof of Fact 1. Since𝐻 is nonsingular, we have

IC𝐻×𝑀 ≃ ℂ𝐻[dim𝐻] ⊠ IC𝑀 .

On the other hand, the left-hand side of (15) is equal to

𝑅g∗ℂ =
⨁

𝑖⩾0

ℂ𝐻 ⊠𝑅𝑞∗ℂ𝑀[−2𝑖].
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1046 MAULIK and SHEN

Hence by restricting (15) to pt × 𝑀 ⊂ 𝐻 ×𝑀, we obtain that

⨁

𝑖⩾0

𝑅𝑞∗ℂ𝑀[−2𝑖] ≃ IC𝑀[−dim𝑀] ⊕⋯ ∈ 𝐷+
𝑐 (𝑀).

Since IC𝑀[−dim𝑀] is simple, it has to be a direct summand component of some 𝑅𝑞∗ℂ𝑀[−2𝑘].

By comparing over the nonsingular locus of𝑀, we see that 𝑘 = 0. □

Fact 2. Let ℎ ∶  → 𝐴(𝜋) be the composition

ℎ ∶ 
𝑞
b→ 𝑀

ℎ𝜋
bb→ 𝐴(𝜋).

Then we have

𝜏>2𝑒
(
𝑅ℎ!ℂ

)
= 0, 𝑒 = dim𝑀 − dim𝐴(𝜋) = dim − dim𝐴(𝜋) + 1.

Proof of Fact 2. We consider the map ℎ
̃′ ∶ ̃′ → 𝐴′ given as the composition

ℎ
̃′ = ℎ̃◦𝑞 ∶ ̃′ → 𝑀̃′ → 𝐴′.

By [28, Proposition 2.9 (1)] (see also [8, Section 10]) we have the dimension bound for any closed

fiber:

dimℎ−1
̃′

(𝑎) ⩽ dim̃′ − dim𝐴′ = 𝑒 + (g − 1), ∀𝑎 ∈ 𝐴′.

Hence, for the morphism ℎ× ∶  × → 𝐻0(𝐶,𝐶(𝐷)) × 𝐴(𝜋) given by the composition

ℎ× ∶  × → 𝐻 ×𝑀 → 𝐻0(𝐶,𝐶(𝐷)) × 𝐴(𝜋),

we obtain from the diagram (13) that

dimℎ−1
×(𝑤, 𝑠) = dimℎ−1

̃′
(𝑡(𝑤, 𝑠)) ⩽ 𝑒 + (g − 1), ∀(𝑤, 𝑠) ∈ 𝐻0(𝐶,𝐶(𝐷)) × 𝐴(𝜋).

On the other hand,

dimℎ−1
×(𝑡, 𝑠) = dimℎ−1


(𝑠) + (g − 1).

Consequently dimℎ−1

(𝑠) ⩽ 𝑒 for any closed point 𝑠 ∈ 𝐴(𝜋). Fact 2 follows from [28, Lemma 3.5]

and base change. □

As explained in the paragraph following [27, Proposition 3.4], Facts 1 and 2 imply the relative

dimension bound (10) immediately. This completes the proof of Theorem 1.1.

 1
7

5
3

8
4

2
4

, 2
0

2
2

, 3
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n

d
m

ath
so

c.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1
2
/to

p
o
.1

2
2
5
0
 b

y
 Y

ale U
n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

0
/0

8
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



ON THE INTERSECTION COHOMOLOGY OF THE MODULI OF SL𝑛-HIGGS BUNDLES ON A CURVE 1047

3 THE HAUSEL–THADDEUS CONJECTURE

3.1 Overview

We complete the proof of Theorem 0.2 in this section. As a consequence of Theorem 1.1, we

first show that both sides of (4) are semisimple objects with 𝐴𝛾 as the only support. Then Theo-

rem 0.2(a) is reduced to showing the desired isomorphism over an arbitrary Zariski open subset of

the locus 𝐴𝛾 ⊂ 𝐴. This is essentially identical to the proof of [27, Theorem 3.2] which only relies

on the calculation over the elliptic locus [32, 34].

Theorem 0.2(b) is more complicated, since this is a new phenomenon when gcd(𝑛, 𝑑) ≠ 1.†

Again, we use the support theorem to reduce the desired isomorphism to a calculation of the

𝐺𝜋-action on the𝑚 components of the moduli space𝑀𝑟,𝐿(𝜋). This is carried out in Section 3.5.

In Section 3.6, we further discuss the connection between Theorem 0.2 and the original

formulation of the Hausel–Thaddeus conjecture [18].

3.2 Supports for 𝒉 ∶ 𝑴𝒏,𝑳 → 𝑨

Recall the SL𝑛-Hitchin fibration ℎ ∶ 𝑀𝑛,𝐿 → 𝐴, and the elliptic locus 𝐴ell ⊂ 𝐴 which is the open

subset of 𝐴 consisting of integral spectral curves. The fiberwise Γ-action on 𝑀𝑛,𝐿 yields the

canonical decomposition

𝑅ℎ∗IC𝑀𝑛,𝐿
=
⨁

𝜅

(
𝑅ℎ∗IC𝑀𝑛,𝐿

)

𝜅
, 𝜅 ∈ Γ̂.

Let 𝛾 ∈ Γ be the element matched with the nontrivial character 𝜅 ∈ Γ̂ via the Weil pairing (3).

Ngô proved in [32, Theorem 7.8.5] that the restriction of the object

(
𝑅ℎ∗IC𝑀𝑛,𝐿

)

𝜅
(16)

to 𝐴ell has

𝐴ell
𝛾 ∶= 𝐴𝛾 ∩ 𝐴ell ⊂ 𝐴

as its only support. Hence we obtain the following proposition concerning the left-hand side of

(4) from Theorem 0.1:

Proposition 3.1. We have that 𝐴𝛾 is the only support of the object (16).

3.3 The moduli spaces𝑴𝒓,𝑳(𝝅) and𝑴𝜸

𝒏,𝑳

Now we prove a support theorem for the fibration ℎ𝛾 ∶ 𝑀
𝛾
𝑛,𝐿

→ 𝐴𝛾 concerning the object in the

right-hand side of (4). We achieve this using the moduli space𝑀𝑟,𝐿(𝜋) discussed in Sections 1 and

2.

†When gcd(𝑛, 𝑑) = gcd(𝑛, 𝑑′) = 1, the condition (5) specializes to the condition that 𝜅′ = 𝑑′−1𝑑𝜅 as in [27, Theorem 0.5].
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1048 MAULIK and SHEN

Assume 𝜅 has order 𝑚 in Γ̂. Therefore 𝛾 is an 𝑚-torsion line bundle. Let 𝜋 ∶ 𝐶′ → 𝐶 be the

degree𝑚 cyclic étale Galois cover associatedwith 𝛾 [27, Section 1.3]. In the following, we construct

the commutative diagram

(17)

connectingℎ𝜋 and ℎ𝛾, where the bottomhorizontalmap 𝑞𝐴 is the𝐺𝜋-quotient; see [27, Section 1.5]

for the coprime case. Note that the map 𝑞𝑀 is the free 𝐺𝜋-quotient in the coprime case, but it is

more complicated in general without the coprime assumption (Remark 3.3).

We first review the construction of [18, Section 7] which gives the top horizontal map 𝑞𝑀 . Let

( , 𝜃) be a rank 𝑟 Higgs bundle on the curve 𝐶′, then (𝜋∗ , 𝜋∗𝜃) is a rank 𝑛(= 𝑟𝑚) Higgs bundle

on 𝐶. Here the bundle 𝜋∗ is simply the pushforward of  along 𝜋 ∶ 𝐶′ → 𝐶, and the Higgs field

𝜃 is given by descending the block-diagonal Higgs field
⨁

g∈𝐺𝜋
g
∗𝜃 on the vector bundle

𝜋∗𝜋∗ . =
⨁

g∈𝐺𝜋

g
∗ (18)

along the 𝐺𝜋-quotient 𝜋 ∶ 𝐶′ → 𝐶. We recall the following well-known lemma.

Lemma 3.2. The Higgs bundle ( , 𝜃) is semistable if and only if (𝜋∗ , 𝜋∗𝜃) is semistable.

Proof. The if part is obvious: for any sub-Higgs bundle destabilizing ( , 𝜃), its pushforward along

𝜋 will destabilize (𝜋∗ , 𝜋∗𝜃). For the only if part, we consider the decomposition (18):

𝜋∗𝜋∗( , 𝜃) =
⨁

g∈𝐺𝜋

g
∗( , 𝜃). (19)

In particular, if ( , 𝜃) is semistable, then (19) as a direct summand of semistable Higgs bundles

of the same slope is also semistable. Hence the pullback of any sub-Higgs bundle destabilizing

(𝜋∗ , 𝜋∗𝜃) will destabilize (19) as well. This completes the proof. □

By Lemma 3.2, the push forward 𝜋∗ induces a morphism between the moduli spaces

𝑀𝑟,𝐿(𝜋) → 𝑀𝑛,𝐿. (20)

Moreover, by [30, Proposition 3.3], the restriction of (20) to the Zariski dense open subset

𝑀𝑟,𝐿(𝜋)
◦ ⊂ 𝑀𝑟,𝐿(𝜋) formed by points not fixed by any element of 𝐺𝜋 is a free 𝐺𝜋-quotient with

image lying in𝑀
𝛾
𝑛,𝐿
. In conclusion, we obtain

𝑞𝑀 ∶ 𝑀𝑟,𝐿(𝜋) → 𝑀
𝛾
𝑛,𝐿

⊂ 𝑀𝑛,𝐿.

which completes the diagram (17).
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Remark 3.3. When gcd(𝑛, 𝑑) = 1 so that there is no strictly semistable objects, both varieties

𝑀𝑟,𝐿(𝜋) and𝑀
𝛾
𝑛,𝐿

are nonsingular, and themap 𝑞𝑀 induced by 𝜋∗ is a free𝐺𝜋-quotient [18, Propo-

sition 7.1]. However, this may fail when gcd(𝑛, 𝑑) ≠ 1. For example, the rank 1 stable Higgs bundle

(𝐶′ , 0) is a 𝐺𝜋-fixed point.

Lemma 3.4. We have a splitting

𝑅𝑞𝑀∗IC𝑀𝑟,𝐿(𝜋)
= IC𝑀

𝛾
𝑛,𝐿

⊕⋯ .

Proof. Over an open subset of𝑀
𝛾
𝑛,𝐿

where 𝑞𝑀 is a free𝐺𝜋-quotient, we have the canonical splitting

𝑅𝑞𝑀∗ℂ =
(
𝑅𝑞𝑀∗ℂ

)𝐺𝜋 ⊕
(
𝑅𝑞𝑀∗ℂ

)
var

= ℂ⊕
(
𝑅𝑞𝑀∗ℂ

)
var

with (𝑅𝑞𝑀∗ℂ)var the variant part. The lemma follows. □

To analyze the supports for ℎ𝛾 ∶ 𝑀
𝛾
𝑛,𝐿

→ 𝐴𝛾, we note the following standard lemma.

Lemma 3.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a finite surjective map between irreducible varieties. Then for any

semisimple perverse sheaf IC𝑋() with full support 𝑋, the pushforward 𝑓∗IC𝑋() is s semisimple

perverse sheaf with full support 𝑌.

Proof. To show that 𝑓∗IC𝑋() is an intermediate extension of a local system on an open subset of

𝑌, it suffices to prove the support condition (see [9, Section 2.1 (12),(13)]):

dim
(
supp(−𝑖(−)

)
< 𝑖, for 𝑖 < dim𝑌

for 𝑓∗IC𝑋() and its dual. This follows from the finiteness of 𝑓 and the same support conditions

for IC𝑋() and its dual on 𝑋. □

Proposition 3.6. Assume that 𝛾 ∈ Γ and 𝜅 ∈ Γ̂ are matched via the Weil pairing (3), and 𝜅′ ∈ ⟨𝜅⟩.
The object

(
𝑅ℎ𝛾∗IC𝑀

𝛾
𝑛,𝐿

)

𝜅′
(21)

has full support 𝐴𝛾.

Proof. We first consider the map ℎ𝜋 ∶ 𝑀𝑟,𝐿(𝜋) → 𝐴(𝜋) and observe that the object

(
𝑅ℎ𝜋∗IC𝑀𝑟,𝐿(𝜋)

)

𝜅′
(22)

has full support 𝐴(𝜋) for 𝛾 and 𝜅′ as in the assumption and 𝜋 ∶ 𝐶′ → 𝐶 given by 𝛾. When

gcd(𝑛, 𝑑) = 1, this is verified in [27, Theorem 2.3 (b) and Proposition 2.10], which relies on the

support theorem [27, Theorem 2.3 (a)] and a direct calculation over the elliptic locus. Since the

moduli space𝑀𝑟,𝐿(𝜋) is nonsingular restricting over the elliptic locus and the calculation of [27]
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over the elliptic locus does not rely on the coprime assumption, we obtain that the full support

property still holds for (22) as a consequence of Theorem 1.1.

To prove the proposition, we use the commutative diagram (17) which induces a canonical Γ-

equivariant isomorphism

𝑅𝑞𝐴∗𝑅ℎ𝜋∗IC𝑀𝑟,𝐿(𝜋)
= 𝑅ℎ𝛾∗𝑅𝑞𝑀∗IC𝑀𝑟,𝐿(𝜋)

.

Taking the 𝜅′-isotypic parts, we get

𝑅𝑞𝐴∗

(
𝑅ℎ𝜋∗IC𝑀𝑟,𝐿(𝜋)

)

𝜅′
=
(
𝑅ℎ𝛾∗𝑅𝑞𝑀∗IC𝑀𝑟,𝐿(𝜋)

)

𝜅′
(23)

where both sides are semisimple objects due to the decomposition theorem. Since 𝑞𝐴 is a finite

quotient map and (22) has full support 𝐴(𝜋), the left-hand side (23) has full support 𝐴𝛾 by

Lemma 3.5. Furthermore, Lemma 3.4 implies that (21) is a direct summand component of the

right-hand side of (23). This completes the proof. □

3.4 Proof of Theorem 0.2(a)

Theorem 0.2 (a) is an immediate consequence of Propositions 3.1 and 3.6.

More precisely, since both sides of (4) have 𝐴𝛾 as their only supports, it suffices to show the

isomorphism over an arbitrary open subset of𝐴𝛾 which is proven essentially by [34, Theorem B];

see also [27, Theorem 3.2].

Remark 3.7. In fact, even without the coprime assumption, the proof of [27, Theorem 3.2] works

over the elliptic locus 𝐴ell
𝛾 ⊂ 𝐴𝛾. In particular, we may choose the open subset in the proof above

to be the elliptic locus.

3.5 Proof of Theorem 0.2(b)

Since the object (21) has full support𝐴𝛾, its isomorphism class is determined by the restriction over

a Zariski open subset. In view of the diagram (17), it suffices to treat the 𝐺𝜋-equivariant objects

(
𝑅ℎ𝜋∗ℂℎ−1𝜋 (𝑉)

)

𝜅′
(24)

over an arbitrary Zariski open 𝑉 ⊂ 𝐴(𝜋). After shrinking 𝑉, we may assume that all the fibers of

ℎ𝜋 are nonsingular and 𝐺𝜋 acts freely on 𝑉. By [32, Proposition 7.2.3] (see [10, Theorem 5.0.2] for

the Hodge module version), the isomorphism class of the object (24) is completely determined by

the 𝐺𝜋-equivariant local system given by the relative top degree cohomology:

(
𝑅2𝑠ℎ𝜋∗ℂℎ−1𝜋 (𝑉)

)

𝜅′
.

Here 𝑠 is the dimension of a fiber of ℎ𝜋 over 𝑉. The sheaf

𝑅2𝑠ℎ𝜋∗ℂℎ−1𝜋 (𝑉)
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is a rank 𝑚 trivial local system indexed by the𝑚 connected components of a general fiber of ℎ𝜋,

which are further identified with the𝑚 connected components of the degree 𝑑 Prym variety

Prym𝑑(𝐶′∕𝐶) ∶= Nm−1(𝐿), Nm = det(𝜋∗−) ∶ Pic
𝑑(𝐶′) → Pic𝑑(𝐶)

associated with the cyclic Galois cover 𝜋 ∶ 𝐶′ → 𝐶; see [27, Section 1].

In conclusion, the isomorphism class of (24) is completely determined by the 𝐺𝜋- and the

Γ-actions on the 𝑚 connected components of Prym𝑑(𝐶′∕𝐶). These two actions commute with

each other.

Now we want to connect the Hitchin fibrations

ℎ𝜋,𝐿 ∶ 𝑀𝑟,𝐿(𝜋) → 𝐴(𝜋), ℎ𝜋,𝐿′ ∶ 𝑀𝑟,𝐿′(𝜋) → 𝐴(𝜋),

where the line bundles 𝐿 and 𝐿′ are of degrees 𝑑 and 𝑑′, respectively.†

We first note the following elementary lemma which justifies the condition (5).

Lemma 3.8. There is an integer 𝑞 coprime to 𝑛 such that

𝑑 = 𝑑′𝑞 mod 𝑛.

Proof. Assume

gcd(𝑛, 𝑑) = gcd(𝑛, 𝑑′) = 𝑎.

Then both the primary ideals (𝑑) and (𝑑′) of ℤ∕𝑛ℤ coincide with (𝑎). Hence the generators 𝑑 and

𝑑′ differ by a unit of ℤ∕𝑛ℤ. □

In the following, the integer 𝑞 will be chosen as in Lemma 3.8. The proof of Theorem 0.2(b)

follows from the following two steps.

3.5.1 Step 1: Connecting ℎ𝜋,𝐿′ to ℎ𝜋,𝐿′⊗𝑞

Since the 𝐺𝜋-equivariant objects (24) associated with the Hitchin fibrations ℎ𝜋,𝐿′ and ℎ𝜋,𝐿′⊗𝑞 are

completely determined by the 𝐺𝜋- and the Γ-actons on the Prym varieties

Prym𝑑′(𝐶′∕𝐶) ∶= Nm−1(𝐿′),

and

Prym𝑑′𝑞(𝐶′∕𝐶) ∶= Nm−1(𝐿′⊗𝑞),

respectively. An identical argument as for [27, Proposition 2.11] yields

(
Rhπ,L′∗ℂℎ−1

𝜋,𝐿′
(𝑉)

)

𝑞𝜅

≃

(
Rhπ,L′⊗q∗ℂℎ−1

𝜋,𝐿′⊗𝑞
(𝑉)

)

𝜅

∈ 𝐷𝑏
𝑐 (𝑉).

† In this section we use ℎ𝜋,𝐿 to denote the Hitchin fibration𝑀𝑟,𝐿(𝜋) → 𝐴(𝜋) to indicate its dependence on the line bundle

𝐿.
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In view of Proposition 3.6, this further implies

(
𝑅ℎ𝛾∗IC𝑀

𝛾

𝑛,𝐿′

)

𝑞𝜅

≃

(
𝑅ℎ𝛾∗IC𝑀

𝛾

𝑛,𝐿′⊗𝑞

)

𝜅

∈ 𝐷𝑏
𝑐 (𝐴𝛾). (25)

3.5.2 Step 2: Connecting𝑀𝛾

𝑛,𝐿′⊗𝑞 and𝑀
𝛾
𝑛,𝐿

By the choice of 𝑞, we have

deg(𝐿′⊗𝑞) − deg(𝐿) = 0 mod 𝑛. (26)

Note that for two line bundles 𝐿1 and 𝐿2 with 𝐿1 = 𝐿2 ⊗𝑁⊗𝑛, there is a natural identification of

the moduli spaces

𝑀𝑛,𝐿1

≃
b→ 𝑀𝑛,𝐿2

, ( , 𝜃) ↦ ( ⊗𝑁, 𝜃)

compatible with the Γ-actions and the Hitchin fibrations. Therefore, by (26), we have natural

isomorphisms

𝑀𝑛,𝐿′⊗𝑞

≃
b→ 𝑀𝑛,𝐿, 𝑀

𝛾

𝑛,𝐿′⊗𝑞

≃
b→ 𝑀

𝛾
𝑛,𝐿

,

which further induce

(
𝑅ℎ𝛾∗IC𝑀

𝛾

𝑛,𝐿′⊗𝑞

)

𝜅

≃
(
𝑅ℎ𝛾∗IC𝑀

𝛾
𝑛,𝐿

)

𝜅
. (27)

The proof of Theorem 0.2(b) is completed by combining (25) and (27).

3.6 The Hausel–Thaddeus conjecture

In this section, we give a few remarks regarding the relation of our result with the Hausel–

Thaddeus conjecture.

The original form of the Hausel–Thaddeus conjecture involves Higgs bundles of type SL𝑛 and

PGL𝑛 with𝐷 = 𝐾𝐶 and in the coprime setting gcd(𝑛, 𝑑) = 1. It relates the singular cohomology of

𝑀𝑛,𝐿 with the stringy cohomology of [𝑀𝑛,𝐿∕Γ], twisted by a particular gerbe 𝛼 whose appearance

is motivated by SYZmirror symmetry. In the coprime setting, as explained in the appendix of [26],

the 𝛼-twisted cohomology of the sector

[𝑀
𝛾
𝑛,𝐿

∕Γ], 𝛾 ∈ Γ

is equivalent to a certain isotypic component of the singular cohomology of𝑀
𝛾
𝑛,𝐿
. Hence the orig-

inal Hausel–Thaddeus formulation is implied by the formulation as in Theorem 0.2, after passing

to global cohomology. In the non-coprime setting, however, it is not clear to us how to define the

corresponding gerbe 𝛼 on the singular stack [𝑀𝑛,𝐿∕Γ] and so we do not have a direct definition of
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the 𝛼-twisted intersection cohomology. As a result, the formulation we give here in terms of the

endoscopic decomposition seems more natural.

If we consider the case of Higgs bundles with 𝐷 = 𝐾𝐶 but general degree 𝑑, then our argument

no longer applies; contrary to Theorems 0.5 and 1.1 the decomposition theorem for the Hitchin

fibration have many additional supports outside the elliptic locus (cf. [7]). When gcd(𝑛, 𝑑) = 1,

we deduce in [27] the Hausel–Thaddeus conjecture for𝐷 = 𝐾𝐶 from the cases of deg(𝐷) > 2g − 2

using vanishing cycle techniques. However, the approach of [27] cannot be applied directly to

deduce Theorem 0.2 (as conjectured by Mauri [29] in the degree 0 case) for 𝐷 = 𝐾𝐶 when

gcd(n, d) ≠ 1. More precisely, the main ingredient of [27] is its Theorem 4.5, which relies on the

smoothness of the evaluation map of its Proposition 4.1. The smoothness fails when there are

strictly semistable points.

From the perspective of enumerative geometry, another natural option is toworkwith the coho-

mology of the so-called BPS sheaf 𝜙BPS, a perverse sheaf on𝑀𝑛,𝐿 defined by Davison–Meinhardt

[12] and Toda [33].When deg(𝐷) > 2g − 2, the BPS-cohomology coincideswith intersection coho-

mology but for 𝐷 = 𝐾𝐶 these two are different. Note that combining the recent work [22] and

Theorem 0.2 may provide a proof of a version of the Hausel–Thaddeus conjecture for the BPS-

cohomology for 𝐷 = 𝐾𝐶 ; the approach of Davison [11] further suggests a path line to deduce the

𝐷 = 𝐾𝐶 case of Theorem 0.2 from the BPS-cohomology.

Finally, it is reasonable to expect Theorem 0.2 can be extended to the case of Higgs bun-

dles for a general reductive group 𝐺 and its Langlands dual 𝐺∨, and we hope to explore this in

subsequent work.

4 VECTOR BUNDLES ANDHIGGS BUNDLES

In this section, we discuss the interplay between the moduli of vector bundles and the moduli of

Higgs bundles, and complete the proof of Theorem 0.4. As before, we fix a line bundle 𝐿 ∈ Pic𝑑(𝐶)

and an effective divisor 𝐷 of degree deg(𝐷) > 2g − 2.

4.1 Moduli spaces𝑴𝒏,𝑳 and𝑵𝒏,𝑳

We would like to study the topology of 𝑁𝑛,𝐿 via the Higgs moduli space𝑀𝑛,𝐿.

We consider the ℂ∗-action on𝑀𝑛,𝐿 by the scaling action on the Higgs field:

𝜆 ⋅ ( , 𝜃) = ( , 𝜆𝜃), 𝜆 ∈ ℂ∗.

The ℂ∗-fixed locus 𝐹 ⊂ 𝑀𝑛,𝐿 can be decomposed as

𝐹 = 𝑁𝑛,𝐿 ⊔ 𝐹′.

Here the first connected component parameterizes (S-equivalence classes of) semistable Higgs

bundles with 𝜃 = 0which is naturally isomorphic to𝑁𝑛,𝐿. The restriction of the Γ-action on𝑀𝑛,𝐿

to 𝑁𝑛,𝐿 recovers (6).

We apply hyperbolic localization to connect the intersection cohomology of the moduli spaces

𝑀𝑛,𝐿 and 𝑁𝑛,𝐿.
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1054 MAULIK and SHEN

4.2 Hyperbolic localization

We consider the following subvarieties of𝑀𝑛,𝐿 obtained from the scaling ℂ∗-action:

𝑀+ ∶= {𝑥 ∈ 𝑀𝑛,𝐿 ∶ lim
𝜆→0

𝜆 ⋅ 𝑥 ∈ 𝐹}, 𝑀− ∶= {𝑥 ∈ 𝑀𝑛,𝐿 ∶ lim
𝜆→∞

𝜆 ⋅ 𝑥 ∈ 𝐹}.

Let 𝑓+, 𝑓−, g+, g− be the inclusions

𝑓+ ∶ 𝐹 ↪ 𝑀+, 𝑓− ∶ 𝐹 ↪ 𝑀−, g
+ ∶ 𝑀+ ↪ 𝑀𝑛,𝐿, g

− ∶ 𝑀− ↪ 𝑀𝑛,𝐿. (28)

Following [4, 24], we consider the hyperbolic localization functor:

(−)!∗ ∶ 𝐷𝑏
𝑐 (𝑀𝑛,𝐿) → 𝐷𝑏

𝑐 (𝐹),  ↦ (𝑓+)∗(g+)!. (29)

We obtain from the main theorem of Kirwan [24] that there is an isomorphism

IH∗(𝑀𝑛,𝐿,ℂ) ≃ 𝐻∗
(
𝐹, (IC𝑀𝑛,𝐿

)!∗[−dim𝑀𝑛,𝐿]
)
. (30)

In fact, Kirwan proved (30) for normal projective varieties with ℂ∗-actions. In the case of the

moduli ofHiggs bundles, onemaydeduce (30) by applyingKirwan’s theorem to a compactification

𝑀𝑛,𝐿 ⊂ 𝑀𝑛,𝐿 [6, 15] where the ℂ
∗-action can be lifted, and then restrict the isomorphism (30) for

𝑀𝑛,𝐿 to the open subvariety𝑀𝑛,𝐿; see the first paragraph in proof of [17, Corollary 1.5].

Concerning the right-hand side of (30), Braden showed in [4] that there is a splitting

(IC𝑀𝑛,𝐿
)!∗ ≃

⨁

𝑖

IC𝑌𝑖
(𝑖)[𝑑𝑖] (31)

with 𝑌𝑖 ⊂ 𝐹 irreducible closed subvarieties, 𝑖 local systems on open subsets of 𝑌𝑖 , and 𝑑𝑖 ∈ ℤ.

Recall the finite group Γ = Pic0(𝐶)[𝑛]. For a Γ-action on a ℂ-vector space 𝑉, we have the

canonical decomposition

𝑉 = 𝑉Γ ⊕𝑉var

with 𝑉Γ the Γ-invariant part and 𝑉var the variant part. The following proposition concerns the

Γ-actions on the intersection cohomology groups of𝑀𝑛,𝐿 and 𝑁𝑛,𝐿.

Proposition 4.1. We have

dimIH∗(𝑁𝑛,𝐿,ℂ)var ⩽ dimIH∗(𝑀𝑛,𝐿,ℂ)var.

Proof. We first show that the right-hand side of the decomposition (31) contains

IC𝑁𝑛,𝐿
[dim𝑀𝑛,𝐿 − dim𝑁𝑛,𝐿]

as a direct summand component. Consider the open subvariety 𝑀𝑠
𝑛,𝐿

⊂ 𝑀𝑛,𝐿 formed by sta-

ble Higgs bundles. By definition, we have 𝑀𝑠
𝑛,𝐿

∩ 𝑁𝑛,𝐿 = 𝑁𝑠
𝑛,𝐿

where 𝑁𝑠
𝑛,𝐿

is the locus of stable
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vector bundles. Both 𝑀𝑠
𝑛,𝐿

and 𝑁𝑠
𝑛,𝐿

are nonsingular. The component of the attracting locus

(𝑀𝑠)+ over 𝑁𝑠
𝑛,𝐿

is an open subvariety of 𝑀𝑛,𝐿, so we have the splitting over the stable locus

𝑀𝑠
𝑛,𝐿
:

(𝑓+)∗(g+)!ℂ𝑀𝑠
𝑛,𝐿

≃ ℂ𝑁𝑠
𝑛,𝐿

⊕⋯ .

In particular, this shows that there is a term in the right-hand side of (31) with

𝑌0 = 𝑁𝑛,𝐿, 0 = ℂ, 𝑑0 = dim𝑀𝑛,𝐿 − dim𝑁𝑛,𝐿.

Hence (31) induce an isomorphism

IH∗(𝑀𝑛,𝐿,ℂ) ≃ IH∗(𝑁𝑛,𝐿,ℂ) ⊕

(
⨁

𝑗>0

𝐻∗−dim𝑀𝑛,𝐿+𝑑𝑗 (𝐹, IC𝑌𝑗
(𝑗))

)
. (32)

Since the Γ- and the ℂ∗-actions on 𝑀𝑛,𝐿 commute, the embeddings (28) are Γ-equivariant.

The hyperbolic localization functor (29) and the isomorphisms (30) and (31) are also Γ-

equivariant. Consequently, (32) is an Γ-equivariant isomorphism whose variant parts implies the

proposition. □

4.3 Codimension estimate

Recall that 𝑑𝛾 is the codimension of 𝐴𝛾 in 𝐴. We have

𝑑𝛾 = dim𝐴 − dim𝐴𝛾 = dim𝐴 − dim𝐴(𝜋)

where 𝜋 ∶ 𝐶′ → 𝐶 is the étale Galois cover associated with 𝛾. By the formulas of [5, Section 6.1]

for the Hitchin bases, we obtain the following codimension formula for endoscopic loci.

Lemma 4.2. Assume that 𝛾 ∈ Γ has order𝑚 with 𝑛 = 𝑚𝑟. We have

𝑑𝛾 =
𝑛(𝑛 − 𝑟) ⋅ deg(𝐷)

2
.

In particular for fixed rank 𝑛, we havemin𝛾≠0{𝑑𝛾} → +∞ when deg(𝐷) → ∞.

Now we complete the proof of Theorem 0.4.

4.4 Proof of Theorem 0.4

For fixed genus g curve 𝐶 and rank 𝑛, we work with Higgs bundles with deg(𝐷) large enough,

so that 𝑑𝛾 > dim𝑁𝑛,𝐿 for any nonzero 𝛾 ∈ Γ. This is possible due to Lemma 4.2 and the fact that

dim𝑁𝑛,𝐿 = (𝑛2 − 1)(g − 1) is independent of deg(𝐷).
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Theorem 0.2 (a) implies that the variant part

(
𝑅ℎ∗IC𝑀𝑛,𝐿

)

var
∈ 𝐷𝑏

𝑐 (𝐴)

(contributed by the nontrivial characters) is concentrated in degrees⩾ min𝛾≠0{2𝑑𝛾}. Taking global

cohomology, we have

IH𝑘(𝑀𝑛,𝐿,ℂ)var = 0, ∀𝑘 < min𝛾≠0{2𝑑𝛾},

which further yields from Proposition 4.1 that

dim IH𝑘(𝑁𝑛,𝐿,ℂ)var ⩽ dim IH𝑘(𝑀𝑛,𝐿,ℂ)var = 0, ∀𝑘 < min𝛾≠0{2𝑑𝛾}.

By our choice of𝐷, we conclude that IH∗(𝑁𝑛,𝐿,ℂ)var = 0. This proves the triviality of the Γ-action

on IH𝑘(𝑁𝑛,𝐿,ℂ).

To prove (7), we consider the natural finite quotient map

𝑓 ∶ 𝑁𝑛,𝐿 → 𝑁𝑛,𝐿∕Γ11111111 = 𝑁̌𝑛,𝐿.

Since the intersection cohomology complex IC𝑁𝑛,𝐿
is naturally Γ-equivariant, the pushforward

complex 𝑓∗IC𝑁𝑛,𝐿
admits a canonical decomposition with respect to the Γ-action:

𝑓∗IC𝑁𝑛,𝐿
=
(
𝑓∗IC𝑁𝑛,𝐿

)Γ
⊕

(
𝑓∗IC𝑁𝑛,𝐿

)

var
.

By the first part of the theorem, the cohomology of (𝑓∗IC𝑁𝑛,𝐿
)var vanishes. Therefore, it suffices

to show that the complex (𝑓∗IC𝑁𝑛,𝐿
)Γ coincides with IC𝑁̌𝑛,𝐿

, which follows from Lemma 3.5.
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