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Abstract

We explore the cohomological structure for the (possi-
bly singular) moduli of SL,,-Higgs bundles for arbitrary
degree on a genus g curve with respect to an effective
divisor of degree > 2g — 2. We prove a support theo-
rem for the SL, -Hitchin fibration extending de Cataldo’s
support theorem in the nonsingular case, and a version
of the Hausel-Thaddeus topological mirror symmetry
conjecture for intersection cohomology. This implies
a generalization of the Harder—Narasimhan theorem
concerning semistable vector bundles for any degree.
Our main tool is an Ngo-type support inequality estab-
lished recently which works for possibly singular ambi-
ent spaces and intersection cohomology complexes.
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ON THE INTERSECTION COHOMOLOGY OF THE MODULI OF SL,,-HIGGS BUNDLES ON A CURVE 1035

INTRODUCTION
Overview

Throughout, we work over the complex numbers C. Let C be a nonsingular irreducible projec-
tive curve of genus g > 2. The purpose of this paper is to explore cohomological structures for the
moduli space of degree d semistable SL,,-Higgs bundles on C with respect to an effective divisor D
of degree deg(D) > 2g — 2. More precisely, we show that the support theorem [5] and the topolog-
ical mirror symmetry conjecture [13, 18, 27], which were proven in the case gcd(n, d) = 1, actually
hold for arbitrary d.

For this more general setting, the essential difference with the coprime case is that the mod-
uli space may be singular due to the presence of strictly semistable locus. Hence it is natural
for us to consider intersection cohomology. Our main tool is an Ngo-type support inequality for
weak abelian fibrations recently established in [28] which works for singular ambient spaces and
intersection cohomology complexes.

As an immediate application of our results, we also give a proof of a generalized version of the
Harder-Narasimhan theorem [14] for intersection cohomology and arbitrary degree.

Moduli of SL,,-Higgs bundles

We fix D to be an effective divisor of degree deg(D) > 2g — 2 and we fix L € Pic? (C) tobe adegree
d line bundle on C. We denote by M, ; the moduli space of semistable Higgs bundles

(£,0): 0:E->EQR0OLD), rank(E)=n, det(E)~L, trace(6)=0,

where the (semi-)stability is with respect to the slope u(&, 6) = deg(&)/rank(&). The moduli space
M,, | admits a proper surjective morphism
n
h:M,; - A=E@DHC,0c(D)), (£,6)+ char(6) )
i=2

known as the Hitchin fibration [19, 20]. Here char(0) denotes the characteristic polynomial of the
Higgs field 6 : £ - £ ® O (D):

char(8) = (ay,as,...,a,), q; = trace(A!0) € H(C, O.(iD)).
Alternatively, we may view a closed point a € A as a spectral curve C,; C Tot-(O-(D)) whichisa
degree n cover over the zero section C. Let the elliptic locus A®!! C A be the open subset consisting
of integral spectral curves. The fibers of the restricted Hitchin fibration over A¢!

rel s M - A )

are compactified Prym varieties of the integral spectral curves C,. In particular, the open
subvariety MleL is nonsingular and contained in the stable locus M

ell s
Mn’L C Mn’L CM,;.
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1036 | MAULIK AND SHEN

Support theorem for SL,,

By [2], we have the decomposition for the direct image complex of the intersection cohomology
complex

RR,ICy , ~@DIC, (L.)l-r] €DY(A), rez
a,i

into (shifted) simple perverse sheaves. Here Df(—) denotes the bounded derived category of con-
structible sheaves, Z, ; C A are irreducible closed subvarieties, each L ; is a simple local system
on an open subset of Z ;, and IC, (L) is the intermediate extension of L ; in Z ;. We call
Z,; the supports of the direct image complex Rh*ICMn,L that are important invariants for the map
h:M,; - A

The following theorem, which generalizes de Cataldo’s SL,,-support theorem [5] in the case of
ged(n, d) = 1, shows that the decomposition theorem of the Hitchin fibration h : M, — Ais
governed by the elliptic locus (2).

Theorem 0.1 (Support theorem). The generic point of any support of Rh, 1C M, lies in the elliptic
locus A,

In fact, by combining the techniques of [5, 8] and [28], we prove in Sections 1 and 2 a more
general support theorem (Theorem 1.1) for certain relative moduli space of Higgs bundles asso-
ciated with a cyclic étale Galois cover 7z : C’ — C. These moduli spaces are tightly connected to
the endoscopic theory for SL, [31, 32] and the topological mirror symmetry for Hitchin systems
[13, 18, 27].

Topological mirror symmetry

Motivated by the Strominger-Yau-Zaslow mirror symmetry, Hausel-Thaddeus [18] conjectured
that the moduli of semistable SL,,- and PGL,,-Higgs bundles should have identical (properly inter-
preted) Hodge numbers. In the case of gcd(n, d) = 1, the match of the Hodge numbers for the SL,, -
and PGL,,-Higgs moduli spaces was formulated precisely in [18] using singular cohomology, and
was proven recently in [13, 26, 27] by different methods. From the viewpoint of S-duality [16, Sec-
tion 5.4] and the approach of [27], the Hausel-Thaddeus conjecture is closely connected to the
endoscopy theory and the fundamental lemma for SL,,.

In this paper, we explore the Hausel-Thaddeus conjecture for arbitrary degree d. Under the
assumption deg(D) > 2¢ — 2, we prove that an analog of the Hausel-Thaddeus conjecture holds
for intersection cohomology and arbitrary degree d. Our approach follows the spirit of [27], that
we view the (refined) Hausel-Thaddeus conjecture [16, Conjeture 4.5] as an extension of Ng6’s
geometric stabilization theorem [32] in his proof of the fundamental lemma of the Langlands pro-
gram. Our new input is the support theorem for SL,, and its endoscopic groups (see Theorem 1.1),
relying on the framework of [28].

Now in the following we introduce some notation and state the main theorem.

Let T = Pic’(C)[n] be the group of n-torsion line bundles on C. The finite group I admits a non-
degenerate Weil pairing [27, Section 1.3], which after identifying " with H,(C, Z/nZ), coincides
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ON THE INTERSECTION COHOMOLOGY OF THE MODULI OF SL,,-HIGGS BUNDLES ON A CURVE | 1037

with the intersection pairing. Hence we obtain a canonical isomorphism between I" and the group
of characters I' = Hom(T', G,,,):

r=r. 3)

For the SL,-Higgs moduli space M, ; associated with the line bundle L, the corresponding

PGL,,-Higgs moduli space [M,, ; /T'] is a Deligne-Mumford stack obtained as the quotient of the
natural finite group action of I' = Pic’(C)[n] on M nL

L-(€,0)=(ERL,DO), LeTl, (&£6)eM.

Note that when gcd(n, d) # 1, both the SL, - and the PGL,,-Higgs moduli spaces are singular as a
variety and a Deligne-Mumford stack, respectively. For an element y € T, we denote by M Z . C
M,, ; the subvariety of the y-fixed locus. Assume that

- -
h, : M, - A, :=Imh,)CA

is the morphism induced by the Hitchin fibration (1), which recovers h when y = 0. We denote

byi, : A, & A the closed embedding and d,, the codimension of 4, in A. The I'-action on M,, ;

induces a I'-action on the fixed locus MZ ;- This action is fiberwise with respect to the morphism
hy, which induces a canonical decomposition

- b i
Rhy 1C,y =@ (R, 1C,; ) €Dl(4,), xel
x

into eigen-subcomplexes [25, Lemma 3.2.5]. The following theorem is a sheaf-theoretic version of
the Hausel-Thaddeus conjecture for the divisor D, which resembles the fundamental lemma.

Theorem 0.2. Assume thaty € I and x € T are matched via the Weil pairing (3).

(a) (Endoscopic decomposition) We have an isomorphism
~ i _ b
(Rh*ICMn’L>K ~ ly*(Rhy*ICMZYLL[ 2d,] € D (A). %)

(b) (Transfer) Assume L' € Picd,(C) with ged(d, n) = ged(d’, n). Then we have

~ b
(Rhy*ICMZ L)K o~ <Rhy*ICMyLI> € Di(A,),
8 n, qx

where q is an integer coprime to n satisfying that
d=d'q mod n. (5)

Moreover, both (a) and (b) hold in the bounded derived categories DPMHM(—) of mixed Hodge
modules refining Df(—).
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1038 | MAULIK AND SHEN

Theorem 0.2 concerns Higgs bundles with respect to D satisfying deg(D) > 2¢g — 2. By taking
global cohomology, it recovers an identity between the (stringy) intersection E-polynomials for the
SL,- and the PGL,,-Higgs moduli spaces:

IE(Mn,L; u,v) = IEst,twisted([Mn,L’/r]; u, U) .

Here the intersection E-polynomial IE(—; u, v) is given in [29, Section 1], and the twisted stringy
intersection E-polynomial is

IEst,twisted ([Mn,L’/r]; u, U) = z IE(M:‘IL,L” u, v)qx(uv)zdy;
yer

for each term on the right-hand side the character x is matched with y via the Weil pairing and
q,L,L’ are as in Theorem 0.2. This is analogous to the original Hausel-Thaddeus conjecture [16,
18]. A natural question is if the intersection E-polynomial version of the Hausel-Thaddeus con-
jecture holds for D = K. This was recently conjectured by Mauri [29], who also verified it for the
case of n = 2. We refer to Section 3.6 for more discussions.

Remark 0.3. In [16, Remark 3.30], Hausel proposed that a version of the topological mirror sym-
metry conjecture [18] should hold without the coprime assumption between the degrees and the
rank, and he asked what is the cohomology theory we should use to formulate this. As mentioned
above, Mauri proposed to use intersection cohomology. Theorem 0.2 provides further evidence that
intersection cohomology is the correct theory to formulate the topological mirror symmetry for
possibly singular moduli spaces. Our reasons come naturally from the decomposition theorem [2]
and the support theorem (Theorem 1.1).

The Harder-Narasimhan theorem

The moduli space N,, ; of (slope-)semistable vector bundles on C of rank n and determinant iso-
morphic to L is an irreducible projective variety which has been studied intensively for decades.
Similar to the Higgs case, the finite group I' = Pic’(C)[n] acts on N, 1, via tensor product

L-E=LQE, £ eTr=Pic’(O)[n], £€N,;. (6)

Harder and Narasimhan [14] proved that, when gcd(n, d) = 1, the I'-action on the cohomology
H*(N,, 1, C) induced by (6) is trivial. Other proofs of the Harder-Narasimhan theorem have been
found by Atiyah-Bott [1] and Hausel-Pauly [17].

The following theorem is a generalization of the Harder-Narasimhan theorem for arbitrary
degree d. It is an immediate consequence of Theorem 0.2.

Theorem 0.4. The I'-action on IH*(N,, ;, C) induced by (6) is trivial. Consequently, we obtain the
match of the intersection cohomology groups for the varieties N, ; and N nr -=N,p/L:

IH*(N,,;,C) = IH*(N,, 1, C). (7

The varieties N, ; and N,, ; may be viewed as the moduli spaces of semistable SL,- and PGL,,-
bundles on the curve C, and Theorem 0.4 shows that they share the same intersection cohomology.
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ON THE INTERSECTION COHOMOLOGY OF THE MODULI OF SL,,-HIGGS BUNDLES ON A CURVE | 1039

An alternative proof of Theorem 0.4 may be obtained by Kirwan’s surjectivity for intersection
cohomology [21, 23]." Our approach is to realize Theorem 0.4 as a consequence of (a version of ) the
Hausel-Thaddeus topological mirror symmetry for Hitchin systems. This is close to [17] in spirit.
The proof of Theorem 0.4 here suggests that the isomorphism (7) is essentially a consequence of
the fact that the Hitchin systems for SL,, and PGL,, share the same Hitchin base over which the
decomposition theorems coincide restricting to the generic point. Hence a version of (7) may hold
for general G and its Langlands dual G¥ which we will explore in subsequent work.

1 | SUPPORT THEOREMS FOR HITCHIN FIBRATIONS

Throughout the rest of the paper, we fix a curve C of genus ¢ > 2, an integer n > 2, and a line
bundle L € Pic?(C). Let D be an effective divisor of degree deg(D) > 2g — 2.

1.1 | Support theorem

Assume n = mr. Following [27], we introduce the endoscopic moduli space M, ; () associated
with a cyclic étale Galois cover 7 : C’ — C which plays a crucial role in the cohomological study
of M, ;.

Let 7 : C' — C be a degree m cyclic étale Galois cover with Galois group G, ~ Z/mZ. We
denote by M, ; () the moduli of rank r semistable Higgs bundles (€, 6) on C’ with respect to the
divisor D’ := 7*D satisfying that

det(wr, &) ~ L, trace(r,0)=0.
Here trace(7,0) is an element in H’(C, O-(D)) which can be viewed as the projection of
trace(9) € H(C',0-(D")) = H*(C,7,00(D"))
to the direct summand component H(C, O~(D)):

trace(r,.0) € H(C,O0-(D)) c H(C', 7, O0(D")).

The moduli space M, ; () lies in the moduli of semistable GL,-Higgs bundles on C’, and the
Hitchin fibration associated with the latter induces a Hitchin fibration

h, : M, () — A(r); (8)

see [27, Section 1.2] for more details. The Hitchin base A(7r) naturally sits inside the GL,-Hitchin
base A’ associated with the curve C’,

A(m) c A := @ H(C', 00 (iD").
i=1

T 'We are grateful to Young-Hoon Kiem and Mirko Mauri for very interesting and helpful discussions on this.
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1040 | MAULIK AND SHEN

We define the elliptic locus A®(7) C A(xr) to be the restriction of the elliptic locus of A’
parameterizing integral spectral curves over C’.

Our main result of Sections 1 and 2 is a support theorem for the Hitchin fibration (8) associated
with the endoscopic moduli spaces.

Theorem 1.1 (Support Theorem). The generic point of any support of Rh; ICy; () lies in the
elliptic locus A®\(rr).

When m = 1and 7 = id, the moduli space M, | () and its Hitchin fibration (8) recover the SL,,-
Higgs moduli space M,, ; and (1). Hence Theorem 1.1 recovers Theorem 0.1. It also generalizes [27,
Theorem 2.3] for nonsingular ambient spaces.

Theorem 1.1 is a first step toward the study of the global topology for SL,-Higgs moduli space
M,, | and the associated endoscopic moduli spaces. It shows that their global intersection coho-
mology groups are governed by the (nonsingular) elliptic parts. A similar phenomenon was
proven for the GL,,-Higgs moduli spaces and moduli of 1-dimensional semistable sheaves on toric
del Pezzo surfaces [28].

1.2 | Weak abelian fibrations

Since in general the total moduli space M, ;(7) may be singular, we use the framework devel-
oped in [28] to study the Hitchin fibration h, : M, ; () — A(7r). We first show that h, admits the
structure as a weak abelian fibration.

For a smooth A(7xr)-group scheme g, : P(7) — A(r) with geometrically connected fibers act-
ing on M, | (), we say that the triple (M, ; (), P(7r), A(7)) is a weak abelian fibration of relative
dimension e, if

(a) every fiber of the map g, is pure of dimension e, and M, ; (7r) has pure dimension

dimM, ; (7) = e + dimA(7);

(b) the action of P(r) on M,, ; (7) has affine stabilizers; and
(c) the Tate module T@: (P(7)) associated with the group scheme P(7) is polarizable.

We refer to [28, Section 2] for more details about these conditions.

In the following, we complete h, : M, ;(7) - A(7) into a weak abelian fibration by
constructing the group scheme P(7) following [5, Section 4] and [27, Section 2.4].

Let C — A(7m) be the universal spectral curve given by the restriction of the universal spectral
curve on A’. The relative degree 0 Picard scheme’Pic’(C/A(r)) admits a map

Pic’(C/A(r)) — Pic’(C) x A(rr)

between A(7r)-group schemes as the composition (see the paragraph following [27, Proposition
2.5]):

Pic’(C/A(r)) — Pic’(C") x A(mr) — Pic’(C) x A(n).

It parameterizes line bundles on the closed fibers whose restrictions to each irreducible components are of degree 0. By
[3, Section 8], Pic’(C/A(x)) an an algebraic space over A(7r); furthermore, as explained in the last paragraph of [8, p. 715]
it is indeed a scheme since it sits inside the (quasi-projectve) moduli space of semistable Higgs bundles on C.
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ON THE INTERSECTION COHOMOLOGY OF THE MODULI OF SL,,-HIGGS BUNDLES ON A CURVE | 1041

We define P(7r) to be the identity component of the kernel of this map, which is naturally an
A(r)-group scheme.” By viewing a Higgs bundle in M, ; () as a pure 1-dimensional semistable
sheaf on the spectral curve C,, the A(7r)-group scheme P(7) acts on M, ; () via tensor product
(¢f [10, Lemma 3.4.1]). It was proven in [27, Proposition 2.6] that (M, ; (7), A(7), P(7)) is a weak
abelian fibration of relative dimension e := dimM, ; (7) — dimA(7) when ged(n, d) = 1. In fact,
this holds also in the singular case:

Proposition 1.2 (cf. [27, Proposition 2.6]). The triple (M, ; (), A(7), P(r)) is a weak abelian
fibration of relative dimension e = dimM,. ; (7) — dimA(7).

Proof. The condition (a) is obvious. The condition (c) only concerns the group scheme P(7r) which
was already verified in (ii) of [27, Proof of Proposition 2.6]. As in (i) of [27, Proof of Proposition 2.6],
the affineness of the stabilizers for the P(rr)-action on M, ; () follows from the same statement
for the corresponding GL,-Higgs moduli space [10, Lemma 3.5.4], since the stabilizers of the P(r)-
actions are closed subgroups of the stabilizers of the Pic’(C /ﬁ’ )-action. Hence the condition (b)
holds as well. O

1.3 | J-inequalities

For a closed point a € A(r), we denote by §(a) the dimension of the affine part of the algebraic
group P(7), over a. This defines an upper semi-continuous function

6:A(m) =N, aw §a).

For a closed subvariety Z C A(r), we define &, to be the minimal value of the function § on Z. Fol-
lowing the strategy of [5, 8], it was proven in [27, Section 2] that §-inequalities of the group scheme
P(7) effectively control the decomposition theorem for h, : M, ;(7) — A(r), as we now review.

A key observation of [27] is that, when deg(D) > 2¢g — 2, a combination of the multi-variable
d-inequality [27, Proposition 2.7] and the support inequality (9) below implies that the decom-
position theorem of h, : M, ;(m) — A(7) has no support with generic point lying in A(7x) \
Aell(n.)_

Proposition 1.3 ([27] Section 2.5: Proof of Theorem 2.3 (a)). Assume that for any support Z of
Rh; ICyr | (z), we have

codimyZ < 8. ©9)
Then the generic points of all supports are contained in A®\(r).

When the ambient space M, ; () is nonsingular, the support inequality (9) follows from Ngo’s
work [32]. A singular version was established recently in [28] which generalizes Ngd’s original
support inequality.

Recall that e is the relative dimension for the weak abelian fibration (M, ; (7), A(7), P(r)) of
Proposition 1.2.

T 'We note that the group scheme P(7r) is denoted by P? in [27].
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1042 | MAULIK AND SHEN

Theorem 1.4 ([28] Theorem 1.8). Suppose we have the vanishing
Tose (R ICyy, (o[ —dimM, ()] ) =0, (10)

where T, ,(—) denotes the standard truncation functor. Then the inequality (9) holds for any support
Z.

As a consequence of Proposition 1.3 and Theorem 1.4, Theorem 1.1 follows from the relative
dimension bound (10), which we prove in the next section.

2 | PROPER APPROXIMATIONS AND SUPPORT THEOREMS
2.1 | Overview

The main purpose of this section is to complete the proof of Theorem 1.1. As we explained at
the end of Section 1, it suffices to prove the relative dimension bound (10) which we complete in
the following.

2.2 | Proper approximations

We follow the strategy of [28, Section 3] to prove (10).

Let g : W — W be a morphism from a nonsingular Artin stack of finite type to an algebraic
variety. Modelled on [28, Proposition 3.6], we say that g has a proper approximation if, for any
R > 0, there exists a nonsingular scheme W5 and an Artin stack &, with a commutative diagram

WR%XR

\QW \A ! 1)
w

satisfying the following properties.

(a) py isan affine space bundle.
(b) j : Wi & Xy is an open immersion.

. p . L
(c) The composition q; : Wi Yowdwis projective.
(d) For the complement Z; := X \ Wj, we have

codimy, (Zg) > R.

Proposition 2.1. Assume that q : W — W has a proper approximation. Then the following
statements hold.

(1) We have a splitting

Rq,C ~ ICy[-dimW] @& K € DF (W). 12)
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ON THE INTERSECTION COHOMOLOGY OF THE MODULI OF SL,,-HIGGS BUNDLES ON A CURVE | 1043

(2) Letq' : W — W' be the pullback of q along a morphism f : W' — W with W' a nonsingular
stack. Then q' has a proper approximation.

Proof.

(1) follows from [28, Section 3.4]. In fact, although [28, Proposition 3.4] concerns a more specific
geometry, the proof only relies on the diagram (11) and the properties (a)-(d) above. More
precisely, we view the complex

Rq.C = R(gopy).C

asa homotopy colimit of truncations of the direct image complexes Rqy,.C, and use the decom-
position theorem for the projective morphism q; : Wy — W to deduce the desired splitting

(12).
(2) is deduced by pulling back the diagram (11) along f : W' - W. O

2.3 | Connnecting to GL,-Hitchin fibrations

Recall the Hitchin fibration h, : M, (7) — A(x) associated with 7 : C’ — C with relative
dimension

e = dimM, ;(7) — dimA(7).

To verify the relative dimension bound (10) for M, ;(7), we consider the stack M, ;(7) of
semistable Higgs bundles (&, 6) with det(7, &) ~ L € Pic?(C) and trace(z,0) = 0. We denote by
q : M, () - M, () the map from the stack to the good moduli space.

For our purpose, we also consider the GL,-Hitchin fibration h:M ; a4~ A’ associated with the

curve C'. Here ]\71; 4 is the moduli space of semistable Higgs bundles
(£,6), 0:E—EROHD, D' =D

of rank r and degree d on C’, and h is the Hitchin fibration sending (&, 0) to its characteristic
polynomial

char(9) € A’ = @]_ H(C', O (iD")).

We denote by M; , the corresponding moduli stack with the natural morphism g : M; i M L

We recall the following proposition from [28] concerning M; @

Proposition 2.2 ([28] Proposition 2.9 (2) and Proposition 3.6). The stack M; 4 s nonsingular, and

q: M; iz M !, has a proper approximation.

Now we connect the moduli spaces and stacks for the endoscopic groups and GL, via the
construction of [27, Section 5].
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1044 | MAULIK AND SHEN

We consider the moduli space I\N/fl’o (respectively, moduli stack ./\7{1,0) of Higgs bundles on C
with rank 1 and degree 0. More concretely, they can be described as

M, = Pic®(C) x H(C,0c(D)), M, = Pic’(C) x H(C,O(D)),

where Pic’(—) and Pic®(—) stand for the degree O Picard scheme and stack respectively. We denote
by

dp - MI,O - M,
the natural morphism. The group scheme M 1,0 acts on M ; &
(L,0)-(£,0)=("L® E, "0 + ), (L,0)e My, (£,6)€ M:’d,
which induces a morphism
t: Mg XM, (7))~ M,

by restricting the action to M, ; (7) C M ; 4 The map ¢ can be interpreted as the quotient map by

the finite group ' = Pic’(C)[n] acting diagonally on the two factors; see [27, Section 5.3]. Similarly,
we have the I'-quotient map for the moduli stacks:

Mg x M, (1) > M,
inducing the following Cartesian diagram

-’\71,0 XM, (1) —> M:,d

l l (13)

]\711,0 X M, () —>t 1\71:’(1

where the horizontal arrows are quotient maps by the I'-actions and the vertical arrows are the
maps from the stacks to the good moduli spaces.

Proposition 2.3. The moduli stack M, ; () is nonsingular, and the left vertical map of (13)
g L= qP X q . MI,O X Mr,L(ﬂ) d MI,O XM}’,L(H)
has a proper approximation.

Proof. By the discussion in the proof of [27, Proposition 4.1], the obstruction space for an element
(€,6) € M, () is the second cohomology group of the following complex

(r,nd(€))y =222, (. £nd(€))y ® Oc(D)
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obtained by removing the trace from the pushforward of the complex
ad(6) ,
End(E) — End(E) @ O (D). (14)
Here (7,£nd(&)), denotes the kernel with respect to the trace on the curve C:

T trer
trc . ﬂ*gl’ld(g) _— ﬂ*Oc/ Ed OC

In particular, the obstruction space for (£,0) € M, ; () is a subspace of the second cohomology
group of (14) on C’ which is actually the obstruction space for (€,0) € .A7; d by viewing (&, 0) as
a GL,-Higgs bundle on C’. Its vanishing follows from the (the proof of) Proposition 2.2 on the
smoothness of ./\7; - This shows that M, ; () is nonsingular.

Consequently, we obtain the smoothness of -’\71,0 X M, ; (). The second part is a corollary of
Proposition 2.1 (2) and Proposition 2.2. O

By Propositions 2.1 (1) and 2.3, we get the following result.
Corollary 2.4. We have a splitting
Rg,C ~ Icﬂl’oxMﬂL(ﬂ)[—dili,o —dimM, ; ()] ® K 15)

with K some complex bounded from below.

2.4 | Proofof Theorem 1.1

We verify (10) in this section which completes the proof of Theorem 1.1. For convenience, we use
the following simplified notation (only) in Section 2.4:

H:=My, M:=M, (1), M :=M,
M= Mg, M:i=M,(m), M =M,
Fact 1. For the morphism q : M — M, we have a splitting
Rq,C ~ICy,/[-dimM] & K.
Proof of Fact 1. Since H is nonsingular, we have
ICHum = CyldimH] X IC,,.

On the other hand, the left-hand side of (15) is equal to

Rg,C = @ Cy K Rq,Cp[-2il.

=0
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1046 | MAULIK AND SHEN

Hence by restricting (15) to pt x M C H X M, we obtain that

@Rq*CM[—Zi] ~ ICy[-dimM] @ - € D} (M).

i>0

Since ICy,;[—dimM] is simple, it has to be a direct summand component of some Rq, C,,[—2k].
By comparing over the nonsingular locus of M, we see that k = 0. [l

Fact2. Leth,, : M — A(7x) be the composition

Ve ME M A,
Then we have
Tone(RAC ) =0, e = dimM — dimA(x) = dimM — dimA(r) + 1.
Proof of Fact 2. We consider the map hyy : M - A given as the composition
hip = hog : M - M — A'.

By [28, Proposition 2.9 (1)] (see also [8, Section 10]) we have the dimension bound for any closed
fiber:

dimh}%’(a) <dimM' —dimA’ =e+(g—1), VaeA.
Hence, for the morphism hy, ., : H X M — H(C,Op(D)) X A(7) given by the composition
Myt - H XM — HxM — H(C,0:(D)) x A(x),
we obtain from the diagram (13) that
dimh#xM(w, 5) = dimh}%,(t(w, s)<e+(g—-1), Y(w,s) € H(C, O-(D)) X A(7).
On the other hand,
dimh;; , (t,5) = dimh () + (g — 1).

Consequently dimh;/}(s) < e for any closed point s € A(7r). Fact 2 follows from [28, Lemma 3.5]
and base change. O

As explained in the paragraph following [27, Proposition 3.4], Facts 1 and 2 imply the relative
dimension bound (10) immediately. This completes the proof of Theorem 1.1.
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3 | THE HAUSEL-THADDEUS CONJECTURE
3.1 | Overview

We complete the proof of Theorem 0.2 in this section. As a consequence of Theorem 1.1, we
first show that both sides of (4) are semisimple objects with A, as the only support. Then Theo-
rem 0.2(a) is reduced to showing the desired isomorphism over an arbitrary Zariski open subset of
the locus A, C A. This is essentially identical to the proof of [27, Theorem 3.2] which only relies
on the calculation over the elliptic locus [32, 34].

Theorem 0.2(b) is more complicated, since this is a new phenomenon when ged(n,d) # 1.7
Again, we use the support theorem to reduce the desired isomorphism to a calculation of the
G-action on the m components of the moduli space M, ; (). This is carried out in Section 3.5.

In Section 3.6, we further discuss the connection between Theorem 0.2 and the original
formulation of the Hausel-Thaddeus conjecture [18].

3.2 | Supportsforh: M,; — A

Recall the SL,-Hitchin fibration h : M, ; — A, and the elliptic locus A®l ¢ A which is the open
subset of A consisting of integral spectral curves. The fiberwise I'-action on M, ; yields the
canonical decomposition

RRIC  =EP (Rh*ICMn,L)K, x el

x

Let y € T be the element matched with the nontrivial character x € I via the Weil pairing (3).
Ngb proved in [32, Theorem 7.8.5] that the restriction of the object

<Rh*ICMn . ) (16)
> K
to Al has

Alli=4,nAcA

as its only support. Hence we obtain the following proposition concerning the left-hand side of
(4) from Theorem 0.1:

Proposition 3.1. We have that A, is the only support of the object (16).

3.3 | The moduli spaces M, ;(z) and M)

Now we prove a support theorem for the fibration h, Z , — A, concerning the object in the
right-hand side of (4). We achieve this using the moduh space M, L(n’) discussed in Sections 1 and
2.

TWhen ged(n, d) = ged(n,d’) = 1, the condition (5) specializes to the condition that x’ = d’~!dx as in [27, Theorem 0.5].
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1048 | MAULIK AND SHEN

Assume x has order m in I'. Therefore y is an m-torsion line bundle. Let 77 : C’ — C be the
degree m cyclic étale Galois cover associated with y [27, Section 1.3]. In the following, we construct
the commutative diagram

q
AdnL(n) __AL}-NQ

ihz ih’ 17)

Am) —25 4,

connecting h, and h,,, where the bottom horizontal map q 4 is the G -quotient; see [27, Section 1.5]
for the coprime case. Note that the map g, is the free G -quotient in the coprime case, but it is
more complicated in general without the coprime assumption (Remark 3.3).

We first review the construction of [18, Section 7] which gives the top horizontal map g,,. Let
(&€,0) be a rank r Higgs bundle on the curve C’, then (7,.&, 7,6) is a rank n(= rm) Higgs bundle
on C. Here the bundle 7€ is simply the pushforward of € along 77 : C' — C, and the Higgs field
0 is given by descending the block-diagonal Higgs field @ 9€G, ¢*0 on the vector bundle

rré =P ge (18)

9€G,
along the G_-quotient 7 : C’ — C. We recall the following well-known lemma.
Lemma 3.2. The Higgs bundle (€, 0) is semistable if and only if (7,.E, ,.0) is semistable.

Proof. The if part is obvious: for any sub-Higgs bundle destabilizing (&, 6), its pushforward along
7 will destabilize (7, &, 7,.0). For the only if part, we consider the decomposition (18):

', (€,0) = @ g"(£,0). (19)

9€G,
In particular, if (£, 0) is semistable, then (19) as a direct summand of semistable Higgs bundles
of the same slope is also semistable. Hence the pullback of any sub-Higgs bundle destabilizing
(7, &, m,0) will destabilize (19) as well. This completes the proof. O
By Lemma 3.2, the push forward 7, induces a morphism between the moduli spaces
M, () > M, . (20)
Moreover, by [30, Proposition 3.3], the restriction of (20) to the Zariski dense open subset

M, ;(7)° C M, ;(7r) formed by points not fixed by any element of G, is a free G, -quotient with
image lying in M/ | . In conclusion, we obtain

Gy P My () = M) C M,

which completes the diagram (17).
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Remark 3.3. When gcd(n,d) =1 so that there is no strictly semistable objects, both varieties
M, (m)and M, r ; are nonsingular, and the map g, induced by 7, is a free G .-quotient [18, Propo-

sition 7.1]. However this may fail when ged(n, d) # 1. For example, the rank 1 stable Higgs bundle

(O¢r,0) is a G, -fixed point.

Lemma 3.4. We have a splitting

RqM*ICM,.’L(ﬂ) = ICM:’[ L @ .

Proof. Over an open subset of M Z ; Where g, is a free G-quotient, we have the canonical splitting

Rqy,.C = (RQM*C)GK @ (RQM*C)Var =C&® (RQM*C)Var
with (Rqy,.C),,r the variant part. The lemma follows. O
To analyze the supports for h,, : MZ,L — A,, we note the following standard lemma.
Lemma 3.5. Let f : X — Y be a finite surjective map between irreducible varieties. Then for any
semisimple perverse sheaf ICy (L) with full support X, the pushforward f,ICx(L) is s semisimple

perverse sheaf with full supportY.

Proof. To show that f,ICy (L) is an intermediate extension of a local system on an open subset of
Y, it suffices to prove the support condition (see [9, Section 2.1 (12),(13)]):

dim (supp(H~'(-)) < i, fori < dimY

for f,ICx(L) and its dual. This follows from the finiteness of f and the same support conditions
for ICx(£) and its dual on X. ]

Proposition 3.6. Assume thaty € T and x € T are matched via the Weil pairing (3), and x’ € (x).
The object

(rn 1000 ) (21)

K/
has full support A,.

Proof. We first consider the map h, : M, ;(7) — A(r) and observe that the object

(Rhn'*ICM,,L(n')>K, (22)

has full support A(7) for y and «’ as in the assumption and 7 : C' — C given by y. When
ged(n, d) = 1, this is verified in [27, Theorem 2.3 (b) and Proposition 2.10], which relies on the
support theorem [27, Theorem 2.3 (a)] and a direct calculation over the elliptic locus. Since the
moduli space M, ; () is nonsingular restricting over the elliptic locus and the calculation of [27]
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1050 | MAULIK AND SHEN

over the elliptic locus does not rely on the coprime assumption, we obtain that the full support
property still holds for (22) as a consequence of Theorem 1.1.

To prove the proposition, we use the commutative diagram (17) which induces a canonical T-
equivariant isomorphism

RqA*Rhﬂ'*ICM,AYL(ﬂ) = Rh}/*RqM*ICM,

,L(ﬂ')'

Taking the x’-isotypic parts, we get

RqA*<Rh7T*ICMr,L(7r)>K, = <Rhy*RqM*ICMr,L(7T))K, (23)
where both sides are semisimple objects due to the decomposition theorem. Since g, is a finite
quotient map and (22) has full support A(7), the left-hand side (23) has full support A, by
Lemma 3.5. Furthermore, Lemma 3.4 implies that (21) is a direct summand component of the
right-hand side of (23). This completes the proof. O

3.4 | Proof of Theorem 0.2(a)

Theorem 0.2 (a) is an immediate consequence of Propositions 3.1 and 3.6.

More precisely, since both sides of (4) have A, as their only supports, it suffices to show the
isomorphism over an arbitrary open subset of A, which is proven essentially by [34, Theorem B];
see also [27, Theorem 3.2].

Remark 3.7. In fact, even without the coprime assumption, the proof of [27, Theorem 3.2] works
over the elliptic locus Af,“ C A,. In particular, we may choose the open subset in the proof above
to be the elliptic locus.

3.5 | Proof of Theorem 0.2(b)

Since the object (21) has full support A, its isomorphism class is determined by the restriction over
a Zariski open subset. In view of the diagram (17), it suffices to treat the G, -equivariant objects

(RheChorr)) (24)

x%!

over an arbitrary Zariski open V' C A(7). After shrinking V, we may assume that all the fibers of
h, are nonsingular and G,, acts freely on V. By [32, Proposition 7.2.3] (see [10, Theorem 5.0.2] for
the Hodge module version), the isomorphism class of the object (24) is completely determined by
the G, -equivariant local system given by the relative top degree cohomology:

<R28hﬂ*ch—l(v) )

Kl

Here s is the dimension of a fiber of i, over V. The sheaf

sthﬂ*chgl(v)
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is a rank m trivial local system indexed by the m connected components of a general fiber of _,
which are further identified with the m connected components of the degree d Prym variety

Prym?(C’/C) := Nm~(L), Nm = det(z,—) : Pic?(C’) - Pic?(C)

associated with the cyclic Galois cover 7 : C' — C; see [27, Section 1].

In conclusion, the isomorphism class of (24) is completely determined by the G- and the
I-actions on the m connected components of Prym?(C’/C). These two actions commute with
each other.

Now we want to connect the Hitchin fibrations

h’TL’,L . Mr,L(T[) i A(ﬂ), h?‘L’,L’ : Mr’Ll(ﬂ') - A(ﬂ'),

where the line bundles L and L’ are of degrees d and d’, respectively.”
We first note the following elementary lemma which justifies the condition (5).

Lemma 3.8. There is an integer q coprime to n such that
d =d’'q mod n.

Proof. Assume

ged(n,d) = ged(n,d’) = a.

Then both the primary ideals (d) and (d") of Z/nZ coincide with (a). Hence the generators d and
d’ differ by a unit of Z/nz. O

In the following, the integer g will be chosen as in Lemma 3.8. The proof of Theorem 0.2(b)
follows from the following two steps.
3.51 | Step1: Connecting h_;, to h ;s

Since the G, -equivariant objects (24) associated with the Hitchin fibrations h, ;, and h, ;e are
completely determined by the G, - and the I'-actons on the Prym varieties

Prym? (C’/C) := Nm~ (L)),
and

Prym?'9(C’/C) := Nm™'(L'®9),

respectively. An identical argument as for [27, Proposition 2.11] yields

~ b
(Riesr iy n),, = (Risamn iy ) 220>

In this section we use h 1, to denote the Hitchin fibration M, | (w) — A(x) to indicate its dependence on the line bundle
L.
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1052 | MAULIK AND SHEN

In view of Proposition 3.6, this further implies

<Rh JIC ) <Rh JICr > eD)(A)). (25)
qx nL'®d

n,L!

352 | Step2: ConnectingM’ . and M’

n,L'®1
By the choice of g, we have
deg(L'®7) — deg(L) = 0 mod n. (26)

Note that for two line bundles L, and L, with L; = L, ® N®", there is a natural identification of
the moduli spaces

M,y — M, (£,6)r (E®N,6)

compatible with the I'-actions and the Hitchin fibrations. Therefore, by (26), we have natural
isomorphisms

M, eq — M, 1, M;L,m Mfl o
which further induce
<Rh ICMZL@q) <Rhy*ICMZ’L>K. 7)

The proof of Theorem 0.2(b) is completed by combining (25) and (27).

3.6 | The Hausel-Thaddeus conjecture

In this section, we give a few remarks regarding the relation of our result with the Hausel-
Thaddeus conjecture.

The original form of the Hausel-Thaddeus conjecture involves Higgs bundles of type SL,, and
PGL, with D = K and in the coprime setting gcd(n, d) = 1. It relates the singular cohomology of
M,, ; with the stringy cohomology of [M,, ; /T], twisted by a particular gerbe a whose appearance
is motivated by SYZ mirror symmetry. In the coprime setting, as explained in the appendix of [26],
the a-twisted cohomology of the sector

Y
[M?,/T], yeT

is equivalent to a certain isotypic component of the singular cohomology of M, v ;- Hence the orig-

inal Hausel-Thaddeus formulation is implied by the formulation as in Theorem 0.2, after passing
to global cohomology. In the non-coprime setting, however, it is not clear to us how to define the
corresponding gerbe a on the singular stack [M,, ; /T'] and so we do not have a direct definition of
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the a-twisted intersection cohomology. As a result, the formulation we give here in terms of the
endoscopic decomposition seems more natural.

If we consider the case of Higgs bundles with D = K- but general degree d, then our argument
no longer applies; contrary to Theorems 0.5 and 1.1 the decomposition theorem for the Hitchin
fibration have many additional supports outside the elliptic locus (cf. [7]). When gcd(n,d) = 1,
we deduce in [27] the Hausel-Thaddeus conjecture for D = K- from the cases of deg(D) > 2g — 2
using vanishing cycle techniques. However, the approach of [27] cannot be applied directly to
deduce Theorem 0.2 (as conjectured by Mauri [29] in the degree O case) for D = K- when
ged(n, d) # 1. More precisely, the main ingredient of [27] is its Theorem 4.5, which relies on the
smoothness of the evaluation map of its Proposition 4.1. The smoothness fails when there are
strictly semistable points.

From the perspective of enumerative geometry, another natural option is to work with the coho-
mology of the so-called BPS sheaf ¢gpg, a perverse sheaf on M,, ; defined by Davison-Meinhardt
[12] and Toda [33]. When deg(D) > 2¢ — 2, the BPS-cohomology coincides with intersection coho-
mology but for D = K- these two are different. Note that combining the recent work [22] and
Theorem 0.2 may provide a proof of a version of the Hausel-Thaddeus conjecture for the BPS-
cohomology for D = K; the approach of Davison [11] further suggests a path line to deduce the
D = K case of Theorem 0.2 from the BPS-cohomology.

Finally, it is reasonable to expect Theorem 0.2 can be extended to the case of Higgs bun-
dles for a general reductive group G and its Langlands dual GV, and we hope to explore this in
subsequent work.

4 | VECTOR BUNDLES AND HIGGS BUNDLES

In this section, we discuss the interplay between the moduli of vector bundles and the moduli of
Higgs bundles, and complete the proof of Theorem 0.4. As before, we fixaline bundle L € Pic?(C)
and an effective divisor D of degree deg(D) > 2g — 2.

4.1 | Modulispaces M, ; and N, ;

We would like to study the topology of N,, ; via the Higgs moduli space M,, ;.
We consider the C*-action on M, ; by the scaling action on the Higgs field:

A-(£,0) =(&,40), AecC.
The C*-fixed locus F C M,, ; can be decomposed as
F=N, UF.

Here the first connected component parameterizes (S-equivalence classes of) semistable Higgs
bundles with 6 = 0 which is naturally isomorphic to N,, ; . The restriction of the I'-action on M, ;
to N,, ;, recovers (6).

We apply hyperbolic localization to connect the intersection cohomology of the moduli spaces
M, and N, ;.
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4.2 | Hyperbolic localization
We consider the following subvarieties of M,, ; obtained from the scaling C*-action:
M* :={xeM,; : /lliqnéxl-xeF}, M~ :={xeM,; : }Lriloi-xeF}.
Let f+, f~, g%, g~ be the inclusions
ffiFoM', fT:FoM, gt :M"SM,;, g :M SM,;. (28)
Following [4, 24], we consider the hyperbolic localization functor:
(=) 1 DX(M,;) = D)(F), K= (fF)(gh)'K. (29)
We obtain from the main theorem of Kirwan [24] that there is an isomorphism
IH*(M,, ;,C) ~ H* (F (ICMn’L)!*[—dimMn’L]>. (30)
In fact, Kirwan proved (30) for normal projective varieties with C*-actions. In the case of the

moduli of Higgs bundles, one may deduce (30) by applying Kirwan’s theorem to a compactification
M, ; C M, [6,15] where the C*-action can be lifted, and then restrict the isomorphism (30) for

M, ; to the open subvariety M,, ; ; see the first paragraph in proof of [17, Corollary 1.5].
Concerning the right-hand side of (30), Braden showed in [4] that there is a splitting

(ICy;, ) =~ @ ICy (£)ld;] (31)

with Y; C F irreducible closed subvarieties, £; local systems on open subsets of Y;, and d; € Z.
Recall the finite group I' = Pic’(C)[n]. For a I'-action on a C-vector space V, we have the
canonical decomposition

v=v" D Viar

with V! the I'-invariant part and V,,, the variant part. The following proposition concerns the
I'-actions on the intersection cohomology groups of M, ; and N, ;.

Proposition 4.1. We have
dimIH*(N,, 1, C)y,r < dimIH*(M,, 1, C)y ;-
Proof. We first show that the right-hand side of the decomposition (31) contains
ICy, , [dimM,,; — dimN,,;]

as a direct summand component. Consider the open subvariety M, ; C M, ; formed by sta-
ble Higgs bundles. By definition, we have M} , NN, ; = N7, where N, , is the locus of stable
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vector bundles. Both M} and N, , are nonsingular. The component of the attracting locus
(M?*)* over N, , is an open subvariety of M, ;, so we have the splitting over the stable locus
M, L

(f+)*(g+)ICM‘:!L ~ CN;L @D -
In particular, this shows that there is a term in the right-hand side of (31) with

YO = NH,L’ EO = C, do = dimMn’L - dimNn’L.

Hence (31) induce an isomorphism

IH*(M,, 1, C) ~ IH*(N,, ,,C) & <@ B AmMnt G, 1ey (£ j») (32)

j>0

Since the T- and the C*-actions on M, ; commute, the embeddings (28) are I'-equivariant.
The hyperbolic localization functor (29) and the isomorphisms (30) and (31) are also T-
equivariant. Consequently, (32) is an I'-equivariant isomorphism whose variant parts implies the
proposition. O
4.3 | Codimension estimate
Recall that d,, is the codimension of A, in A. We have

d, = dimA — dimA, = dimA — dimA(7)

where 7 : C' — C is the étale Galois cover associated with y. By the formulas of [5, Section 6.1]
for the Hitchin bases, we obtain the following codimension formula for endoscopic loci.

Lemma 4.2. Assume thaty € I" has order m with n = mr. We have

n(n —r) - deg(D)
d)/ = f

In particular for fixed rank n, we have min, .,{d,} — +oo when deg(D) — oo.

Now we complete the proof of Theorem 0.4.

4.4 | Proof of Theorem 0.4

For fixed genus ¢ curve C and rank n, we work with Higgs bundles with deg(D) large enough,
so that d, > dimN,, ; for any nonzero y € I'. This is possible due to Lemma 4.2 and the fact that
dimN, ; = (n? — 1)(g — 1) is independent of deg(D).
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Theorem 0.2 (a) implies that the variant part
(Rh*ICM” L) € D(A)
> var

(contributed by the nontrivial characters) is concentrated in degrees > min, ,,{2d, }. Taking global
cohomology, we have

IH(M,, [, C)ypr =0,  Vk <min,f2d,},
which further yields from Proposition 4.1 that
dim IH*(N,, 1, ©)y,y < dimIH¥(M,, ;,C),,, =0, Vk < min,{2d,}.

By our choice of D, we conclude that TH*(N,, ;, C),,, = 0. This proves the triviality of the I'-action
onIHK(N, ;, ©).
To prove (7), we consider the natural finite quotient map

f N, — N, /T11111111 = N, ;.

Since the intersection cohomology complex ICy  is naturally I'-equivariant, the pushforward
complex f,ICy = admits a canonical decomposition with respect to the I'-action:

faCy,, = (f.1Cy,, )F ® (f.1Cy,, )

var

By the first part of the theorem, the cohomology of (f,ICy , )y, Vanishes. Therefore, it suffices
to show that the complex (f,ICy L)F coincides with IC N, o which follows from Lemma 3.5.
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