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comprehensive survey that revealed roundabout is one of the tricky road 
geometries where the introduction of CAVs may increase maneuver 
challenges for human drivers (Hung et al., 2022). This survey pointed 
out the importance of road infrastructure itself in addition to vehicles 
and human factors in traffic safety, which appears to have less investi
gation compared to the other two aspects. Therefore, in this paper, we 
focus on the simulation environments for mixed traffic conditions with 
consideration of road infrastructure. Literature has been searched and 
reviewed under three subtopics: data source, simulation methods, and 
human behavior. For data source, we concentrated on crash reports, 
which offer valuable real-world crash data that can be used to inform 
traffic simulation studies. For simulation methods, we explored micro
scopic traffic simulation, vehicle simulation and driving simulation. For 
human behavior, our review was guided by information-processing 
limitations of drivers in general – including those caused by distrac
tion, limited attention and working memory capacity, and inaccurate 
hazard perception – as well as risk factors for individual drivers that 
affect driver behavior. The overarching goal was to determine the state 
of the art and existing gaps in successfully simulating driving scenarios 
in mixed traffic conditions with road infrastructure integrated. 

2. Review methodology 

We adopted a four-step review methodology: (1) database selection, 
(2) literature retrieval, (3) categorization, and (4) information analysis. 
In Step (1), we selected Scopus, American Society of Civil Engineers 
(ASCE) Library, ProQuest, and Google Scholar as the databases from 
which to search literature. In Step (2) literature retrieval, we used the 
following keywords and their combinations: crash analysis, crash 
simulation, vehicle simulation, traffic simulation, human factors, 
driving simulator, roundabout, and crash reconstruction. In Step (3) 
categorization, the title and abstract of each publication retrieved were 
manually checked. Three broad subtopics were identified – crash anal
ysis, simulation method, and human behavior, and it was decided 
whether to include each paper based on whether useful information was 
found related to at least one of the subtopics. The supportive techniques/ 
methods under each subtopic (e.g., simulation method) were explored to 
further analyze the research topic. Aspects of human behavior (e.g., 
affective factors) were considered because they are essential to safe 
interaction between CAVs and HDVs. In Step (4) information analysis, 
the selected papers were reviewed in detail and analyzed in the context 
of our research goal. 

2.1. Step 1 database selection 

In this paper, we provide a review of the literature related to traffic 
crashes, including crash analysis, crash simulation, human factors, and 
state-of-the-art technologies. Therefore, multiple database/literature 
resources were selected to identify which works to review. The Scopus, 
ASCE Library, ProQuest, and Google Scholar databases were selected, 
because they are accessible to web search engines that provide the title, 
abstract, and/or full text of the retrieved articles. The above-mentioned 
databases helped support the scope of the review in this paper. 

2.2. Step 2 literature retrieval 

After defining the database, key words were developed and used 
based on the review scope to search the related literature in the data
base. They included traffic simulation, driving simulator, roundabout, 
crash simulation, human factors, crash reconstruction, and crash anal
ysis. The literatures on these topics were selected from peer-reviewed 
journals and conference proceedings, such as Accident Analysis & Pre
vention, Simulation Modelling Practice and Theory, Journal of Clinical and 
Experimental Neuropsychology, and Road Safety on Five Continents 
Conference. 

2.3. Step 3 categorization 

In this step, three subtopics were defined and selected based on the 
purpose of this review paper: crash analysis, simulation method, and 
human behavior. After searching the literatures using the developed key 
words, we manually categorized the literature on each subtopic and 
conducted literature reviews accordingly. 

2.4. Step 4 information analysis 

In the final step, we reviewed the selected literatures using devel
oped key words from the selected database. The goal was to compre
hensively review the vehicle crash and crash simulation areas, including 
cutting-edge technologies, as well as human factors issues related to 
crashes, in order to contribute to transportation safety research. The 
construction of this paper is organized accordingly as detailed in the 
following sections. 

3. Crash analysis 

3.1. Data source 

In terms of crash analysis, the first step is to identify the types of data 
sources, that could be used to support further research including crash 
simulation and human factor analysis. The identified sources are sum
marized in Table 1 in the order covered in the text. Koch et al. (2021) 
analyzed data from National Highway Traffic Safety Administration 
(NHTSA)’s 2016–2018 Crash Report Sampling System (CRSS) database, 
including a nationwide sample of vehicle–pedestrian crashes, to 
compare pedestrian injury severity. Video data provide more accurate, 
rich, and synchronized traffic information with all relevant vehicles on 
the road than do crash reports if they are available. Kolla et al. (2022) 
developed a method for in-depth reconstruction of traffic crashes using 
video footage from vehicle cameras based on the fusion of kinetic tra
jectory simulation. The developed method was also applied to the 

Table 1 
Illustration of related literatures.  

Publication Data Source Method Outcome 

(Koch et al., 
2021) 

Crash Report 
Sampling System 
(CRSS) database of 
NHTSA between 
2016 and 2018 

Logit models are 
developed using 
seven independent 
variables, including 
"weather, lighting 
condition, speed 
limit, speeding 
violation, vehicle 
body type, driver 
impairment, and 
pedestrian age" 

Compare 
pedestrian injury 
factors between 
intersections and 
non-intersection 
locations 

(Kolla et al., 
2022) 

Video footage from 
vehicle cameras 

Fusion of kinetic 
trajectory simulation 

Reconstruct in- 
depth traffic 
crashes 

(Aldimirov 
and 
Arnaudov, 
2018) 

Event data 
recorder (EDR) 
data (i.e., GPS/INS 
data) 

Kalman filter that is 
similar to inertial 
navigation 

Reconstruct cars’ 
paths from crashes 
automatically 

(Bao et al., 
2019) 

Structured data (i. 
e., digital data) and 
unstructured data 
(i.e., textual data), 
including multiple 
datasets including 
"crash data, large- 
scale taxi GPS data, 
road network 
attributes, land use 
features, 
population data 
and weather data" 

Spatiotemporal deep 
learning method 

Explore the 
contribution of 
deep learning 
approach to 
citywide short- 
term crash risk 
prediction  
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reconstruction of real-world traffic incidents, which showed detailed 
information at each time frame for each vehicle such as speed, distance 
traveled, acceleration, and yaw rate/angle. The results showed that 
typical urban traffic incidents with pre-collision durations of 2 to 3 s can 
be reconstructed in approximately three days. Aldimirov and Arnaudov 
(2018) proposed a method for automatic reconstruction of cars’ paths 
from crashes using event data recorder (EDR) data. In practice, the 
method can support creating expert reports for crash investigation. Bao 
et al. (2019) used machine learning methods to analyze multiple data
sets including "crash data, large-scale taxi GPS data, road network at
tributes, land use features, population data and weather data". In 
general, the data sources could be categorized into structured data (i.e., 
digital data) and unstructured data (i.e., textual data). 

3.2. Analysis method 

Transportation research has been one of the popular topics in civil 
engineering during the past four decades. It is essential for researchers to 
identify issues in road safety (e.g., crashes) and develop roadmaps to 
address the issues effectively (Yan et al., 2008, Zhang et al., 2016, 
Kwayu et al., 2019). Therefore, CAVs are being developed with a goal of 
reducing traffic accidents. However, many safety issues between auto
mation and human drivers remain, as well as those between automation 
and transportation systems (Alambeigi et al., 2020, Feng et al., 2023). 
Consequently, in this paper, we review relevant studies in the literatures 
and summarize road safety issues that need to be considered from both 
drivers’ and non-drivers’ perspectives. To be specific, to better under
stand the mechanisms of CAVs and to leverage CAV-related technologies 
to contribute to the transportation domain from the drivers’ and non- 
drivers’ perspectives, researchers must put effort into collecting, 
analyzing, processing, and exploiting crash data (e.g., reports) to sup
port transportation research. Accordingly, some researchers have 
analyzed crash reports to understand the mechanisms underlying car 
crashes and developed automated tools to aid crash analysis. 

One example is the work of Zhang et al. (2021b) in support of crash- 
report sampling. They noted that non-fatal variance estimates are often 
made using a composite estimator that combines estimates from the 
Fatality Analysis Reporting System (FARS, an annual census of fatal 
motor vehicle traffic accidents) with non-fatal crash estimates from the 
Crash Report Sampling System (CRSS, an annual probability sample of 
all police-reported fatal and non-fatal traffic crashes). However, they 
pointed out that the standard error estimation of the composite esti
mator becomes complicated when there is nonlinearity in the FARS and 
CRSS estimates. To remedy this problem, Zhang et al. (2021b) devel
oped and justified a variance estimation method using all sampled CRSS 
crashes (fatal or non-fatal). They concluded that the composite estimator 
produces better injury-related total estimates. Zhang et al. (2021b) 
provided programs in SAS, SUDAAN, and R software to calculate the 
estimates automatically. 

Similarly, Nie et al. (2021) developed a web-based compliance- 
checking tool to automatically map and label missing elements of crash 
reports to better align with the federal Model Minimum Uniform Crash 
Criteria (MMUCC; National Highway Traffic Safety Administration, 
2017). The purpose of the tool was to manage crash data in a more 
uniform manner across states and simplify the crash report workflow by 
maintaining high quality crash data in a state’s workflow. The 
compliance-checking tool developed by Nie et al. (2021) can be used to 
calculate a compliance score based on mean element scores using for
mulas provided by the Governors Highway Safety Association (GHSA). 
After developing the tool, Nie et al. (2021) then analyzed crash data 
workflows at Alabama and Wisconsin and applied their compliance 
checking tool to evaluate one crash report from each state. Based on 
such evaluations, recommendations were made in best practices of crash 
data workflows. In spite of the automation enabled by the compliance 
checking tool, Nie et al. (2021) concluded that manual quality assurance 
and quality control is still preferred for determining if the crash 

narrative parts of the crash report are adequate. 
Nie et al. (2021) were not alone in identifying the challenges in 

automating the analysis and processing of the narrative part of crash 
reports; natural language processing and machine learning techniques 
have been commonly resorted to in dealing with such challenges. For 
example, Boggs et al. (2020) developed a text analytics and hierarchical 
Bayesian heterogeneity-based approach to analyze traffic collision re
ports from the California Department of Motor Vehicles to contribute to 
interactions of AVs and HDVs in complex urban environments. Through 
the help of such analysis, Boggs et al. (2020) were able to discover that 
the likelihood of rear-end crash was significantly higher with (1) auto
mated driving system’s engagement and (2) in mixed land-use settings. 
Likewise, Kutela et al. (2022a) leveraged Bayesian networks to analyze 
333 AV crash reports in California to understand the associated factors 
of vehicle at fault, collision type, and injury outcome, as three interre
lated outcome variables for AV involved clashes. Note that the data (e.g., 
crash time, crash location, CV & AV directional movement, and driving 
mode type during collision) were manually extracted from crash reports 
in Kutela et al. (2022a). In parallel and in comparison, Kutela et al. 
(2022b) analyzed crash narratives data from California between 2017 
and 2020, leveraging text network analysis (TNA) (i.e., an unsupervised 
text mining approach) and machine learning classifiers. In the work of 
Kutela et al. (2022b), four classic machine learning classifiers were 
tested including Support Vector Machines (SVMs), Naïve Bayes (NB), 
Random Forest (RF), and Neural Networks (NNs). With the help of TNA 
and machine learning algorithms, Kutela et al. (2022b) discovered 
positive correlations between autonomous mode of AVs and crashes that 
indirectly involve vulnerable road users (VRUs), and further identified 
key predictors of the VRUs-AV related crashes: “crosswalks, in
tersections, traffic signals, movements of AVs (turning, slowing down, 
stopping)”. 

In a related study, Das et al. (2020) obtained the AV-related collision 
reports (of different manufacturers) in California (September 2014 to 
May 2019) and leveraged Bayesian latent class models to analyze the 
reports into clusters (of collision patterns); they furthermore gathered 
police collision narratives to perform text mining. Through clustering 
Das et al. (2020) identified six classes of collision patterns based on 
different variables (i.e., collision type, damage to the vehicle, operator 
injury severity, lighting conditions, the number of vehicles involved, 
weather conditions, the event prior to the collision, and whether the 
vehicle was moving or stopped) and collision traits (i.e., "turning, multi- 
vehicle collisions, dark lighting conditions with streetlights, and side
swipe and rear-end collisions"). A positive correlation was found be
tween autonomous mode of AVs and the likelihood of adverse weather 
collision. Through text mining, it was determined that current narrative 
structure in crash reports is insufficient and needs to be improved to 
better support the investigation of automation levels and collision 
likelihood. In summary, crash reports analysis has been instrumental in 
investigating traffic safety including implications of CAVs. In spite of the 
many discoveries in the associations (usually positive) between auton
omous mode and crash likelihood through such analysis, the research 
community wants richer and better structured crash reports to support 
deeper analysis in such vein. 

From drivers’ perspective in terms of leveraging crash data sources 
(e.g., reports), some researchers analyzed human behaviors that are 
reflected in the crash to better support traffic accident analysis. Hsiao 
et al. (2018) conducted a literature review regarding current knowledge 
and challenges related to emergency vehicle crashes and the major 
contributing risk factors. The risk factors fell into four categories: driver, 
task, vehicle, and environmental factors. Shaon et al. (2019) used a 
crash prediction model (i.e., multivariate multiple risk source regression 
model) to identify the correlation between severity levels of crash counts 
and the crash contributing factors from different crash sources. Also, 
Bucsuházy et al. (2020) explored human behaviors and conducted in
dividual interviews with traffic accident participants to identify the 
causes of accidents. Their study considered all relevant information, 
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including physical and mental conditions, driving practices and habits, 
and sociodemographic characteristics of the drivers. All of the above- 
mentioned studies demonstrate that drivers play an important role 
that needs to be considered for traffic crash analysis. 

From non-drivers’ perspective, some researchers studied roadway 
infrastructure and roadway safety conditions to explore non-driver 
factors that affect traffic crashes. For example, Papadimitriou et al. 
(2019) assessed infrastructure-related risk factors to classify them into 
three categories: risky, probably risky, and unclear. This study analyzed 
59 specific risk factors, including "alignment features (e.g., horizontal- 
vertical alighment deficiencies), cross-section characteristics (e.g., su
perelevation, lanes, median and shoulder deficiencies), road surface 
deficiencies, workzones, junction deficiencies (interchange and at- 
grade) etc.". Similarly, Merlin et al. (2020) reviewed various built 
environment types to explore whether a consistent relationship exists 
between built environment measures and crash frequency. The results 
demonstrated that there are mixed positive and negative correlations or 
completely negative correlations between many built environment 
measures (e.g., density, and land uses) and crash frequency. Thus, there 
are a lot of unsafe issues/factors from the infrastructure side that need to 
be incorporated into traffic crash analysis research. 

To develop corresponding analysis methods (e.g., crash simulation) 
to support transportation research from drivers’ perspective, some re
searchers have focused on developing driving simulators to help identify 
the factors/parameters of crashes. For example, Li et al. (2019) used a 
high-fidelity driving simulator (i.e., Beijing Jiaotong University driving 
simulator) to study drivers’ collision avoidance performance. The study 
results demonstrated that braking is the most common response, along 
with turning, to avoid head-on collisions and pedestrian collisions. Erkuş 
and Özkan (2019) used a driving simulator (i.e., STISIM Driver Model 
100 Wide Field-of-View Complete System with the STISIM DRIVE- 
M100W-ASPT software) and hierarchical regression analysis to inves
tigate the relation between driving skills and driver behaviors of young 
male drivers. The results illustrated a positive relation between safety 
skills and perceptual motor skills of young male drivers and their speeds, 
and overtaking behaviors. Gaweesh et al. (2021) conducted driving 
simulation to explore the effects of connected vehicle (CV) distress and 
re-routing technology to reduce secondary crashes. They found that the 
CVs could reduce operating speed and speed variation to enhance 
commercial truck driving behaviors; in addition, all the participants 
could avoid secondary crashes under a CV environment. 

Similarly, McGehee et al. (2000) conducted two experiments of 
driver performance and reaction in a scenario of intersection incursion 
crash, one on the Iowa Driving Simulator and another during an actual 
driving experiment on a test track. Total brake reaction time and time to 
initial steering in the simulated and real driving were equivalent. This 
outcome suggests that crash avoidance results in simulated driving can 
be generalized to a real-world driving environment. From non-drivers’ 
perspective, some researchers put their efforts into generating traffic 
simulations to identify the factors that affect traffic safety. For example, 
Hou and Chen (2020) developed a framework to analyze traffic safety in 
work zones under adverse conditions, which considered weather, road 
surface conditions, and specific work zone configurations. The results 
showed that adverse weather conditions increase the crash risk in work 
zones. Correspondingly, Zhang et al. (2021a) used the surrogate safety 
assessment model (SSAM) to estimate the safety benefits in a freeway 
crash hotspot in Wuhan for differential penetration-rate analysis of 
CAVs. The study illustrated that there is no significant improvement in 
the safety factors (e.g., conflicts, acceleration, and velocity difference) 
when the penetration rate of CAVs is less than 50%. 

4. Crash simulation 

Three types of crash-related simulations were reviewed: vehicle 
simulation, traffic simulation, and driving simulation. Vehicle simula
tions typically involve reconstructions of crash scenes to capture the 

actions of the individual vehicles that were involved. Traffic simulation 
is the modeling of transportation systems, for example, the flow of ve
hicles at a roundabout. Driving simulations incorporate the actions of 
humans performing in a driving simulator or models of the humans to 
include relevant human characteristics. 

4.1. Vehicle simulation 

It is challenging to evaluate CAVs because crashes are rare events 
and data associated with crashes are limited. Besides, all the scenarios 
are predefined for testing CAVs. Although good performance of CAVs 
can be achieved through these predetermined test scenarios, naturalistic 
scenarios are more complicated and harder to predict. This limitation 
means that the test results from predefined test scenarios may not be 
valid for everyday driving (Alghodhaifi and Lakshmanan, 2021). 
Therefore, vehicle simulation of CAVs and reconstruction of crash scenes 
to find out the cause of incidents are vital to evaluate the reliability and 
safety issues associated with CAVs. 

4.1.1. Safety impact of driving behavior on CAVs 
According to Stutts et al. (2003), human distractions account for 30% 

of crashes in the U.S. recorded in crash reports. Typical distraction be
haviors while driving include cell phone usage, shaving, applying 
makeup, eating, and drinking. However, no current driving simulation 
software incorporates the consideration of such distractions or other 
reckless driving behavior. Astarita and Giofré (2019) proposed a new 
methodology for considering driver error (e.g., being occupied by mo
bile calls or momentarily distracted due to psychological or physical 
issues) in traffic simulation environments such as VISSIM, Advanced 
Interactive Microscopic Simulator for Urban and Non-urban Networks 
(AIMSUN), and Tritone. The method introduced traffic conflict in
dicators such as the angle of the deviated trajectory and distraction time 
duration. The proposed methodology can be applied for evaluating 
resulting potential crashes, as well as the safety impact of CAVs. 

4.1.2. Pre-crash velocity and vehicle condition 
A goal of vehicle crash reconstruction is to determine the velocity, 

angles, and related factors prior to impact. Elastic–plastic deformation 
of the vehicles is one source of information generated as a consequence 
of a crash. However, the deformation data must be analyzed to generate 
estimates of the relevant parameters prior to the accident. Zhang et al. 
(2008) used NNs for mapping the relations between the initial crash 
velocity parameter and deformation. They validated the procedure by 
applying it to a typical traffic accident. More recently, Chen et al. 
(2021b) developed a machine learning algorithm to identify a broader 
range of initial impact parameters (i.e., offset, angle and velocity) of 
vehicle crashes based on its final material damage condition and 
permanently deformed structure configuration. The vehicle crash in
verse solution of pre-crash data was determined by leveraging plastic 
deformation signature with high accuracy. The algorithm was tested on 
8 test cases based on a small 320 neuron deep learning model, which 
resulted in maximum error of 11.76% on offset prediction, 22.41% on 
angle prediction, and 8.49% on velocity prediction. The authors also 
pointed out significant improvement can be made by increasing the 
neuron number. The main advantage of the proposed method is that 
accurate pre-crash data can be retrieved by carrying out simple mea
surement of residual permanent deformation of crashed cars in the crash 
site. 

4.2. Traffic simulation 

As noted, traffic simulation refers to the modeling of transportation 
systems, typically at specific problematic areas. One such area is the 
roundabout intersection. 
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4.2.1. Conflict and crash simulations with analysis at roundabouts 
As a form of intersection control, roundabouts are becoming 

increasingly common in the US due to their superior safety performance 
(Al-Ghandour et al., 2022). Compared with intersections, roundabouts 
reduce speeds for safer following, avoid lockups, increase capacity, 
reduce the number of conflict points, eliminate conflict types, and 
reduce crash severity (Flannery and Datta, 1996, Mandavilli et al., 2009, 
Daniels et al., 2011). Because of these advantages, roundabouts reduce 
the number of crashes with injuries or fatalities (e.g., Flannery and 
Datta, 1996, Persaud et al., 2000, Retting et al., 2001, Elvik, 2003). In 
spite of roundabouts’ positive impact on reducing crash frequency and 
severity when compared with traditional intersections, they cannot 
totally prevent crashes (Mandavilli et al., 2009). Based on Mandavilli 
et al.’s (2009) research, there are four main crash types within round
abouts: "run-off-road, rear-end, sideswipe, and entering-circulating". It 
is essential to understand how these distinct types of crashes occur, and 
how to predict crashes and develop countermeasures to enhance traffic 
safety in and near roundabouts (Mandavilli et al., 2009). 

Traffic simulation was introduced in research to evaluate the per
formance of transportation networks as well as emerging technologies 
such as CAVs. Since then, microscopic traffic simulation (i.e., simulating 
individual vehicles and their behaviors) has been considered an effective 
method to analyze traffic performance, which would model individual 
vehicle behaviors and their interactions (Astarita and Giofré, 2019). In 
addition, new technologies such as connected vehicles and autonomous 
vehicles have been applied to traffic simulations (Astarita et al., 2017, 
Deluka et al., 2018). There is a large body of literature in microscopic 
traffic simulation. In this section, we mainly reviewed studies that are 
related to simulating roundabouts. 

Crashes. Zheng et al. (2010) analyzed roundabout crash patterns and 
used these patterns to compare between roundabout categories and 
between at-fault driver residency types (local-city or outside-city 
driver). In addition, they quantified 12 types of inappropriate negotia
tions based on the crash patterns. Their findings showed that entering- 
circulating type of crash was the severest at single-lane roundabouts, 
whereas the sideswipe crash showed a higher percentage at multi-lane 
roundabouts because most sideswipes happened between circulating 
vehicles. In addition, Polders et al. (2015) identified dominant crash 
types at roundabouts by considering the crash location, which was 
rarely considered in the prior studies. They collected and sampled 
crashes at roundabouts from police reports in Flanders, Belgium. Four 
dominant crash types were identified which included rear end, collisions 
with VRUs (e.g., cyclists, moped riders), entering–circulating, and 
single-vehicle collisions with the central island. The results showed that 
more crashes occurred in the entering lanes than in the exiting lanes 
(Polders et al., 2015). 

Conflicts. More studies have been conducted to analyze conflicts at 
roundabouts rather than crashes. The definition of traffic conflict is "an 
observable event which would end in an accident unless one of the 
involved parties slows down, changes lanes, or accelerates to avoid 
collision" (Jin et al., 2021, Risser, 1985). There are several main reasons 
to analyze conflicts rather than crashes. First, the crashes have a rare 
probability of happening compared with conflicts. Second, Dijkstra et al. 
(2010) showed that using conflicts to predict the number of crashes and 
examining the possibility of a relationship between calculated conflicts 
at junctions in the model would be possible. He recorded crashes by 
using microsimulation models which indicates that the number of 
simulated conflicts and observed crashes follows a Poisson log-linear 
distribution (Al-Ghandour, 2011). Third, both crashes and traffic con
flicts are not intentional, and they have the same cause (e.g., some sort of 
failure). Therefore, crashes will decrease if traffic conflicts are reduced, 
which suggests that both conflicts and crashes are useful for safety 
evaluation and management. 

Combining the analysis of conflicts and crashes, McIntosh et al. 
(2011) did an analysis of the roundabouts in Michigan to evaluate the 
crash data both before and after their construction using naïve method 

and Empirical Bayes (EB) analysis. Although the naïve method cannot be 
accounted for by the significant time trend, it is consistent with the EB 
results in general. Moreover, comparing the severity of the crashes 
before and after the roundabout construction, they found that more than 
20% of the crashes resulted in an injury or fatality in the “before” period 
while that number was slightly over 10% in the “after” period. After 
constructing the roundabout, the following two results showed that the 
“after” construction period had a significant effect compared with the 
“before” period. First, the crash types that often result in the severest 
crashes (angle, head-on, head-on left turn, pedestrian, and bicycles) 
were reduced substantially. Second, over 10% of angle crashes were 
reduced after the roundabout construction. 

Vehicle movements. Other researchers have used traffic simulation 
to replace observations to model vehicle movements (Minderhoud and 
Bovy, 2001). In addition, compared with methods that estimate conflicts 
from video data, micro-simulation is an easier and faster method to 
create conflicts by using traffic conflict models and evaluating collisions 
(Saulino et al., 2015). To quantitatively assess the safety level, surrogate 
safety assessment model (SSAM) software was developed to combine 
microsimulation models and automated conflict analysis (Office of 
Safety Research and Development, 2003). SSAM is "developed to auto
matically identify, classify, and evaluate traffic conflicts in the vehicle 
trajectory data output from microscopic traffic simulation models" (U.S. 
DOT FHWA, 2022). It also has built-in statistical analysis functions (e.g., 
for calculating conflict frequency and severity measures) that could help 
analysts in safe traffic infrastructure designs (Gettman et al., 2008, U.S. 
DOT FHWA, 2022). Specifically, visual analysis (e.g., "types of conflicts, 
conflicts areas, and conflict severities" (Al-Ghandour et al., 2011)) and 
trajectory information (e.g., vehicle position, vehicle speed, and vehicle 
acceleration) were processed by SSAM to determine the locations of the 
most serious conflicts and the associated types of conflicts, and to 
compare intersection design alternatives in terms of the locations of 
conflicts (Souleyrette and Hochstein, 2012). Virdi et al. (2019) proposed 
a method which uses incrementally transitioning of the fleet to CAVs (i. 
e., from low penetrations to high penetrations) and then assesses the 
safety performance via SSAM. The results showed that low CAV pene
trations increased conflicts at signalized intersections but decreased 
them at priority-controlled intersections, while high CAV penetrations 
reduced conflicts globally. However, this study is limited in highway 
environment which did not consider the mixed urban and freeway 
environment. 

Giuffrè et al. (2018) investigated roundabout safety performance 
with microsimulation to predict crash using peak hour conflicts. The 
estimation of traffic conflicts is conducted in the SSAM software for each 
roundabout using trajectory exported from simulation software (e.g., 
AIMSUN simulation, AI for intelligent mobility, and VISSIM). Crash data 
from 26 roundabouts were used to fit a generalized linear model for the 
prediction model (Giuffrè et al., 2018), which also showed a good fit by 
the cumulate residuals. In addition, (Saulino et al., 2015) investigated 
how simulated conflicts can be used as surrogate safety measures for 
roundabouts. The numbers of peak-hour conflicts at roundabout entries 
were estimated using VISSIM which was calibrated from roundabout 
data collected in the U.S. (Giuffrè et al., 2018). Results showed that 
simulated conflicts could be used as a surrogate measure due to the 
proper calibration for crash prediction models and conflicts prediction 
models. 

4.2.2. Pre-crash studies 
Pre-crash studies have the goal of identifying situations immediately 

prior to crashes. The pre-crash scenario that includes vehicle movements 
and critical scenarios analysis is used to describe time-to-collision based 
crash statistics and kinematic information in order to design vehicle-to- 
vehicle (V2V) communications-based countermeasures (Najm et al., 
2013). There are three main pre-crash construction methods (Liu et al., 
2021) including pre-crash data analysis (Davidse et al., 2019), clustering 
(Nitsche et al., 2017), and pre-crash scenario typology (Najm et al., 
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2007). The latter method is used to analyze crash scenarios according to 
contributing factors, which include the driving environment (e.g., clean 
weather, daylight) and road (e.g., geometry, dry surface), driver (e.g., 
age, gender, alcohol, drugs, fatigue), and vehicle (e.g., speed, usage 
years, weight) (Liu et al., 2021). More specifically, Davidse et al. (2019) 
analyzed the crashes, including contributing factors to crash occurrence 
and injuries. They identified the most common contributing factors per 
type of crash and provided alternative measures which tried to prevent 
these types of accidents for safety improvement in future. In addition, a 
clustering method was used to establish the basis for safety test of the 
Autonomous Driving System (ADS) by Nitsche et al. (2017) through 
identifying critical pre-crash scenarios at T- and four-legged in
tersections (Liu et al., 2021). Najm et al. (2007) defined a new typology 
that consists of 37 pre-crash scenarios based on the 2004 General Esti
mates System (GES) crash database "involving at least one light vehicle 
(i.e., passenger car, sports utility vehicle, van, minivan, or light pickup 
truck)" (Liu et al., 2021). "The goal of this typology is to establish a 
common vehicle safety research foundation for public and private or
ganizations, which will allow researchers to determine which traffic 
safety issues should be of first priority to investigate and to develop 
concomitant crash avoidance systems" (Najm et al., 2007). 

Although many practitioners and transportation engineers have been 
using microscopic simulation for different applications, few studies 
focused on quantifying the relationship (e.g., frequency, severity) be
tween real crashes and simulated traffic conflicts at roundabouts by 
using microsimulation (Giuffrè et al., 2018). In addition, there is limited 
research focused on pre-crash simulation and analysis at roundabouts 
using real crash datasets. These knowledge gaps on the estimation of 
surrogate safety measures at roundabouts need to be filled (Giuffrè et al., 
2018). 

4.2.3. Single-vehicle crash simulation 
Astarita et al. (2021) concluded that traffic simulation cannot predict 

single-vehicle crashes. The reason is that simulation tools such as AIM
SUN and VISSIM depict traffic conflicts based on the assumption that the 
trajectories of two vehicles must intersect (Astarita and Giofré, 2019). 
All the frequently used traffic indicators (e.g., Time to Collision, Post- 
Encroachment Time) are based on this assumption so they are incom
plete for accounting for single-vehicle crashes. For example, undivided 
highway safety cannot be evaluated in a simulation environment based 
on current conflict techniques unless driver error is introduced (Astarita 
and Giofré, 2019). Current conflict techniques do not take into account 
scenarios when road objects do not move on overlapping trajectories, 
which could lead to single-vehicle crashes (i.e., collisions with fixed 
objects) (Astarita et al., 2021). However, single-vehicle crashes consist 
of 19% of all reported crashes and result in 44% of fatal crashes overall 
in the US (Astarita and Giofré, 2019, Holdridge et al., 2005). 

4.3. Driving simulation 

Driving simulation is defined as enabling “the development of test
able dynamic models of driving behavior and the evaluation of tactical 
skills (e.g., choice of speed and lane position) and operational vehicle 
control (e.g., steering and braking) as integrated performance measures 
that incorporate features of visual perception, memory, attention, and 
directed search in a face-valid driving-relevant context. (Michon, 1989, 
Ranney, 1994)” (Akinwuntan et al., 2012). 

Driving simulators have been used for traffic safety studies since the 
turn of the century because of their advantages of easily producing 
diverse driving scenarios and collecting driving performance data under 
risky scenarios without placing drivers under actual risks of injuries or 
deaths (Bobermin and Ferreira, 2021). However, several issues also exist 
in the driving simulator studies. First, the traditional selection of risky 
scenarios for driving simulation relies on researchers’ expertise 
(Bobermin and Ferreira, 2021), and their intuitions may not always be 
accurate. Therefore, the studies on discovering crash patterns from crash 

reports should be investigated to support the selection of risky traffic 
conditions. Also, leveraging the crash pattern discovery process can 
facilitate the automated processing of information from crash reports to 
driving simulation. Second, some studies argue traffic flow at current 
driving simulator is simple and this issue could be solved by integrating 
microscopic traffic simulation software into the driving simulator, 
which can generate more complex traffic flows. For example, previous 
study about testing drivers’ performance at roundabouts used stable 
traffic flow (Azimian et al., 2021). The more complex traffic flow could 
be integrated into driving simulation software to improve the quality of 
driving simulation (Biurrun-Quel et al., 2017, Sun et al., 2015). 

5. Human factors considerations 

Although human factors are important for simulating roundabout 
crashes, little effort has been made to investigate specifically the influ
ence of these factors in roundabout scenarios. Studies like those of 
Daniels et al. (2010) and Montella (2011) aimed to identify factors for 
predicting injury severity or accident rate in roundabouts instead of 
focusing on the special role of human cognitive or behavioral charac
teristics. Therefore, in this part, we broaden our discussion to include 
the general contribution of human factors to crash simulations in driving 
scenarios, but which would be likely to affect roundabout crashes in a 
similar manner. 

In a crash or automobile accident, the people involved could be 
drivers, pedestrians, cyclists, or individuals riding scooters, skateboards, 
etc. The focus of the present paper is on simulations of accident scenarios 
for CAVs and human-driven vehicles, so our consideration of human 
factors emphasizes mainly drivers of vehicles. The majority of crash 
simulations use two methods to take driver factors into account: con
ducting crash simulations without participants or having real partici
pants drive in simulated environments. In the former case, a driver 
behavior model is put into traffic simulations to imitate the driver’s 
actions in a risky scenario (see Markkula et al., 2012, for a review). In 
the latter case, crash-related scenarios are used to test people’s perfor
mance with manipulations of one or more driver factors (e.g., Bélanger 
et al., 2010, Bélanger et al., 2015). Before covering those topics, we 
provide a brief description of driving simulation. 

5.1. Traffic simulations with driver behavior models 

Driver behavior models are developed to capture near-crash driver 
behavior to investigate the relationship between driver reaction and 
safety. In general, without-participant simulations can provide a more 
controlled, repeatable, cheap, fast and safe measurement compared to 
obtaining data from naturalistic driving or driving simulators (Markkula 
et al., 2012). Recent development of driver behavior models has made it 
possible to make inferences at cognitive levels. Chai et al. (2017) pro
posed a Fuzzy Cellular Automata (FCA) model – a combination of fuzzy 
sets of linguistic terms and microscopic traffic behavior models – with 
the aim of simulating the misperception of vehicle gap and velocity. 
Based on the simulation results, driving performance and crash rate are 
found to be related to drivers’ misperception. Moreover, this kind of 
cognitive failure (misperception) are more likely to cause driving errors 
in high volume traffic streams, which fits observations from naturalistic 
driving. 

Driver behavior models can be improved by receiving input from 
with-participant simulator-based studies. For example, Habtemichael 
and de Picado Santos (2014) found that the crash risk of aggressive 
drivers relative to non-aggressive drivers is 3.1 to 5.9 times as great 
based on a microscopic traffic simulation approach. Aggressive driving 
was simulated by adjusting the parameters of the corresponding vehicles 
based on previous research of aggressive drivers. The study also found 
that aggressive driving can only save 1 to 2% of travel time in both non- 
congested and congested traffic conditions, but with the same high crash 
risk. One major limitation of this study is the lack of interaction between 
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aggressive drivers and regular ones. In contrast, Park et al. (2019) first 
obtained behavioral data from a multi-agent driving simulation facility, 
where input from two driving simulators was integrated into the same 
traffic space to simulate the interaction between drivers when one of 
them behaved aggressively. Then the behavioral data were used to 
modify driving behavior parameters of the microscopic traffic simula
tion model in VISSIM. Results from VISSIM indicated that aggressive 
driving had a negative impact on both traffic safety and travel speed. 
The modified version of the simulation model can also be used to predict 
other consequences of aggressive driving and could be informative to 
policy making activities. Alonso et al. (2012) focused on longitudinal 
driving and the effect of distraction caused by a visual and cognitive 
secondary task. They used a similar method to improve the driver 
behavior model in ISi-PADAS (Integrated human modelling and Simu
lation to support human error risk analysis of Partially Autonomous 
Driver Assistance System) by applying the data obtained from driving 
simulators. With this input, the ISi-PADAS system is able to simulate the 
effect of distraction on driving activity and overall traffic safety. Alonso 
et al. (2012) focused on longitudinal driving and the effect of distraction 
caused by a visual and cognitive secondary task. They used a similar 
method to improve the driver behavior model in ISi-PADAS by applying 
the data obtained from driving simulators. With this input, the ISi- 
PADAS system is able to simulate the effect of distraction on driving 
activity and overall traffic safety. 

Driving simulation studies can also further improve traffic simula
tion studies by providing calibrated parameters of the car following 
behavior for traffic flow analysis. The driving simulation study collects 
drivers’ driving performance such as acceleration and distance to the 
lead car, which can be used to calibrate a car-following model. The 
calibrated car-following model could be imported into microscopic 
traffic simulations to investigate the impact on traffic flow. For example, 
a driving simulator study was carried out to collect drivers’ performance 
under adverse weather conditions, and the Wiedemann 99 model was 
calibrated for VISSIM traffic simulation (Chen et al., 2019). In another 
study, driving behavior data were collected in a driving simulator study 
under snowy weather. The car-following model was calibrated by 
collected driving performance data, and the calibrated model was im
ported into VISSIM to investigate connected vehicle impacts on traffic 
safety (Yang et al., 2020). 

However, as mentioned by Markkula et al. (2012), the current ver
sions of the driver behavior model are far from their optimal form. 
Factors like alcohol, stress, and fatigue are still difficult to integrate into 
the simulation, not to mention the higher levels of the driver’s cognitive 
processes (e.g., problem solving and decision making). Also, more 
research is still needed to focus on how to integrate the interaction be
tween pre-crash scenarios and driving behaviors into the simulation. 
Since all these factors have been somewhat investigated in with- 
participant studies, the next step for improving traffic and crash simu
lation is still seeking methods of combining with- and without- 
participant research. In other words, one can only find a way to 
improve human behavior simulation through the direct investigation of 
human behaviors in specific contexts. Because roundabouts are complex 
driving environments for both humans and CAVs, they provide an ideal 
context for such investigation. 

5.2. Human factors considerations in with-participant simulation studies 

Unlike driver behavior models, which are typically used in traffic 
simulations, driving simulation research puts human participants into 
simulated traffic scenarios. By manipulating critical factors related to 
driving safety, behaviors from human drivers can be tested and 
measured with the aim of investigating limitations of human cognition. 
How the drivers interact with other vehicles and with environmental 
and infrastructural elements can be examined. The number of studies 
using roundabout scenarios is limited. Therefore, we cover those in the 
first subsection and focus the remaining subsections on other relevant 

factors studied using scenarios other than roundabouts but that are 
relevant to CAV-HDV interactions. 

Driving simulation studies at roundabouts. Navigating within 
roundabouts is an intricate task which requires driver-car interactions 
and circulatory geometry (Azimian et al., 2021). Consequently, as noted, 
there are few studies specifically of drivers’ performance at round
abouts. Azimian et al. (2021) tested 45 drivers under distracted and non- 
distracted conditions at roundabouts. The results showed that drivers 
were less careful, and more effort was needed to keep their attention, 
when driving under distracted conditions. Another study tested effects 
of different warning sounds as countermeasures to reduce drivers’ 
speeds at roundabouts, and the results showed that a continuous pitch 
was the most effective (Rossi et al., 2013). 

Distraction. A widely researched topic in with-participant simula
tion studies is the effect of distraction. Distraction can be internal or 
external. An internal distraction refers to the state of mind wandering – 
paying attention to task-irrelevant thoughts rather than the ongoing 
task. An on-road study by Burdett et al. (2019) had a researcher 
accompany 25 drivers in a 25-km route and ask them whether they were 
focusing on driving or thinking about something else at 15 pre
determined road sections. The frequencies of the reported mind wan
dering correlated with the reported crashes’ frequencies along the same 
route over a five-year period. Burdett et al. (2016), based on a survey of 
more than 500 participants, and Burdett et al. (2019) reported that mind 
wandering happens most often at slower, quieter, less complex or more 
familiar road sections. He et al. (2011) and Yanko & Spalek (2014) 
described simulation-based studies in which the participants performed 
car following in a high-fidelity driving simulator. In He et al.’s study, the 
participants were asked to report anytime they were aware of mind 
wandering, whereas in Yanko & Spalek’s experiment, the participants 
were probed at randomly selected times to see whether they were 
focused on driving or mind-wandering. Both studies found evidence 
linking mind wandering to the potential risk of crashes. He et al. re
ported that mind wandering did not affect vehicle control but narrowed 
the focus of attention, whereas Yanko & Spalek reported that mind 
wandering was related to longer reaction times to sudden events, higher 
overall velocity, and a shorter headway distance. Those studies are good 
examples of ways to take internal distraction into account in simulation 
studies. 

Like internal distraction, external distraction (e.g., cellphones or a 
sudden event) can also direct a driver’s attention away from the road. 
Research has been conducted using driving simulators to investigate the 
effect of cell phones on crash risk. Li et al. (2016) tested participants 
with a rear-end collision task (responding to a leading vehicle’s sudden 
deceleration) in a driving simulator across three cell-phone use condi
tions. Even though the people using cellphones took compensatory be
haviors (e.g., slowing down), they still suffered from a higher risk of 
crashes. This difference in risk was not modulated by whether the cell 
phone was hands-free or hand-held, a finding that agrees with many 
studies evaluating cell-phone use (Caird et al., 2018). Alonso et al. 
(2012) had participants drive a simulator without a secondary task and 
while performing a visual or cognitive secondary task. The former 
required search of a series of visual displays for a target in each, iden
tified by moving a gray indicator (similar to a cursor) to the half of the 
display in which it appeared, whereas the latter was counting backwards 
by 3 from a designated number. Participants reduced driving speed in 
both secondary-task conditions and allowed longer headways when 
approaching a vehicle when performing the cognitive secondary task 
but not the visual one. 

Pawar and Patil (2018) reported that cellphone use made it more 
difficult for drivers to respond in time to other drivers’ aggressive 
driving behaviors. Vollrath et al. (2021) showed that texting on a cell
phone significantly impaired driving performance. This impairment was 
smaller for drivers who were more competent at texting on a cell phone 
than for less competent texters, although the subjective experiences 
were equally negative for both high and low competent groups. Lee et al. 
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(2018) focused on radio tuning while driving and found that the ori
enting of glance by this distraction task could be responsible for some 
avoidable crashes and the probability of crashing increased 2.8–5 times 
compared to a baseline driving condition. However, not all previous 
studies showed no potential benefit of a distraction in driving. Atchley 
and Chan (2011) found that requiring performance of an interactive 
verbal secondary task demanding comprehension and responding 
improved lane-keeping performance and steering control after the 
participant had spent a long period on the driving simulator. They 
presumed that the task helped to counter the vigilance decrement that 
occurs when attending to a monotonous task for a long period. 

In summary, as a main topic of the human factors in driving simu
lation, distraction, whether internal or external, was mostly found to 
increase the risk of crashes, even though some studies argued that it has 
the potential to improve driving performance in vigilance conditions 
with few critical events. 

Cognitive limitations. Another human factor involved in crash 
simulation is the driver’s cognitive limitations. As stated in the discus
sion on distraction, paying attention to task-irrelevant thoughts impairs 
driving performance. This is because a human has limited cognitive 
resources, allocating attention to one could lead to worse perception and 
reaction to another. Andersen et al. (2011) reported that during a 
simulated driving task, the detection of a certain change in the envi
ronment was worse as the three-dimensional (rather than two- 
dimensional) distance of that changing stimulus from the driver 
increased. This implies that attention allocation of drivers is not only 
determined by how far the object is from the visual focus in terms of the 
visual angle. Cognitive resources spent on a certain object can also be 
influenced by depth perception such that even objects located near the 
center of the visual field can be ignored because they are perceived to be 
further from the vehicle. In the two driving simulation experiments of 
Cuenen et al. (2015), the crash occurrence was found to be negatively 
correlated with attention capacity. Moreover, in their second experi
ment, cognitive distraction was found to improve performance in lane 
keeping when the attentional capacity was high and impair performance 
when the capacity was low, implying a similar interaction to that be
tween the effects of vigilance and a secondary task on driving 
performance. 

Driving a vehicle is in essence multitasking. The driver needs to 
switch their attention between watching the front and checking the 
mirrors, as well as turning different functional lights on or off and using 
his or her foot to manipulate the gas pedal and the brake. By investi
gating the difference between healthy and brain-injured drivers, Cyr 
et al. (2009) found a connection between the impairment in dual-task 
performance and crash rate in high-crash-rate simulated road events. 
Graefe (2015) focused on the attention deficit in young adults with 
ADHD (Attention-Deficit/Hyperactivity Disorder) and found that ADHD 
diagnosis indirectly influenced the variability in lane position through 
less capability to sustain attention and working memory on the driving 
task than those without the diagnosis. They also found that failure to 
stop completely at a stop sign was related to both greater symptoms of 
inattention and impulsivity symptoms. 

To summarize, human drivers can only focus on some areas of the 
visual field while ignoring other areas. Any factor that impairs the finite 
cognitive capacity will make this perceptual limitation more severe. 

Hazard perception. To avoid a crash, human drivers need to 
perceive a potentially hazardous event and take anticipatory actions. 
Hazard perception is described as the ability to detect dangerous traffic 
scenarios (Horswill and McKenna, 2004). The misperception of a po
tential hazard is assumed to be related to crash risk. Ba et al. (2016) let 
participants perform a pre-defined driving task that contained a baseline 
scenario and a hazard scenario. By comparing those who crashed in the 
task and those who did not, they found that even though both groups 
have similar reaction intervals towards the onset of the hazardous event, 
the no-crash drivers showed anticipatory body reactions (indicated by 
aroused electrodermal activity) which were followed by more successful 

actions towards the hazardous event. They concluded that the ability of 
perceiving risks of crashes is critical for crash avoidance. Borowsky et al. 
(2016) introduced visual interruption (secondary task) in a simulated 
driving task in which participants navigated different hazardous sce
narios. The result showed that having this interruption during the 
perception of a hazard impairs the processing of the corresponding in
formation and causes a delay to the actions following the hazard 
perception, which indicates the resource-consuming nature of hazard 
perception. 

In addition to a secondary interruptive task, the environment in 
which the hazardous event takes place (pre-crash scenarios) influences 
the efficiency and accuracy of hazard perception. Yan et al. (2007) used 
a simulation experiment and found that higher traffic speed can make 
gap acceptance – evaluation of how risky it is to cross or merge into the 
major road based on the perception of distances and speeds of the ve
hicles involved – become more liberal or risky. Edquist et al. (2012) and 
Yan et al. (2014) found that drivers adopt compensatory driving stra
tegies in more complex pre-crash scenarios (more on-street parking and 
foggy weather, respectively). However, in both studies, the compensa
tory actions were not adequate for effective hazard avoidance, implying 
a negative influence of an overloaded working memory on hazard 
perception. Michaels et al. (2017) further compared scenarios that 
caused low, moderate and high mental workload and found that mod
erate scenario complexity is the most useful in testing individual dif
ferences in driving performance because it avoids overloading working 
memory and making the driver under aroused. 

In short, the ability of hazard perception is highly related to one’s 
cognitive ability and is critical for crash avoidance. Pre-crash scenario 
can influence the efficiency and quality of hazard perception by 
modulating the cognitive workload. 

Risk factors. There are also some risk factors related to impaired 
driving performance and risky driving behaviors. Stress, especially time 
pressure, is one contributing factor to crashes. Paschalidis et al. (2018) 
and Pawar & Velaga (2021) both found the connection between time 
pressure and risky driving behaviors by using time pressure as a within- 
subject manipulation. Paschalidis et al. reported that as time pressure 
increases, gap acceptance becomes more liberal. In Pawar & Velaga’s 
study, the drivers who were under higher time pressure were more likely 
to make risky decisions and had a higher likelihood of crashes. Another 
risk factor is fatigue. Passive fatigue is caused when the cognitive 
workload is low, and a high cognitive workload leads to active fatigue. 
Saxby et al. (2013) investigated the subjective and objective effects of 
both forms of fatigue in a driving simulator study. They found that 
although both forms caused unpleasant subjective experiences, active 
fatigue was more related to distress and increased coping efforts, 
whereas passive fatigue is related to a decline in task engagement. With 
regard to driving performance, only passive fatigue had a negative effect 
on overall alertness and increased crash probability. 

Sleepiness can be regarded as an extreme form of fatigue. Williamson 
et al. (2014) used prompt questions or asked participants to report at the 
moment during which they felt sleepy. Result showed that in the next 
few minutes following the report of sleepiness, crash rate increased by 
four times compared to other moments during the task. Alcohol con
sumption which can cause a similar effect to fatigue is also regarded as a 
major risky factor. Both Yadav & Velaga (2019) and Yadav & Velaga 
(2020) investigated the effect of Blood Alcohol Concentrations (BAC). 
Yadav & Velaga (2019) found that the reaction time to crossing pedes
trians was largely increased by a higher BAC level. Yadav & Velaga 
(2020) focused on other aspects of driving behaviors and reported that 
driving speed and crash probability were both increased by a higher BAC 
level. In a word, although most risky factors were found to negatively 
influence driving performance and safety, their way of modulating 
driving behavior varies. 

Generalizability of simulated driving results to naturalistic 
driving. Although previous research using driving simulators has ob
tained fruitful findings, a critical issue – whether driving behaviors in a 
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driving simulator resemble those in a naturalistic scenario – is still 
debatable. Maxwell et al. (2021) reported that behaviors in a driving 
simulator showed similar patterns to those observed in on-road driving 
and that the behavioral differences caused by gender and age were also 
elicited by the driving simulator. They concluded that simulators have 
the potential to support driver assessment. Charlton and Starkey (2011) 
found that the automatic form of driving, which has been observed in 
on-road driving after repetitive experience, was observed in a driving 
simulator after 12 weeks of testing, which also supports the consistency 
between driving behaviors in a simulator and naturalistic driving. 

However, there is opposing evidence against this consistency. Zöller 
et al. (2015) focused on braking behaviors in different conditions of the 
braking system. Behaviors in real vehicles and those in a simulator were 
compared. Although drivers reacted differently to different braking 
conditions in a real vehicle, this difference was not found in a simulator. 
They concluded that static driving simulators have poor validity as to 
elicit behavioral differences in braking, which could be due to the lack of 
vestibular feedback. Reed-Jones et al. (2007) found that the application 
of galvanic vestibular stimulation improved driving performance and 
decreased simulator adaptation syndrome. This finding is consistent 
with the conclusion of Zöller et al. Wijayaratna et al. (2019) reviewed 
studies on how mobile phone distraction affects driving from both 
simulator research and naturalistic investigation. In simulator studies, 
the distraction by mobile phone consistently delayed the driver’s reac
tion time. However, some naturalistic studies found that mobile phone 
distraction had no effect or improved driving performance. Wijayaratna 
et al. concluded that this dissociation is a result of methodological dif
ferences rather than low validity of in-lab simulator-based studies. 
Factors, such as self-regulation (whether using a cell phone is voluntary 
or required), arousal (drowsiness and fatigue in naturalistic driving vs. 
concentration in the lab), can lead to different types of effects in simu
lator and natural driving studies that are not necessarily related to the 
validity of simulator-based studies. 

Summary. Most of the safety issues regarding human drivers revolve 
around attention. Some relate to the level of arousal, and attentional 
resources available to the driver, whereas others relate to direction of 
attention to the driving task as opposed to other tasks or thoughts. These 
attentional issues are going to be most problematic in situations that 
require complex decisions and coordination with other traffic, as is the 
case in navigating roundabouts. Design considerations to be incorpo
rated into vehicle simulations include methods to restrict a driver’s 
speed appropriately, signal to the driver the presence of other vehicles, 
and otherwise direct the driver’s attention to critical roadway signage. 

6. Integration/vision/future work 

This paper reviewed the state-of-the-art traffic crash related research 
from three main areas: crash report analysis, simulation method, and 
human behavior. The review highlighted the main components that 
need to be incorporated into future research. Our personal goal is to 
develop an all-in-one/one step crash analysis system, in which the crash 
configuration (e.g., information collection, processing and analysis), 
crash reconstruction and simulation, and crash support information 
integration and analysis (e.g., human factors), can be integrated and 
leveraged into the future proposed system. Prior studies have investi
gated how to automatically develop driving simulation scenarios from 
crash reports by analyzing crash characteristics. Bobermin and Ferreira 
(2021) proposed a framework to automatically generate driving simu
lation scenarios for dangerous curves from police records. Clustering 
methods were used to discover representative curve crash scenarios by 
analyzing police records of the crash. The crashes were classified into 
four clusters that represent four types of typical curve accidents. Curve 
characteristics of each cluster could be used for driving simulator 
studies. A study investigated National Motor Vehicle Crash Causation 
Survey and summarized crashes resulting from teenagers into four types 
by examining the critical reasons leading to the crash (McDonald et al., 

2012). Another study developed representative pedestrian crash sce
narios, which could be used for driving simulation studies (Chrysler 
et al., 2015). Several factors were taken into consideration, such as 
pedestrian trajectory, behavior, speed and road characteristics. These 
show a good starting point for further structured integration of crash 
data sources, different types of simulations (i.e., vehicle simulation, 
driving simulation, and traffic simulation), and human factors into one 
framework that can be used to evaluate traffic safety for given contexts 
of scenarios. 

Crash configuration. Leledakis et al. (2021) presented a method for 
predicting typical crash configurations in vehicles with consideration of 
the influence of crash-avoiding technologies in the crashworthiness 
evaluation (i.e., the degree to which a vehicle will protect its occupants 
from the impacts of accidents). Treatment pre-crash model-in-the-loop 
simulations were leveraged to predict and evaluate the effect of a con
ceptual Autonomous Emergency Braking (AEB) system on crash 
configuration distributions in a feasibility study. The treatment simu
lations indicated a distinction between the crashes from available real- 
world databases and expected future crashes. The results showed that 
a significant number of crashes that were not avoided need further 
improvement of occupant protection systems. Specifically, it was found 
the conceptual AEB system shifted many crashes closer to the corner of 
vehicles for straight crossing path type of crashes. Therefore, there is an 
urgent need for new setups for assessment of occupant in-crash 
protection. 

The results also showed that many future crashes could be classified 
into a reduced number of categories. The proposed method can be 
further leveraged to reduce the complexity of crash types for better 
managing and evaluating well-defined test cases for crashworthiness. 
Meanwhile, the diversity and representativity of real-world crashes were 
maintained. 

Crash reconstruction. Crash scene reconstruction has been regar
ded as one of the key solutions for forensic analysis or traffic incidents 
research investigation (Kolla et al., 2022). It also helps prevent evidence 
loss and mitigate economic losses by collecting and cataloging the traffic 
scenes (FARO Technologies, 2022). FARO has developed software for 
crash reconstruction to determine the cause of a crash. Firstly, the 
roadway and texture are drawn in the simulation environment. Then, 
the momentum system is created to simulate the momentum of the 
vehicle based on the input speed. The software can also be incorporated 
with any exact vehicle models and Google map for simulation of actual 
driving scenarios. As a result, a 20-page crash report is generated 
through the momentum analysis, including impact velocity, separation 
velocity, and separation yaw rate. The software is versatile in different 
crash configurations and simulating damages caused by the crash. The 
3D crash reconstruction technology is essential in forensic investigation, 
crime and fire investigation, and courtroom presentation. It can benefit 
forensic experts and investigators with the mimic 3D reconstruction of 
the crash scene, accurate statistical analysis, and courtroom–ready re
ports (FARO Technologies, 2022). Recently, FARO also integrated the 
technology with point cloud data from drones and laser scanners to 
capture accurate and complete 3D images of any environment and ob
jects at the crash scene and fulfill the automation on 3D reconstruction. 

Development of automated driving simulation process. Simi
larly, several studies have integrated microscopic traffic simulation 
software and driving simulator software to provide more accurate road 
and traffic flow design for driving simulator studies. The summary of 
related studies is listed in Table 2. That and Casas (2011) combined 
microscopic traffic simulation software AIMSUN (Casas et al., 2010) and 
driving simulator software Simulateur de Conduite Automobile 
Normalise en Reseau or Simulator for Cooperative Automotive NetwoRk 
(SCANeR) (Blana, 1996). The traffic simulator AIMSUN simulated the 
road network and the driving simulator SCANeR controlled drivers’ real- 
time interaction with the traffic flow. The RoadXML file was used to 
import the road network from AIMSUN into SCANeR. Punzo and Ciuffo 
(2011) also integrated microscopic traffic simulation AIMSUN and 
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driving simulator SCANeR. The integrated platform was tested on a 6.5 
km road. Sun et al. (2015) developed a traffic simulator with multiple 
driving simulators (TSMDS) platform which allowed multiple drivers to 
drive in the virtual environment simultaneously. The TCP / IP network 
protocol was used to transfer data between the two systems. The 
microscopic traffic simulation VISSIM 5.40 and driving simulator VIR
TOOLS were selected to test the proposed platform. In addition, a 
driving simulation experiment involving 27 drivers was conducted using 
the developed platform and drivers’ responses were consistent with the 
field observation which validated the proposed platform. Biurrun-Quel 
et al. (2017) developed a driving simulator including two parts, which 
were microscopic traffic simulation part and 3D graphic engine part, 
respectively. The Simulation of Urban Mobility (SUMO) (Krajzewicz 
et al., 2002) was selected as the microscopic traffic simulation platform 
to generate the traffic flow and road. The Unity 3D was selected as the 
3D graphic engine. TraCI, which is an API of the SUMO simulation, was 
used as the communication between Unity 3D and SUMO. The SUMO 
and driving simulation software SILAB were integrated to develop a 
driving simulation which can transfer surrounding traffic and signal 
control from SUMO into SILAB (Barthauer and Hafner, 2018). A plat
form was developed integrating traffic simulation SUMO and 3D graphic 
engine Unity 3D which support multi-modal and multi-user traffic 
simulation (Miller et al., 2020). For example, a driver using a car rig can 
control the car displaying in multiple screens and meanwhile another 
person can ride a bicycle with bicycle rig and movement of bicycle pedal 
is projected in virtual world to control the bicycle in the VR 
environment. 

7. Conclusions 

In search of factors that can contribute to traffic safety in a mixed 
traffic with connected and autonomous vehicles (CAVs), it was found 
that human behavior and road infrastructure prevail and must be 
considered together with the traffic itself. For example, roundabout is 
one of the important traffic environments that presents challenges to 
human drivers and CAVs. Because crashes in simulated and actual 
driving occur infrequently for individual drivers, vehicle crash simula
tions provide an avenue for studying issues of mixed traffic (e.g., at 
roundabouts). Crash reports involving human-driven vehicles offer 
useful input for determining the scenarios and conditions under which 
crashes are likely to occur. Sophisticated methods exist for analyzing 
crash reports to provide input for the crash simulations. Methods exist 
for conducting crash simulations that allow manipulation of various 
parameters related to vehicle design and conflict situations that may 
lead to crashes. The most likely scenarios for crashes in specific road 

infrastructure environment (e.g., roundabouts) can be determined and 
simulated. Driving simulators in which humans perform driving tasks in 
various contexts can provide knowledge about the human factors that 
need to be considered, which center around the drivers’ limited atten
tion capacity. This knowledge can be used as input to vehicle simula
tions to provide a full, contextualized analysis of likely crash scenarios 
and ways in which crashes could be avoided by knowing human drivers’ 
tendencies. These tendencies can be incorporated into the interaction 
protocols for CAVs and humans with the goal of increasing safety. 
Therefore, in this paper, we comprehensively reviewed the crash-related 
research including crash report analysis, simulation method, and human 
behavior; this review set research goals and provided the research re
sources for further crash analysis implementation in the safety domain. 

8. Contributions to the body of knowledge 

This study contributes to the body of knowledge by reviewing recent 
literature in the traffic safety realm for supporting futuristic trans
portation infrastructure settings with connected and autonomous vehi
cles. The review was conducted based on the authors’ view that the 
comprehensive analysis of futuristic transportation safety requires an 
integrated framework with traffic crash data source, simulation 
methods, and human factors. The state of the art in these three related 
aspects and research gap in integrating them were identified. This can be 
used to guide future research to push for a safer transportation infra
structure in the mixed traffic with CAVs. 
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