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Abstract

Integrating multiple sensors and addressing diverse
tasks in an end-to-end algorithm are challenging vyet crit-
ical topics for autonomous driving. To this end, we in-
troduce BEVGuide, a novel Bird’s Eye-View (BEV) repre-
sentation learning framework, representing the first attempt
to unify a wide range of sensors under direct BEV guid-
ance in an end-to-end fashion. Our architecture accepts in-
put from a diverse sensor pool, including but not limited
to Camera, Lidar and Radar sensors, and extracts BEV
feature embeddings using a versatile and general trans-
former backbone. We design a BEV-guided multi-sensor
attention block to take queries from BEV embeddings and
learn the BEV representation from sensor-specific features.
BEVGuide is efficient due to its lightweight backbone de-
sign and highly flexible as it supports almost any input sen-
sor configurations. Extensive experiments demonstrate that
our framework achieves exceptional performance in BEV
perception tasks with a diverse sensor set. Project page is
at https://yunzeman.github.io/BEVGuide.

1. Introduction

The recent research in Bird’s Eye-View (BEV) percep-
tion and multi-sensor fusion has stimulated rapid progress
for autonomous driving. The BEV coordinates naturally
unify various downstream object-level and scene-level per-
ception tasks, while joint learning with multiple sensors
minimizes uncertainty, resulting in more robust and accu-
rate predictions. However, existing work still exhibits fun-
damental limitations. On the one hand, fusion strategies
often necessitate explicit space transformations, which can
be ill-posed and prone to errors. On the other hand, existing
techniques utilizing BEV representations rely on ad-hoc de-
signs and support a limited set of sensors (i.e., cameras and
Lidar). These constraints impede the evolution of a more
general and flexible multi-sensor architecture for BEV 3D
perception, which inspires the design of our work.

More specifically, as different sensors always lie in dif-
ferent coordinate systems, prior approaches usually trans-
form features of each sensor into the same space prior to
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Figure 1. BEVGuide takes input from a sensor combination
and learns BEV feature representation using a portable and gen-
eral BEV-guided multi-sensor attention module. In principle,
BEVGuide is able to take a wide variety of sensors and perform
any BEV perception task.

fusion. For example, some work prioritizes one sensor over
another [1,42,43]. However, such fusion architectures tend
to be inflexible and heavily reliant on the presence of the
primary sensor — should the primary sensor be unavailable
or malfunction, the entire pipeline collapses. Alternatively,
other work transforms all sensors into the same space (3D
or BEV space) using provided or estimated geometric con-
straints [10,22,25]. Such methods usually require an ex-
plicit depth estimation from camera images, which is sus-
ceptible to errors due to the ill-posed nature of the image
modality. Moreover, errors that arise during the transfor-
mation process may propagate into subsequent feature fu-
sion stages, ultimately impacting downstream tasks. Our
approach seeks to streamline this process by employing the
BEV space to directly guide the fusion of multiple sensor
feature maps within their native spaces.

Simultaneously, in addition to camera and Lidar sensors
which bring about rich semantic information and 3D fea-
tures respectively, we emphasize the integration of Radar
sensors, which deliver unique velocity information and ro-
bust signals in extreme weather conditions but have re-
ceived considerably less attention in research compared
with other sensing modalities. Among the limited literature
that involves Radar learning, some work focuses on utiliz-
ing the velocity measurement for prediction [39,45], while
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others treat Radar points as an additional 3D information
source to aid detection and tracking [7, 10,3 1]. Our method
aims to accomplish perception tasks in the BEV space and
analyze the synergy among all three types of sensors.

BEVGuide is a general and flexible multi-modality fu-
sion framework designed for BEV perception. A paradigm
of it is shown in Figure 1. It accommodates any poten-
tial sensor configurations within the sensor pool, including
but not limited to camera, Lidar, and Radar sensors. For
any new sensor, the core fusion block simply requires a
sensor-specific feature embedding, which can be obtained
from any backbone encoder, whether pretrained or yet to be
trained. The fusion block consists of a BEV-guided sensor-
agnostic attention module. We split the BEV space into
small patches with position-aware embeddings, through
which the model queries and fuses all sensor features to
generate a unified BEV representation. By employing po-
sitional encoding to encapsulate geometric constraints, we
avoid error-prone explicit feature space transformations, en-
abling the model to focus on positions of interest across
sensors. Designed in this manner, the core fusion module
is modality-agnostic and can potentially support any sen-
sor configurations in real-world applications. We evaluate
our model in BEV scene segmentation and velocity estima-
tion tasks, where BEVGuide achieves leading results across
various sensor configurations. Moreover, We observe that
BEVGuide exhibits great robustness in different weather
and lighting conditions, facilitated by the inclusion of dif-
ferent sensors.

The main contributions of this paper are as follows.
(1) We propose BEVGuide, a comprehensive and versatile
multi-modality fusion architecture designed for BEV per-
ception. (2) We underscore the significance of Radar sen-
sors in velocity flow estimation and BEV perception tasks in
general, offering an insightful analysis in comparison with
camera and Lidar sensors. (3) We present a map-guided
multi-sensor cross-attention learning module that is gen-
eral, sensor-agnostic, and easily extensible. (4) BEVGuide
achieves state-of-the-art performance in various sensor con-
figurations for BEV scene segmentation and velocity flow
estimation tasks. And in principle, BEVGuide is compati-
ble with a wide range of other BEV perception tasks.

2. Related Work

Camera-Lidar Fusion for 3D Perception.  Consider-
able research has examined leveraging signals from mul-
tiple modalities, especially images and point clouds, for 3D
perception tasks. Some work prioritizes one sensor over
the other [, 34,42, 43], where it first extracts embeddings
of the main sensor, and then augments the embeddings by
transforming the auxiliary sensor features into the main fea-
ture space. Frustum PointNet [36] generates 2D bound-
ing boxes and uses them to guide 3D detection with point

clouds. Another line of work [1,9, 19,21, 29, 42] extracts
point cloud features first, and then fuses 2D RGB features
with them. Recent work [3, 18,44,47,49] starts to explore
deep feature-level fusion between point and image modali-
ties. Ye et al. [46] propose to use feature alignment between
point clouds and images to improve monocular 3D object
detection. BEVFusion [25] extracts features for Lidar and
camera sensors and projects them in the BEV space before
fusing them for 3D detection and segmentation tasks. Our
method differs from such work, as we leverage a unique
BEV-guided architecture to simplify the fusion and allow
more flexible sensor combination settings, including the im-
portant Radar sensor type.

Radar for Autonomous Driving. Despite being sparser
and less accurate in angular direction than Lidar, Radar
has several appealing properties such as its low cost, ro-
bustness to extreme weather, and radial velocity informa-
tion from the Doppler effect. This has motivated a re-
cent uprising trend to utilize Radar information for au-
tonomous driving, where a lot of work introduces Radar
to perception tasks along with camera or Lidar sensors
[7,8,10,11,13,14,28,31,45]. Some classical tracking based
approaches [8, | 1, 13] perform Radar fusion using filtering
techniques such as Kalman Filters. More recently, several
data-driven deep learning approaches are proposed. Radar
and cameras are fused for 3D object detection in [7, 31].
Joint 3D detection and velocity estimation is performed in
[28] using the raw Range-Azimuth-Doppler tensor. Lidar
and Radar are fused in [39,45] to perform speed estimation
and trajectory estimation. Simple-BEV [14] fuses Lidar and
cameras for BEV vehicle segmentation, and FUTR3D [10]
fuses camera, Lidar, and Radar for more robust 3D object
detection. In contrast to these, our method proposes to use
Radar velocity in an end-to-end manner together with its po-
sitional information to benefit a diverse spectrum of driving
tasks from BEV scene segmentation to velocity estimation.

3D Scene Understanding in BEV Frame. Inferring 3D
scenes from the BEV perspective has recently received a
large amount of interest due to its practicality and effec-
tiveness. MonoLayout [30] estimates the layout of urban
driving scenes from images in the BEV frame and uses an
adversarial loss to enhance the learning of hidden objects.
Can et al. [5, 6] propose to employ graphical representa-
tion and temporal aggregation for better inference of the
driving scenarios using on-board cameras. In the mean-
while, the BEV perspective also enables the efficient fusion
of multiple sensor modalities for scene analysis [16, 33].
Recently, using BEV representation to merge images from
multiple camera sensors has become a popular approach in
autonomous driving 3D perception. Following the monoc-
ular feature projection proposed by Orthographic Feature
Transform (OFT) [38], Pyramid Occupancy Networks [37]
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Figure 2. BEVGuide Paradigm. Our proposed method is able to work with any collection of sensors and fuse the feature representation
using a BEV-guided transformer backbone. (1) BEVGuide takes input from a sensor pool and (2) extracts sensor-specific features, (3) then
a BEV-guided multi-sensor fusion model takes queries from BEV embeddings and learns BEV features using a sensor-agnostic attention
module, (4) and the learned BEV representation is decoded for final perception tasks.

employ transformer architectures to better convert images
into BEV frames. Alternatively, Lift-Splat-Shoot [35] dis-
entangles feature learning and depth inference by learning
a depth distribution over pixels to convert camera image
features into BEV. Cross-view-transformer [48] leverages
transformer to learn BEV segmentation from the multi-view
images. Our method stands out from existing models for (1)
a more unified architecture that allows the use of more di-
verse sensor settings including camera, Lidar, and Radar,
and (2) a BEV-guided multi-sensor attention mechanism to
learn from the modalities in an adaptive manner.

3. Approach

BEVGuide considers general and flexible multi-sensor
fusion (i.e., multi-view cameras, Lidar, and Radar sensors)
for BEV scene perception (i.e., semantic segmentation and
velocity estimation). We provide an overview of our frame-
work in Figure 2. Aiming at working with a wide range of
sensor modalities, we first introduce our extendable feature
extraction module, including a sensor pool and a group of
sensor-specific encoders (Sec 3.1). We transform the sen-
sory features in different coordinates into a unified BEV
space using a BEV-guided multi-sensor attention module,
together with positional encoding (Sec 3.2). Finally, we use
the learned BEV feature embedding to conduct BEV scene
perception tasks (Sec 3.3).

3.1. Flexible Sensor Encoders

Different autonomous robots and vehicles have a diverse
collection of available sensors, and therefore, a robust learn-
ing architecture should be able to adapt to different modal-
ity configurations without too much effort. In this light, we

define a sensor pool, which consists of all available sen-
sor inputs for our model — For instance, images from the
cameras, point clouds from the Lidar, and points with ve-
locities from the Radar. For each type of the sensor input, a
sensor-specific encoder extracts its feature embedding. The
encoders can either be fixed or be trained and finetuned end-
to-end. The multiple trained embeddings will be used in the
subsequent multi-sensor attention module to extract BEV-
related information from BEV queries.

Camera. To demonstrate the generalization ability of our
multi-sensor attention module, we leverage a very common
and lightweight convolutional backbone to generate image
features from multi-view cameras. The feature embeddings
are in the image coordinate as opposed to the BEV space,
and we also have camera matrices ready for the subsequent
feature transformation.

Lidar. We apply pointpillars [20], a lightweight voxel-
based encoder for the Lidar point clouds. The resulting fea-
ture embeddings are flattened along the height dimension
perpendicular to the ground plane, and as such are repre-
sented in the BEV coordinates.

Radar. Unlike camera and Lidar sensors with plenty of
well-explored feature encoders for 3D tasks, Radar sensors
do not have a widely accepted architecture for feature ex-
traction. LiRaNet [39] and FUTR3D [10] adopt nearest
neighbor search and multi-layer perception (MLP) to ex-
tract features from the points, CenterFusion [32] applies
pointpillars architecture, and Simple-BEV [14] uses projec-
tion and convolution-based encoders. Motivated by these
methods, BEVGuide adopts a simple encoder. We first
project the Radar points onto the BEV grids, treating Radar
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Figure 3. Overview of our BEV-guided multi-sensor attention. Left: the module takes queries from BEV embeddings, and takes keys
and values from sensor-specific feature maps. We use parallel sensor-agnostic attention modules to extract features from multiple sensors.
Right: the detailed sensor-agnostic attention module. The BEV queries learn an attention map and extract the final BEV representation
from the sensory feature maps. PE and W-SUM stand for positional encoding and weighted summation, respectively. K, V and Q represent

keys, values, and queries, respectively.

velocity, intensity, and other indicators as feature channels,
and then use two convolutional layers to learn the Radar
representation in the BEV coordinates.

We have designed this extendable encoder module such that
it can easily accommodate to more or fewer sensors in the
sensor pool by adding or removing some sensor-specific en-
coders without impacting the subsequent multi-sensor at-
tention architecture.

3.2. BEV-Guided Multi-Sensor Attention

Sensor features exist in different coordinates. For in-
stance, images are in the 2D camera view, Lidar/Radar
points are often in the 3D view, with Radar data sometimes
being in the frequency-space view. One of the most criti-
cal challenges in sensor fusion is to transform different fea-
tures into the same view. We adopt BEV coordinates as the
unified representation space and use BEV queries to fetch
features from sensor-specific feature maps with an attention
mechanism. We provide an overview of the multi-sensor
attention module in Figure 3.

We partition the BEV map into H x W 2D patches,
each of which represents a certain area of region. For
each region, we use a learnable D-dimensional embedding
to encode its positional information, which we call a BEV
query. Given M sensor modalities, each regional embed-
ding queries the sensor-specific feature maps using M sep-
arate attention modules to acquire the feature embedding of
that region before aggregation. We make each BEV query
to attend all locations of a sensor feature map with the help
of multiple sensor-agnostic attention modules, which can
be arranged in sequence (cascade) or in parallel. With all
sensory features from the attention blocks sharing the same
BEV coordinates, we fuse them together with an element-
wise operator (i.e., addition, concatenation).

Sensor-Agnostic Attention Block. Despite the number
of different sensors as input into the model, all the atten-
tion modules share the same architecture which is internally

sensor-agnostic. An illustration of the sensor-agnostic at-
tention block is shown on the right of Figure 3.

Given a sensor feature embedding f € R"***4 and a
BEV map embedding b € RT*WXP the attention module
treats b = {¢1),¢® ...} as H x W independent queries,
f as keys and values (with the positional encoding), and
generates a BEV feature map ¢ of dimension (H, W, C)
from the feature map f. For each query ¢(*) in b, the model
obtains a weight map A(¥) for the feature embedding by cal-
culating the dot product similarity between the query and
keys. Then the BEV feature of the location represented by
the query ¢ is generated by a weighted sum from weight
map A\(Y) and values f. The module difference between dif-
ferent sensors lies only in the feature dimension and the
construction of positional encoding. Hence, as long as a
proper sensor-specific encoder is provided, BEVGuide can
take any sensory input without making major changes to the
BEV-guided sensor-agnostic attention module.

Geometry-Aware Positional Embedding. When calculat-
ing the weight map \(*) for the feature embedding, each
query scans over the entire feature map. It thus needs guid-
ance about where to focus more and where less. We use po-
sitional encoding to provide soft geometric correspondence
between BEV query positions and feature map positions.
Usually presented in different views, sensor coordinates and
BEV coordinates are connected by a transformation matrix
in the Special Euclidean Group in 3D (SE(3) transforma-
tions matrices). For image features, given the intrinsic ma-
trix K and extrinsic matrix M, we have the equation be-
tween image location 2™ and world (BEV) location ™),

2 ~ K M2, €Y

where ~ represents equality up to a scale ambiguity due
to the unknown depth. Then, we construct the image po-
sitional embedding as e™) = M~1K~1z(m) and BEV
query positional embedding directly as e™) = (") in this
way, we introduce the soft geometric correspondence by
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giving higher cosine similarity during the attention calcula-
tion. For Lidar and Radar sensors, their features are learned
on the BEV coordinate which is the same as the queries, so
we use the sine function positional encoding [41].

3.3. BEV Scene Perception Tasks.

After N sensor-agnostic modules to extract and fuse fea-
tures for all sensors, we get the final multi-sensor BEV
feature representation and use convolution-based decoder
heads to output our final objectives. In principle, our model
can be applied to and address all BEV perception-related
tasks. We use the BEV scene segmentation task to demon-
strate the overall perception capability of the surrounding
environment, and the BEV velocity flow estimation task to
demonstrate the advantage of instantaneous speed measure-
ment from the Radar sensor. We leave other tasks as the
future work. The whole BEVGuide pipeline is end-to-end
trainable. The training details are provided in Sec. 4.

4. Experiments

We evaluate BEVGuide with different sensor combina-
tions on vehicle and road BEV semantic segmentation, ve-
locity estimation, and 3D detection tasks on the large-scale
autonomous driving dataset nuScenes [4].

Dataset. The nuScenes [4] dataset is a large-scale out-
door dataset collected over a variety of weather and time-
of-day conditions. It has 40,157 annotated samples, each of
which consists of 6 camera images, 5 Radar point clouds of
different views covering approximately the full surround-
ing angles of the ego-vehicle, and a 360° 32-beam Lidar
scan. We use the official nuScenes training/validation split,
which contains 28,130 samples in the training set, and 6,019
samples in the validation set. We generate the ground-truth
BEV semantic and velocity labels of (200,200) resolution
from the map annotation, bounding boxes, and sensor cali-
bration matrices provided by the dataset.

Evaluation. We use a 100mx 100m region around the ego-
vehicle with 50cm resolution for the BEV map-view evalua-
tion [ 14,35,48]. For BEV map-view semantic segmentation
task, we use the Intersection-over-Union (IoU) score be-
tween the prediction and the ground-truth annotation on the
vehicle, drivable area, and lane classes as the performance
measure. For a fair comparison with prior approaches, we
conduct binary segmentation for each class separately and
select the highest IoU across different thresholds [25,48].
For the velocity estimation task, we formulate it as a
BEV velocity flow semantic task similar to the occupancy
flow [27], which we call BEV velocity flow estimation. To
generate the ground-truth annotations, we first compute the
velocity of the moving vehicles in each frame with the
bounding box and timestamp information. We compensate
the velocity of the ego-vehicle and project the 3D bounding

boxes onto the BEV map. For pixels inside a bounding box
of a moving object, we assign the velocity of the object to
the pixels, and do this for all pixels on the (200,200) BEV
map, which is an alternative to object-wise AVE [4,45]. We
call this metric pixel-wise Average Velocity Error (p-AVE)
to measure the velocity estimation performance, which is
computed as the [o velocity error averaged over all pixels
classified as objects (vehicles).

Model. We use EfficientNet [35,40, 48] pretrained on Im-
ageNet [12] as our image backbone encoder. We use point-
pillars as our Lidar backbone [20], and use the projection
based Radar backbone as described in Sec. 3. We down-
sample the camera images to 28x 60, 1/8 of the input size.
The Lidar and Radar feature embeddings are both interpo-
lated to 200200 size in the BEV frame. We use 4-head at-
tention blocks with embedding of 64 channels. The decoder
is composed of three 2 x bilinear-upsample layers, each fol-
lowed by a convolution layer to obtain the final output map
of the desired size.

We train our model with focal loss [23] for semantic seg-
mentation and ¢, loss for velocity estimation task. We op-
timize the model with AdamW [26], learning rate of 4e-3,
and weight decay of le-7. The model is trained on a 4-A100
machine with batch size of 4 for 40 epochs. Results for 3D
detection is shown in supplementary.

Baselines. We compare our method with the state-of-the-
art BEV scene semantic segmentation work. We also com-
pare with state-of-the-art BEV 3D object detection base-
lines, which are marked with ¥ in Table 1. For detec-
tion baselines, we approximate their segmentation results
by taking their pretrained models and project the estimated
bounding boxes onto the BEV coordinates to calculate the
IoU with the ground-truth BEV segmentation on the vehi-
cle class. This allows us to compare with a wide range of
BEV perception baselines. For Camera + Radar fusion,
we compare with CenterFusion [32], FUTR3D [10], and
Simple-BEV [14]. For Camera + Lidar fusion, we compare
with Pointpainting [42], Simple-BEV [14], X-Align [3],
and BEVFusion [25]. For the joint fusion of all three sen-
sors, although FUTR3D [10] is the only related work that
is designed to support all three sensors, it does not report
the results on 3-sensor fusion. Hence, we compare with a
simplified version of our model where we take the sensor-
specific feature maps, project them onto the BEV coordi-
nates, and directly fuse them by concatenation. We also in-
clude some state-of-the-art camera-only BEV segmentation
baselines in Table 1 for additional comparison, including
OFT [38], LSS [35], FIERY [17], and CVT [48]. More
results on different feature backbones (EfficientNet [40],
ResNet-101 [15], and Swin-Transformer [24]) can be found
in the supplementary.
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Table 1. BEVGuide achieves state-of-the-art BEV semantic segmentation performance on the nuScenes validation set for
all types of sensor combination. 71 indicates that higher value is better. ‘C, ‘R, ‘L’ represent Camera, Radar, and Lidar
modalities, respectively. *: In addition to the BEV segmentation work, we also compare with some of the best 3D detection

approaches. *: our re-implementation.

Method Modality ~ Vehicles T Drivable Area{ Lanet mloU 1
OFT [38] C 30.1 72.2 16.9 39.7
Lift-Splat [35] C 32.1 74.1 18.8 41.7
FIERY [17] C 35.8 - - -
CVT [48] C 36.0 74.3 29.4 46.6
CenterFusiont [32] C+R 46.5 - - -
FUTR3D? [10] C+R 46.6 - - -
Simple-BEV [14] C+R 55.7 - - -
BEVGuide (Ours) C+R 59.2 76.7 442 60.0
Pointpainting™ [42] C+L 60.2 75.9 41.9 59.3
Simple-BEV [14] C+L 60.8 - - -
BEVFusion [25] C+L - 85.5 53.7 -
X-Align [3] C+L - 86.8 58.2 -
BEVGuide (Ours) C+L 76.1 86.3 56.1 72.8
BEVGuide-Simple (Ours) C+R+L 76.8 81.5 45.1 67.8
BEVGuide (Ours) C+R+L 79.0 86.9 56.2 74.0

4.1. BEV Semantic Segmentation

We first experiment on the nuScenes BEV semantic seg-
mentation task, where BEVGuide achieves superior perfor-
mance for all sensor combinations involving camera, Lidar,
and Radar. Note that some of the existing models [14,42]
are trained for the 3D object detection task, so we trans-
form their results into BEV segmentation by projecting the
predicted 3D bounding boxes onto the BEV map frame.

Camera + Radar. Radar possesses the great advantage
over cameras in providing 3D information at an afford-
able expense, but it is also sparser than Lidar points. As
shown in Table 1, BEVGuide achieves state-of-the-art re-
sults in the camera + Radar fusion scenario. Compared with
Simple-BEV [14], BEVGuide achieves 3.5% improvement
in vehicle class segmentation. Since CenterFusion [32],
Simple-BEV [14], and FUTR3D [10] do not perform scene-
level segmentation, we also include some strong camera-
only BEV map segmentation baselines [17, 35, 38, 48].
BEVGuide compares favorably against CVT [48] with
13.4% higher mloU in scene semantic segmentation. As a
result, it demonstrates that despite the sparsity and inaccu-
rate 3D measurement of Radar, BEVGuide is able to exploit
the additional sensor and help cameras get a more thorough
understanding of the surrounding environment.

Camera + Lidar. This is the most commonly researched
sensor combination for multi-modality fusion in recent
work. We compare BEVGuide with strong BEV segmenta-
tion models [3, 14,25,42]. As shown in Table 1, BEVGuide
achieves leading results in the BEV segmentation task, with

Table 2. BEVGuide achieves leading BEV velocity flow estima-
tion performance. | indicates that lower value is better. ‘C,” ‘R,
‘L’ represent Camera, Radar, and Lidar modalities, respectively.

Method CLR p-AVE |
CVT [48] v 2.13
Pointpainting [42] v V 1.90
BEVGuide (Ours) v v 1.63
BEVGuide (Ours) v v V 0.81

the highest IoU in vehicle class and on-par map components
performance with BEVFusion [25] and X-Align [3]. No-
tice that we adopt a more light-weight architecture, includ-
ing an EfficientNet backbone for camera feature extraction
compared with the heavier Swin-Transformer in prior work.
Hence, our work achieves 24 Frame-per-second (FPS) in-
ference time on an NVIDIA Tesla V100 GPU, compared
with 9 FPS for BEVFusion. We argue that the efficiency
gain brings great advantages of BEVGuide in reality, and
in the meanwhile, using stronger backbones can further im-
prove our performance with a tradeoff in runtime.

Camera + Radar + Lidar.  Very little existing work
explores the joint learning of the three sensor types, de-
spite the existence of supported large public driving datasets
[2,4]. The only recent approach that supports all three
modalities is FUTR3D [10], yet the paper does not release
the results or the pretrained checkpoint of the three-sensor
joint model. We compare with an alternative of BEVGuide,
where we replace the BEV-guided multi-sensor attention
module with a simple projection- and concatenation-based
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Table 3. BEVGuide is robust under different weather and lighting conditions, because of the multi-sensor joint learning.
We measure the performance of vehicle class segmentation and velocity estimation error p-AVE. ‘C,” ‘R, and L represent
camera, Radar, and Lidar modalities, respectively. Abs Diff. stands for absolute difference.

ToU 1 p-AVE | IoU 1 p-AVE |
Modality Day Night Abs Diff. Day Night Abs Diff. Sunny Rainy Abs Diff. Sunny Rainy Abs Diff.
CVT [48] C 40.4 18.8 21,6 1.99 271 0.72 373 28.1 9.2 2.03  2.59 0.56
BEVGuide C+L 76.7 58.8 179 1.57 198 0.38 770 699 7.1 1.55 2.06 0.51
BEVGuide C+L+R 79.5 64.2 153 0.80 0.86 0.06 80.7 74.6 6.1 0.79 0.87 0.08

fusion module. As shown in Table 1, our full model
achieves leading performance for all classes in BEV seg-
mentation. The gain in vehicle perception is 2.9% higher
than our camera + Lidar fusion alternative, 19.8% higher
than our camera + Radar fusion, and 43.0% higher than the
camera-only backbone.

4.2. BEV Velocity Flow Estimation

In addition to the sparse and cost-effective nature, the
Radar sensor can measure the velocity of the objects using
the Doppler effect, which is a unique feature that camera
and Lidar sensors do not possess. To evaluate the usefulness
of the velocity measurement, we further conduct the experi-
ment of BEV velocity estimation. For each pixel in the BEV
velocity map, if it lies inside a moving object, then its ve-
locity is defined as the velocity of that object. In this way,
we can “project” the object-level velocity vector into the
BEV map. As shown in Table 2, significant improvement is
observed when additional Radar sensor measurements are
taken into account by BEVGuide. Our full model achieves
50.3% better average velocity error than the camera + Li-
dar alternative. This marks the importance of the Radar
sensor in providing instantaneous speed measurement and
validates that BEVGuide extracts meaningful features from
the Radar data despite them being sparse and noisy.

4.3. Ablation and Analysis

We further test BEVGuide over different weather and
lighting conditions and in the challenging sensor failure sce-
narios, and also analyze our proposed modules and various
other design choices.

Weather and Lighting Effects.  Another advantage of
multi-sensor joint learning is the increased robustness in
different environmental conditions. In Table 3, we investi-
gate the performance of BEVGuide and the baseline camera
model CVT [48] under different weather and lighting con-
ditions. The low-lighting condition poses great challenges
for camera-only perception models, because camera relies
purely on ambient light as opposed to Lidar and Radar sen-
sors that have active imaging mechanism. BEVGuide not
only performs best on both Day and Night scenarios, but

-@- Hot-plugging (direct inference) -@- Re-train

80 )
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Figure 4. BEVGuide performs great in the challenging sensor fail-
ure cases (hot-plugging) without re-training the model.

also successfully closes the gap between two different light-
ing conditions by leveraging multi-sensor complementary
information (Abs Diff decreases from 21.6 to 15.3 for IoU
and from 0.72 to 0.06 for p-AVE). Meanwhile, perception
in rainy weather is challenging for the Lidar sensor due to
significant sensor noises. BEVGuide also closes the gap
between sunny and rainy perception performance with the
help of camera and Radar sensors.

Robustness to Sensor Failures. One of the main motiva-
tions of this paper is to design a flexible architecture that can
adapt to sensor failures, glitches, or missing cases. Here,
we present a pilot study of sensor hot-plugging, where we
train BEVGuide with camera, Lidar, and Radar sensors, but
only input fewer types of sensors to the model for infer-
ence without re-training the model. To simulate the sensor
failure cases, we simply replace the original sensor-specific
feature map with all-zero tensors. As shown in Figure 4,
BEVGuide achieves decent results, compared with alterna-
tive models that are trained on the available type of sensors.
In all three simulated sensor failure settings, BEVGuide
drops no more than 5.1% in vehicle segmentation IoU. We
also notice that with a small amount of finetuning (less
than 5% of the original training time), BEVGuide reaches
back the best performance. This experiment demonstrates
the generalization capability and robustness of BEVGuide,
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Camera
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Figure 5. Qualitative results of BEVGuide on vehicle segmentation. Lidar helps the model better locate objects in general, and Radar
further improves the perception of distant objects. The bright (yellow) region means high probability of being vehicle and vice versa.

Table 4. Ablation study validates that our various design choices improve the final performance. Default settings are marked in gray .

(a) Object Distance (IoUt)

(b) Cross-Attention Strategy

(c) Aggregated Radar Frames

0-20m 20-35m 35-50m IoUT p-AVE| IoUT p-AVE|
C 52.7 33.1 19.2 None 76.8 1.01 1 frame (0s) 78.1 1.18
C+L 84.4 72.8 59.7 Series  78.2 0.84 4 frames (0.25s) 78.8 0.93
C+L+R 84.5 74.1 62.0 Parallel 79.0 0.81 7 frames (0.5s)  79.0 0.81
(d) Size of BEV Grids (e) Positional Encodings (PE)
IoUt p-AVE] IoUt p-AVE]

10 x 10 (10mx10m) 68.6 1.08 None (direct projection) 65.1 0.94

15 x 15 (7mx7m) 77.3 0.90 Above + Camera PE 76.8 1.01

25 x 25 (4mx4m) 79.0 0.81 Above + Lidar PE 71.5 1.03

50 x 50 (2mx2m) 79.8 0.90 Above + Radar PE 79.0 0.81

which are important for real-world driving challenges like
sensor hot-swapping and sensor failures.

Ablation Studies. In Table 4, we present ablation ex-
periments to validate our proposed modules and design
choices. For BEV semantic segmentation task, we only
report the vehicle class, and we train the model for fewer
epochs for faster convergence. In Table 4a, we observe that
BEVGuide brings larger improvements to the fewer- or uni-
sensor models for objects which are more distant from the
ego-vehicle. In Table 4b, we observe that the BEV-guided
sensor-agnostic attention module improves the simple fea-
ture map concatenation by 2.2% IoU in the segmentation
task and 0.2 p-AVE in the velocity estimation task. We
also find that the parallel arrangement of attention modules
is more favorable against the series (cascade) arrangement,
where we put camera, Lidar, and Radar attention modules
in a row and learn embeddings one by one. We argue that
this is because the parallel arrangement removes the human
prior on sensor ordering, such that the BEV queries will
learn the attention of all sensor feature maps equally. In
Table 4c, we also find that similar to that in the Lidar sen-
sor, aggregating multiple frames of Radar points also helps
improve the two BEV perception tasks, especially for the
velocity flow estimation task because it relies mostly on the
Radar sensor. We also notice in Table 4d that the results
of two tasks improve as the size of BEV grids increases.
However, because the multi-sensor attention module grows
quadratically with the grid size, we use the 25x25 grid size
by default. Table 4e demonstrates that the positional encod-

ing strategies we use in BEVGuide is useful in guiding the
attention module to adaptively learn the geometric corre-
spondence between different views to the BEV coordinates.

Qualitative Results. Figure 5 shows qualitative results on
BEV vehicle segmentation. We observe that the perception
quality of the camera model deteriorates quickly as the dis-
tance to the ego-vehicle increases. The Lidar sensor greatly
helps the camera-only model to locate objects on the BEV
plane with its accurate 3D points. And the Radar sensor fur-
ther improves the perception of distant objects (i.e., the ve-
hicle in the green box) with its longer working range. This
observation is consistent with what we find in Table 4a.

5. Conclusion

In this paper, we proposed BEVGuide — a unified sen-
sor fusion architecture — to estimate scene representation in
the BEV frame. To achieve this, we design modularized
sensor-specific encoders to extract features from a diverse
sensor pool, and propose a BEV-guided sensor-agnostic at-
tention module to learn the BEV scene representation from
the feature maps. Results on large-scale datasets with a wild
spectrum of sensor configurations demonstrated the effec-
tiveness of our BEVGuide, which marks a significant step
towards efficient and robust 3D scene perception.
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