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Abstract

This work proposes an end-to-end multi-camera 3D

multi-object tracking (MOT) framework. It emphasizes

spatio-temporal continuity and integrates both past and fu-

ture reasoning for tracked objects. Thus, we name it “Past-

and-Future reasoning for Tracking” (PF-Track). Specifi-

cally, our method adopts the “tracking by attention” frame-

work and represents tracked instances coherently over time

with object queries. To explicitly use historical cues, our

“Past Reasoning” module learns to refine the tracks and

enhance the object features by cross-attending to queries

from previous frames and other objects. The “Future Rea-

soning” module digests historical information and predicts

robust future trajectories. In the case of long-term occlu-

sions, our method maintains the object positions and en-

ables re-association by integrating motion predictions. On

the nuScenes dataset, our method improves AMOTA by a

large margin and remarkably reduces ID-Switches by 90%

compared to prior approaches, which is an order of mag-

nitude less. The code and models are made available at

https://github.com/TRI-ML/PF-Track.

1. Introduction

Reasoning about object trajectories in 3D is the cor-
nerstone of autonomous navigation. While many LiDAR-
based approaches exist [36, 58, 63], their applicability is
limited by the cost and reliability of the sensor. Detecting,
tracking, and forecasting object trajectories only with cam-
eras is hence a critical problem. Significant progress has
been achieved on these tasks separately, but they have been
historically primarily studied in isolation and combined into
a full-stack pipeline in an ad-hoc fashion.

In particular, 3D detection has attracted a lot of atten-
tion [20,24,25,28,53], but associating these detections over
time has been mostly done independently from localiza-
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Figure 1. We visualize the output of our model by projecting pre-
dicted 3D bounding boxes onto images. In the beginning, image-
based detection can be inaccurate (t = 0) due to depth ambiguity.
With “Past Reasoning,” the bounding box quality (t = t1) gradu-
ally improves by leveraging historical information. With “Future
Reasoning,” our PF-Track predicts the long-term motions of ob-
jects and maintains their states even under occlusions (t = t2) and
camera switches. This enables re-association without explicit re-
identification (t = T ), as the object ID does not switch. Our PF-
Track further combines past and future reasoning in a joint frame-
work to improve spatio-temporal coherence.

tion [19, 31, 43]. Recently, a few approaches to end-to-
end detection and tracking have been proposed, but they
operate on neighboring frames and fail to integrate longer-
term spatio-temporal cues [7, 12, 33, 65]. In the predic-
tion literature, on the other hand, it is common to assume
the availability of ground truth object trajectories and HD-
Maps [4,8,11,59]. A few attempts for a more realistic eval-
uation have been made [16, 21], focusing only on the pre-
diction performance.

In this paper, we argue that multi-object tracking can be
dramatically improved by jointly optimizing the detection-
tracking-prediction pipeline, especially in a camera-based
system. We provide an intuitive example from our real-
world experiment in Fig. 1. At first, the pedestrian is fully
visible, but a model with only single-frame information
makes a prediction with large deviation (frame t = 0 in
Fig. 1). After this, integrating the temporal information
from the past gradually corrects the error over time (frame
t = t1 in Fig. 1), by capitalizing on the notion of spatio-
temporal continuity. Moreover, as the pedestrian becomes
fully occluded (frame t = t2 in Fig. 1), we can still pre-
dict their location by using the aggregated past informa-
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tion to estimate a future trajectory. Finally, we can suc-
cessfully track the pedestrian on re-appearance even on a
different camera via long-term prediction, resulting in cor-
rect re-association (frame t = T in Fig. 1). The above ro-
bust spatio-temporal reasoning is enabled by seamless, bi-
directional integration of past and future information, which
starkly contrasts with the mainstream pipelines for vision-
based, multi-camera, 3D multi-object tracking (3D MOT).

To this end, we propose an end-to-end framework for
joint 3D object detection, tracking, and trajectory predic-
tion for the task of 3D MOT, as shown in Fig. 2, adopting
the “tracking by attention” [34,64,65] paradigm. Compared
to our closest baseline under the same paradigm [65], we are
different in explicit past and future reasoning: a 3D object
query consistently represents the object over time, propa-
gates the spatio-temporal information of the object across
frames, and generates the corresponding bounding boxes
and future trajectories. To exploit spatio-temporal cues, our
algorithm leverages simple attention operations to capture
object dynamics and interactions, which are then used for
track refinement and robust, long-term trajectory prediction.
Finally, we close the loop by integrating predicted trajecto-
ries back into the tracking module to replace missing detec-
tions (e.g., due to an occlusion). To highlight the capabil-
ity of joint past and future reasoning, our method is named
“Past-and-Future reasoning for Tracking” (PF-Track).

We provide a comprehensive evaluation of PF-Track on
nuScenes [4] and demonstrate that joint modeling of past
and future information provides clear benefits for object
tracking. In particular, PF-Track decreases ID-Switches
by over 90% compared to previous multi-camera 3D MOT
methods.

To summarize, our contributions are as follows.
1. We propose an end-to-end vision-only 3D MOT frame-

work that utilizes object-level spatio-temporal reasoning
for both past and future information.

2. Our framework improves the quality of tracks by cross-
attending to features from the “past.”

3. We propose a joint tracking and prediction pipeline,
whose constituent part is “Future Reasoning”, and
demonstrate that tracking can explicitly benefit from
long-term prediction into the “future.”

4. Our method establishes new state-of-the-art on large-
scale nuScenes dataset [4] with significant improvement
for both AMOTA and ID-Switch.

2. Related Work

LiDAR-based 3D MOT. The majority of prior works in
3D MOT leverage the LiDAR modality. Due to the re-
cent advances in LiDAR-based 3D detection [23, 61], es-
pecially the reliable range information, most state-of-the-
art 3D MOT algorithms adopt a “tracking-by-detection”

paradigm [56]. Given single frame detection outputs, dif-
ferent approaches have been proposed to improve data as-
sociation [36, 58, 63], motion propagation [9, 68], and life
cycling [36, 51]. However, most of these works assume the
localization accuracy of detection output. Therefore, data
association is usually conducted based on location, option-
ally combined with abstracted object attributes (e.g., 3D in-
tersection over untion (3D IoU) [56], 3D generalized in-
tersection over union (GIoU) [36], and L2 distance [61]).
This bias causes the proposed systems to be fragile when
migrated into the camera modality, where 3D detection suf-
fers from higher localization uncertainty. Although the lat-
est methods incorporate learning-based algorithms to im-
prove association with high-fidelity features such as low-
level features from point clouds [46] or intermediate fea-
tures from cameras [9], these approaches are built on top of
the LiDAR-based frameworks and share their dependence
on localization quality.

Camera-based 2D MOT. Camera-based multi-object
tracking in 2D is a classic task in computer vision. Domi-
nated by “tracking by detection” paradigm [3], 2D MOT has
seen more success in leveraging high-fidelity features [38,
49, 60, 66]. Earlier works like DeepSORT [60] leveraged
intermediate features from a deep net to measure appear-
ance similarity. FairMOT [66] employed an additional Re-
ID branch to learn discriminative features in a detection
network. TransMOT [38] proposed to incorporate spatio-
temporal features using a graph network.

Camera-based 3D MOT. Camera-based 3D MOT has
recently drawn more attention in autonomous driving ap-
plications thanks to advances in monocular depth estima-
tion [13, 15, 17] and image-based 3D object detection [20,
24, 25, 28, 29, 37, 41, 52, 53]. Early methods adapt the
2D MOT algorithms and lift the 2D tracking result using
monocular depth [50, 68]. More recent approaches employ
additional 3D information in data association [19, 31, 43].
[31] proposes to leverage 3D reconstruction, and [19] aug-
ments the 2D Re-ID features with 3D attributes (e.g. depth
and orientation). CC-3DT [12] merges the multi-view cam-
era features for identical objects to improve the cross-time
cross-view association. However, considering or correcting
the high uncertainty and bias in camera-based 3D detection
has been less explored. In this work, we leverage long-term
object reasoning, especially past reasoning, to improve the
quality of 3D bounding boxes.

Tracking by Attention. A rising trend in MOT is
the “tracking by attention” paradigm [34, 47, 64, 65], in-
spired by the novel transformer-based detection architecture
DETR [5]. MOTR [64] and Trackformer [34] extended the
query-based detection framework in DETR [5] by propa-
gating queries across different frames. In this paradigm,
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Figure 2. PF-Track Framework. PF-Track represents objects as queries, decodes image features, and predicts bounding boxes. To
improve spatio-temporal coherence, we incorporate novel “Past Reasoning” and “Future Reasoning” modules. (1) “Past Reasoning” refines
the features of queries and bounding boxes of tracks by exploiting the historical information in the query queue. (2) “Future Reasoning”
improves the propagation of queries across frames by estimating long-term future trajectories. Furthermore, if an object is lost due to low
confidence or occlusion (blue squares with ⇥), the “track extension” module can use a long-term trajectory to maintain its location. Finally,
PF-Track incorporates past and future reasoning jointly for 3D MOT. (Best viewed in color, details in Sec. 3.1.)

the data association is replaced by “detection” in the cur-
rent frame with a set of track queries. MUTR3D [65] pro-
poses the first framework applying this paradigm to the 3D
MOT domain. It uses a 3D track query to jointly model
object features across timestamps and multi-views. Despite
its improvement at the time, MUTR3D mostly follows the
designs of 2D MOT methods and does not include special
treatment to improve the localization quality of tracks and
better propagate the queries to future frames. Our pro-
posed algorithm also operates in the “tracking by atten-
tion” paradigm but extends the temporal horizon of exist-
ing methods. In particular, we demonstrate that joint past
and future reasoning can improve the tracking framework
by providing a strong spatio-temporal object representation.

Motion Prediction. Predicting agent trajectories is crit-
ical for self-driving [14, 22, 30, 35, 42, 45, 62]. The most
common setting is to predict from clean tracks annotated by
humans or auto-labeling [8, 11, 48, 59]. Numerous studies
focus on end-to-end prediction from perception [1,6,18,26,
32,39,40,44,54,55,57,67], especially how to improve mo-
tion prediction directly from perception. However, our ob-
jective is different: Could a motion prediction model benefit
3D MOT? In the 2D setting, this problem has received only
limited attention recently [10]. Our algorithm advances this
research into a more challenging multi-camera, 3D scenario
and does not require explicit re-identification.

3. Method: PF-Track

This section introduces our novel 3D multi-object track-
ing framework, shown in Fig. 2. It is centered around ex-
plicit past and future modeling of object trajectories in an
end-to-end framework. We first provide an overview of
the pipeline in Sec. 3.1, and then explain how to efficiently
leverage “Past” (Sec. 3.2) and “Future” (Sec. 3.3) informa-

tion. Finally, we summarize the losses used in our frame-
work in Sec. 3.4.

3.1. PF-Track Pipeline

Our proposed PF-Track iteratively uses a set of object
queries [34, 64, 65] to tackle multi-view, multi-object, 3D
tracking. At each timestamp t, given K images I

k
t from

surrounding cameras, the objective of 3D MOT is to gen-
erate object detections with consistent IDs across frames,
denoted by Bt = {b

i
t}, where i is an object ID.

3D Object Queries. The entry point in our framework is
to receive the object queries Qt = {q

i
t} propagated from

the previous frame t�1 (yellow and blue squares in Fig. 2),
which represent the tracked objects:

Qt  Prop(Qt�1). (1)

Such a query-based design naturally addresses the task of
tracking as the queries carry the identity of objects over
time. Apart from queries from the previous frame that rep-
resent tracked instances, we also add a fixed number of de-
tection queries (gray squares in Fig. 2) to discover new ob-
jects. In practice, we use 500 detection queries initialized
as learnable embeddings.

Each query q
i
t 2 Qt represents a unique 3D object with

a feature vector f
i
t and a 3D location c

i
t: q

i
t = {f

i
t, c

i
t}. Here

we highlight that the query position is an active participant
in decoding the bounding boxes of objects below.

Decoder. To predict 3D bounding boxes and update
queries with the latest image inputs, PF-Track adopts an
attention-based detection architecture [5, 69] to decode im-
age features Ft with object queries:

B
D
t ,Q

D
t  Decoder(Ft,Qt), (2)
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where B
D
t and Q

D
t are the detected 3D bounding boxes and

updated query features, respectively. In the decoding pro-
cess, the decoder lifts the 3D positions c

i
t of queries into

positional embeddings to concentrate on the image regions
relevant to the spatial locations of the objects. While the
design of PF-Track is agnostic to query-based detection al-
gorithms, we mainly adopt a current state-of-the-art 3D de-
tector, PETR [28], for experiments.

Past and Future Reasoning for Refinement and Propa-

gation. After decoding the queries and boxes from single-
frame image features, PF-Track conducts past and future
reasoning sequentially to (1) refine the current detections
B
D
t into B

R
t and queries Q

D
t into Q

R
t . (R is short for “re-

finement.”); (2) propagate the queries to the next timestamp
with the predicted motions.

“Past Reasoning” PR(·) is the component that aggre-
gates the information from previous frames to generate re-
fined queries Q

R
t and refined bounding boxes B

R
t :

Q
R
t ,B

R
t  � PR(QD

t ,B
D
t ,Qt�⌧h:t�1, ). (3)

In practice, the historical queries Qt�⌧h:t�1 come from a
query queue that maintains the queries from past ⌧h frames
(h for “history”).

After past reasoning, the “Future Reasoning” module
FR(·) improves the coherence of object positions from the
aspect of query propagation. It achieves this by forecasting
the motions up to ⌧f frames (f for “future”) and transforms
the positions of queries accordingly:

Qt+1,Mt:t+⌧f  � FR(QR
t ,Qt�⌧h:t�1). (4)

Specifically, future reasoning extracts the object dynam-
ics from historical query features to predict the trajectories
Mt:t+⌧f . The single-step movement Mt:t+1 is leveraged
to propagate the current queries Q

R
t to the next timestamp,

and long-term trajectories Mt+1:t+⌧f are used for address-
ing occlusions. The “Track Extension” in Fig. 2 refers to
occlusion reasoning through the predicted trajectories.

PF-Track iteratively executes the above procedures. The
refined 3D bounding boxes B

R
t are the output for 3D MOT.

3.2. Past Reasoning

To address the uncertainty of detection in vision-only 3D
localization, past reasoning focuses on two aspects: (1) en-
hancing the query features by attending to historical em-
beddings; (2) refining the tracks by adjusting the bounding
boxes using the improved query features.

Query Refinement: from Q
D
t to Q

R
t . We first apply at-

tention across the time and instance axes to explicitly update
the query features with historical information, as illustrated
in Fig. 3. “Cross-frame” attention encourages the interplay

Query Queue
t-2 t-1 t

CrossFrameAttn

Q	= K,	V	=

Q	= K,	V	=
Q	= K,	V	=

CrossObjectAttn

Q	= K,	V	=

Time	PE (", $, %) PE

Figure 3. Query Refinement. “Cross-frame” and “Cross-object”
attention modules process the query queue to capture the temporal
and inter-object relationship, respectively. They apply the posi-
tional encoding for time t and spatial locations (x, y, z), respec-
tively. (Best viewed in color.)

of features within a history window of ⌧h frames per object:

f
i
t  � CrossFrameAttn(Q = f

i
t,

K = f
i
t�⌧h:t,V = f

i
t�⌧h:t,

PE = Pos(t� ⌧h : t)),

(5)

where, Pos(t � ⌧h : t) converts the timestamps into posi-
tional embedding, and the history frames with empty fea-
tures are ignored for attention computation.

Then past reasoning applies “cross-object” attention to
incorporate the context information and encourage more
discriminative feature representation for each object. In par-
ticular, cross-object attention (Fig. 3, right) further updates
the query features via

f
1:Nt
t  � CrossObjectAttn(Q,K,V = f

1:Nt
t ,

PE = Pos(c1:Nt)),
(6)

where cross-object attention exchanges the features of
Nt objects guided by their 3D positional embedding
Pos(c1:Nt). The final output f

1:Nt
t becomes the refined fea-

ture vectors in queries QR
t .

As a brief remark, decoupling cross-frame and cross-
object attention exhibits two advantages. Firstly, separat-
ing attention across frames (cross-frame) and objects (cross-
object) enables us to design specialized positional encoding
of time and locations for each of them. Secondly, it de-
creases the computational complexity from O(N2

t ⌧
2
h) for

the global cross-attention to O(N2
t + Nt⌧2b ), which is sig-

nificantly less. Our design is also closely related to how
motion prediction methods [14, 35] model spatial-temporal
relationships.

Track Refinement: from B
D
t to B

R
t . With the queries re-

fined by historical information, past reasoning further uses
track refinement to improve the 3D bounding box quality.
As specified in Eqn. 7, we apply a multi-layer perceptron
(MLP) to predict the updated properties of objects, includ-
ing center residuals (�x,�y,�z), size (l, w, h), orienta-
tions (✓), velocities (v), and scores (s):

(�x,�y,�z, l, w, h, ✓,v, s)i = MLP(fit). (7)
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These are then used to adjust the original boxes as follows:

b
i
t = (�x+ xi

t,�y + yit,�z + zit, l, w, h, ✓,v, s), (8)

resulting in B
R
t , which is the final model output at frame t.

3.3. Future Reasoning

“Future Reasoning” concentrates on improving the prop-
agation of queries across frames to benefit spatio-temporal
coherence. It first learns a trajectory prediction, which is
used for moving queries across adjacent frames. Then fu-
ture reasoning exploits the predicted long-term trajectories
for maintaining the positions of occluded or noisy tracks.

Motion Prediction. Trajectory prediction supervises the
model’s ability to capture object movements and is fur-
ther beneficial for propagating query positions across times-
tamps. Similar to past reasoning, our future reasoning
model adopts a simple attention-based architecture. Firstly,
we generate the motion embeddings for ⌧f timestamps
mf

i
t:t+⌧f with a cross-frame attention:

mf
i
t:t+⌧f �CrossFrameAttn(

Q = mf
i
t:t+⌧f ,

K,V = f
i
t�⌧h:t, f

i
t�⌧h:t,

PE = Pos(t�⌧h : t+⌧f )),

(9)

where mf
i
t:t+⌧f are initialized as zeros, and historical fea-

tures f
i
t�⌧h:t serve as the source of information. Then the

movement at every timestamp is decoded by an MLP:

m
i
t:t+⌧f = MLP(mf

i
t:T+⌧f ), (10)

and the object trajectory in the 3D space can be recovered
by combining these frame-level outputs. Our architecture is
inspired by SceneTransformer [35], which also employs a
fully-attention-based architecture.

The predicted trajectories m
i
t:t+⌧f have better fidelity

compared to the velocities v predicted by the decoder in B
R
t

and B
D
t . Thus, we can propagate the positions of queries by

adding a single step of the trajectory:

c
i
t+1 = c

i
t + m

i
t:t+1. (11)

Track Extension. To handle occlusions or noisy obser-
vations, we propose to extend the tracks using the pre-
dicted trajectories. In particular, we replace missing or low-
confidence detections with the output of our motion predic-
tion module, which is initialized from confident observa-
tions. Previous 3D MOT approaches either terminate the
tracks or prolong them with heuristic motion models (e.g.

t t+1t-1t-2

Figure 4. Track extension. PF-Track updates object positions and
predicts future trajectories at every timestamp (top row). However,
if the object cannot be confidently localized (e.g. due to occlusion
or a noisy observation, bottom row at frames t � 1 and t), our
method will rely on the long-term trajectories predicted from con-
fident timestamps (frame t�2) to infer the positions of this object
and ignore the noisy observations (crossed-out circles).

Kalman filters) under such conditions. However, these so-
lutions both could lead to ID-Switches due to “early termi-
nation” [36] or false associations. In contrast, our learnable
motion prediction module and track extension strategy are
more accurate and robust.

We visualize the high-level intuition in Fig. 4 and pro-
vide more details in the Supplementary (Sec. B.2). In Fig. 4,
the long-term trajectories assist the propagation of the yel-
low instance (bottom row). When PF-Track encounters
noisy observation or occlusion cases, it relies on the mo-
tion predictions from previous confident frames to simulate
the movements of occluded objects. In extreme cases, our
model is able to handle occlusion length of ⌧f � 1 frames.
Our ablation study in Sec. 4.4 demonstrates that track ex-
tension can decrease ID-Switch by a large margin. To the
best of our knowledge, we are the first to incorporate long-

term prediction into a query-based framework and address

occlusion without explicit re-identification.

3.4. Loss Functions

Our final loss function is defined as follows:

L =�D
clsL

D
cls + �D

boxL
D
box+

�R
clsL

R
cls + �R

boxL
R
box + �fLf

(12)

where Lcls and L
R
cls are focal loss [27] with the coefficients

of �D
cls and �R

cls. They supervise the classification scores of
B
D
t and B

R
t , respectively. L

D
box and L

R
box are both L1 loss

applied to B
D
t and B

R
t for bounding box regression. Their

coefficients are �D
box and �R

box. The motion prediction loss
Lf is an L1 loss between the movements of predicted and
ground truth trajectories, weighted by �f . The ground truth
assignment couples a query with a consistent ground truth
instance over time to encourage ID consistency. We discuss
more details in the Supplementary (Sec. B.1).

4. Experiments

4.1. Datasets and Metrics

Datasets. We conduct experiments on the large-scale self-
driving dataset nuScenes [4]. It contains 1,000 video se-
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AMOTA " AMOTP # RECALL " MOTA " IDS #

Validation Split

DEFT [7] 0.201 N/A N/A 0.171 N/A
QD3DT [19] 0.242 1.518 39.9% 0.218 5646
MUTR3D [65] 0.294 1.498 42.7% 0.267 3822
TripletTrack [33] 0.285 1.485 N/A N/A N/A
CC-3DT⇤ [12] 0.429 1.257 53.4% 0.385 2219

PF-Track-S (Ours) 0.408 1.343 50.7% 0.376 166

PF-Track-F (Ours) 0.479 1.227 59.0% 0.435 181

Test Split

CenterTrack [68] 0.046 1.543 23.3% 0.043 3807
PermaTrack [50] 0.066 1.491 18.9% 0.060 3598
DEFT [7] 0.177 1.564 33.8% 0.156 6901
QD3DT [19] 0.217 1.550 37.5% 0.198 6856
MUTR3D [65] 0.270 1.494 41.1% 0.245 6018
TripletTrack [33] 0.268 1.504 40.0% 0.245 1144
CC-3DT⇤ [12] 0.410 1.274 53.8% 0.357 3334

PF-Track-F (Ours) 0.434 1.252 53.8% 0.378 249

Table 1. Comparison with state-of-the-art camera-based 3D MOT
algorithms on nuScenes [4]. “S” and “F” denotes our model
trained with small-resolution and full-resolution setting, respec-
tively (clarified in Sec. 4.2). Our approach has a significant ad-
vantage on both AMOTA and ID-Switch (full-resolution), where
ID-Switch is almost 90% less and an order of magnitude smaller

compared to other methods. (*) indicates concurrent works.

quences with multiple modalities, including RGB images
from 6 surrounding cameras, and point clouds from LiDAR
and Radar. In this paper, we use camera sensors only. Ev-
ery sequence spans roughly 20 seconds with keyframes an-
notated at 2Hz. The dataset provides 1.4M 3D bounding
boxes covering 10 types of common objects on the road.
For the tracking task, nuScenes selects a subset of 7 mobile
categories, such as cars, pedestrians, and motorcycles, and
excludes static objects like traffic cones.

Metrics. We strictly follow the official evaluation met-
rics for multi-object tracking tasks from nuScenes. It
modifies CLEAR MOT metrics [2] by considering multi-
ple recall thresholds. The main metric is “Average Multi-
Object Tracking Accuracy” (AMOTA) [56]. Meanwhile,
we also consider other analytical metrics such as “Identity
Switches” (IDS) and “Average Multi-Object Tracking Pre-
cision” (AMOTP).

4.2. Implementation Details

Due to space limits, we clarify two training settings here
and describe more implementation detail in the Supplemen-
tary (Sec. B). In our implementation, every training sample
contains three adjacent frames from different timestamps.
However, it requires extensive computation as every frame
contains six high-resolution images. Therefore, we adopt
two settings that downsample images to different resolu-
tions, motivated by PETR [28].
Full-resolution. On every time frame, we crop the raw res-
olution images, 1600⇥ 900 to 1600⇥ 640, leaving the sky

Index Past Future AMOTA" AMOTP# IDS#QR TR Pred Ext

1 0.368 1.421 507
2 3 0.378 1.414 453
3 3 3 0.380 1.408 400
4 3 0.374 1.402 469
5 3 3 0.391 1.360 155

6 3 3 3 3 0.408 1.343 166

Table 2. Ablation of PF-Track Modules. For past reasoning,
“QR” and “TR” denote “query refinement” and “track refinement”
in Sec. 3.2. For future reasoning, “Pred” and “Ext” denote “motion
prediction” and “track extension” in Sec. 3.3. Past and future rea-
soning improve 3D MOT independently, and PF-Track achieves
top results by combining them in an end-to-end framework.

area out. However, training a multi-frame tracker on this
resolution would not fit in a single A100 GPU. Thus, we
first pretrain the backbone with single-frame detection for
24 epochs, following some previous works [50]. Then we
fix the backbone and train the tracker on three-frame sam-
ples for another 24 epochs. We only use this setting for full
model results indicated with “-F” in Tab. 1.
Small-resolution. We apply a small-resolution setting for
all of our ablation analyses unless specified. In this setting,
we downsample the cropped images to a resolution of 800⇥
320. We first train a single-frame detection model for 12
epochs and then train the tracker on three-frame samples
for another 12 epochs.

4.3. State-of-the-art Comparison on nuScenes

In Tab. 1, we compare our model performance with
the other published camera-based 3D MOT algorithms on
nuScenes. Our approach establishes a new state-of-the-
art with significant improvements on every metric. Our
AMOTA improves more than 7% on the test set and 12%
on the validation set over the previous methods, includ-
ing a very strong concurrent work [12]. It is worth noting
that with more established tracks (higher recall), our ID-

Switch number is only 10% of previous methods eliminat-

ing more than 90% of the ID-switching errors. This result
indicates the strong association ability of our algorithm at-
tributed to leveraging both past and future reasoning. The
advantage of our model holds even when trained in the low-

resolution setting, whereas most of the previous works use
full-resolution.

4.4. Ablation Studies

Efficacy of Past and Future Reasoning. In Tab. 2, we an-
alyze the importance of individual modules for our model’s
performance using the validation set of nuScenes. In partic-
ular, we evaluate the following variants. (1) Baseline. Our
baseline is a “tracking by attention” model without explicit
spatio-temporal reasoning (row 1). It is a strong baseline
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Figure 5. Track extension assists MOT. By using the predicted
trajectories to maintain the states for low-confidence tracks, we
significantly improve AMOTA and decrease ID-Switch.

and outperforms prior work in Tab. 1. (2) Past Reason-

ing. We first analyze the effect of query refinement (row
2), which explicitly incorporates the historical queries via
cross-attention. As illustrated, it improves the overall track-
ing quality. We then exploit the enhanced feature to refine
the 3D bounding boxes of tracks (row 3). It decreases ID-
Switch and AMOTP, which indicates that track refinement
is useful for 3D MOT. (3) Future Reasoning. Next, we
demonstrate that learning to predict object motion and prop-
agate positions (row 4) is beneficial for modeling object dy-
namics and leads to improved tracking performance. In ad-
dition, using the long-term trajectory predictions to replace
low-confidence localizations (row 5) results in a 67% drop
in ID-Switches. (4) Joint Past and Future Reasoning. Fi-
nally, combining past and future reasoning into an end-to-
end framework shown in Fig. 2 (row 6) allows our model to
achieve top performance. This result confirms that past and
future reasoning are mutually beneficial for 3D MOT.

Length of Track Extension. In Fig. 5, we analyze the ef-
fect of track extension length on AMOTA and ID-Switches
using our best-performing full-resolution model on the val-
idation split of nuScenes. Compared to not using the exten-
sion strategy (0.0s), prolonging the tracks strongly improves
the performance up to 2 seconds. Then the metrics satu-
rate because only a few objects reappear after such a long
period. Please note that these improvements are achieved

without explicit re-identification.

Length of Prediction in Future Reasoning. Next, we an-
alyze how the prediction length changes the 3D MOT per-
formance on nuScenes validation split in Tab. 3. Concretely,
we train three different full-fledged models with the predic-
tion length of 2.0, 3.0, and 4.0 seconds. AMOTA and ID-
Switch indicate that 4.0s (8 frames) has a slight advantage
over 2.0s (4 frames) and 3.0s (6 frames). This result indi-
cates that learning trajectory forecasting with longer hori-
zon benefits our 3D MOT framework.

Comparison with “Tracking by Detection” Baselines.

In Tab. 4, we compare the performance between our end-
to-end framework and previous “tracking by detection” al-

Length Extention AMOTA " AMOTP # IDS #

2.0s 7 0.392 1.376 604
2.0s 3 0.402 1.342 217

3.0s 7 0.392 1.372 540
3.0s 3 0.402 1.340 208

4.0s 7 0.391 1.387 471
4.0s 3 0.408 1.343 166

Table 3. Length of motion prediction. “Extension” means us-
ing “track extension.” We train three models with the prediction
horizon of 2.0s, 3.0s, and 4.0s. According to AMOTA and IDS,
learning a longer prediction benefits tracking.

AMOTA " AMOTP # IDS #

AB3DMOT [56] 0.292 1.333 2419
AB3DMOT [56] 0.329 1.388 2677

CenterPoint [61] 0.233 1.270 2715
CenterPoint [61] 0.383 1.329 3082

SimpleTrack [36] 0.320 1.295 1606
SimpleTrack [36] 0.402 1.324 2053

PF-Track (Ours) 0.408 1.343 166

Table 4. Comparison with “tracking by detection.” We apply
strong baselines in 3D MOT to PETR [28]: AB3DMOT [56], Cen-
terPoint [61], and SimpleTrack [36]. “ ” means that we tune the
hyper-parameters of these methods to fit PETR detections, rather
than using their original configuration. Our end-to-end approach
has significant advantages.

Method ADE # (@4.0s) FDE # (@4.0s)

LSTM [8] 2.32 2.87
VectorNet [14] 2.01 2.48

Velocity 2.10 2.64
PF-Track (Ours) 1.88 2.38

Table 5. Motion prediction from features or abstract states.

We build a motion prediction benchmark from the true-positive
tracks of PF-Track on the nuScenes validation split, and then train
LSTM [8] and VectorNet [14] from the 3D positions of tracks. The
“Velocity” row is the result under the assumption of a constant
velocity motion model. The results indicate that predicting from
features provides richer information for better trajectory quality.

gorithms [36,56,61], which are strong baselines for LiDAR-
based 3D MOT. For these experiments, we also use the val-
idation split of nuScenes. For a fair comparison, we evalu-
ate these methods with PETR [28] detections and tune their
hyper-parameters for AMOTA (shown in the table with “ ,”
details are provided in the Supplementary, Sec. B.4). The
results clearly demonstrate the advantages of our end-to-
end approach compared to more traditional, modular frame-
works, with improvements being especially significant on
the ID-Switch metric.

Analysis on Prediction from Query Features. While our
paper focuses on multi-object tracking, we additionally pro-
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Front Cam Front Cam Front Cam

Front-right Cam Back-right Cam Back Cam

Figure 6. Qualitative results for 3D MOT. (1) In the top row, we provide image-level 3D MOT results. The figures highlight the
consistency across images, such as the vehicles crossing the front-left and front cameras. (2) In the middle and bottom rows, we provide
two dedicated examples for addressing large and small objects’ occlusions.

vide an analysis of prediction performance. We show that
predicting end-to-end from object features is advantageous
over predicting from low-level object states, such as center
positions. Specifically, we train two motion prediction base-
lines, VectorNet [14] and LSTM [8], using the true-positive
tracks from PF-Track following previous studies [32], and
report their results in the top rows of Tab. 5. As our method
does not use HD-Maps, for a fair comparison, we exclude
the parts of motion prediction algorithms that handle HD-
Maps in these experiments. In addition, we report another
baseline which uses the velocities predicted by our model’s
decoder for trajectory prediction, assuming a constant ve-
locity motion model (third row in Tab. 5). The evaluation
metrics are “average displacement error” (ADE) and “final
displacement error” (FDE), which are better with lower val-
ues. More details are in the Supplementary (Sec. B.5).

Tab. 5 compares the performance between the end-to-end
PF-Track and the baselines described above on the valida-
tion split of nuScenes. With lower ADE and FDE, PF-Track
has better trajectory quality. Our conclusions agree with
previous studies [16, 32, 55]. More specifically, LSTM is a
shallow model and unable to capture meaningful dynamics
from noisy tracks; the stronger VectorNet model can per-
form better than the other baselines, but it is still worse than
forecasting trajectories in an end-to-end framework, as pro-
posed in our method.

4.5. Qualitative Results

We visualize the 3D MOT results in Fig. 6 by projecting
3D bounding boxes onto images. The colors of bounding

boxes are randomly selected from a pool of seven colors
according to their IDs, so that each object has a consistent
color over time.

In the top row, we provide an overall visualization of
multi-camera 3D MOT, focusing on front-left and front
cameras. As clearly shown, PF-Track tracks objects coher-
ently, especially for the pedestrians and vehicles shown on
two separate cameras. In the bottom two rows of Fig. 6, we
illustrate two examples of addressing occlusions. For both
large (bus) and small (pedestrian) objects, our method prop-
agates their positions during the occluded frames and suc-
cessfully re-associates them on de-occlusion frames even
on a different camera. We highlight that this is achieved

without an explicit re-identification module.

5. Conclusions

This paper proposes a query-based end-to-end method
for multi-camera 3D MOT that enhances spatio-temporal
coherence. By past reasoning, our framework enhances the
query features and track quality with historical information.
By future reasoning, the predicted trajectories better propa-
gate the queries across adjacent frames and occluded long-
term periods. We also demonstrate that joint past and future
reasoning further strengthens the tracker’s ability. Extensive
evaluation of the large-scale nuScenes dataset demonstrates
that our method is effective in providing coherent tracks.
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