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Interactions of solitary waves in the Adlam-Allen model
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We study the interactions of two or more solitary waves in the Adlam-Allen model describing the evolution of a
(cold) plasma of positive and negative charges, in the presence of electric and transverse magnetic fields. In order
to show that the interactions feature an exponentially repulsive nature, we elaborate two distinct approaches:
(a) using energetic considerations and the Hamiltonian structure of the model, and (b) using the so-called Manton
method. We compare these findings with results of direct simulations, and we identify adjustments necessary
to achieve a quantitative match between them. Additional connections are made, such as with solitons of the
Korteweg—de Vries equation. New challenges are identified in connection to this model and its solitary waves.
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I. INTRODUCTION

The field of nonlinear plasma physics has been a rich
source of intriguing problems for the dynamics of solitary
waves in integrable and nearly integrable systems [1,2]. In
particular, the famous work of Zabusky and Kruskal [3],
which initiated the explosion of interest in solitons by showing
that the continuum limit of the Fermi-Pasta-Ulam-Tsingou
model [4,5] is the Korteweg—de Vries (KdV) equation [6], was
a motivating theme for the work of Washimi and Taniuti [7].
The latter one demonstrated that small-amplitude ion-acoustic
waves in plasmas are also governed by the KdV model; hence,
solitonic excitations may be expected in this setting too. How-
ever, as indicated in the historical review of early studies
of solitons [8], it was overlooked in the seminal works [3]
and [7], and in the extensive literature initiated by them (see,
e.g., Refs. [1,9,10]), that solitary waves were discovered in
plasmas well before Refs. [3] and [7]. Indeed, a fundamental
model put forth by Adlam and Allen in 1958 and 1960 [11,12]
constitutes, arguably, one of the earliest encounters of the
realm of plasma physics with the concept of solitary waves.

The analysis presented in Refs. [11] and [12] concerns
the spatiotemporal evolution of the distribution of electrons
and ions in a magnetized plasma. In this setting, the spatial
variation occurs only along the x direction; the electric field
acts in the (x,y) plane, being subject to the Faraday’s and
Gauss’ laws; and the (transverse) magnetic field acting along
the z direction obeys the Ampére’s law. The Newtonian spa-
tiotemporal dynamics of a plasma consisting of positive and
negative charges is affected by the forces created by the elec-
tric and magnetic fields. In this framework, starting from first
principles and utilizing well-established approximations, such
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as the quasineutrality concept, a reduced system for plasma
dynamics under the action of the electromagnetic field was
derived [11,12]. Ultimately, the resulting Adlam-Allen (AA)
system of partial differential equations (PDEs) involved only
two evolution equations for the (rescaled) magnetic field B
and the inverse density R, in the (1 4+ 1)-dimensional setting
[11,12] (see Ref. [13] for a recent recount of the topic).

The AA system is the starting point of the present work.
In particular, in a recent study [14] this nonlinear model of
plasma physics was revisited, and key properties of its solu-
tions, including solitary and periodic waves, were examined.
In addition to that, a connection of the AA model to the
KdV equation was established (see also Ref. [15]) through
a multiscale reduction, and collisions of solitary waves were
briefly addressed. In the present work, we aim to study inter-
actions of solitary waves in the AA system in detail. It is well
known that solitons in the KdV equation repel each other, and
exact multisoliton solutions can be obtained by means of the
inverse-scattering transform (IST) method [10,16,17]. Studies
of interactions of solitary waves in nonintegrable models,
relying upon the identification of their pairwise potential [18]
or force [19], have been the subject of numerous studies; see,
e.g., Ref. [20] for an early review of relevant results.

On the basis of the reduction of the AA model to the
KdV equation for weakly supersonic speeds of the solitary
waves [14], it is natural to expect repulsion between them
in the AA system as well. However, the AA model does
not have the integrable structure of the KdV, which provides
exact multisoliton solutions; therefore, one needs to resort to
asymptotic techniques, such as ones based on the Lagrangian
and/or Hamiltonian structure of the model [18], or other meth-
ods which directly address the system of PDEs and related
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conservation laws [19]. Here, we leverage both of these ap-
proaches and conclude that they lead to the same conclusions
for the repulsion of the solitary waves. We then go on to cor-
roborate analytical predictions by means of direct simulations.

The subsequent presentation is organized as follows. In
Sec. II, we present the physical and mathematical basis of
the above mentioned setup, including its Lagrangian and
Hamiltonian structure and solitary-wave solutions. In Sec. 111,
we use the asymptotic form of the solitary waves and the
Hamiltonian of the AA system to address the tail-tail inter-
action between solitary waves. In Sec. IV, we compare the
predictions to numerical simulations and identify adjustments
needed for a quantitative match between them. In Sec. V, we
summarize our findings and highlight some directions for fu-
ture studies. Finally, in Appendix A we provide an alternative
systematic proof of our results for the interaction between
solitary waves, by means of the so-called Manton method
[19,21]. Appendix B offers a perspective on a different, but
also important type of interaction, namely, that of a solitary
wave with a localized defect.

II. THE MODEL, ITS PROPERTIES,
AND SOLITARY WAVES

A. Introducing the AA model

The AA model introduced in Refs. [11,12] describes the
wave propagation in a cold magnetized collisionless electron-
ion plasma. In particular, it is assumed that the thermal motion
is negligible in comparison to velocities of the particles due to
the wave motion, and collisions are also neglected due to the
fact that the collision frequencies are small (i.e., the mean time
between collisions is much larger than the time that an ion or
electron spends in the wave). Electrons and ions in the plasma
are subject to the action of the magnetic field applied in the z
direction, and there is an induced electric field in the y direc-
tion, while the assumption of the quasineutrality is consonant
with the presence of a weak electric field in the x direction.
The latter is true as long as the electron plasma frequency is
much greater than the electron cyclotron frequency. Note that
such a setting may find applications both in fusion research
and in studies of astrophysical phenomena, such as the solar
wind [22].

Adlam and Allen [11,12] described how a large-amplitude
compressional magnetic-field pulse (or a train of pulses [14])
can exist and be sustained in the collisionless plasma. In
particular, adopting the Lagrangian coordinate system (mov-
ing with the pulse), they have found a nonlinear solution of
such a model involving ions, electrons, and the electric and
magnetic fields. This solution corresponds to accumulation of
the magnetic flux, which is sustained by the flow of the plasma
across it. The particles’ velocities must be large enough so
that the ion Larmor radius is larger than the effective width
D of the magnetic pulse and the electric field of the ions
is able to pull the electrons across D. Then, D turns out to
be ~c/wy, i.e., on the order of the collisionless skin depth
(with ¢ being the speed of light and w,, the plasma frequency),
and the strength of the magnetic pulse depends on the Alfvén
Mach number M,, which lies in the interval of 1 < M,y <2
(see, e.g., Refs. [23,24]).

The AA system can be expressed in the following dimen-
sionless form [14] (see also Ref. [15]):

Ry + (B =0, (1)

B,x — RB + RoBy = 0, (2)

where the real functions R(x, t) > 0 and B(x, t) represent, re-
spectively, the inverse plasma density and the magnetic field,
while constants Ry and By are the density and the magnetic
field strength in the undisturbed plasma, respectively (note
that if the plasma is assumed to be uniform and steady, then
B = By and R = Ry). These constants also set the boundary
conditions at infinity, i.e., R — Ry and B — By as |x| — o0;
notice that Ry and By are related by the following equation,

Ry =Bj/C?, 3)

where C is the characteristic speed of small-amplitude waves
propagating on top of the background solution R = Ry and
B = By. Details of the derivation and scaling of the AA system
can be found in Refs. [11,12,14,15].

As mentioned above, Adlam and Allen have found a class
of large-amplitude hydromagnetic solitary waves which prop-
agate in this setting. Their analytical treatment was inherently
nonlinear, due to the consideration of finite-amplitude waves
and self-localization effects. Therefore, this treatment differs
from that of linear waves commonly appearing in textbooks
on plasma waves (see, e.g., Refs. [23,24]), according to which
the (linear) small-amplitude waves are considered as weak
perturbations propagating on top of a background equilibrium.

In this work, we focus on the fully nonlinear version of
the AA model. The finite-amplitude solitary waves that we
consider here share their qualitative properties with small-
amplitude fast magnetoacoustic Alfvén modes, as obtained
from the linear theory, under the approximation of the cold
collisionless plasma [23,24]. In fact, these are compressional
electromagnetic waves, propagating perpendicularly to the
background magnetic field. The particle motion in the waves
is in the direction transverse to the background magnetic field,
with the electric and magnetic fields of the wave oriented
perpendicular and parallel to the background magnetic field,
respectively. The AA model describes the self-localization of
the waves along the x direction perpendicular to the back-
ground magnetic field (which lies along the z direction).
Furthermore, the Faraday’s law, in conjunction with the pres-
ence of the magnetic field, accounts for the y component of
the electric field, while the x component of the latter obeys
the Gauss’ law.

B. Solitary waves

It is convenient to eliminate the constant background from

Egs. (1) and (2) upon introducing the following definitions:
R(x,1) =Ro +u(x,1), B(x,1)=Bo+w(x, 1), (4)

where the fields # and w satisfy vanishing boundary condi-
tions at infinity, namely, u, w — 0 as |x| — oo. Then, the
respectively transformed Eqs. (1) and (2) read [14] as follows:

uy + (3w? + Bow) =0, 3)

XX

Wy, — Row — Bou — uw = 0. (6)
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As shown in Ref. [14] (see also Ref. [25] for an earlier
similar analysis), Egs. (5) and (6) possess an exact solitary-
wave solution of the following form:

ZB() v2 - C2
e K C + v cosh (—Bomé) ’ @
Cv
— 1 B 1 2
Usol = _F( 0Wsol + Ews‘)])’ (®)
£=x—ut. ©)

Here, v is the solitary-wave’s velocity, which takes values in
the interval of

C<v<?2C. (10)

The lower bound C of v is set by the necessary condition
for the existence of the homoclinic orbit that corresponds to
the exact solitary-wave solution (this homoclinic orbit occurs
in the phase plane of the dynamical system stemming from
Egs. (5) and (6) once traveling-wave solutions are sought).
In terms of the underlying physics, this condition means that
the nonlinear solitary waves propagate at speeds higher than
the speed of the linear-wave propagation in the system [14].
On the other hand, the upper bound 2C for v in Eq. (10)
follows from the requirement that the (inverse) density R must
be positive definite. While formal solutions exist past this
threshold, they have no physical meaning.

C. The Lagrangian and Hamiltonian structure

Here, we aim to reveal the Lagrangian and Hamiltonian
structure of the AA system. For this purpose, following
Ref. [26], it is relevant to define the potential U(x,?) of
field u(x, t):

u=aU/dx. (11)

The substitution of definition (11) in Egs. (5) and (6) and
subsequent integration of the former equation with respect to
x replaces Egs. (5) and (6) by the following equations:

Ui + (3w 4+ Bow) =0, (12)

Wy — Row — BoU, — wU, = 0, (13)

where we have set the constant of integration (which, in prin-
ciple, may be a function of time) equal to zero, as per the
assumption that U (x) and w(x) vanish as |x| — oo.

Next, it is straightforward to see that Egs. (12) and (13) can
be derived from the Lagrangian £ = f_’L:oo Ldx, with density

L =107+ tw! + JUw? + BoU,w + $Row®.  (14)
The respective Hamiltonian is H = | :r;o ‘Hdx, with density
H =107 — tw — 1Uw* — BoU,w — 1Rgw?.  (15)

To define an effective potential of the interaction of two
solitary waves moving with equal velocities v, it is necessary
to rewrite Egs. (12) and (13), together with the Lagrangian and
Hamiltonian densities (14) and (15), in the reference frame

moving with velocity v, i.e., in terms of the 7 =¢ and & =
Xx — vt variables, as

Ure = 20Ug; + v*Uge + (3w° + Bow), =0, (16)
Wee — R()w — B()Ug — ng = O, (17)
and
1 5 v 2 15
‘Cmoving = EUT — UUEU.,; =+ ?UE + zwé
1 2 | 2
+ BoUsw + ER()U) + z fw”, (18)
L, v? , 15
Hmoving = EUI - TUE - ELUE — B()Ugw
L Row? — Lo (19)
— —Row* — =Usw".
270 2%

In what follows, we introduce the effective mass M of the
solitary wave. In that connection, we note that, in standard
models, the solitary wave’s kinetic energy, which is produced
by the integral, with respect to &, of the kinetic part of the
Lagrangian density ( fj;o d§ ), is [20]

Exin = (1/2)Mv°. (20)

III. THE INTERACTION OF FAR-SEPARATED
SOLITARY WAVES

As is customary in studies of generic settings [18,19,21], a
pair of interacting solitary waves separated by a large distance
L is approximated by juxtaposing two identical solitary-wave
solutions given by Eqgs. (8) and (7). They interact via their
exponentially decaying tails. Assuming that the center of the
solitary wave is fixed at £ = 0, and taking into account that
sech(x) & 2¢™ atx — 00, the expressions for the tails which
are derived by Egs. (7) and (8) are

4B, B
Wsol ~ —0(U2 - CZ)GXP < - %V v? — C2|E|>, (21)

Cv
Bo 4B} ,
usol“’_ﬁwsolz_m(v —-C7)

xexp(— f—g\/vz—C2|$|>. (22)

In turn, the use of Eq. (11) produces the respective asymptotic
expression for the tail of the field U:

4B

Usol ~ v_() U2 - CZSgn(S)

2

B
X exp ( _ —g\/wﬂ _ c2|g|) tegn, (23)
v

where cy are constant values at & = £oo. The average
value of the asymptotic constants, (1/2)(c4 + c_), is arbi-
trary, while the difference is uniquely determined by the
solution as

+00
Cy —C-= / ttso (€ )d§ . 24

oo

Next, we consider the pair of solitary waves with centers
placed at positions &y = +L/2, and the constant value of U
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between them [determined by the combination of the corre-
sponding coefficients cy in Eq. (23)] set equal to zero, so
as to make the configuration symmetric. Then, an effective
potential of the interaction between the far-separated solitary
waves, W (L), can be derived by means of the general proce-
dure elaborated in Ref. [18]. This is based on the substitution
of the juxtaposition of the solitary waves in the expression for
H and handling terms with spatial derivatives by means of
the integration by parts, so that the actual calculation of the
integrals is not necessary, with all the contributions from the
integrals being produced by the “surface terms” in the formula
for the integration by parts. The result of this procedure is

328} B
W(L) = 530 = C) exp (—% V2 — C2L), (25)

with the positive sign of W implying repulsion between the
solitary waves. It is relevant to mention that, when calculating
the effective potential (25), the result is produced by the third
term in the Hamiltonian density (19), while the contributions
from the second and fourth ones exactly cancel each other.
It should be noted here that the connection of the AA system
with to the KdV equation at speeds close to C [14] and the
pairwise repulsion of KdV solitons [20] are in line with the
above analysis.

The repulsion, described above, will lead to a splitting of
the initially equal velocities of the interacting solitary waves,

v — vE Av, (26)

provided that Av represents a small perturbative effect. To
obtain Av from the energy balance, it is necessary to know the
exact expression for the energy of individual solitary waves.
The substitution of the exact solitary-wave solution given
by Egs. (8) and (7) in the expression for the Hamiltonian,
determined by its density (15), leads to a very cumbersome
expression. This expression becomes simpler in the limit case
when the velocity is taken close to the solitary wave’s exis-
tence cutoff,

v—CKC. 27)

Then, from Eqgs. (7)-(9) we obtain

2B32 Bov/v—C
log ~ — 20y — C)sech2<L§>, (28)
c J2C
2B Bo/v —C
Wey 22y — C)sech2<L§>, (29)
C 2032
8+/2B} 32
Hig ~ e b0 — 2, (30)

The consideration of this case is relevant because the exponen-
tial smallness in Eq. (25) is less acute for small (v — C). Note,
in particular, that the sech? limit corresponds to the soliton in
the KdV limit of the AA system [14].

Next, the interaction-induced change of the velocities, Av,
is determined by equating the interaction energy (25) to the
difference between the energy of the two-solitary-wave con-
figuration and the sum of individual energies of the two

solitary waves, with the velocities split as per Eq. (26):

82H§01 2 2\/53(3) 2
A(Huosol.) & 502 (Av) Nm(Av)» (€29)

where condition (27) is used to simplify the expression, as it
follows from Eq. (30). Finally, equation A(Hwoso.) = W (L)
yields the result, which is valid under condition (27), provided
that the result also satisfies the constraint Av < v — C (i.e., it
is a small perturbative effect):

(32)

8 Bovv—C
Av~ — (v — C)3/2 exp (—LL)
JC

ﬁc3 /2

Note that, for fixed large L and fixed C and By, the
interaction-induced velocity change Awv, as given by Eq. (32)
and considered as a function of (v — C), attains a maximum
(the strongest perturbative effect of the interaction) at

(v = O)lmax = 18C°/(BoL)*, (33)
the maximum value itself being

6ﬁ)3 Ct 30 C
(BoL)? (BoL)*

(34)

e

(AV)pax = <

The above calculation, albeit approximate (especially since
the velocity difference will keep changing as separation L
changes), suggests an important qualitative observation that is
corroborated below by numerical computations. In particular,
if we start from a symmetric configuration, it will progres-
sively become asymmetric, leading to a pattern with a taller
and faster solitary wave on the right and a shorter, slower
solitary wave on the left. Below it is confirmed that, indeed,
such a configuration in terms of heights and speeds is formed
in the case of multi-solitary-wave states.

In a quantitative form, the relative motion of interacting
solitary waves obeys the dynamical equation

d’L 1 aw

dtz B Mreduced dL.

(35)

Here, the reduced mass M equcea Of the solitary-wave pair is
considered to be

M equced = (1/2)M, (36)

where we have adopted the particlelike nature of the solitary
wave, together with the standard result of the classical me-
chanics concerning the interaction of two point masses; thus,
in Eq. (36), M represents the abovementioned mass of a single
solitary wave [see Eq. (20)]. Actually, the calculation of M is
a central point in our analysis, as concerns the comparison
with numerical results (see the next section and Appendix B).
We also note that the above approach to the prediction of
the evolution of the separation between the solitary waves
is based on the energetics of the multi-solitary-wave ansatz.
A systematic analysis, including all the associated technical
details at the level of the PDE system and conservation laws,
generalizing another approach, introduced by Manton [19], is
presented in Appendix A. We demonstrate that it leads to the
same result as Eq. (35), thus confirming the above findings.
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FIG. 1. Results of simulations of the interaction of two solitary waves, as they are observed in the co-traveling reference frame for
initial velocities vy ,(t = 0) = 1.1 and positions x; ,(f = 0) = £10. The two solitary waves, which initially have equal velocities, end up

with different ones and, consequently, unequal heights.

IV. NUMERICAL RESULTS
A. The simulations

To perform a numerical study of the dynamics of interact-
ing solitary waves in the AA model, we first consider a pair of
solitary waves with equal velocities,

vi2( =0)=1.1, 37

which are initially placed at x; »(r = 0) = %10, i.e., the initial
distance between themis L(0) = x;(t = 0) — x,(t = 0) = 20.
In all simulations, we set By = Ry = 1 (for this choice, the
dimensionless form of the AA model considered here coin-
cides with the one adopted in Ref. [15]), which means C = 1
[see Egs. (1)—(3)]. To apply the numerical method, the spatial
variable was discretized by finite differences, and forward
marching in time was performed. The finite-difference scheme
in space was implemented taking into regard the coupling of a
given site with second neighbors, in order to produce a stable
numerical algorithm. The time integration has been performed
with the Runge-Kutta method of the 4th—5th order. To check
the precision of the results, we used, as a diagnostic, the
value of the total energy of the system calculated according to
Eq. (15). Relative variance of the energy in all the simulations
was < 107°.

Since the physically relevant interval of the solitary waves’
velocities is, according to Eq. (10), 1 < v < 2, the selected
value (37) is close to the lower edge of the interval. As can
be inferred from Egs. (8) and (7), the solitary waves in this
velocity region are wide, which implies that their interaction
is stronger; as a result, shorter integration times are required
so that the interaction manifest itself.

The dynamical behavior of the two interacting solitary
waves, in the co-traveling reference frame, is shown in Fig. 1.
The symmetric configuration is quickly converted into one
in which one solitary wave becomes taller (and consequently
quicker) than the other. This is expected, as predicted by the
analysis of the previous section, since the repelling interac-
tion of the solitary waves causes a change in their velocities,
Av; > 0 and —Av, < 0, so that the velocities resulting from
the interaction are

v =01t =0)+ Avy > vy = vt =0) — Av,. (38)

The situation is reversed when we consider initial velocities
with the opposite sign; in this case, the resulting configuration
is a mirror image of Fig. 1 (not shown here).

Similar phenomenology is observed in the simulations if
we consider more than two solitary waves placed symmetri-
cally, with equal initial velocities. In particular, in Fig. 2 we
display a four-solitary-wave configuration. In this case, the
result shows a graded configuration of increasingly taller and
faster solitary waves, which keep separating from each other
in the course of the subsequent evolution.

In addition, we have considered the evolution of solitary-
wave sets with higher initial velocities (equal for all the pulses
in the set, and with the same initial distance between them),
taken in the range of 1.25 < v(r = 0) < 1.9. We observed the
same phenomenology but, as the width of the waves becomes
smaller with the increase of v, the interaction becomes, ac-
cordingly, weaker and the corresponding dynamical response
is slower than in the above case of v(r = 0) = 1.1.

B. Comparison of the analytical estimate
with numerical simulations

From the predicted form of the interaction potential (25)
and expression (36) for the reduced mass, we derive the equa-
tion of motion for the distance between the two solitary waves:

d*L 2 d 2A(v)
—=———W(W) = —AL), 39
=W exp(—AL),  (39)
where
_ 328§ 243 _ B
A(U):W(U —C), )\:E U2—C2. (40)

A subtle issue in this connection is the identification of the

mass M of the solitary wave. Considering either the kinetic
energy term in the Hamiltonian (for a stationary solitary wave
in the co-traveling reference frame), and setting it equal to
(1/2)Mv?, or the momentum

+oo
P= —f U,U,dx, (G3))
and setting it equal to Mv, leads to the conclusion that
+00
M:/ uldx. (42)
—00

In Appendix B we further explore this definition of the solitary
wave’s mass, upon considering the dynamical response of
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FIG. 2. The result of the simulation of the set of four interacting solitary waves in the co-traveling reference frame. The initial velocities
are v 23.4(0) = 1.1, and their initial positions are x; 4(0) = £30 and x, 3(0) = £10. The solitary waves end up with different velocities and,

consequently, different heights (cf. Fig. 1).

the solitary wave to a perturbation represented by a potential
term added to the system, which is also corroborated by direct
numerical simulations.

Here it should be pointed out that the above expression
for M is not an intuitively evident one, as it refers solely to
the mass associated with the # component of the AA solitary
wave, while the w component does not contribute to the
calculation of the mass, because Eq. (6) for this component
does not contain time derivatives. In light of this fact, here
we proceed in the following way: by numerically solving
the ordinary differential equation (ODE) (39), we obtain the
distance L between the two solitary waves as a function of
time. This prediction is compared to the full numerical result,
produced by simulations of the AA system, i.e., Egs. (5) and
(6). Assuming that the tail-tail interaction force, produced by
both the energetic considerations and the Manton method (see
Appendix A), adequately characterizes the exponential nature
of the pairwise repulsion between the solitary waves, we then
use the above semianalytical prediction and its comparison to
the full numerical results to “adjust” the proper expression for
the mass. This approach reveals a relevant correction to the
effective mass of the solitary wave.

As said above, we aim, first, to numerically integrate
Egs. (5) and (6) and thus obtain the distance between the inter-
acting solitary waves as a function of time. For this purpose,
we use velocities v > 1.5, to make the waves more well-
separated and thus improve the accuracy of the comparison
of the full numerical results with predictions of the ODE (39),
where the constants and the “naively defined” solitary wave’s
mass are taken as per Egs. (40) and (42), respectively. The
results for v = 1.6 are shown in Fig. 3, where the red solid
and dashed blue lines show, respectively, the distance between
the solitary waves, as obtained from the direct numerical in-
tegration of Eqgs. (5) and (6) and predicted by the solution of
the ODE (39). In this case, the discrepancy between the PDE
and ODE results is obvious. Similar results are produced by
the comparison at other values of the parameters.

Following the path outlined above, we attribute the discrep-
ancy to the uncertainty regarding the solitary wave’s mass. To
fix the issue, we “phenomenologically” incorporate a fitting
factor «(v) in Eq. (39), rewriting it as

d’L A
Skt *(v) exp(—AL), with M, ., = . (43)
d T Mreduced 20{ (U )

Then, we determine the value of «(v) required for the PDE-
and ODE-produced curves to match. The results are shown,
for v = 1.6 and other values of the initial velocities, in Fig. 4
and Table I. In particular, for v = 1.6 the two curves are made
virtually identical by dint of the adjustment factor « = 0.3045
in Eq. (43). This observation and similar findings for other
initial velocities confirm that the above analysis correctly
captures the exponential decay of the inter-solitary-wave re-
pulsive force, yet the straightforward theory misses the right
prefactor in the respective equation of motion (39). In this
connection, we stress that, for our analysis to be relevant for
the comparison to the full simulations, we need the solitary
waves to be well separated, in order to apply the assumption
of the tail-to-tail interaction, but not too far from each other
either, lest the integration time, needed to make the interaction
effect tangible, be extremely large. In the present setting, we
considered the initial separation of L(0) = 20, and we did
not observe any significant difference in the accuracy of the
obtained results for larger separations.

To summarize these results, we sought a function ¢ = «(v)
which may fit the data from Table I. As it is seen in the

20.020
— PDE
----- ODE

20.015

L 20.010

20.005}

20.000

100
t

FIG. 3. The comparison of the results for the distance L be-
tween the two interacting solitary waves in the co-traveling reference
frame, for initial velocities v, 2(0) = 1.6. The (red) solid and (blue)
dashed lines present the results produced by direct simulations of
the underlying PDEs (5) and (6) and by the numerical solution of
the effective ODE (39) with the constants taken as per Eqs. (40)
and (42).
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20.002
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100

(b)

0.40

0.35

0.30

0.25

18

1.5 1.9

FIG. 4. Panel (a) shows the comparison between the PDE results [solid (red) curve], the same as in Fig. 3), for the distance L(z) between
the interacting solitary waves in the co-traveling reference frame, and the ODE counterpart [dashed (blue) curve], produced by Eq. (43) using
the fitting prefactor @ = 0.3045, in the case of v;»(0) = 1.6. It is seen that this value of 2z makes the two curves practically identical. Panel
(b) shows, by means of the chain of dots, the fitting half-factor « for different values of the initial speed, as per the data presented in Table 1.
The continuous curve plots an interpolating function (44), which approximates the values of «(v).

Fig. 4(b), a reasonable choice is

a(v) = L.05(* — C*)* /v, (44)
This function is built as a combination of powers of (v> — C?)
and v, as these factors naturally appear in the calculation of
the interaction force for the solitary waves. In Appendix B,
we evaluate the relevance of considering the variation of the
solitary wave’s mass in the context of the solitary-wave—defect
interaction.

V. CONCLUSIONS

In the present work, we have revisited the Adlam-Allen
(AA) model, governing the propagation of solitary waves in
cold magnetized collisionless plasmas, in the presence of the
electric field (in addition to a magnetic field). The AA model
is one of the fundamental nonlinear models of plasma physics
[8,11-13] that has made the prediction of solitary waves pos-
sible, well before the (re)discovery of the KAV equation and
its celebrated solitons in the framework of the Fermi-Pasta-
Ulam-Tsingou model. Indeed, the AA system is a source of
localized and periodic waves, not only in the context of the
transverse magnetic field applied to the plasmas but also more
recently for a longitudinal field [27,28].

Here, we have studied the interaction between solitary
waves, a theme of substantial interest in the theory of solitary
waves and solitons [18-20]. We provide the energy analysis,
based on the Hamiltonian structure of the model, and com-
plement it with a detailed derivation of the same result by
means of an alternative (Manton’s) method (see Appendix A).
The resulting Newtonian dynamics for the separation clearly
reveals the repulsive character of the interaction, as well as
the exponential dependence of the force on the separation.

This is natural to expect near the lower edge of the range
(10) of accessible solitary wave speeds, where the model is
close to the KdV limit (as shown earlier in Refs. [14,15])
and, thus, inherits the repulsive interaction between solitons
which is well known in the framework of the KdV equation.
Nevertheless, an essential element of uncertainty remains in
the form of an accurate expression for the effective mass of
the two-component solitary wave. We have side-stepped this
uncertainty by finding a suitable velocity-dependent fitting
factor, which takes values, roughly, between 2« = 0.5 and
0.8, which depends on the wave’s speed. This prefactor se-
cures the full match between the ODE (semianalytical) and
PDE (fully numerical) results for the separation between the
interacting solitary waves.

While our analysis provides a definitive explanation for the
exponentially repulsive nature of the interactions, a remaining
intriguing issue concerns the speed-dependent prefactor in
the respective effective equation of motion for the separation
between the interacting solitons. This amounts to an effective
renormalization of the solitary wave’s dynamic mass. The
same issue also concerns the dynamics of the soliton gas
in the AA system. A prototypical example of the latter was
demonstrated in Fig. 2 for a configuration consisting of four
interacting solitary waves, initially having equal velocities,
which end up with different velocities and, consequently,
different heights. This issue may also be relevant for other
effectively nonlocal systems, in which one equation does
not contain time derivatives (e.g., a Poisson-like equation).
Systems of the latter type arise, in particular, in models of
thermal media, plasmas, nematic liquid crystals, and Bose-
Einstein condensates (see recent examples in Refs. [29,30]
and references therein). Such systems, as well as higher-
dimensional plasma models, are natural platforms for future

TABLE I. Values of the fitting half-factor « in Eq. (43) which provide the best match of L(z) to the results of PDE simulations at different

values of v.
v 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9
o 0.2653 0.2855 0.3045 0.3227 0.34 0.3565 0.3724 0.3874 0.4019
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work. Progress along these directions will be reported else-
where.
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APPENDIX A: DERIVATION OF THE POTENTIAL
OF THE SOLITARY WAVES’ INTERACTION
VIA MANTON’S APPROACH

Here, we aim to derive the interaction potential (25)
by means of another approach, namely, upon following the
Manton method [19].

J

o0

o0

+00 1

o0

+00
-V = _/ (U‘L"L'US + UtUé‘L')dS

2

Introducing the traveling coordinate &, as per Eq. (9), in
Egs. (12) and (13) we obtain

Upr — 20Us; + v*Use + Bowe + (w?)s =0, (Al

Wee — R()w — B()Ug — Ugw =0. (A2)

In the context of Klein-Gordon equations, the Manton method
explores the evolution of momentum P (as its time deriva-
tive is associated with the force, which here stems solely
from the inter-solitary-wave interaction) [19]. The expres-
sion for the field momentum in the co-moving frame is
given by

+00
P = / U, UedE. (A3)

Differentiating the above expression momentum in time, we
obtain

+00 1
— / |:<2UU§T — Ungg — Bowg — E(w2)5>Ug + UrUgfi|d%'

1
(V2),~0(v2), + EUZ(Ug)st. (Ad)

In line with the original approach of Ref. [19], we proceed by considering two well-separated solitary waves, one placed at
x = 0 and the other one at x = L > 0. We also set two points, x = a and x = b, witha — —oo and 0 K b < L. Next, following
Ref. [19], we neglect the two middle terms in the above equation, as we consider quasistationary solutions, and by using (12)

we get
dp b v?
E = —/a |:(R0w — wgg)U)g — ?(uz)g ]dé‘_
1 1 v 1°
_ |:§w§ - §R0w2+7u2} | (AS)

Now, we consider the superposition ansatz for the far-separated solitary waves, w = w; + w,. We use the fact that the decay of
the tails of the solitary waves is exponential. Thus, the contributions at x = a vanish, while those at x = b are of the following

forms:

wy~e ™ and wy ~ D, (A6)

Then, the contributions in Eq. (A5), which are mixed (and consequently account for the interaction), are at point x = b:

dp
dt
The asymptotic forms (21) and (22) yield
4B
wy &~ (0? = CHe
Cv

Wy ~ 4&(”2 — Cz)e”g_”
Cv

and

=

- = W Wy —RoW1WQ+U2M1M2. (A7)

4Bj _
Wig =~ _Czlj)z (v2 _ C2)3/2 e )LS’
: (A8)
Woe ~ szj)z (U2 _ C2)3/2 eA(E—L)’
2 _ Cz)ef)»f ,
2 C2 )ek(g—L)’ (Ag)
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with A = (By/Cv)y/vZ — C2. Thus, by also using Ry =
B}/C?, Eq. (A7) reads
dP 16B; 243 —AL 6B, » 272 —AL
Pl 4( —C%)e Ciy 2( —C)%e
16B3 _
+ o (v e (A10)
or
dpP 32B; 243 —AL
—_— = -C . All
dt C4v4( ye (AlD)
Then, according to Eq. (35), we get
d’L 1 328) , 243 —AL
_—=— —C)e " . Al2
d‘[2 Mreduced C4U4( ) ¢ ( )
For the potential, we get
W(L) = ( — C?) 27, (A13)

C33

These expressions recover the results that were obtained in
the main text via the energetic arguments [Eq. (25)] and thus
corroborate the repulsive exponentially decaying interaction
between the solitary waves, mediated by their tails.

APPENDIX B: INTERACTION OF THE SOLITARY
WAVE WITH A PARAMETRIC FORCE

Our aim in the present Appendix is to study the interaction
between a solitary wave of the system with a defect using
Manton’s approach and to assess the relevance of mass vari-
ation during such an interaction. To do so, we introduce a
perturbation term F' in Eq. (5) as follows:

uy + (3w* +Bow)  =F, with F = f(x)u(x,7). (Bl)

The reasoning behind this choice of perturbation and the
form of f(x) is the following. Arguably, one of the simplest
possibilities is to define a spatially localized parametric drive
which introduces a small localized perturbation to the motion
of the solitary wave and is compatible with the zero boundary
conditions as x — oo (in fact, as x — =L /2, where L is the
size of the integration domain). In particular, we select

sinh (x/1)

f= focosh3 (/1)

(B2)
Here fj and ! characterize, respectively, the amplitude and the
width of the spatially localized parametric perturbation term.
In the subsequent numerical investigation, we considered a
solitary wave with velocity vy = 1.7, under the action of the
perturbation of the above form, with fy = 0.1 and [ = 1.5.

To utilize Manton’s approach, we use the system’s
equation of motion written in terms of field w, potential U,
and the co-traveling coordinates (&, t). This way the system
becomes

Uy — 20Uz, + v2Uss + Bows + = (wz)E _/ fa—s/dé

(B3)

0.02

0.00
Mé

-0.02

-0.04

-0.06

6 7 8 9 10
T

FIG. 5. Comparison of the right-hand sides of Egs. (B6) and
(B8). The blue solid line and the chain of red triangles depict,
respectively, the right-hand sides of Egs. (B6) and (BS).

We recall that the momentum of the soliton in the moving
frame is given by

+00
P= —/ U Us dE, (B4)

and its derivative is given by
dpP +0o0
_— = U, U: d§ —
dt /_oo eds

By substituting the U, term from Eq. (B3) into Eq. (BS), we
obtain

dpP +00 +00
E = — ZU/ UgrUgd%' + UZ/ UggUg dé;:
—00 —00

+00
/ U Ug, d§. (BS)

+00
+f |:Bowg+ (w )g:|U§ d%‘

+00 , +oo
f Ug/ fas, dé ds—/m UrUs, dé.
(B6)

On the other hand, we assume that U = U[§ — &(7)],
which represents a traveling-wave solution with its (moving)
center £y(7). This is the only essential assumption adopted for
the current analysis; i.e., we are exploring the dynamics of
an adiabatically varying solitary wave whose properties are
slowly varying in the presence of the defect. Thus, we set
U, =-U; £, where &) = dé , and from Eq. (B4) we get, also
using definition (42),

+00 400
P=s'o/ U§dé=s’of wdg =&M (BT

—00 —00

and, accordingly,

ar =M & + M&. (B8)
drt
The right-hand sides of Eqs. (B6) and (B8) should match.
Indeed, if we consider the numerical solution of the sys-
tem for U and w, as well as the calculated mass M, we
see in Fig. 5 that they match. Note that we only consider
the evolution up to 7 = 10, rather than the full time in-
terval of the interaction between the solitary wave and the
potential. This is done because when the solitary wave in-
teracts fully with the defect, it is deformed (as it can be
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FIG. 6. The interaction of the solitary wave with v = 1.7 with the localized inhomogeneity introduced by Eq. (B1) in the co-moving frame.
The inhomogeneity is initially set at x = 20. Up to 7 = 10, the form of the wave remains practically intact. At 7 = 16 we observe deformation
of the wave, and at T = 25 we observe the emergence of a small-amplitude shelf which, along with the accompanying tail, is attached to the

(primary) solitary wave.

seen in Fig. 6 for T = 16) and the adiabatic-traveling-wave
assumption is no longer valid, broken by the emission of
radiation, as observed in the bottom panels of Fig. 6. On the
other hand, up to T = 10 it is relevant to assume that only
the tail of the solitary wave and the defect’s potential interact,
the shape of the wave being only adiabatically modified, in
line with the underlying assumptions. In Fig. 6, we consider
the evolution in the co-moving frame, and thus the main body
of the solitary wave appears still, while the inhomogeneity
moves with negative velocity v’ = —1.7.

Let us now evaluate terms contributing to the change
of the momentum in the force balance associated with this
problem. The contribution of the M éo term in Eq. (B8) turns
out to be negligible in comparison with the M&, one, being at
least 2 orders of magnitude smaller than the latter one. For
example, for t* = 9.5 we have M (7%)&(t*) = —0.0251229
and éo(r*)M(r*) = 0.000 109 553. Notice that in this setting
the mass is evaluated to be M(t*) = 1.714 8755, the accel-

eration is £(7*) = —0.014 65, and the arising change in the
mass is characterized by M(t*) = —0.0147101 and &(z*) =
—0.0251229. It is thus concluded that, in the course of the
time interval where this Manton-type method force balance
is applicable, the variation of the mass is explicitly estimated
to be ~1% in comparison to the actual solitary-wave mass;
hence, for the time interval of our current considerations, the
mass change does not substantially affect the wave-defect
interaction.

Naturally, there remains an important open question
whether the mass-fitting factor, used for the analysis of the
solitary-wave collisions, has some extension or connection to
the mass variation in the wave-defect interaction. However,
given the different nature of the two interactions (and the fact
that we can only pursue the solitary-wave interaction until
the substantial emission of radiation occurs, as explained in
Figs. 5 and 6), this issue stays outside the purview of the
present work.
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