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ABSTRACT
Over-the-air federated learning (OTA-FL) is a communication-
effective approach for achieving distributed learning tasks. In
this paper, we aim to enhance OTA-FL by seamlessly combin-
ing sensing into the communication-computation integrated
system. Our research reveals that the wireless waveform used
to convey OTA-FL parameters possesses inherent properties
that make it well-suited for sensing, thanks to its remarkable
auto-correlation characteristics. By leveraging the OTA-FL
learning statistics, i.e., means and variances of local gradients
in each training round, the sensing results can be embedded
therein without the need for additional time or frequency re-
sources. Finally, by considering the imperfections of learning
statistics that are neglected in the prior works, we end up with
an optimized the transceiver design to maximize the OTA-FL
performance. Simulations validate that the proposed method
not only achieves outstanding sensing performance but also
significantly lowers the learning error bound.

Index Terms— over-the-air, federated learning, gradient
statistics, wireless sensing, resource allocation

1. INTRODUCTION

Federated learning (FL) is a distributed learning paradigm
that allows multiple users to collaboratively learn a shared
model under the coordination of a central server and without
exchanging data directly [1]. While FL is data-efficient, it
poses challenges to spectrum resources when each device
requires a dedicated frequency band to upload its local model
parameters for global model aggregation. In response to
this challenge, over-the-air aggregation [2] has emerged as a
novel solution, leveraging the signal-superposition property
of multiple-access channels. By allowing simultaneous trans-
missions of all device-end updates through a shared spectrum,
over-the-air aggregation enables integrated communication
and computation to accomplish a learning task.

The concept of over-the-air federated learning (OTA-FL)
has garnered significant research interest for its potential of
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substantial resource savings while maintaining comparable
performance to conventional FL with orthogonal transmis-
sion. Existing OTA-FL studies, despite dealing with wire-
less fading, simplify assume error-free learning statistics, i.e.,
means and variances of local gradients in each training round.
Although the statistics occupy negligible frequency resources,
the resultant processing leads to a severe sub-optimality in
practical scenarios. Moreover, current OTA-FL research over-
looks the inherent freedom introduced by OTA transmission,
which can be leveraged to provide additional sensing func-
tionality to enhance security and privacy measures.

This work aims to enhance OTA-FL by addressing these
deficiencies through two key contributions. Firstly, we recog-
nize the inherent suitability of OTA-FL for wireless sensing,
leveraging the high-dimensional nature and desirable auto-
correlation of local model vectors, as well as the potential for
improved sensing accuracy through device diversity. Moti-
vated by these observations, we delve into the seamless in-
tegration of wireless sensing and OTA-FL by using learn-
ing statistics as an off-the-shelf gateway to deliver sensed re-
sults without introducing additional overhead. This integrated
design enables the coherent fusion of sensing, communica-
tion, and computation in a wireless manner, which advances
the concept of integrated communication and computation [2]
and integrated sensing and communication [3]. Furthermore,
we emphasize the crucial role of learning statistics, which not
only enhances sensing capabilities but also has a substantial
impact on learning performance. Strikingly, previous studies
have largely overlooked the influence of learning statistics,
assuming error-free transmission and negligible communica-
tion resources. By addressing these concerns, we establish
a sensing-enabled OTA-FL framework with a more practical
problem formulation, enhanced learning performance, and ef-
ficient resource utilization. We have validated these advan-
tages through comprehensive simulations.

2. PROPOSED METHODOLOGY

2.1. Signal Model

Consider a general FL system withK single-antenna wireless
devices, and a single multi-antenna edge server. At the t-



th learning round, the local gradient generated by device k
is a D-dimensional vector gk,t, whose entry-wise mean and
standard deviation are ḡk,t and νk,t, respectively. With OTA
aggregation, the transmit signal from device k is

xk,t
∆
= {xk,t[d] = pk,t

gk,t[d]− ḡk,t
νk,t

: 1 ≤ d ≤ D}, (1)

with pk,t denoting the transmit equalization factor [4]. The
local learning statistics, including the mean ḡk,t and the stan-
dard deviation νk,t, per device are transmitted individually
following xk,t. A practical learning model may contain thou-
sands or more parameters [5], implying that D can be ex-
tremely large. Meanwhile, xk,t[d] can be modeled as an inde-
pendent zero-mean variable, leading to∑

d

xk,t[d]xk,t[d+ τ ] ≈ δ(τ). (2)

For this reason, xk,t serves as a promising candidate for pas-
sive wireless sensing. This is analogous to the case with
orthogonal frequency-division multiplexing (OFDM) wave-
form [6].

2.2. Sensing Embedding

To enable sensing functionality without calling for additional
frequency resources, our proposed answer is that νk,t will be-
have as the gateway supporting wireless sensing. Two types
of sensing tasks can be supported here: objection detection
and object positioning.

Specifically for the former, by directly utilizing xk,t for
sensing, the binary decision obtained via a specific detector,
e.g., the Neyman-Pearson detector [7], will be embedded into
νk,te

jθ with θ = 0 or π. As νk,t remains positive, it suf-
fices for the server to recover the required standard deviation
νk,t, by taking the norm of νk,tejθ, and the sensed result θ via
binary phase-shift keying (BPSK) demodulation.

The second task, object positioning, is more challenging
as it further involves range estimation [8]. To improve the pre-
cision, the transmit signal xk,t is wrapped with a transparent
binary pseudo sequence p (e.g.,M -sequence) for sensing [9].
The device m then unwraps the echo of xx,t � p, and applies
matched filtering for range estimation. Accordingly, the esti-
mated distance is fed into an M -step quantizer, whose upper-
bound can be decided per the wireless cell size R, giving rise
to the transmitted signal

νk,te
j 2πm
M , m ∈ {0, 1, . . . ,M − 1}. (3)

Through M -PSK demodulation, the edge serve obtains a se-
ries of estimated range as {R̂k}Kk=1. Utilizing the known lo-
cation of each wireless device, represented as {Xk, Yk}Kk=1,
the position of the object can be determined by solving the

following least-square estimation problem:

(X?, Y ?)

= arg min
X,Y

K∑
k=1

∣∣√(Xk −X)2 + (Yk − Y )2 − R̂k
∣∣2. (4)

2.3. Transceiver Design

Once embedding the sensing functionality into OTA-FL, the
remaining question is how to optimize the transceivers to
yield the best learning performance. Let ∇F (wt) and rt(f)
stand for the gradient of the loss function F (·) at wt and
the received aggregated gradient using the combiner f . The
global model update obeys

wt+1 = wt − η(∇F (wt)− et), (5)

with η being the learning rate, and et := ∇F (wt)− rt(f) in-
corporating the overall gradient error in OTA-FL [4], respec-
tively. The error term et is first bounded by taking both the
channel noise, as well as the imperfections of ḡk,t and νk,t
into account, in contrast to prior works that solely consider
the first source. Based on the derived bound1, convergence
analysis can be conducted, to establish that

lim
t→∞

E{F (wt)− F (w∗)}

=C(f , {P (xk)}Kk=1, {P (ḡk)}Kk=1, {P (νk)}Kk=1) (6)

where F (w∗) is the ground truth; P (xk), P (ḡk) and P (νk)
respectively stand for the transmit power of the centralized
version, the mean, and the gradient deviation at the device k.
The optimal transceiver design can be subsequently found by
solving the following optimization problem:

min
P,f

C(f , {P (xk)}Kk=1, {P (ḡk)}Kk=1, {P (νk)}Kk=1) (7a)

s.t. |f | = 1 (7b)
P (xk) + P (ḡk) + P (νk) ≤ Pmax, ∀k. (7c)

3. PERFORMANCE EVALUATION

To test the performance of the integrated wireless sensing
with OTA-FL system, we simulate a scenario where 9 edge
devices take part in an image classification task with the
Fashion-MNIST dataset. Each device locally trains a convo-
lution neural network consisting of 21,921 parameters.

We set the noise floor at -10dB, and compute the correla-
tion gain of the transmit sequence with the noisy echo. As de-
picted in Fig. 1, the gain is 12dB higher above the noise floor,
even when the echo is 20dB weaker than the noise. Also,
the strongest side lobe remains 15dB lower than the peak in

1More detailed derivations will be presented in the full-version journal
paper due to space limitation.
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Fig. 1: Correlation gain of transmit sequence with noisy echo
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Fig. 2: The object positioning error (in meters) via sensing embed-
ded OTA-FL under different modulation order.

all cases, signifying that detection and rage estimation can be
conveniently accomplished with high reliability.

In Fig. 2, we assume that 9 devices are evenly distributed
along the x-axis with a 10-meter gap between each device.
The object is uniformly positioned within a 200×200 square.
As can be seen, the positioning error obtained through least-
square estimation from the quantized angles can be very close
to the lower bound of ideal quantization. This observation
suggests that involving multiple users can significantly reduce
the positioning error.

In Fig. 3, the comparison of the convergence gap among
different power allocation schemes is conducted. Evenly dis-
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Fig. 3: Convergence gap under various power allocation schemes

tributing the power among all 21,923 elements (21,921 cen-
tralized gradient entries and 2 attached statistics) yields the
worst performance. Dedicated optimization can reduce the
gap by more than 50% compared to random allocation. Still,
the performance gap is significant with respect to the ideal
case, where perfect statistics are obtained. This observation,
in conjunction with the lower performance of an even dis-
tribution, implies that neglecting the imperfections of statis-
tics is improper for OTA-FL, and may render largely inferior
learning performance. In summary, despite accounting for a
tiny ratio of the entire transmission frame, gradient statistics
play a critical role in OTA-FL, and their influence should be
carefully considered to optimize the learning performance.

4. CONCLUSIONS

This paper presented a novel approach to enhance OTA-FL
by seamlessly integrating sensing functionality into the wire-
less communication framework. Leveraging the exceptional
auto-correlation properties of the OTA-FL waveform, we em-
bed sensing capabilities without requiring additional time or
frequency resources. Through optimized transceiver design,
we minimize the learning error bound while considering im-
perfections in learning statistics. Simulations demonstrate the
remarkable sensing performance of our proposed method and
its significant improvement to conventional OTA-FL in terms
of system efficiency and robustness. Given the increasing
demand for distributed learning and sensing in wireless net-
works, our work provides valuable insights and paves the way
for future developments in this research area.
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