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a b s t r a c t

The nonlinear Schrödinger model is a prototypical dispersive wave equation that features finite time
blowup, either for supercritical exponents (for fixed dimension) or for supercritical dimensions (for
fixed nonlinearity exponent). Upon identifying the self-similar solutions in the so-called ‘‘co-exploding
frame’’, a dynamical systems analysis of their stability is natural, yet is complicated by the mixed
Hamiltonian-dissipative character of the relevant frame. In the present work, we study the spectral
picture of the relevant linearized problem. We examine the point spectrum of 3 eigenvalue pairs
associated with translation, U(1) and conformal invariances, as well as the continuous spectrum. We
find that two eigenvalues become positive, yet are attributed to symmetries and are thus not associated
with instabilities. In addition to a vanishing eigenvalue, 3 more are found to be negative and real, while
the continuous spectrum is nearly vertical and on the left-half (spectral) plane. The eigenfunctions and
eigenvalues are approximated both asymptotically and numerically, with good agreement between the
two approaches. The non-Hamiltonian nature of the co-exploding system results in the 3 eigenvalue
pairs failing to be equal-and-opposite by an exponentially small amount. A projection method is used
to evaluate this small correction, and at the same time explains the subtle effects of finite boundaries
and their role in the observed weak eigenvalue oscillations.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

One of the central dispersive nonlinear partial differential equations of relevance to a wide range of physical systems is the nonlinear
chrödinger (NLS) model [1–5]. Among the different research themes where the NLS plays a central role, one can mention the study of
he electric field of light in nonlinear optical systems [6,7], as well as in plasmas [8], the realm of water waves and the evolution of their
eight, e.g., in deep water [9,10], as well as the condensate wavefunction for mean-field models of atomic Bose–Einstein condensates
BECs) [5,11,12]. The prototypical variants of the equation involve the self-focusing [4,13] and the self-defocusing nonlinearity [5], and
he respective dynamics revolve around bright [14] and dark [15] solitons.

In the case of self-focusing (self-attractive) nonlinearity, and for sufficiently high dimension (for fixed nonlinearity) or for sufficiently
trong nonlinearity (for fixed dimension), a key feature of the NLS model is the presence of collapse type phenomena, that have also
een explored in numerous books [4,13,16], as well as reviews [17–19]. Indeed, the topic of finite time blow up of supercritical NLS
olutions has been the objective of continued study both in the mathematical and in the physical literature; see, e.g., Refs. [20–24] (and
lso references therein) for only some recent examples. Importantly, the study of collapse is not only a mathematical idealization but
ather has become accessible to physical experiments. In fact, on the one hand, there is the well-developed field of nonlinear optics,
here not only the well-known, two-dimensional collapsing waveform of the Townes soliton has been observed [25] but also more
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laborate themes have been touched upon including the collapse of optical vortices [26], the loss of phase information of collapsing
ilaments [27], and the manipulation of the medium to avert optical collapse [28]. On the other hand, a remarkable, very recent
xperimental development has been the emergence of 2 distinct works in the atomic physics realm of BECs, observing Townes solitons
n the 2d setting [29,30]. Here, collapsing waveforms in higher dimensions had been experimentally identified earlier [31,32], and the
bility to manipulate the nonlinearity [33] and the initial conditions [34] has continued to improve in recent times. In one of these
ecent works [29] the modulational instability was manipulated to produce (in a less controllable, yet experimentally observable) way
uch Townes waveforms. The authors of the second work [30] leveraged a reduction of a minority component in a two-component gas
nto a single-component one with effectively attractive interactions to produce a collapsing Townes waveform.

In many of the above mathematical works that study the dynamics of collapse, both in dispersive systems such as the NLS [4,13],
but also even in dissipative systems such as reaction–diffusion ones [35], the emphasis is on identifying the solution in a frame where
it becomes steady, namely a self-similar (or ‘‘co-exploding’’) one [36–40]. A similar approach is leveraged in dynamical systems and
partial differential equations (PDEs) when exploring travelling waves which are identified as steady solutions in a so-called co-travelling
frame. In such settings, a natural next step is to explore the spectral stability of the solutions in such a frame [41,42]. However, in the
realm of the self-similar solutions, far fewer studies appear to be exploring the spectral properties of the wave in the co-exploding
frame [43–45]. Indeed, in the context of NLS, the only earlier approach, to the best of our knowledge, towards spectrally exploring
the collapse problem concerns the earlier work of some of the authors [45]. In a recent work, we revisited this topic, attempting to
examine the self-focusing problem as a bifurcation one, identifying its effective normal form [46]. In the present study, we complement
this approach by systematically examining the spectrum of the self-similarly collapsing solitary wave.

Upon setting up the relevant linearization problem in the self-similar frame (in Section 2), our starting point will consist of
bservations of the spectrum of the underlying Hamiltonian system before the bifurcation point (in Section 3). We will examine the
elevant spectral picture when approaching the limit point where collapsing solutions emerge, and also we will explore the same picture
or the dissipative system that results in the co-exploding frame past the critical point. The former reveals three eigenvalue pairs at the
rigin at the critical point (associated with translation, U(1), and conformal invariances), and a key part of our analysis is tracking the
ehaviour of these pairs in the co-exploding frame past the critical point. In Section 4 we approximate each eigenvalue asymptotically,

finding that the pairs fail to be equal-and-opposite by an exponentially small amount. Finally, we will synthesize the picture and its
dynamical implications and offer some conclusions and future challenges in Section 5. The Appendices offer some additional insights,
including about how a symmetry of the original frame can turn into an unstable eigendirection in a renormalized one, as well as about
the role of the normal form obtained previously in [46] in connection with the eigenvalues identified herein.

2. Basic mathematical setup

Our model of interest will be the one-dimensional, general-nonlinearity-exponent variant of NLS in the form

i
∂ψ

∂z
+
∂2ψ

∂x2
+ |ψ |

2σψ = 0. (1)

otice that here we have used the typical optics notation, where z is the evolution variable, representing the propagation distance [4].
This model has been studied extensively in [4,13] and it is well-known that in d-dimensions, the condition for its collapse is
σd > 2. The model is subcritical for σd < 2, and the special case of σd = 2 separates the two regimes. We opt to consider
he d = 1 case for a number of practical reasons, including (a) the availability of an analytical solution for all values of σ , namely
ψ = eiz(1 + σ )1/(2σ ) sech

[
(2σ )1/2(x − x0)

]
and (b) the computational convenience of the relevant spectral calculations. As we will see

below, the latter will be sensitively dependent on the domain size and its boundary conditions, and associated considerations will be
even more delicate (and imposing a substantial additional computational overhead) in higher dimensions. Nevertheless, we expect the
main features and techniques proposed herein to be directly reflected in such higher-dimensional settings, as will be evident in what
follows.

The Hamiltonian associated with Eq. (1) is given by

H =

∫
∞

−∞

(⏐⏐⏐⏐∂ψ∂x
⏐⏐⏐⏐2 −

1
σ + 1

|ψ |
2σ+2

)
dx. (2)

he dynamical equations satisfy:

i
∂ψ

∂z
=

δH
δψ∗

, i
∂ψ∗

∂z
= −

δH
δψ
.

e require that H be finite.
In order to go to the co-exploding frame, we introduce the well-known [4,13] stretched variables, rescaling space by the length scale

(z)

ξ =
x

L(z)
, τ =

∫ z

0

dz ′

L2(z ′)
, ψ(x, z) = L−1/σu(ξ, τ ), (3)

o give

i
∂u
∂τ

+
∂2u
∂ξ 2

+ |u|2σu − iξLLz
∂u
∂ξ

−
iLLz
σ

u = 0, (4)

nd the corresponding rescaling of the Hamiltonian:

H = L−2/σ−2
∫

∞
(⏐⏐⏐⏐ ∂u∂ξ

⏐⏐⏐⏐2 −
1

σ + 1
|u|2σ+2

)
dx. (5)
−∞

2
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Fig. 1. Variation of blowup rate G as a function of σ , for domain size K = 20. The solitonic branch (G = 0) remains stable up to σ = 2 (black solid line) and becomes
nstable for σ > 2 (black dash-dotted line). The stable collapsing branch (G > 0) is illustrated with solid grey line.

e factor out the frequency of our solution without loss of generality and assign the rate of width shrinkage/amplitude growth to be
ermed as G by setting

u(ξ, τ ) = Φ(ξ, τ )eiτ , G(τ ) = −LLz = −
Lτ
L
, (6)

hich reduce Eq. (4) into

i
∂Φ

∂τ
+
∂2Φ

∂ξ 2
+ |Φ|

2σΦ −Φ +
iG
σ
Φ + iGξ

∂Φ

∂ξ
= 0. (7)

n order to close the dynamics and determine the blow-up rate G we impose a pinning condition of the form [46]∫
∞

−∞

Re(Φ(ξ, τ ))T (ξ ) dξ = C, (8)

or some constant C and some (essentially arbitrary) ‘‘template function’’ T . Solitonic solutions correspond to G = 0, and exist for all
> 0, but there is a bifurcation at σ = 2, with a branch of steady solutions with nontrivial G > 0 (i.e. self-similar blow-up solutions

of (1)) appearing for σ > 2 [4,45,46]. The bifurcation diagram is shown in Fig. 1, and a typical example of the associated waveforms
and the dynamics approaching them in Eq. (7) is shown in Fig. 2.

In [46] we showed that, when σ − 2 is small, G (asymptotically) satisfies the ODE

2c0G
dG
dτ

=
(σ − 2)

2σ
b0G − A2

1 sign(G) e
−π/|G|, (9)

here

c0 =

√
3π3

512
, b0 =

√
3π
4

, A1 = 121/4, (10)

which can be thought of as the normal form associated with the bifurcation. We see in (9) a stable branch of equilibrium solutions
> 0 appearing for σ > 2. These results suggest the attractivity of the self-similar blow-up solutions, and hence predispose us towards

heir (effective) spectral stability.
It is particularly important for our considerations that follow to emphasize that the system (7) bears a rather unusual ‘‘mixed’’

haracter. Along the manifold of G = 0 (solitonic) solutions, the relevant model falls back on the original one, retaining its Hamiltonian
tructure. Nevertheless, for the genuinely self-similar solutions of G ̸= 0, the system is no longer conservative in nature. Hence, we
re dealing with a mixed Hamiltonian-dissipative system and the dissipativity for G ̸= 0 should be mirrored in the spectrum of the
3
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Fig. 2. Dynamics of |Φ(ξ, τ )|2 − |Φ(ξ, 0)|2 in the co-exploding frame (rescaled NLS). The initial condition, Φ(ξ, 0) is the soliton solution for σ = 2.019. Upon
erturbing σ to σ = 2.02, the co-exploding dynamics converges to a ‘‘steady-state’’ solution. The inset on the bottom right illustrates the evolution of the blowup
ate, G, with the rescaled time, τ .

elf-similar solutions. This is contrary to what is the case for the four-fold symmetric spectrum of the G = 0 solitons, for which if λ is
n eigenvalue, so are −λ, λ∗ and −λ∗.
We will find it convenient to perform an additional transformation by writing

Φ(ξ, τ ) = V (ξ, τ )e−iG(τ )ξ2/4 (11)

o give

i
∂V
∂τ

+
G′ξ 2

4
V +

∂2V
∂ξ 2

+ |V |
2σV − V −

i(σ − 2)G
2σ

V +
G2ξ 2

4
V = 0, (12)

here G′
= dG/dτ , since then (without loss of generality) the imaginary part of V is exponentially small in G [46]. Notice that above

e have suppressed the dependence of G on the parameter σ .
Our principal aim is to consider the spectral stability of the steady-state solutions (with G ̸= 0) in the co-exploding frame. These

orrespond to self-similar blowup solutions in the original frame. Such steady-state solutions denoted by Φs satisfy

d2Φs

dξ 2
+ |Φs|

2σΦs −Φs +
iG
σ
Φs + iGξ

dΦs

dξ
= 0, (13)

or equivalently

d2Vs

dξ 2
+ |Vs|

2σVs − Vs −
i(σ − 2)G

2σ
Vs +

G2ξ 2

4
Vs = 0, (14)

ith G constant equal to G(σ ) illustrated in Fig. 1. We now linearize Eq. (7) about Φs by setting:

Φ(ξ, τ ) = Φs(ξ ) + ϵ

(
X(ξ )eλτ + Y ∗(ξ )eλ

∗τ
)
, ϵ ≪ 1, (15)

iving rise to the operator eigenvalue problem

iλX =

(
−

d2

dξ 2
− (σ + 1)|Φs|

2σ
+ 1 −

iG
σ

− iGξ
d
dξ

)
X − σ |Φs|

2σ−2Φ2
s Y , (16)

iλY = σ |Φs|
2σ−2(Φ∗

s )
2X +

(
d2

2 + (σ + 1)|Φs|
2σ

− 1 −
iG

− iGξ
d
)
Y . (17)
dξ σ dξ
4
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quivalently, for the stationary solution Vs(ξ ), we linearize in ϵ by writing

V (ξ, τ ) = Vs(ξ ) + ϵ

(
f (ξ )eλτ + g∗(ξ )eλ

∗τ
)

(18)

which leads to

iλf +
d2f
dξ 2

+ σ |Vs|
2σ−2V 2

s g + (σ + 1)|Vs|
2σ f − f −

i(σ − 2)G
2σ

f +
G2ξ 2

4
f = 0, (19)

−iλg +
d2g
dξ 2

+ σ |Vs|
2σ−2(V ∗

s )
2f + (σ + 1)|Vs|

2σ g − g +
i(σ − 2)G

2σ
g +

G2ξ 2

4
g = 0. (20)

To solve numerically we truncate the domain and solve on the finite domain [−K , K ], imposing the boundary conditions
∂Φ

∂ξ
= 0 at ξ = ±K ,

which correspond to
∂V
∂ξ

= ±
iGKV
2

at ξ = ±K .

The finiteness of the domain is what leads to the small oscillations in the bifurcation diagram Fig. 1, as explained in [46].) For the
erturbation this gives, correspondingly,

∂X
∂ξ

=
∂Y
∂ξ

= 0,
∂ f
∂ξ

= ±
iGKf
2
,

∂g
∂ξ

= ∓
iGKg
2

on ξ = ±K .

et us now try to explore, on the basis of the above principal setup, what we should expect to see in the linearization around a collapsing
aveform.

. Principal numerical results

The question of how the spectrum changes under the type of nontrivial scaling transformation discussed above requires particular
ttention. This topic was first addressed systematically, to the best of our knowledge, in a different class of systems, in the pioneering
ork of [43,44] who realized that such a transformation that rescales space and time may have profound implications within the
enormalized frame as regards the interpretations of symmetries of the original frame. To explain this subtle point, we provide
rguably the simplest possible example that we have been able to identify in Appendix A of the present manuscript. There, and in
he cleaner/simpler setting of an autonomous ordinary differential equation, it can be seen that the symmetry of time translation of
he original system leads to an ‘‘apparent instability’’ in the renormalized frame. This is because a shift in, e.g., the time of collapse in
he original frame, due to the exponential nature of the transformation between the renormalized and the regular time, leads to an
xponential deviation in the renormalized frame and hence an apparent instability.
The key take-home message from this example is that symmetries of the original frame may no longer correspond to ones such in the

enormalized frame. The even more dire consequence is that symmetries of the original frame may appear as instabilities in the renormalized
ne. For example, differentiating Eq. (13) with respect to ξ gives

d3Φs

dξ 3
+ (σ + 1)|Φs|

2σ dΦs

dξ
+ σ |Φs|

2σ−2Φ2
s
dΦ∗

s

dξ
−

dΦs

dξ
+

iG
σ

dΦs

dξ
+ iGξ

d2Φs

dξ 2
+ iG

dΦs

dξ
= 0, (21)

from which we observe that X = dΦs/dξ and Y = dΦ∗
s /dξ satisfy Eqs. (16)–(17) if we choose λ = G. The eigenvector is associated with

he derivative, which is well-known to be the generator of translations. However, instead of this vector being associated with a neutral
irection, it is now associated with an ‘‘apparently unstable’’ eigenmode (since G > 0). Nevertheless, that eigenmode is not a true
nstability in the original frame, even though it appears as one in the renormalized frame. Rather, it only involves spatial translation,
.e., a symmetry, and its suitable reinterpretation in this renormalized frame.

Armed with this important piece of understanding, let us now scrutinize the spectral picture in further detail. As is natural, we start
ith the subcritical case of σd < 2. In this regime, only the solitary wave solution of G = 0 is present and hence it is the stability of this
ranch that we comment on first. In the integrable limit of d = σ = 1, it is well-known [47] that the spectrum of the linearization of
he NLS soliton possesses two neutral directions, one associated with spatial translations, and one associated with the phase or gauge
U(1)) invariance. We already saw that the derivative dΦs/dξ is connected to the translational eigenvector while the solution Φs itself
s associated with the corresponding phase eigenvector. In each case, the generalized eigenvectors are known as well [47].

As we depart (parametrically in σ ) from the integrable limit, an eigenvalue pair bifurcates from the band edge of the continuous
pectrum which consists of the union of the intervals i[1,∞) and −i[1,∞) and tends (along the imaginary axis) towards the origin as
→ 2. It is this eigenvalue pair that arrives at the origin of the spectral plane, precisely at σ = 2, instituting the conformal invariance of

he model, i.e., the invariance with respect to rescaling that paves the way to collapse dynamics. The dependence of this eigenvalue on
he parameter σ is shown in Fig. 3. Past the critical point, the relevant eigenvalue becomes real, giving rise to the dynamical instability
f the soliton and the emergence of the collapsing branch of solutions. The spectra of the solitonic solution of G = 0 for σ below the
ritical point (σc = 2 for d = 1) and above the critical point are shown in Fig. 4.
As the bifurcation of the self-similarly focusing branch of solutions occurs [45,46], the natural question is what becomes of the

pectrum and what are the corresponding dynamical implications of this spectral linearization picture. Recall that at the critical point,
he ‘‘parent branch’’ of solitary waves has, in addition to the above mentioned continuous spectrum, 3 eigenvalue pairs at the origin.
ence, as this Hamiltonian system turns dissipative for G > 0, we have to determine the fate of the 6 eigenvalues stemming from
he origin, and the associated continuous spectrum band. Notice that the 6 eigenvalues will no longer constitute pairs, except perhaps

pproximately, as the dissipativity of G ̸= 0 destroys the Hamiltonian character and hence the eigenvalue pairing.

5
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Fig. 3. Square of eigenvalue bifurcating from the band edge of the continuous spectrum, tending towards the origin as σ → 2, and finally giving rise to real
igenvalues (one positive and one negative) past the critical point, σ = 2.

Fig. 4. Spectra of the numerically obtained soliton solution (G = 0) of the rescaled NLS equation with K = 20 and σ = 1.9, σ = 1.95, σ = 2.05 and σ = 2.1.

Having obtained the collapsing solutions with finite non-vanishing G as stationary ones (see the details in [46]), we are now ready
o solve the corresponding spectral problem for the eigenvalues λ and eigenvectors (X, Y ). Some typical examples of the spectral plane
f the imaginary vs. the real part of the eigenvalues for specific choices of σ (and hence G, per Fig. 1) are shown in Fig. 5. The answer
o this central question of our manuscript for the spectrum of the collapsing solution for supercritical values of σ and non-vanishing G
n the co-exploding frame is given in Fig. 6. There we can see that, in fact, only one out of the 6 eigenvalues stays at the origin. Indeed,

∝ Φs remains an eigenvector with vanishing eigenvalue, as the rescaled model retains the original phase invariance. Nevertheless,
s indicated above, the generalized eigenvector is no longer there (due to dissipativity) and, thus, the associated eigenvalue acquires a
mall negative value. We show in Section 4.2.5 that this eigenvalue is approximately

λ ∼ −
512 e−π/G

G3π2 ,

with an eigenfunction exponentially close to that of the zero eigenvalue.
6
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v

Fig. 5. Spectra of self-similar (G > 0) solutions obtained from the numerical solution of the rescaled NLS equation with K = 20 and σ values close to the critical
alue, σ = 2: σ = 2 + 10−9 (top left panel) and σ = 2 + 10−6 (top right panel), as well as σ = 2.001 (bottom left panel), σ = 2.05 (bottom right panel).

In addition, there are two pairs of eigenvalues that are only nearly symmetric. We find these to be at λ ≈ ±2G and λ ≈ ±G. All of
these point spectrum eigenvalues are systematically captured in Fig. 6 to which we will return shortly. Moreover, there are two more
observations in place regarding Fig. 5. One of the above 6 eigenvalues (and one of the ones shown in Fig. 6, as well), the eigenvalue at
λ ≈ −G, is hard to detect. This is because it almost coincides with a nearly vertical line of continuous spectrum with real part λr = −G,
i.e., the continuous spectrum is approximately λ = −G + is for arbitrary real s (see also Appendix B).

As we already discussed above, the pair at λ ≈ ±G is associated with spatial translation. Indeed, the eigenvector X = dΦs/dξ ,
through the exact calculation above, yields an eigenvalue of λ = G in the infinite domain. It can be discerned from Fig. 6, that this
eigenvalue is no longer exactly at G on the finite domain but rather presents slight undulations in its dependence. Indeed, one of our
7
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Fig. 6. Variation of the eigenvalues λ ≈ 2G, λ ≈ G, λ = 0, λ ≈ −G, λ ≈ −2G and λ close to 0 with σ for the self-similar (G > 0) solutions as obtained from the
umerical solution of the rescaled NLS equation with K = 20.

ims in the detailed calculations that follow will be to capture these finite-domain-induced undulatory corrections. On the other hand,
he eigenvalue at −G is no longer exact even in the infinite domain, due to the lack of symmetry, as induced by the dissipative terms
G in our linearized equation for (X, Y ) (or for (f , g)). The associated eigenvector is approximately

X =
dΦs

dξ
+ iGξΦs

which satisfies the equation exactly but fails to satisfy the radiation condition. We show in Section 4.2.4 that this perturbs the eigenvalue
y an exponentially small amount (in G), which is the source of the (more significant) undulations in this eigenvalue in Fig. 6.
In a very similar vein, the eigenvalue λ = 2G is exact in the infinite domain limit, as can be verified by direct calculation, upon

substituting the eigenvector

X = iΦs + G
(
Φs

σ
+ ξ

dΦs

dξ

)
, (22)

in the linearized equations. However, in this case too, the finite domain correction (to be also evaluated below) induces an undulatory
dependence on top of the λ = 2G leading order. Finally, the eigenvalue λ = −2G is also no longer exact even for an infinite domain.
The approximate eigenfunction is

X = iΦs − G
(
Φs

σ
+ ξ

dΦs

dξ

)
− iG2ξ 2Φs,

which fails to satisfy the equation by an exponentially small residual, and also fails to satisfy the radiation condition at infinity, leading
to an exponentially small correction to the eigenvalue. This summary then accounts for all the point spectrum eigenvalues.

It is relevant to add here two important observations. The first one concerns the dynamics of the collapsing solutions. On the one
hand, we obtain that the relevant waveforms have two unstable eigendirections in the co-exploding frame. However, on the other hand,
we have illustrated through our explicit calculations above (see also the pertinent Appendix A) that such eigendirections do not pertain
to true instabilities, but rather to neutral directions of the original frame (spatial translations and rescalings of the original solution).
Given the rescaling of space and time in the co-exploding frame, both of these actions move solutions exponentially far from other
members of the family of such equivariant solutions, and thus appear as instabilities in the co-exploding frame, yet this is not a true
instability in the original frame. Hence, in line with our above dynamical evolution results, we expect such collapsing solutions to be
dynamically robust (modulo symmetries).

The second observation is related to the results for the spectrum given in the earlier work of [45]. There, only one of these positive
eigenvalues was found and moreover the continuous spectrum had a wider apparent extent around λr ≈ −G (extending to values with

more negative real part). The former of these features was because the calculation of [45] was done in the half-domain and hence,

8
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.g., spatial translations were a priori excluded from consideration. Furthermore, we believe that the observations of the continuous
pectrum had to do with the discretization used in the latter case. Our refined numerics here suggest that the continuous spectrum
rogressively tends to the vertical line with λr = −G (asymptotically for large imaginary part). Finally, we also note that the main
eatures of the computed spectra show only slight changes by increasing the size of the computational domain (see Appendix C).
dmittedly, in what follows we can only offer an asymptotic prediction for the part of the spectral band with sufficiently large imaginary
art. For the part with small imaginary part, the situation is rather complex and constitutes a technical challenge for potential future
tudies. Nevertheless, we believe that we hereby offer a far more definitive perspective of both the point and the continuous spectrum,
han was previously available.

In the analytical calculations that follow (and their comparison with the detailed numerical computations as regards the eigenvalue
orrections), we will consider each of these eigenvalues one by one. We will split their dependence into a principal part (that we have
ffectively already discussed above), and a correction that stems either from the finiteness of the computational domain (in the case
f λ = G or λ = 2G) or from both the inexactness of the symmetry in the dissipative system and the radiation condition (in the case
f the negative point spectrum eigenvalues). Since we work on a finite domain, this latter effect also appears though the boundary
onditions.
We will develop a solvability-based approach to calculate the residual of each of these eigenvalues and will subsequently compare

t to our systematic eigenvalue computations. Finally, we will corroborate our theoretical conclusion on the effective spectral stability
modulo the symmetries) of the collapsing solutions via direct numerical simulations in both the original and the co-exploding frame.

For the performance of numerical computations, we adopt a fourth-order central finite difference scheme for the approximation of
patial derivatives. Space, ξ ∈ [−K , K ] is uniformly discretized with step, dξ = 0.01. Time integration (where needed) is performed
tilizing MATLAB’s ode23t ODE solver. Steady-state solutions are obtained through the iterative Newton–Raphson algorithm. Finally,
he eigenvalue computations were performed by utilizing MATLAB’s eig solver and corroborated further by using the contour-integral
ased FEAST eigenvalue solver [48] (and references therein). The spectral stability analysis results we obtained through the use of both
igenvalue solvers match precisely with each other.

. Theoretical analysis approach

For our theoretical analysis, we work in terms of Vs, f and g . We first outline the general methodology, before we apply it to each
igenvalue of the discrete spectrum in turn.
For each of the point spectrum eigenvalues we have an asymptotic approximation to the eigenfunctions freg and greg and eigenvalue

reg which is accurate to all orders in G but misses exponentially small terms; here we aim to calculate those terms. [Notice that in
hat follows, for mathematical convenience, we will generally expand in powers of G, rather than the parameter σ .] Let us write
= λreg + λexp. Then, Eqs. (19)–(20) give:

iλregf +
d2f
dξ 2

+ σ |Vs|
2σ−2V 2

s g + (σ + 1)|Vs|
2σ f − f −

i(σ − 2)G
2σ

f +
G2ξ 2

4
f = −iλexpf ,

− iλregg +
d2g
dξ 2

+ σ |Vs|
2σ−2(V ∗

s )
2f + (σ + 1)|Vs|

2σ g − g +
i(σ − 2)G

2σ
g +

G2ξ 2

4
g = iλexpg.

f we multiply by freg and greg respectively, add and integrate by parts, the left-hand side is∫ K

−K

(
iλregf +

d2f
dξ 2

+ σ |Vs|
2σ−2V 2

s g + (σ + 1)|Vs|
2σ f − f −

i(σ − 2)G
2σ

f +
G2ξ 2

4
f
)
freg dξ

+

∫ K

−K

(
−iλregg +

d2g
dξ 2

+ σ |Vs|
2σ−2(V ∗

s )
2f + (σ + 1)|Vs|

2σ g − g +
i(σ − 2)G

2σ
g +

G2ξ 2

4
g
)
greg dξ

=

∫ K

−K

(
iλregfreg +

d2freg
dξ 2

+ (σ + 1)|Vs|
2σ freg − freg −

i(σ − 2)G
2σ

freg +
G2ξ 2

4
freg

)
f dξ∫ K

−K

(
−iλreggreg +

d2greg
dξ 2

+ (σ + 1)|Vs|
2σ greg − greg +

i(σ − 2)G
2σ

greg +
G2ξ 2

4
greg

)
g dξ

+

∫ K

−K
σ |Vs|

2σ−2V 2
s gfreg + σ |Vs|

2σ−2(V ∗

s )
2fgreg dξ +

[
freg

df
dξ

− f
dfreg
dξ

+ greg
dg
dξ

− g
dgreg
dξ

]K
−K

=

∫ K

−K
Rff + Rgg + σ |Vs|

2σ−2(gregf − fregg)((V ∗

s )
2
− V 2

s ) dξ

+

[
freg

df
dξ

− f
dfreg
dξ

+ greg
dg
dξ

− g
dgreg
dξ

]K
−K
,

here

Rf = iλregfreg +
d2freg
dξ 2

+ (σ + 1)|Vs|
2σ freg + σ |Vs|

2σ−2V 2
s greg − freg −

i(σ − 2)G
2σ

freg +
G2ξ 2

4
freg,

Rg = −iλreggreg +
d2greg
dξ 2

+ (σ + 1)|Vs|
2σ greg + σ |Vs|

2σ−2(V ∗

s )
2freg − greg +

i(σ − 2)G
2σ

greg +
G2ξ 2

4
greg,

re the exponentially small residuals from the regular asymptotic expansion. Since the imaginary part of Vs is exponentially small, and
and g are exponentially close to f and g , the term (g f − f g)((V ∗)2 − V 2) is doubly exponentially small and can be neglected.
reg reg reg reg s s

9
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hen, evaluating also the right-hand side,∫ K

−K
(Rff + Rgg) dξ +

[
freg

df
dξ

− f
dfreg
dξ

+ greg
dg
dξ

− g
dgreg
dξ

]K
−K

∼ iλexp

∫ K

−K
(gregg − fregf ) dξ . (23)

Since Rf, Rg and λexp are already exponentially small, we can use freg, greg in place of f and g except in the boundary terms, introducing
only double-exponentially-small errors. Thus, to exponential accuracy,∫ K

−K
(Rffreg + Rggreg) dξ +

[
freg

df
dξ

− f
dfreg
dξ

+ greg
dg
dξ

− g
dgreg
dξ

]K
−K

∼ iλexp

∫ K

−K
(g2

reg − f 2reg) dξ . (24)

his is the equation which determines the exponentially small correction to the eigenvalue λexp. To find the boundary terms we need
o examine the far field more carefully, which we do in the next subsection. We believe that this decomposition (and identification)
f exponentially small terms and of the contribution of boundary-induced reflections is relevant for a theoretical understanding of
umerical observations of earlier computational works such as [45]. At the same time, the relevant asymptotic approach may also be
f interest for other problems of this broad class of nonlinear partial differential equations.

.1. Boundary condition on a finite domain

In this section we determine the boundary contribution to (24) by examining the far field, assuming that K is large. We will see
that in the limit K → ∞ the approximate eigenfunctions corresponding to eigenvalues λreg > −G satisfy the radiation condition, while
those corresponding to eigenvalues λreg ≤ −G do not.

Consider first f . We write f = freg + fb, where fb is the correction due to the fact that freg does not satisfy the boundary conditions.
Note that in the far field both freg and fb are exponentially small. Then, following the earlier work of [46], we have with ρ = Gξ ,

freg = Af
rege

iφ2/G + Bf
rege

−iφ2/G, fb = Aeiφ2/G + Be−iφ2/G, (25)

where

φ′

2 =

√
ρ2

4
− 1, iλ1A + 2iφ′

2A
′
+ iφ′′

2A = iGA′′, iλ1B − 2iφ′

2B
′
− iφ′′

2B = iGB′′, (26)

nd λreg = λ1G. Note that Af
reg and Bf

reg are given, but A and B need to be determined. Expanding

A =

∞∑
n=0

An(ρ)(iG)n, B =

∞∑
n=0

Bn(ρ)(−iG)n, (27)

ubstituting into Eq. (26), and equating coefficients of powers of G gives at leading order

A′

0

A0
= −

(φ′′

2 + λ1)
2φ′

2
,

B′

0

B0
= −

(φ′′

2 − λ1)
2φ′

2
,

so that

A0 =
af

(ρ2 − 4)1/4

(
ρ −

√
ρ2 − 4

ρ +

√
ρ2 − 4

)λ1/2
, B0 =

bf
(ρ2 − 4)1/4

(
ρ +

√
ρ2 − 4

ρ −

√
ρ2 − 4

)λ1/2
,

or some constants af and bf. At the next order

λ1A1 + 2φ′

2A
′

1 + φ′′

2A1 = A′′

0, −λ1B1 + 2φ′

2B
′

1 + φ′′

2B1 = B′′

0.

ubstituting for φ2, A0 and B0, and solving gives

A1 =
af

(ρ2 − 4)1/4

(
ρ −

√
ρ2 − 4

ρ +

√
ρ2 − 4

)λ1/2
(24(2λ21 − 1)ρ + (1 − 12λ21)ρ

3
− 48λ1

√
ρ2 − 4)

48(ρ2 − 4)3/2
,

B1 =
bf

(ρ2 − 4)1/4

(
ρ +

√
ρ2 − 4

ρ −

√
ρ2 − 4

)λ1/2
(24(2λ21 − 1)ρ + (1 − 12λ21)ρ

3
+ 48λ1

√
ρ2 − 4)

48(ρ2 − 4)3/2
,

here we fix the constants of integration by requiring that A ↔ B as we circle the branch point ρ = 2. Continuing in this way, we find
hat

A ∼ afρ−1/2−λ1 (1 + iGµ1 − µ2G2
+ · · · ), (28)

B ∼ bfρ−1/2+λ1 (1 − iGµ1 + µ2G2
+ · · · ), (29)

s ρ → ∞, where

µ1 =
(1 − 12λ21)

48
, µ2 =

λ1(1 − 4λ21)
48

.

similar asymptotic behaviour must hold for Af
reg, B

f
reg, so that

Af
∼ af ρ−1/2−λ1 (1 + iGµ − µ G2

+ · · · ), (30)
reg reg 1 2

10
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Bf
reg ∼ bfregρ

−1/2+λ1 (1 − iGµ1 + µ2G2
+ · · · ) (31)

as ρ → ∞. As we approach the turning point ρ = 2,

A ∼
af

(4(ρ − 2))1/4
, B ∼

bf
(4(ρ − 2))1/4

.

Matching with the turning point region gives

afi = bf,

which ensures that the extra contribution due to the reflection back from the boundary is exponentially small in the near field.
The boundary condition gives

iφ′

2(A + Af
reg)e

iφ2/G − iφ′

2(B + Bf
reg)e

−iφ2/G + G(A′
+ Af

reg
′
)eiφ2/G + G(B′

+ Bf
reg

′
)e−iφ2/G

=
iKG
2

(
(A + Af

reg)e
iφ2/G + (B + Bf

reg)e
−iφ2/G

)
.

qs. (28)–(29) show that A′
= O(A/K ) for large K , so that the term AK dominates A′ by a factor of K 2. Neglecting the third and fourth

erms on the left-hand side gives(
φ′

2 −
KG
2

)
(A + Af

reg)e
iφ2/G =

(
φ′

2 +
KG
2

)
(B + Bf

reg)e
−iφ2/G,

so that

e2iφ2/G
√
(KG)2 − 4 − KG√
(KG)2 − 4 + KG

=
B + Bf

reg

A + Af
reg
.

We now assume that KG is large so that we can use the asymptotic behaviour of Eqs. (28)–(31) to evaluate the right-hand side, giving

iaf + bfreg
af + afreg

∼ −
e2iφ2(KG)/G

(KG)2+2λ1

(
1 + iGµ1 − µ2G2

+ · · ·

1 − iGµ1 + µ2G2 + · · ·

)
= −S,

ay. Then

af ∼ −
bfreg + afregS

i + S
, bf ∼ −i

bfreg + afregS

i + S
. (32)

s KG → ∞ the behaviour of S (and therefore af and bf) crucially depends on whether λ1 is greater or less than −1. For λ1 > −1,
→ 0 as KG → ∞ and

af ∼ ibfreg, bf ∼ −bfreg. (33)

e will see that freg is such that bfreg → 0 as KG → ∞, so that the eigenfunctions corresponding to positive eigenvalues exactly satisfy
he boundary condition (i.e. satisfy the radiation condition) in that limit. On the other hand, for λ1 < −1, S → ∞ as KG → ∞ and

af ∼ −afreg, bf ∼ −iafreg. (34)

ow afreg is finite even as KG → ∞ so that the eigenfunctions corresponding to λ1 < −1 fail to satisfy the boundary condition even in
he limit KG → ∞ (this is true for λ1 = −1 also).

Now, for large KG, we can evaluate the boundary terms in Eq. (24) as

freg
df
dξ

− f
dfreg
dξ

⏐⏐⏐⏐
ρ=KG

= freg
dfb
dξ

− fb
dfreg
dξ

⏐⏐⏐⏐
ρ=KG

∼ G
(
Af
rege

iφ2/G + Bf
rege

−iφ2/G
) ( iφ′

2

G

(
Aeiφ2/G − Be−iφ2/G

)
+ A′eiφ2/G + B′e−iφ2/G

)
− G

(
Aeiφ2/G + Be−iφ2/G

) ( iφ′

2

G

(
Af
rege

iφ2/G − Bf
rege

−iφ2/G
)
+ Af

reg
′
eiφ2/G + Bf

reg
′
e−iφ2/G

)
∼ −2iφ′

2(A
f
regB − Bf

regA)

∼ −i(afreg(1 + iµ1G + · · · )bf(1 − iµ1G + · · · ) − bfreg(1 − iµG + · · · )af(1 + iµG + · · · ))

= −i(afregbf − bfregaf)
(
1 − (iµ1G − µ2G2

+ · · · )2
)
.

similar calculation on g shows that, when λ1 is real,

greg
dg
dξ

− g
dgreg
dξ

⏐⏐⏐⏐
ρ=KG

∼ −i(agregbg − bgregag)
(
1 − (−iµ1G − µ2G2

+ · · · )2
)
,

where

ag = i
agreg + bgregS∗

, bg = −
agreg + bgregS∗

,

−i + S∗ −i + S∗

11
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ag ∼ −agreg, bg ∼ −iagreg, λ1 > −1, (35)

ag ∼ ibgreg, bg ∼ −bgreg, λ1 < −1. (36)

A similar calculation of the boundary layer at −K gives, finally,[
freg

df
dξ

− f
dfreg
dξ

+ greg
dg
dξ

− g
dgreg
dξ

]K
−K

∼⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2ibfreg(a

f
reg + ibfreg)

(
1 − (iµ1G − µ2G2

+ · · · )2
)

− 2iagreg(−iagreg + bgreg)
(
1 − (−iµ1G − µ2G2

+ · · · )2
) if λ1 > −1,

− 2iafreg(−iafreg + bfreg)
(
1 − (iµ1G − µ2G2

+ · · · )2
)

+ 2ibgreg(a
g
reg + ibgreg)

(
1 − (−iµ1G − µ2G2

+ · · · )2
) if λ1 < −1.

(37)

We will see that agreg =
(
bfreg

)∗ and bgreg =
(
afreg

)∗ so that the right-hand side is real.

4.2. Eigenvalues

We now apply the general methodology to each of the eigenvalues in turn. Since the approximate eigenfunctions freg and greg are
given in terms of the steady state solution Vs, to identify the coefficients afreg, a

g
reg, bfreg and bgreg that appear in the boundary terms, it is

useful to recall the behaviour of Vs in the far field, which was determined in [46]. There we found that

Vs ∼ αeiφ2/G
∞∑
n=0

An(ρ)(iG)n + βe−iφ2/G
∞∑
n=0

An(ρ)(−iG)n, A0(ρ) =
21/2a0

(ρ2 − 4)1/2
, (38)

here

a0 = 121/4,

α =
eiπ/4e−π/2G

1 − iνe2iφ2(KG)/G
= eiπ/4e−π/2G

+
iνe2iφ2(KG)/Geiπ/4e−π/2G

1 − iνe2iφ2(KG)/G
,

β = −ναe2iφ2(KG)/G = −
νe2iφ2(KG)/Geiπ/4e−π/2G

1 − iνe2iφ2(KG)/G
,

ν ∼
KG −

√
(KG)2 − 4

KG +

√
(KG)2 − 4

∼
1

(KG)2
.

.2.1. The eigenvalue λreg = 2G
In terms of f and g the approximate eigenfunctions are

freg = iVs + G
(
Vs

σ
+ ξ

dVs

dξ
−

iGξ 2Vs

2

)
, greg = −iV ∗

s + G
(
V ∗
s

σ
+ ξ

dV ∗
s

dξ
+

iGξ 2V ∗
s

2

)
. (39)

hese satisfy the equations exactly so that Rf = Rg = 0. The perturbation to the eigenvalue arises solely because of the finiteness of the
omain, since freg and greg do not satisfy the boundary conditions. From the known expansion, Eq. (38) of the steady state solution, we
eed to identify the amplitude coefficients afreg, b

f
reg in the WKB expansion [cf. Eqs. (25)–(27)]. The easiest way to do this is to compare

he two representations of freg and greg as ρ → ∞. Comparing Eqs. (38)–(39) with Eqs. (30)–(31) as ρ → ∞ gives

afreg

(
1 − i

47G
48

)
∼ −i

√
2a0α

(
1 − i

95G
48

+ · · ·

)
,

bfreg

(
1 + i

47G
48

)
∼ −i

√
2a0β

(
1 − i

G
48

+ · · ·

)
,

since

µ1 =
(1 − 12λ21)

48
= −

47
48
.

Thus,

afreg ∼ −i
√
2a0α (1 − iG) , bfreg ∼ −i

√
2a0β (1 − iG) , agreg ∼

(
bfreg

)∗
, bgreg ∼

(
afreg

)∗
.

Then [
freg

df
dξ

− f
dfreg
dξ

+ greg
dg
dξ

− g
dgreg
dξ

]K
−K

∼ 2ibfreg(a
f
reg + ibfreg) − 2iagreg(−iagreg + bgreg)

∼ −8a2νe−π/GRe
(
(1 − iG)2e2iφ2(KG)/G

)
,
0

12
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Fig. 7. Comparison between numerical and the asymptotic predictions, for K = 20. The solid blue curve corresponds to Eq. (41), while the purple dots to the
numerical solution.

as ν → 0. Evaluating the right-hand side of Eq. (24) gives

iλexp

∫
∞

−∞

(g2
reg − f 2reg) dξ = iλexp

∫
∞

−∞

(greg − freg)(greg + freg) dξ

= −2Gλexp

∫
∞

−∞

(
−2Vs + G2ξ 2Vs

) (Vs

σ
+ ξ

dVs

dξ

)
dξ

= −2Gλexp

∫
∞

−∞

−2V 2
s

(
1
σ

−
1
2

)
+ G2ξ 2V 2

s

(
1
σ

−
3
2

)
dξ,

ince ∫
∞

−∞

ξ
dVs

dξ
Vs dξ = −

1
2

∫
∞

−∞

V 2
s dξ,

∫
∞

−∞

ξ 3
dVs

dξ
Vs dξ = −

3
2

∫
∞

−∞

ξ 2V 2
s dξ .

he dominant contribution to these integrals is from the near field [46]. Using the asymptotic expansion of Vs in powers of G [46] gives

∫
∞

−∞

V 2
s dξ =

√
3π
2

+

√
3π3G2

128
+ O(G4),

∫
∞

−∞

ξ 2V 2
s dξ =

√
3π3

32
+ O(G2), (40)

so that Eq. (24) becomes

−8a20νe
−π/GRe

(
(1 − iG)2e2iφ2(KG)/G

)
= −2

√
3Gπλexp

(
−

(
1
σ

−
1
2

)
+ G2 π

2

32

(
1
σ

−
3
2

))
∼

√
3G3π3λexp

16
,

ince σ is exponentially close to 2. Thus, the correction to the eigenvalue is

λexp ∼ −
256νe−π/G

G3π3 Re
(
(1 − iG)2e2iφ2(KG)/G

)
. (41)

A comparison between Eq. (41) and the numerically calculated eigenvalue for K = 20 is shown in Fig. 7. This shows that our oscillatory
correction excellently captures the correction due to the finiteness of the domain around the dominant λ = 2G.
reg

13
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.2.2. The eigenvalue λreg = G
In terms of f and g , the approximate eigenfunctions are

freg =
dVs

dξ
−

iGξVs

2
, greg =

dV ∗
s

dξ
+

iGξV ∗
s

2
. (42)

Again these satisfy the equations exactly, so that Rf = Rg = 0, and the perturbation to the eigenvalue arises solely because of the
finiteness of the domain.

Comparing Eqs. (42) with Eqs. (30)–(31) as ρ → ∞ gives

afreg

(
1 − i

11G
48

)
∼ −i

√
2a0α

(
1 − i

23G
48

+ · · ·

)
, bfreg

(
1 + i

11G
48

)
∼ −i

√
2a0β

(
1 − i

G
48

+ · · ·

)
,

ince

µ1 =
(1 − 12λ21)

48
= −

11
48
.

Thus

afreg ∼ −i
√
2a0α

(
1 −

iG
4

)
, bfreg ∼ −i

√
2a0β

(
1 −

iG
4

)
, agreg ∼ bfreg

∗
, bgreg ∼ afreg

∗
.

hen, [
freg

df
dξ

− f
dfreg
dξ

+ greg
dg
dξ

− g
dgreg
dξ

]K
−K

∼ −8a20νe
−π/GRe

(
(1 − iG/4)2e2iφ2(KG)/G

)
.

valuating the right-hand side of Eq. (24) gives

iλexp

∫
∞

−∞

(g2
reg − f 2reg) dξ = −2Gλexp

∫
∞

−∞

ξVs
dVs

dξ
dξ = Gλexp

∫
∞

−∞

V 2
s dξ .

sing Eq. (40) gives

−8a20νe
−π/GRe

(
(1 − iG/4)2e2iφ2(KG)/G

)
= Gλexp

√
3π
2

,

i.e.,

λexp ∼ −
32νe−π/G

Gπ
Re
(
(1 − iG/4)2e2iφ2(KG)/G

)
. (43)

n this case, a comparison between Eq. (43) and the numerically calculated eigenvalue for K = 20 is shown in Fig. 8. Once again, very
ood agreement is observed with the numerical finite-domain-induced oscillations, even for values of G that are quite high (i.e., near
.5).

.2.3. The eigenvalue λreg = −2G
In terms of f and g the approximate eigenfunctions are

freg = iVs − G
(
Vs

σ
+ ξ

dVs

dξ
+

iGξ 2Vs

2

)
, greg = −iV ∗

s − G
(
V ∗
s

σ
+ ξ

dV ∗
s

dξ
−

iGξ 2V ∗
s

2

)
. (44)

his time, the approximate eigenfunctions do not satisfy the equation exactly, but with an exponentially small residual. We find

Rf = −4iG2Vs

(
1
2

−
1
σ

)
, Rg = 4iG2V ∗

s

(
1
2

−
1
σ

)
,

o that∫
∞

−∞

Rffreg + Rggreg dξ = 4G2
(
1
2

−
1
σ

)∫
∞

−∞

(
2V 2

s − G2ξ 2V 2
s

)
dξ

= 4G2
(
1
2

−
1
σ

)(
√
3π +

√
3π3G2

64
−

√
3π3G2

32
+ · · ·

)

= 4G2
(
1
2

−
1
σ

)(
√
3π −

√
3π3G2

64
+ · · ·

)
.

nfortunately, for λreg = −2G we will find that we will need to know more than the leading-order behaviour of afreg and bfreg in order
o find the leading-order approximation to λexp. Comparing Eqs. (44) with Eqs. (30)–(31) at infinity, including higher-order terms in
both expansions (see [46]), gives

afreg
(
1 + iµ1G − µ2G2

− iµ3G3)
∼ −i

√
2a0κα

(
1 +

iG
48

+
2021iG3

1658880
+ · · ·

)
,

bfreg
(
1 − iµ1G + µ2G2

+ iµ3G3)
∼ −iβ

√
2a0κ

(
1 + i

95G
−

17G2
+

23899iG3
+ · · ·

)
,

48 24 1658880
14
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S

Fig. 8. Comparison between numerical and the asymptotic predictions, for K = 20. The solid blue curve corresponds to Eq. (43), while the purple dots pertain to
numerical solution.

where

κ ∼ 1 −

(
1 + 12π2

4608

)
G2

+ 0.0152G4
+ · · · .

ince

µ1 =
(1 − 12λ21)

48
= −

47
48
, µ2 =

λ1(1 − 4λ21)
48

=
5
8
, µ3 = −

450581
1658880

,

we find

afreg ∼ −iα
√
2a0κ

(
1 + iG −

17G2

48
+

iG3

128
+ · · ·

)
,

bfreg ∼ −iβ
√
2a0κ

(
1 + iG −

17G2

48
+

iG3

128
+ · · ·

)
as well as

agreg =
(
bfreg

)∗
, bgreg =

(
afreg

)∗
.

Then, as KG → ∞,[
freg

df
dξ

− f
dfreg
dξ

+ greg
dg
dξ

− g
dgreg
dξ

]K
−K

∼ −2iafreg(−iafreg)
(
1 − (iµ1G − µ2G2

+ · · · )2
)
+ 2ibgreg(ib

g
reg)

(
1 − (−iµ1G − µ2G2

+ · · · )2
)

∼ 8
√
3ie−π/Gκ2

(
1 + iG −

17G2

48
+

iG3

128
+ · · ·

)2 (
1 − (iµ1G − µ2G2

+ · · · )2
)

− 8
√
3ie−π/Gκ2

(
1 − iG −

17G2

48
−

iG3

128
+ · · ·

)2 (
1 − (−iµ1G − µ2G2

+ · · · )2
)

∼ −32
√
3 e−π/Gκ2

(
G +

G3

2304
+ · · ·

)
.

15
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Fig. 9. Asymptotic prediction (46) (blue) compared to numerical solution (purple) for the case of the eigenvalue with λreg = −2G.

valuating the right-hand side of Eq. (24) gives

iλexp

∫
∞

−∞

(g2
reg − f 2reg) dξ = 2Gλexp

∫
∞

−∞

(
−2Vs + G2ξ 2Vs

) (Vs

σ
+ ξ

dVs

dξ

)
dξ

= 2Gλexp

∫
∞

−∞

−2V 2
s

(
1
σ

−
1
2

)
+ G2ξ 2V 2

s

(
1
σ

−
3
2

)
dξ,

fter integrating by parts. Using (40) we find that (24) becomes

−32
√
3 e−π/Gκ2G

(
1 +

G2

2304
+ · · ·

)
+ 4G2

(
1
2

−
1
σ

)(
√
3π −

√
3π3G2

64

)

= 2
√
3Gπλexp

(
−

(
1
σ

−
1
2

)
+ G2 π

2

32

(
1
σ

−
3
2

))
∼ −

2
√
3G3π3λexp

32
. (45)

Now, since (for ν ∼ 0) the relation between σ and G is (see [46])

G
(
1
2

−
1
σ

)(√
3π
4

+

√
3π3G2

256
+ · · ·

)
= 2

√
3κ2e−π/G,

we find the leading terms on the left-hand side of (45) vanish. This is the reason we needed to include the higher-order corrections;
these give the correction to the eigenvalue as

λexp ∼ G
(
1 −

2
σ

)(
1 +

1
72π2

)
+ · · · . (46)

A comparison between (46) and the numerically calculated eigenvalue for K = 20 is shown in Fig. 9. Note that although we derived
46) in the limit K → ∞, ν → 0, when we plot it in Fig. 9 we use the finite-domain approximation to σ as a function of G. We can
ee that for this eigenvalue we do not purely observe the oscillatory effect induced by the finite nature of the domain as in the two
revious cases. Rather, the relevant correction incorporates also the deviation from the exact scaling symmetry (and hence from the
ymmetry of the eigenvalue pair at ±2G) which provides the monotonic portion of the relevant correction.
16
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A
i
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.2.4. The eigenvalue λreg = −G
In terms of f and g , the approximate eigenfunctions are

freg =
dVs

dξ
+

iGξVs

2
, greg =

dV ∗
s

dξ
−

iGξV ∗
s

2
. (47)

These satisfy the equations exactly, so that Rf = Rg = 0. However, they do not satisfy the correct radiation condition at infinity. In the
finite domain context, the perturbation of the eigenvalue arises from the boundary terms in Eq. (24).

Comparing Eq. (47) with Eqs. (30)–(31) as ρ → ∞ gives

afreg

(
1 − i

11G
48

)
∼ i

√
2a0α

(
1 + i

G
48

+ · · ·

)
, bfreg

(
1 + i

11G
48

)
∼ i

√
2a0β

(
1 + i

23G
48

+ · · ·

)
,

ince

µ1 =
(1 − 12λ21)

48
= −

11
48
.

Thus,

afreg ∼ i
√
2a0α

(
1 +

iG
4

)
, bfreg ∼ i

√
2a0β

(
1 +

iG
4

)
, agreg ∼

(
bfreg

)∗
, bgreg ∼

(
afreg

)∗
.

When λ1 = −1, S → e2iφ2/G as ν → 0, so we need to use the full expressions

af ∼ −
bfreg + afregS

i + S
, bf ∼ −i

bfreg + afregS

i + S
, (48)

or af and bf. Then[
freg

df
dξ

− f
dfreg
dξ

+ greg
dg
dξ

− g
dgreg
dξ

]K
−K

∼ Re
(
−4i(afregbf − bfregaf)

(
1 + µ2

1G
2
+ · · ·

))
∼ Re

(
−

8ia20(1 + iG/4)2

i + S
(iα − β)(Sα + β)

(
1 + µ2

1G
2
+ · · ·

))
∼ Re

(
8ia20(1 + iG/4)2

i + S
Se−π/G (1 + µ2

1G
2
+ · · ·

))
∼ Re

(
16i

√
3(1 + iG/4)2

1 + ie−2iφ2/G
e−π/G

)
.

Since the integrals in Eq. (23) are dominated by the near field, where Vs is real, using the near-field solution in Eq. (23) gives

iλexp

∫
∞

−∞

(g2
reg − f 2reg) dξ = iλexp

∫
∞

−∞

(greg − freg)(greg + freg) dξ

= 2Gλexp

∫
∞

−∞

ξVs
dVs

dξ
dξ

= −Gλexp

∫
∞

−∞

V 2
s dξ ∼ −Gλexp

√
3π
2

.

hus the correction to the eigenvalue is

λexp ∼ −Re
(

32i(1 + iG/4)2

πG(1 + ie−2iφ2/G)
e−π/G

)
. (49)

comparison between Eq. (49) and the numerically calculated eigenvalue for K = 20 is shown in Fig. 10. A key feature to observe here
s the presence of vertical asymptotes in this exponentially small (in G) correction. These represent the reason for the jumps observed
n Fig. 10. Indeed, it is relevant to note that a particularly careful observation of the orange line in Fig. 6 will reveal the outcome of
these jumps to the particularly astute reader, as can be discerned, e.g., near the outermost disconnect of the relevant numerical line.
Despite the fact that our theoretical approximation can no longer be considered accurate when λexp becomes large, we can still see
that it very accurately captures our numerical results of Fig. 10.

We see from the numerical results that there is a very thin transition region in the vicinity of each asymptote in which the eigenvalue
perturbation switches from large and positive to large and negative. We do not attempt to capture this transition region, which requires
a detailed calculation in the vicinity of S = −i.

4.2.5. The eigenvalues near λ = 0
In terms of f and g the approximate eigenfunctions are

freg = iVs, greg = −iV ∗

s . (50)

In fact, these satisfy the equations and boundary conditions exactly, so that λ = 0 is an exact eigenvalue even for a finite domain.
However, as we have seen numerically, there is a second eigenvalue which is exponentially close to zero, which we now approximate.

This analysis does not fit into the general framework of Section 4, but follows a similar methodology, which we now outline.

17
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Fig. 10. Asymptotic prediction [cf. Eq. (49)] (blue) compared to numerical solution (purple), for the eigenvalues with λreg = −G and for K = 20.

We write

f = iVs + λexp1f1 + fexp, (51)

g = −iV ∗

s + λexp1g1 + gexp, (52)

λ = λexp1 + λexp2, (53)

here λexp2 ≪ λexp1 and

d2f1
dξ 2

+ σ |Vs|
2σ−2(V ∗

s )
2g1 + (σ + 1)|Vs|

2σ f1 − f1 −
i(σ − 2)G

2σ
f1 +

G2ξ 2

4
f1 = V ∗

s , (54)

d2g1
dξ 2

+ σ |Vs|
2σ−2(Vs)2f1 + (σ + 1)|Vs|

2σ g1 − g1 +
i(σ − 2)G

2σ
g1 +

G2ξ 2

4
g1 = Vs, (55)

with

df1
dξ

=
iGξ f1
2

,
dg1
dξ

= −
iGξg1
2

at ξ = K .

ote that the linear operator here is slightly different from (but exponentially close to) that of Eqs. (19)–(20), and is chosen so that the
olvability condition is exactly satisfied, so that we can be sure that f1, g1 exist: multiplying Eq. (54) by Vs and Eq. (55) by −V ∗

s adding
and integrating gives∫ K

−K

(
d2f1
dξ 2

+ σ |Vs|
2σ−2(V ∗

s )
2g1 + (σ + 1)|Vs|

2σ f1 − f1 −
i(σ − 2)G

2σ
f1 +

G2ξ 2

4
f1

)
Vs dξ

−

∫ K

−K

(
d2g1
dξ 2

+ σ |Vs|
2σ−2V 2

s f1 + (σ + 1)|Vs|
2σ g1 − g1 +

i(σ − 2)G
2σ

g1 +
G2ξ 2

4
g1

)
V ∗

s dξ

=

∫ K

−K

(
d2Vs

dξ 2
+ |Vs|

2σVs − Vs −
i(σ − 2)G

2σ
Vs +

G2ξ 2

4
Vs

)
f1 dξ

−

∫ K

−K

(
d2V ∗

s

dξ 2
+ |Vs|

2σV ∗

s − V ∗

s +
i(σ − 2)G

2σ
V ∗

s +
G2ξ 2

4
V ∗

s

)
g1 dξ

+

[
Vs

df1
dξ

− f1
dVs

dξ
− V ∗

s
dg1
dξ

+ g1
dV ∗

s

dξ

]K
−K

=

[
Vs

iGξ f1
− f1

iGξVs
− V ∗

s
(−iGξg1)

+ g1
(−iGξV ∗

s )
]K

= 0.

2 2 2 2

−K
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ow, substituting Eqs. (51)–(53) into Eqs. (19)–(20) gives

d2fexp
dξ 2

+ σ |Vs|
2σ−2V 2

s gexp + (σ + 1)|Vs|
2σ fexp − fexp −

i(σ − 2)G
2σ

fexp +
G2ξ 2

4
fexp

= λexp1σ |Vs|
2σ−2((V ∗

s )
2
− V 2

s )g1 + λexp1(Vs − V ∗

s ) − iλexp21f1 + λexp2Vs,

d2gexp
dξ 2

+ σ |Vs|
2σ−2(V ∗

s )
2fexp + (σ + 1)|Vs|

2σ gexp − gexp +
i(σ − 2)G

2σ
gexp +

G2ξ 2

4
gexp

= λexp1σ |Vs|
2σ−2(V 2

s − (V ∗

s )
2)f1 + λexp1(V

∗

s − Vs) + iλexp21g1 + λexp2V
∗

s ,

here we have neglected triply-exponentially-small terms involving λexp2λexp1. Multiplying by iVs, −iV ∗
s , adding and integrating the

HS is triply exponentially small. After simplifying, and neglecting the triply-exponentially-small term (V 2
s − (V ∗

s )
2)λexp2, the RHS gives∫

∞

−∞

iλexp1σ |Vs|
2σ−2((V ∗

s )
2
− V 2

s )(Vsg1 + V ∗

s f1) + iλexp1(V
2
s − (V ∗

s )
2) + λexp

2
1(Vsf1 + V ∗

s g1) dξ ∼ 0. (56)

his is the equation which will determine the eigenvalue λexp1; note that it is quadratic, and λexp1 = 0 is a solution as expected. In the
uter region f1 and g1 are exponentially small. Thus the integrals involving f1 and g1 are dominated by the inner region. In the inner
egion f1 = g1+ exponentially small terms, and

d2f1
dξ 2

+ 5V 4
s f1 − f1 +

G2ξ 2

4
f1 = Vs.

We find

f1 =
1
2

(
Vs

2
+ ξ

dVs

dξ

)
+ G2f12,

here, up to exponentially small terms,

d2f12
dξ 2

+ 5V 4
s f12 − f12 +

G2ξ 2

4
f12 =

1
2
ξ 2Vs.

nfortunately we need to find this correction term f12 because the leading-order term will integrate to zero. Expanding in powers of
, we find f12 ∼ −2V1 where Vs ∼ V0 + G2V1 + · · · (see [46]), so that∫

∞

−∞

(Vsf1 + V ∗

s g1) dξ ∼

∫
∞

−∞

Vs

(
Vs

2
+ ξ

dVs

dξ
− 4G2V1

)
dξ ∼ −4G2

∫
∞

−∞

V0V1 dξ = −
G2

√
3π3

64
.

he dominant contribution to the integral of (V 2
s −(V ∗

s )
2) comes from the outer region before the turning point, in which, with ξ = ρ/G,

Vs ∼
21/2a0

(4 − ρ2)1/4
(eφ(ρ)/G + γ e−φ(ρ)/G), φ = −

∫ ρ

0

(
1 −

ρ̄2

4

)1/2

dρ̄, γ =
ie−π/G

2
,

see [46]), so that

i
∫

∞

∞

(V 2
s − (V ∗

s )
2) dξ ∼

2i
G

∫ 2

0
(Vs + V ∗

s )(Vs − V ∗

s ) dρ ∼
2i
G

∫ 2

0
2
21/2a0eφ(ρ)/G

(4 − ρ2)1/4
2
21/2a0γ e−φ(ρ)/G

(4 − ρ2)1/4
dρ

∼ −
16

√
3e−π/G

G

∫ 2

0

dρ
(4 − ρ2)1/2

= −
8
√
3π e−π/G

G
.

he final term in Eq. (56) is subdominant, so that, to leading order, Eq. (56) gives

λexp1 = −
8
√
3πe−π/G

G
64

G2
√
3π3

= −
512 e−π/G

G3π2 . (57)

n Appendix D, we show that the asymptotic behaviour (57) can be determined much more simply from the reduced system derived
n [46], which describes the slow evolution of G in the vicinity of the bifurcation.

Fig. 11 shows the asymptotic prediction Eq. (57) against a direct numerical simulation. For this eigenvalue the convergence is slower
s G → 0 so that the leading-order approximation is not as close to the numerical solution. This is because the higher-order corrections
re significant when estimating the integrals in Eq. (56). To demonstrate this we also show in Fig. 11 the approximation

λexp1 ∼ −i

∫
∞

−∞
(Vs − (V ∗

s )
2) dξ∫

∞

−∞
(Vsf1 − V ∗

s g1) dξ
(58)

ith a numerical solution for Vs, f1 and g1, which converges more quickly to the numerical value. It is clear that the latter expression
f Eq. (58) captures the dependence on G more accurately than the leading-order correction of the former.

.3. Continuous spectrum

Finally we consider the problem of identifying the continuous spectrum asymptotically as G → 0. In the far field with ρ = Gξ ,
neglecting the exponentially small terms |Vs|

2σ and (σ − 2), we have

iλf + G2 d
2f

− f +
ρ2

f = 0, −iλg + G2 d
2g

− g +
ρ2

g = 0, (59)

dρ2 4 dρ2 4
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Fig. 11. Asymptotic prediction [cf. Eq. (57)] (blue) compared to numerical solution (purple), for the eigenvalue in the vicinity of λreg = 0, for K = 20. Also shown
green) is the approximation (58).

long with the boundary conditions

G
df
dρ

=
iρf
2
, G

dg
dρ

= −
iρg
2

at ρ = ±KG.

et us start by imagining that these equations hold throughout the region [−KG, KG], before returning to investigate the impact of the
nner region near ρ = 0.

Since the equations for f and g decouple (because we have ignored the inner region), we can treat them separately, and each will
ive a set of eigenvalues. In fact, we see that for any eigenfunction–eigenvalue pair (f , λ) the conjugates (f ∗, λ∗) satisfy the equations
nd boundary conditions for g . We therefore start by focusing on the equation for f .
Using the WKB expansion

f = Af eiφf /G + Bf e−iφf /G, (60)

here

Af =

∞∑
n=0

Afn(ρ)(iG)n, Bf =

∞∑
n=0

Bfn(ρ)(−iG)n,

iλ− (φ′

f )
2
− 1 +

ρ2

4
= 0,

2iφ′

f A
′

f 0 + iφ′′

f Af 0 = 0, −2iφ′

f B
′

f 0 − iφ′′

f Bf 0 = 0,

we find

φf =

∫ ρ

0

(
ρ̄2

4
− 1 + iλ

)1/2

dρ̄ =
ρ

4

√
ρ2 − 4 + 4iλ+ (−1 + iλ) log

(
ρ +

√
ρ2 − 4 + 4iλ

√
−4 + 4iλ

)
,

ith

Af 0 = af

(
ρ2

4
− 1 + iλ

)−1/4

, Bf 0 = bf

(
ρ2

4
− 1 + iλ

)−1/4

.

Note that this expansion differs from that performed previously in that we have included λ at leading order rather than assuming that
λ = O(G).

There are two turning points, at

ρ = ρf± = ±2(1 − iλ)1/2.

In order to define uniquely φf let us put branch cuts from these turning points to ±i∞ away from the real axis, as indicated in Fig. 12
for an arbitrary but representative value of λ.
20
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Fig. 12. Branch points and branch cuts in φf when λ = −0.1 − 1.1i. The contour shading corresponds to Im(φf ).

Fig. 13. Stokes lines (green) and anti-Stokes lines (red). The contour shading corresponds to Im(φf ). The path along the real axis is indicated, as well as the two
oints at which Stokes lines are crossed.

To impose the boundary conditions on Eq. (60) we need to take account of the change in the coefficients af and bf due to Stokes
henomenon (see e.g. [49,50]). In Fig. 13 we illustrate the Stokes lines associated with each of the turning points for various values of
. Let us calculate the change in the coefficients af and bf as we cross Stokes lines when moving from ρ = −KG to ρ = KG. We suppose
hat Re(λ) < 0 so that ρ+ is in the first quadrant. Although the topology of the anti-Stokes lines changes as Im(λ) varies, as we move
long the real axis from minus infinity to infinity we always cross one Stokes line from each turning point. Across these Stokes lines
he dominant WKB approximation will turn on a multiple of the subdominant WKB approximation.

The first Stokes line we cross, indicated by a ‘‘1’’ in Fig. 13, is that which moves up from ρf−, on which Im(φf (ρ)) > Im(φf (ρf−)).
hus e−iφf /G is the exponentially dominant term, and the coefficient af changes by −ibf e−2iφf (ρf−)/G. The second Stokes line we cross,
ndicated by a ‘‘2’’ in Fig. 13, is that which moves down from ρf+, on which Im(φf (ρ)) < Im(φf (ρf+)). This on this Stokes line eiφf /G is
he exponentially dominant term, and the coefficient bf changes by iaf e2iφf (ρf+)/G. Thus, together, the change in the coefficient is

(a−∞

f , b−∞

f ) → (a−∞

f − ib−∞

f e−2iφf (ρf−)/G, b−∞

f )

→ (a−∞
− ib−∞e−2iφf (ρf−)/G, b−∞

+ i(a−∞
− ib−∞e−2iφf (ρf−)/G)e2iφf (ρf+)/G),
f f f f f

21



S.J. Chapman, M. Kavousanakis, E.G. Charalampidis et al. Physica D 439 (2022) 133396

s

T

T

N

N

K

F
Q
[
E
n

w

T
a

r
s

o that

a∞

f = a−∞

f − ib−∞

f e−2iφf (ρf−)/G,

b∞

f = b−∞

f + ia−∞

f e2iφf (ρf+)/G
+ b−∞

f e−2iφf (ρf−)/Ge2iφf (ρf+)/G.

he boundary condition at ρ = KG gives, at leading order,

e2iφf (KG)/G
√
(KG)2 − 4 + 4iλ− KG√
(KG)2 − 4 + 4iλ+ KG

=
Bf 0(KG)
Af 0(KG)

=
b∞

f

a∞

f
.

he boundary condition at ρ = −KG gives, at leading order,

e2iφf (−KG)/G

√
(KG)2 − 4 + 4iλ+ KG√
(KG)2 − 4 + 4iλ− KG

=
Bf 0(−KG)
Af 0(−KG)

=
b−∞

f

a−∞

f
.

oting that φf is odd, if we let

Qf = e2iφf (KG)/G
√
(KG)2 − 4 + 4iλ− KG√
(KG)2 − 4 + 4iλ+ KG

, (61)

then we have the following homogeneous system of four equations in the four unknowns a∞

f , b∞

f , a−∞

f , b−∞

f ,

b∞

f = Qf a∞

f ,

a−∞

f = Qf b−∞

f ,

a∞

f = a−∞

f − ib−∞

f e−2iφf (ρf−)/G,

b∞

f = b−∞

f + ia−∞

f e2iφf (ρf+)/G
+ b−∞

f e−2iφf (ρf−)/Ge2iφf (ρf+)/G.

oting that φf (ρf+) = −φf (ρf−) = −(λ+ i)π/2, the condition for a non-trivial solution is

(Qf − ie(1−iλ)π/G)2 = 1. (62)

For finite K , Eq. (62) gives a discrete set of eigenvalues with the separation between neighbouring eigenvalues becoming smaller as
→ ∞, approximating the continuous spectrum. For large K ,

Qf ∼ eiK
2G/2e−i(1+iλ)/G(−1 + iλ)1+(i+λ)/G(KG)−2−2(i+λ)/G.

or Im(λ) < 0 we need |Qf | ∼ 1 as G → 0 to get a balance in Eq. (62), which requires Re(λ) ∼ −G. For Im(λ) > 0 we need
f ∼ ie(1−iλ)π/G as G → 0 to get a balance in Eq. (62), which also requires Re(λ) ∼ −G. Thus the continuous spectrum of the problem
cf. Eq. (59)] lies close to (but not exactly on) the line Re(λ) = −G. The calculation for g is similar and gives the same equation as
q. (62) with λ → λ∗ as expected. In Fig. 14 we compare the predictions of Eq. (62) (recalling the definition of Eq. (61)) with the
umerical evaluation of the eigenvalues of Eq. (59). A very good agreement is found between the latter (identified as black dots) and

the former (identified via the intersection of the contours of the blue and red curves associated with the real and the imaginary parts
of Eq. (62)).

We now consider how the picture above changes when we include the inner region. Then, in addition to the Stokes lines already
considered, there is a change in the coefficients a and b as we pass from ρ = 0− to ρ = 0+. The connection formula comes from
matching the solution in the inner region with the far field expansions on each side. Note that f and g are coupled in the inner region,
so that we no longer have two separate eigenvalue problems. Specifically, at leading order in the inner region Vs is real and

iλf +
d2f
dξ 2

+ 2V 4
s g + 3V 4

s f − f = 0, (63)

−iλg +
d2g
dξ 2

+ 2V 4
s f + 3V 4

s g − g = 0, (64)

ith

f ∼ a0+f
eiφf (0)/G

(−1 + iλ)1/4
e(1−iλ)1/2ξ

+ b0+f
eiφf (0)/G

(−1 + iλ)1/4
e−(1−iλ)1/2ξ as ξ → ∞,

g ∼ a0+g
eiφg (0)/G

(−1 − iλ)1/4
e−(1+iλ)1/2ξ

+ b0+g
eiφg (0)/G

(−1 − iλ)1/4
e(1+iλ)1/2ξ as ξ → ∞,

f ∼ a0−f
eiφf (0)/G

(−1 + iλ)1/4
e(1−iλ)1/2ξ

+ b0−f
eiφf (0)/G

(−1 + iλ)1/4
e−(1−iλ)1/2ξ as ξ → −∞,

g ∼ a0−g
eiφg (0)/G

(−1 − iλ)1/4
e−(1+iλ)1/2ξ

+ b0−g
eiφg (0)/G

(−1 − iλ)1/4
e(1+iλ)1/2ξ as ξ → −∞.

he solution gives connection formulae between the incoming coefficients a0−f , b0−f , a0−g and b0−g and the outgoing coefficients a0+f , b0+f ,
0+
g and b0+g . Unfortunately it is not possible to determine these formulae analytically.
However, when λ is large the first two terms in Eqs. (63) and (64) dominate, and the solution is of WKB form even in the inner

egion. The phase factor is trivial, with no turning points, so that there is no change in coefficient. Thus for large λ the eigenvalues
hould be well approximated by Eq. (62).
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t
a

Fig. 14. Eigenvalues for the problem of Eq. (59) for f (black points), for G = 0.2. The contours show the asymptotic prediction of Eq. (62). The red curves correspond
o Im(Qf − ie(1−iλ)π/G) = 0, while the blue curves correspond to Re(Qf − ie(1−iλ)π/G) ∈ {−1, 1}. The eigenvalues should lie at the intersections of these contours. The
pproximation is very good, apart from near λ = −i, at which point the two turning points ρf± = ±2(1 − iλ)1/2 coalesce.

On the other hand when λ = 0 we find by solving Eqs. (63)–(64) as a power series in G that

a0+f ∼ a0−g , b0+f ∼ −b0−g , b0+g ∼ b0−f , a0+g ∼ −a0−f ,

so that there must be some mixing of the coefficients in f and g for small λ. Identifying the details of the relevant spectrum at small
λ remains a challenging question for future study.

5. Conclusions & future challenges

In the present work, we have revisited the topic of stability of solutions that are self-similarly blowing up. We followed up
on the earlier work of [45] with substantially improved numerical means and techniques, and also added a systematic theoretical
understanding, building also on important works in the intermediate time interval (such as the key contributions of [43,44]). This has
allowed us to obtain a systematic understanding of the 3 eigenvalue pairs of the Hamiltonian system at the critical point of σd = 2
and its continuous spectrum. We advocated the relevance of exploring the self-similar solutions in the co-exploding frame, by analogy
with the study of travelling solutions in a co-travelling frame, as per the standard dynamical systems perspective [41,42]. We have
also explained systematically why, despite the presence of positive real eigenvalues, the relevant self-similar solution is not genuinely
unstable but only subject to effectively neutral eigendirections. To corroborate the relevant results, we performed direct numerical
simulations in the renormalized frame, verifying (in line with earlier computations) the attractivity of the relevant waveforms.

Naturally, this analysis raises a number of interesting questions for further research. Understanding the dynamics (and the potential
role of self-similarity) slightly below the critical point σd = 2 is an example of this type. Moreover, we have argued that the supercritical
solutions considered herein are effectively stable, upon explaining the origin of their real eigendirections. Yet, it is well-known that
there are other problems for which multiple, higher-order collapsing solutions branches exist, some among which are dynamically
unstable: a notable example of this sort is, e.g., the complex Ginzburg–Landau equation [51]. It is then of particular interest to explore
such waveforms via the type of spectral analysis proposed herein, and corroborate in a systematic fashion their stability or instability, as
well as leverage such spectral information in an attempt to understand the corresponding direct numerical simulations of the relevant
system in the renormalized frame. In a different vein, there are other important dispersive PDE models that feature similar bifurcations
towards the emergence of collapsing solutions, such as the generalized KdV problem; for a recent exposition of the collapsing solutions
and asymptotics thereof, see, e.g., [40]. It is then of particular interest to adapt the methodology proposed herein to the latter problem
to explore the potential generality of the eigenvalue phenomenology identified in the present work. Such topics are presently under
active investigation and relevant results will be reported in future publications.
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ppendix A. An instructive ODE example

Consider, arguably, one of the simplest self-similar problems, namely the ODE:

ẋ = xp, x(t) ∈ R. (A.1)

In order to leverage the self-similar frame to analyse this problem, we seek to absorb the temporal dependence through a transformation
to go to a frame where the solution appears steady. In this (ODE) case, it is not a steady spatial profile, as in the PDE example studied
throughout this work, but instead a ‘‘number’’. We thus use x(t) = A(τ )x̄ with τ = τ (t) corresponding to a rescaling of time (to be
etermined), and obtain the steady-state problem x̄ = x̄p leading to x̄ = 0 or x̄ = 1. Then, in accordance to general self-similarity
rinciples [52,53], we select

Aτ
A

= 1 ⇒ A = A0eτ ; τt = Ap−1
⇒ A(t) =

[
1

(p − 1)(t⋆ − t)

] 1
p−1

= A0

[
1

(t⋆ − t)

] 1
p−1

. (A.2)

In Eq. (A.2), t⋆ denotes the blow-up time, i.e., x(t) → ∞ as t ↗ t⋆. In the self-similar frame, we have indeed devised a much more
elaborate way to obtain a simple ODE result. The innate advantage of the method, however, is that in this frame that ‘‘explodes’’ with
the solution it is possible to perform a stability analysis using:

x(t) = A(τ ) [x̄ + ϵy(τ )] ⇒ yτ = (p − 1)y, ϵ ≪ 1, (A.3)

assuming that we keep the leading order (O(ϵ)) terms in y. We thus observe that the self-similar frame features a single eigenvalue
(indeed, since it is an ODE rather than a PDE) of λ = p − 1. For collapsing solutions with p > 1, this is an eigenvalue associated with
growth since λ > 0.

A natural question then is whether this is a true instability. The perturbation A(τ )ϵy can be rewritten as ϵepτ ∼ ϵ(t⋆ − t)p/(1−p). But
then, considering a shift in the collapse time t⋆ → t⋆ + ϵ̃δt (ϵ̃ ≪ 1), and substituting it in the original solution, we obtain:

x(t) → x̃(t) =

[
1

p − 1

] 1
p−1

[
1

t⋆ + ϵ̃δt − t

] 1
p−1

= A0

[
1

t⋆ − t

] 1
p−1

−

(
ϵ̃A0δt
p − 1

)
(t⋆ − t)

p
1−p . (A.4)

Namely, the positive eigenvalue does not correspond to a true instability but rather is associated with the translational invariance of
the ODE with respect to the shifting of the collapse time.

Appendix B. Continuous spectra obtained from the rescaled NLS equation

Fig. B.1 depicts numerical spectra of the rescaled NLS equation obtained for different σ values. One can observe the alignment of
eigenvalues on a nearly vertical line of continuous spectrum, with real part, λr = −G. As we move away from the critical value, σ = 2,
the distortions from the vertical line become progressively larger.

Appendix C. Effect of size domain on the numerical computations

Fig. C.1 presents a comparison of the computed spectra of the rescaled NLS equation for size domain K = 20 and K = 40.
Even by doubling the size of the computational domain, the alignment of eigenvalues on a ‘‘vertical’’ line of the continuous spectrum
remains practically unchanged (although slightly closer to the line Re(λ) = −G), and the real eigenvalues deviations are also visually
indistinguishable.

Appendix D. Stability of the reduced system

In [46], asymptotic solutions of Eq. (12) were constructed which result in the following reduced system for the growth rate G and
an associated variable β , which can be thought of as the normal form associated with the bifurcation:

dG
dτ

= β − G2, (D.1)

c0
dβ
dτ

=
(σ − 2)

2σ
b0G − A2

1 sign(G)e
−π/|G|, (D.2)

here A1, c0 and b0 are given by (10). This is a slow-fast system with fast Eq. (D.1) and slow Eq. (D.2); Eq. (9) corresponds to the
uasistatic approximation β = G2.
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σ

Fig. B.1. Continuous spectra obtained from the numerical solution of the rescaled NLS equation with K = 20 and σ values close to the critical value, σ = 2:
= 2 + 10−9 (top left panel) and σ = 2 + 10−6 (top right panel), as well as σ = 2.001 (bottom left panel), σ = 2.05 (bottom right panel).

Fig. C.1. Comparison of spectra obtained from the numerical solution of the rescaled NLS equation for size domain K = 20 (left panel) and K = 40 (right panel).
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.1. Stability of the zero solution

Linearizing about the origin gives
dG
dτ

= β,

dβ
dτ

=
(σ − 2)b0

2σ c0
G.

he characteristic equation is

λ2 =
(σ − 2)b0

2σ c0
,

howing a pair of eigenvalues moving from the imaginary axis to the real axis as σ passes through 2 as expected.

.2. Stability of the non-zero solution

The steady solution (G0, β0) given by

β0 = G2
0,

(σ − 2)
2σ

b0G0 = A2
1e

−π/G0 .

with G0 > 0 corresponds to the blow-up solution in the original frame. Perturbing about this solution by writing G = G0+x, β = G2
0+y

and linearizing gives
dx
dτ

= y − 2G0x,

c0
dy
dτ

=
(σ − 2)

2σ
b0x − A2

1e
−π/G0

π

G2
0
x.

he characteristic equation is

λ(λ+ 2G0) −
1
c0

(
(σ − 2)

2σ
b0 − A2

1e
−π/G0

π

G2
0

)
= 0.

ne eigenvalue is exponentially close to zero, while one is exponentially close to −2G0. The exponentially small eigenvalue is
pproximately

λ ∼
1

2c0G0

(
(σ − 2)

2σ
b0 − A2

1e
−π/G0

π

G2
0

)
∼ −A2

1e
−π/G0

π

2c0G3
0

∼ −
e−π/G0

512G3
0π

2
,

n agreement with the detailed calculation of Section 4.2.5. Note that this is also the eigenvalue which remains when reducing
Eqs. (D.1)–(D.2) to the slow manifold giving

2c0G
dG
dτ

=
(σ − 2)

2σ
b0G − A2

1 sign(G)e
−π/|G|. (D.3)

e note that the exponentially small correction to the eigenvalue λ ∼ −2G does not agree with the detailed calculation in Section 4.2.3.
This is due to the fact that it corresponds to an exponentially small correction of the fast timescale, and the system of Eqs. (D.1)–(D.2)
is accurate at leading-order only in that regime.
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