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1. Introduction

One of the central dispersive nonlinear partial differential equations of relevance to a wide range of physical systems is the nonlinear
Schrodinger (NLS) model [1-5]. Among the different research themes where the NLS plays a central role, one can mention the study of
the electric field of light in nonlinear optical systems [6,7], as well as in plasmas [8], the realm of water waves and the evolution of their
height, e.g., in deep water [9,10], as well as the condensate wavefunction for mean-field models of atomic Bose-Einstein condensates
(BECs) [5,11,12]. The prototypical variants of the equation involve the self-focusing [4,13] and the self-defocusing nonlinearity [5], and
the respective dynamics revolve around bright [14] and dark [15] solitons.

In the case of self-focusing (self-attractive) nonlinearity, and for sufficiently high dimension (for fixed nonlinearity) or for sufficiently
strong nonlinearity (for fixed dimension), a key feature of the NLS model is the presence of collapse type phenomena, that have also
been explored in numerous books [4,13,16], as well as reviews [17-19]. Indeed, the topic of finite time blow up of supercritical NLS
solutions has been the objective of continued study both in the mathematical and in the physical literature; see, e.g., Refs. [20-24] (and
also references therein) for only some recent examples. Importantly, the study of collapse is not only a mathematical idealization but
rather has become accessible to physical experiments. In fact, on the one hand, there is the well-developed field of nonlinear optics,
where not only the well-known, two-dimensional collapsing waveform of the Townes soliton has been observed [25] but also more
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elaborate themes have been touched upon including the collapse of optical vortices [26], the loss of phase information of collapsing
filaments [27], and the manipulation of the medium to avert optical collapse [28]. On the other hand, a remarkable, very recent
experimental development has been the emergence of 2 distinct works in the atomic physics realm of BECs, observing Townes solitons
in the 2d setting [29,30]. Here, collapsing waveforms in higher dimensions had been experimentally identified earlier [31,32], and the
ability to manipulate the nonlinearity [33] and the initial conditions [34] has continued to improve in recent times. In one of these
recent works [29] the modulational instability was manipulated to produce (in a less controllable, yet experimentally observable) way
such Townes waveforms. The authors of the second work [30] leveraged a reduction of a minority component in a two-component gas
into a single-component one with effectively attractive interactions to produce a collapsing Townes waveform.

In many of the above mathematical works that study the dynamics of collapse, both in dispersive systems such as the NLS [4,13],
but also even in dissipative systems such as reaction-diffusion ones [35], the emphasis is on identifying the solution in a frame where
it becomes steady, namely a self-similar (or “co-exploding”) one [36-40]. A similar approach is leveraged in dynamical systems and
partial differential equations (PDEs) when exploring travelling waves which are identified as steady solutions in a so-called co-travelling
frame. In such settings, a natural next step is to explore the spectral stability of the solutions in such a frame [41,42]. However, in the
realm of the self-similar solutions, far fewer studies appear to be exploring the spectral properties of the wave in the co-exploding
frame [43-45]. Indeed, in the context of NLS, the only earlier approach, to the best of our knowledge, towards spectrally exploring
the collapse problem concerns the earlier work of some of the authors [45]. In a recent work, we revisited this topic, attempting to
examine the self-focusing problem as a bifurcation one, identifying its effective normal form [46]. In the present study, we complement
this approach by systematically examining the spectrum of the self-similarly collapsing solitary wave.

Upon setting up the relevant linearization problem in the self-similar frame (in Section 2), our starting point will consist of
observations of the spectrum of the underlying Hamiltonian system before the bifurcation point (in Section 3). We will examine the
relevant spectral picture when approaching the limit point where collapsing solutions emerge, and also we will explore the same picture
for the dissipative system that results in the co-exploding frame past the critical point. The former reveals three eigenvalue pairs at the
origin at the critical point (associated with translation, U(1), and conformal invariances), and a key part of our analysis is tracking the
behaviour of these pairs in the co-exploding frame past the critical point. In Section 4 we approximate each eigenvalue asymptotically,
finding that the pairs fail to be equal-and-opposite by an exponentially small amount. Finally, we will synthesize the picture and its
dynamical implications and offer some conclusions and future challenges in Section 5. The Appendices offer some additional insights,
including about how a symmetry of the original frame can turn into an unstable eigendirection in a renormalized one, as well as about
the role of the normal form obtained previously in [46] in connection with the eigenvalues identified herein.

2. Basic mathematical setup

Our model of interest will be the one-dimensional, general-nonlinearity-exponent variant of NLS in the form

oy %y 20

laz+ x2 + Y|y = 0. (1)
Notice that here we have used the typical optics notation, where z is the evolution variable, representing the propagation distance [4].
This model has been studied extensively in [4,13] and it is well-known that in d-dimensions, the condition for its collapse is
od > 2. The model is subcritical for od < 2, and the special case of od = 2 separates the two regimes. We opt to consider
the d = 1 case for a number of practical reasons, including (a) the availability of an analytical solution for all values of o, namely
Y = e#(1+ o)) sech [(20)"/%(x — xo)] and (b) the computational convenience of the relevant spectral calculations. As we will see
below, the latter will be sensitively dependent on the domain size and its boundary conditions, and associated considerations will be
even more delicate (and imposing a substantial additional computational overhead) in higher dimensions. Nevertheless, we expect the
main features and techniques proposed herein to be directly reflected in such higher-dimensional settings, as will be evident in what
follows.

The Hamiltonian associated with Eq. (1) is given by

< flay|> 1
H= [ (“” —|¢|2“+2) d. @)
oo \| 0% o+1
The dynamical equations satisfy:
i% __6H iaw* _ _0H
9z~ Sy’ az sy

We require that H be finite.
In order to go to the co-exploding frame, we introduce the well-known [4,13] stretched variables, rescaling space by the length scale

z !

§= iy TS [0 % Y(x2z)=L"""u(E, 1), 3)
to give

ia—u+8iu+|u|2”u—iéLLza—u— iLﬁu:o, (4)

ot 0&2 & o

and the corresponding rescaling of the Hamiltonian:
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Fig. 1. Variation of blowup rate G as a function of o, for domain size K = 20. The solitonic branch (G = 0) remains stable up to o = 2 (black solid line) and becomes
unstable for o > 2 (black dash-dotted line). The stable collapsing branch (G > 0) is illustrated with solid grey line.

We factor out the frequency of our solution without loss of generality and assign the rate of width shrinkage/amplitude growth to be
termed as G by setting

) L
u(§7t):¢(gar)elr7 G(T): _LLZ :_Tr7 (6)
which reduce Eq. (4) into
18¢+32 FloFD — b+ G<z>+1csa¢ 0 )
0&2 o0& ’
In order to close the dynamics and determine the blow-up rate G we impose a pinning condition of the form [46]
[o]
| retotc.onmerce = c. (8)
—00

for some constant C and some (essentially arbitrary) “template function” T. Solitonic solutions correspond to G = 0, and exist for all
o > 0, but there is a bifurcation at ¢ = 2, with a branch of steady solutions with nontrivial G > 0 (i.e. self-similar blow-up solutions
of (1)) appearing for o > 2 [4,45,46]. The bifurcation diagram is shown in Fig. 1, and a typical example of the associated waveforms
and the dynamics approaching them in Eq. (7) is shown in Fig. 2.

In [46] we showed that, when o — 2 is small, G (asymptotically) satisfies the ODE

dG (0 —2)

OGcT o boG — A2 sign(G) e /1!, (9)
where
373 3
o= {1721 . b= %, A =124, (10)

which can be thought of as the normal form associated with the bifurcation. We see in (9) a stable branch of equilibrium solutions
G > 0 appearing for o > 2. These results suggest the attractivity of the self-similar blow-up solutions, and hence predispose us towards
their (effective) spectral stability.

It is particularly important for our considerations that follow to emphasize that the system (7) bears a rather unusual “mixed”
character. Along the manifold of G = 0 (solitonic) solutions, the relevant model falls back on the original one, retaining its Hamiltonian
structure. Nevertheless, for the genuinely self-similar solutions of G # 0, the system is no longer conservative in nature. Hence, we
are dealing with a mixed Hamiltonian-dissipative system and the dissipativity for G # 0 should be mirrored in the spectrum of the
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Fig. 2. Dynamics of |®(£, 7)|* — |@(£,0)]> in the co-exploding frame (rescaled NLS). The initial condition, @(&,0) is the soliton solution for o = 2.019. Upon
perturbing o to o = 2.02, the co-exploding dynamics converges to a “steady-state” solution. The inset on the bottom right illustrates the evolution of the blowup
rate, G, with the rescaled time, 7.

self-similar solutions. This is contrary to what is the case for the four-fold symmetric spectrum of the G = 0 solitons, for which if A is
an eigenvalue, so are —X, A* and —A*.
We will find it convenient to perform an additional transformation by writing

D&, T) = V(E, T)e A/ (11)
to give

v GE? 9%V i(lc —2)G G?g?

— 4+ —>V+4+— +|VPV—_V-— 1% V=0, 12

v +a§2+|| 2o +— (12)

where G’ = dG/dt, since then (without loss of generality) the imaginary part of V is exponentially small in G [46]. Notice that above
we have suppressed the dependence of G on the parameter o.

Our principal aim is to consider the spectral stability of the steady-state solutions (with G # 0) in the co-exploding frame. These
correspond to self-similar blowup solutions in the original frame. Such steady-state solutions denoted by & satisfy

2o, iG do,

2 .

d_é-‘2+|¢s| U(PS—¢5+;¢3+IG§' d 0, (13)
or equivalently

d?v; ) i(oc —2)G G?&£?

dfz +|VS| dvs_vs_ 2% Vs + 4 Vs =0, (14)
with G constant equal to G(o') illustrated in Fig. 1. We now linearize Eq. (7) about & by setting:

O(6.7) = (6) +¢ (X + V(7). e< 1. (15)
giving rise to the operator eigenvalue problem

. d? Y ic .. d .

i2X = (—@ — (@ DI 1 - — - IGSE)X —o|o Ry, (16)

A = o|®2 2P PX + & + (o + 1P —1— i _ icgi Y (17)

s s de? s o ds )
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Equivalently, for the stationary solution V(£), we linearize in € by writing

Vg, T) = Vi(e) + € (f(€)e* +8"(6)e™) (18)

which leads to

d? i(lo —2)G G*g?
inf + S o v2g 4 (o + e —f = W20 O (19)
dg? 20 4
_ d? (0 —2)G = G2
ing+ T oIV + (o + DIV — g+ 2 E5 g (20)
dg? 20 4
To solve numerically we truncate the domain and solve on the finite domain [—K, K], imposing the boundary conditions
P
— =0 at S = :l:I(,
9§
which correspond to
aV iGKV
— == at & = +K.
9 2

(The finiteness of the domain is what leads to the small oscillations in the bifurcation diagram Fig. 1, as explained in [46].) For the
perturbation this gives, correspondingly,

0X 9y of | IGKf og _iGKg

9E 0 9E T 2 9 T2
Let us now try to explore, on the basis of the above principal setup, what we should expect to see in the linearization around a collapsing
waveform.

on § = K.

3. Principal numerical results

The question of how the spectrum changes under the type of nontrivial scaling transformation discussed above requires particular
attention. This topic was first addressed systematically, to the best of our knowledge, in a different class of systems, in the pioneering
work of [43,44] who realized that such a transformation that rescales space and time may have profound implications within the
renormalized frame as regards the interpretations of symmetries of the original frame. To explain this subtle point, we provide
arguably the simplest possible example that we have been able to identify in Appendix A of the present manuscript. There, and in
the cleaner/simpler setting of an autonomous ordinary differential equation, it can be seen that the symmetry of time translation of
the original system leads to an “apparent instability” in the renormalized frame. This is because a shift in, e.g., the time of collapse in
the original frame, due to the exponential nature of the transformation between the renormalized and the regular time, leads to an
exponential deviation in the renormalized frame and hence an apparent instability.

The key take-home message from this example is that symmetries of the original frame may no longer correspond to ones such in the
renormalized frame. The even more dire consequence is that symmetries of the original frame may appear as instabilities in the renormalized
one. For example, differentiating Eq. (13) with respect to & gives

o 25 Ds sz 2d®F  dPy iGdP, | d*dy . dd

P + (o + 1)|Ps| az + o |Dg| b; d dE —i—(r d + iG¢ az2 +iG i
from which we observe that X = d&,/d& and Y = d®;"/d& satisfy Eqs. (16)-(17) if we choose A = G. The eigenvector is associated with
the derivative, which is well-known to be the generator of translations. However, instead of this vector being associated with a neutral
direction, it is now associated with an “apparently unstable” eigenmode (since G > 0). Nevertheless, that eigenmode is not a true
instability in the original frame, even though it appears as one in the renormalized frame. Rather, it only involves spatial translation,
i.e., a symmetry, and its suitable reinterpretation in this renormalized frame.

Armed with this important piece of understanding, let us now scrutinize the spectral picture in further detail. As is natural, we start
with the subcritical case of od < 2. In this regime, only the solitary wave solution of G = 0 is present and hence it is the stability of this
branch that we comment on first. In the integrable limit of d = o = 1, it is well-known [47] that the spectrum of the linearization of
the NLS soliton possesses two neutral directions, one associated with spatial translations, and one associated with the phase or gauge
(U(1)) invariance. We already saw that the derivative d®,/dé is connected to the translational eigenvector while the solution & itself
is associated with the corresponding phase eigenvector. In each case, the generalized eigenvectors are known as well [47].

As we depart (parametrically in o) from the integrable limit, an eigenvalue pair bifurcates from the band edge of the continuous
spectrum which consists of the union of the intervals i[1, co) and —i[1, c0) and tends (along the imaginary axis) towards the origin as
o — 2.1t is this eigenvalue pair that arrives at the origin of the spectral plane, precisely at o = 2, instituting the conformal invariance of
the model, i.e., the invariance with respect to rescaling that paves the way to collapse dynamics. The dependence of this eigenvalue on
the parameter o is shown in Fig. 3. Past the critical point, the relevant eigenvalue becomes real, giving rise to the dynamical instability
of the soliton and the emergence of the collapsing branch of solutions. The spectra of the solitonic solution of G = 0 for ¢ below the
critical point (o, = 2 for d = 1) and above the critical point are shown in Fig. 4.

As the bifurcation of the self-similarly focusing branch of solutions occurs [45,46], the natural question is what becomes of the
spectrum and what are the corresponding dynamical implications of this spectral linearization picture. Recall that at the critical point,
the “parent branch” of solitary waves has, in addition to the above mentioned continuous spectrum, 3 eigenvalue pairs at the origin.
Hence, as this Hamiltonian system turns dissipative for G > 0, we have to determine the fate of the 6 eigenvalues stemming from
the origin, and the associated continuous spectrum band. Notice that the 6 eigenvalues will no longer constitute pairs, except perhaps
approximately, as the dissipativity of G # 0 destroys the Hamiltonian character and hence the eigenvalue pairing.

0, (21)
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Fig. 3. Square of eigenvalue bifurcating from the band edge of the continuous spectrum, tending towards the origin as ¢ — 2, and finally giving rise to real
eigenvalues (one positive and one negative) past the critical point, o = 2.
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Fig. 4. Spectra of the numerically obtained soliton solution (G = 0) of the rescaled NLS equation with K =20 and 0 = 1.9, 0 = 1.95, 0 =2.05 and 0 = 2.1.

Having obtained the collapsing solutions with finite non-vanishing G as stationary ones (see the details in [46]), we are now ready
to solve the corresponding spectral problem for the eigenvalues A and eigenvectors (X, Y). Some typical examples of the spectral plane
of the imaginary vs. the real part of the eigenvalues for specific choices of o (and hence G, per Fig. 1) are shown in Fig. 5. The answer
to this central question of our manuscript for the spectrum of the collapsing solution for supercritical values of o and non-vanishing G
in the co-exploding frame is given in Fig. 6. There we can see that, in fact, only one out of the 6 eigenvalues stays at the origin. Indeed,
X o« &, remains an eigenvector with vanishing eigenvalue, as the rescaled model retains the original phase invariance. Nevertheless,
as indicated above, the generalized eigenvector is no longer there (due to dissipativity) and, thus, the associated eigenvalue acquires a
small negative value. We show in Section 4.2.5 that this eigenvalue is approximately

512e77/¢
G2
with an eigenfunction exponentially close to that of the zero eigenvalue.

~
)
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Fig. 5. Spectra of self-similar (G > 0) solutions obtained from the numerical solution of the rescaled NLS equation with K = 20 and o values close to the critical
value, 0 = 2: 0 =2+ 107 (top left panel) and o = 2 + 107° (top right panel), as well as o = 2.001 (bottom left panel), ¢ = 2.05 (bottom right panel).

In addition, there are two pairs of eigenvalues that are only nearly symmetric. We find these to be at A ~ +2G and A ~ £G. All of
these point spectrum eigenvalues are systematically captured in Fig. 6 to which we will return shortly. Moreover, there are two more
observations in place regarding Fig. 5. One of the above 6 eigenvalues (and one of the ones shown in Fig. 6, as well), the eigenvalue at
A ~ —G, is hard to detect. This is because it almost coincides with a nearly vertical line of continuous spectrum with real part A, = —G,
i.e., the continuous spectrum is approximately A = —G + is for arbitrary real s (see also Appendix B).

As we already discussed above, the pair at A ~ =£G is associated with spatial translation. Indeed, the eigenvector X = d&,/d¢,
through the exact calculation above, yields an eigenvalue of A = G in the infinite domain. It can be discerned from Fig. 6, that this
eigenvalue is no longer exactly at G on the finite domain but rather presents slight undulations in its dependence. Indeed, one of our

7
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Fig. 6. Variation of the eigenvalues A ~ 2G, . ~ G, . =0, A ® —G, A & —2G and A close to 0 with o for the self-similar (G > 0) solutions as obtained from the
numerical solution of the rescaled NLS equation with K = 20.

aims in the detailed calculations that follow will be to capture these finite-domain-induced undulatory corrections. On the other hand,
the eigenvalue at —G is no longer exact even in the infinite domain, due to the lack of symmetry, as induced by the dissipative terms
o G in our linearized equation for (X, Y) (or for (f, g)). The associated eigenvector is approximately

do
X =
dg
which satisfies the equation exactly but fails to satisfy the radiation condition. We show in Section 4.2.4 that this perturbs the eigenvalue
by an exponentially small amount (in G), which is the source of the (more significant) undulations in this eigenvalue in Fig. 6.

In a very similar vein, the eigenvalue A = 2G is exact in the infinite domain limit, as can be verified by direct calculation, upon
substituting the eigenvector

+iGE

. D do
X=i®;+G( = +¢ : (22)
o d&
in the linearized equations. However, in this case too, the finite domain correction (to be also evaluated below) induces an undulatory
dependence on top of the A = 2G leading order. Finally, the eigenvalue A = —2G is also no longer exact even for an infinite domain.
The approximate eigenfunction is
) do
X=ido, - G| = +&6—) —iG*&%o,,
o dé

which fails to satisfy the equation by an exponentially small residual, and also fails to satisfy the radiation condition at infinity, leading
to an exponentially small correction to the eigenvalue. This summary then accounts for all the point spectrum eigenvalues.

It is relevant to add here two important observations. The first one concerns the dynamics of the collapsing solutions. On the one
hand, we obtain that the relevant waveforms have two unstable eigendirections in the co-exploding frame. However, on the other hand,
we have illustrated through our explicit calculations above (see also the pertinent Appendix A) that such eigendirections do not pertain
to true instabilities, but rather to neutral directions of the original frame (spatial translations and rescalings of the original solution).
Given the rescaling of space and time in the co-exploding frame, both of these actions move solutions exponentially far from other
members of the family of such equivariant solutions, and thus appear as instabilities in the co-exploding frame, yet this is not a true
instability in the original frame. Hence, in line with our above dynamical evolution results, we expect such collapsing solutions to be
dynamically robust (modulo symmetries).

The second observation is related to the results for the spectrum given in the earlier work of [45]. There, only one of these positive
eigenvalues was found and moreover the continuous spectrum had a wider apparent extent around A, ~ —G (extending to values with
more negative real part). The former of these features was because the calculation of [45] was done in the half-domain and hence,

8
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e.g., spatial translations were a priori excluded from consideration. Furthermore, we believe that the observations of the continuous
spectrum had to do with the discretization used in the latter case. Our refined numerics here suggest that the continuous spectrum
progressively tends to the vertical line with A, = —G (asymptotically for large imaginary part). Finally, we also note that the main
features of the computed spectra show only slight changes by increasing the size of the computational domain (see Appendix C).
Admittedly, in what follows we can only offer an asymptotic prediction for the part of the spectral band with sufficiently large imaginary
part. For the part with small imaginary part, the situation is rather complex and constitutes a technical challenge for potential future
studies. Nevertheless, we believe that we hereby offer a far more definitive perspective of both the point and the continuous spectrum,
than was previously available.

In the analytical calculations that follow (and their comparison with the detailed numerical computations as regards the eigenvalue
corrections), we will consider each of these eigenvalues one by one. We will split their dependence into a principal part (that we have
effectively already discussed above), and a correction that stems either from the finiteness of the computational domain (in the case
of A = G or A = 2G) or from both the inexactness of the symmetry in the dissipative system and the radiation condition (in the case
of the negative point spectrum eigenvalues). Since we work on a finite domain, this latter effect also appears though the boundary
conditions.

We will develop a solvability-based approach to calculate the residual of each of these eigenvalues and will subsequently compare
it to our systematic eigenvalue computations. Finally, we will corroborate our theoretical conclusion on the effective spectral stability
(modulo the symmetries) of the collapsing solutions via direct numerical simulations in both the original and the co-exploding frame.

For the performance of numerical computations, we adopt a fourth-order central finite difference scheme for the approximation of
spatial derivatives. Space, & € [—K, K] is uniformly discretized with step, d6 = 0.01. Time integration (where needed) is performed
utilizing MATLAB’s ode23t ODE solver. Steady-state solutions are obtained through the iterative Newton-Raphson algorithm. Finally,
the eigenvalue computations were performed by utilizing MATLAB’s eig solver and corroborated further by using the contour-integral
based FEAST eigenvalue solver [48] (and references therein). The spectral stability analysis results we obtained through the use of both
eigenvalue solvers match precisely with each other.

4. Theoretical analysis approach

For our theoretical analysis, we work in terms of Vi, f and g. We first outline the general methodology, before we apply it to each
eigenvalue of the discrete spectrum in turn.

For each of the point spectrum eigenvalues we have an asymptotic approximation to the eigenfunctions feg and gz and eigenvalue
Areg Which is accurate to all orders in G but misses exponentially small terms; here we aim to calculate those terms. [Notice that in
what follows, for mathematical convenience, we will generally expand in powers of G, rather than the parameter o.] Let us write
A = Areg + Aexp. Then, Egs. (19)-(20) give:

) d?f . Y i(lc —2)G. G2 .
lxregf+72+0’|vs|2 2V32g+(0+1)|vs|2 f—f- f+ f = _lkexpfa
dé 20 4
. d’g o201k o i(0 —2)G  G*%* .
—lkregg+@+a|vs|z WP+ (0 + DIV g —g+ = ——8+ =8 = ihexS.
If we multiply by freg and greg respectively, add and integrate by parts, the left-hand side is
K/ d*f ilc —2)G . G2
/ (mregf Tt oIVs Vg + (0 + DIVAf —f — =————f + — f)freg 3
—K (o}

K 2 : 252
. d°g o o i(lc —2)G G°¢
+/ (—mregng—déz + o Vs (VY + (0 + DIVs*g —g + 7g 81 4 &)8eedf
—K

e d*fie i(0 —2)G G?&?
= / (1)Lregfreg + dfzg + (o + 1)|VS|20freg _freg - freg + 5 freg)f dg
—K %‘ 20 4

« . d’g, i(c —2)G G2
/;K (—lkreggreg + dg:rzeg + (o + 1)|Vs|20greg — 8reg T+ 2 8reg + 2 greg> gdg
K o =201 % df df; dg dg K
+[I(G|VS|2 ZVSZ gfreg+o‘|Vs|2 Z(Vs )zfgreg dé + |:fregd§: —f dr.;g +greg£ -8 d;:egj|—l(

K
- / R + Rog + 0 Vo7 2(Gregf — fregg)(V2)? — V2)d&
—K

df  dfieg dg  dgieg|"
‘i‘|:fregds fdé-‘ +greg£ g dE K,

where
. d?f; . i(c —2)G Gg?
Rf = l)hregfreg + d;g + (o + ])|Vs|20freg + U|Vs|2 zvszgreg _freg - 20 freg + 4 freg,
. dzg - 2k i(lo0 —2)G szz
Rg = _l)\reggreg + e + (U + 1)|VS|2 8reg + G|Vs|2 Z(Vs )Zfreg — &reg + 8reg + 8regs

de? 20 4

are the exponentially small residuals from the regular asymptotic expansion. Since the imaginary part of V; is exponentially small, and
freg and greg are exponentially close to f and g, the term (gregf — fregg)((vs*)2 - VSZ) is doubly exponentially small and can be neglected.

9
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Then, evaluating also the right-hand side,

K df  dfieg dg  dgeg | . K
[ K(sz+Rgg)ds+[fregdg P e ]_K herp f (g€ —Feaf ). (23)

Since Ry, Ry and Aex, are already exponentially small, we can use freg, 8reg in place of f and g except in the boundary terms, introducing
only double-exponentially-small errors. Thus, to exponential accuracy,

« df  dfe dg  dgeg]" . «
/;K(Rffreg “I‘Rggreg)dg: + I:fregdS _f dfg +greg d?;' — 8 dég]K ~ 1)\exp /_K(grzeg - rzeg)dé- (24)
This is the equation which determines the exponentially small correction to the eigenvalue Aexp. To find the boundary terms we need
to examine the far field more carefully, which we do in the next subsection. We believe that this decomposition (and identification)
of exponentially small terms and of the contribution of boundary-induced reflections is relevant for a theoretical understanding of
numerical observations of earlier computational works such as [45]. At the same time, the relevant asymptotic approach may also be
of interest for other problems of this broad class of nonlinear partial differential equations.

4.1. Boundary condition on a finite domain

In this section we determine the boundary contribution to (24) by examining the far field, assuming that K is large. We will see
that in the limit K — oo the approximate eigenfunctions corresponding to eigenvalues A, > —G satisfy the radiation condition, while
those corresponding to eigenvalues Ay < —G do not.

Consider first f. We write f = fieg + f5, Where fj, is the correction due to the fact that f; does not satisfy the boundary conditions.
Note that in the far field both f..; and f, are exponentially small. Then, following the earlier work of [46], we have with p = G&,

freg = Alog@%2/C + Bl @7 92/C fi = Ael%2/C 4 pemi2/C, (25)
where
2
P 21 A 2igA +iglA = iGA”,  iAB — 2iB — i¢B = iGB', (26)
2 4 2 2 2 2

and Az = A1G. Note that Areg and Bf,, are given, but A and B need to be determined. Expanding

reg

A=) Alp)iG),  B= ZBn N—iG)" (27)
n=0

substituting into Eq. (26), and equating coefficients of powers of G gives at leading order
Ay (¢ + M) By (¢35 — M)
Ao 26, Bo 26,
so that
*1/2 /2
ar p—Vrt—4\" by p+Vot—4\"
Ao = 7 , By = ( ,

C(p* -4 p+/p?>—4 (p2 -4y p—/p*>—4

for some constants af and by. At the next order
MA7 + 2¢>2A/ + q) ‘A = Ag, —A1B1 + 2¢§B/] +¢>§B] = Bg.

Substituting for ¢,, Ag and By, and solving gives

) )

r1/2

s ar 0 — ,02—4 "7 (240222 = 1)p + (1 — 1222)p% — 4811/ p? — 4)

YT A 48(p2 — 4)372 ’
/2

5 — by o+ - (24222 — 1)p + (1 — 1222)p3 + 4811/ p? —

T\ - -4 48(p2 — 4P2 ’

where we fix the constants of integration by requiring that A <> B as we circle the branch point p = 2. Continuing in this way, we find
that

A~ ap P +iGuy — paG + -+ ), (28)
B ~ b V(1 —iGu1 + paG 4, (29)
as p — oo, where
(1—122%) A1(1—423)
n1 = T’ H2 = T
A similar asymptotic behaviour must hold for Areg, Bﬁeg, so that
Aleg ~ Uregp™ P71 +iGuy — 12G +---), (30)

10
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Bleg ~ Dlegn™*TM1(1 —iGpy + paG + ) (31)
as p — o0. As we approach the turning point p = 2,
b
A~ Y B~ r_
(4(p —2)1/4 (4(p —2)1/*

Matching with the turning point region gives

asi = by,
which ensures that the extra contribution due to the reflection back from the boundary is exponentially small in the near field.
The boundary condition gives
ld)é(A +A1f—eg)ei¢2/c _ ld)é(B + B[f‘eg)e*id)z/c + G(A/ +A£eg/)ei¢2/c 4 G(B/ + Blf—eg/)e—idiz/c

iKG ;
== ((A+ Aleg

Eqgs. (28)-(29) show that A’ = O(A/K) for large K, so that the term AK dominates A’ by a factor of K2. Neglecting the third and fourth
terms on the left-hand side gives

, KG : KG .
<¢2 - ) (A+ Af,)e /¢ = (qs; + 7) (B + B,)e %2/C,

) £
)el¢2/G 4 (B+Breg)e 1¢2/G) .

2
so that
eZi‘7,2/6\/(1<c;)f—4 ~KG _ B+ Bl '
VIKG? —4+KG A+AL,
We now assume that KG is large so that we can use the asymptotic behaviour of Egs. (28)-(31) to evaluate the right-hand side, giving

iar+ b,  e29ak0)/C (1 +iGuy — 112G +> _

as =+ aﬁeg (KG)2+2}”1 1-— IGM1 =+ ,u,sz + .-
say. Then
f f f f
ar ~ — breg + aregs ; bf ~ _ibreg + aregs ) (32)

i+S i+S
As KG — oo the behaviour of S (and therefore ar and bf) crucially depends on whether A; is greater or less than —1. For A; > —1,
S — 0 as KG — oo and
ar ~ ibf bf ~ —bf (33)

reg’ reg’

We will see that freg is such that bfeg — 0 as KG — oo, so that the eigenfunctions corresponding to positive eigenvalues exactly satisfy

the boundary condition (i.e. satisfy the radiation condition) in that limit. On the other hand, for A; < —1, S — o0 as KG — oo and

f o
af ~ —lpeq, be ~ —ia,. (34)

Now afeg is finite even as KG — oo so that the eigenfunctions corresponding to A; < —1 fail to satisfy the boundary condition even in

the limit KG — oo (this is true for A; = —1 also).
Now, for large KG, we can evaluate the boundary terms in Eq. (24) as
df dfreg . dh dfreg
fregdS f d%' kG —freg d%' fb d%'

) ) i®! ) ) ) .
~ G (Agegeld’z/c 4 Bgege_@ﬂc) (% (Ael¢2/c _ Be—l¢2/c) +A’el¢2/c + B/e—1¢2/C)

p=KG

reg

-G (Ael¢2/G + Be—1¢2/G) (% (Af el92/G _ Bgege—ld)z/c) +A£eg'el¢z/6 + Bgeg’e—@z/c)

4

—21¢§(A§eg3 - B{egA)
~ —i(aleg(1+ipt1G + -+ b1 — i1 G + -+ ) = blog(1 — inG + -+ Jag(1 + iuG+ - -))
= —i(alogbr — blegar) (1 — (im1G — p2G? + - ) .

A similar calculation on g shows that, when 1 is real,

dg dg; . .
g — 80 ~ —i(afgbg — blgtly) (1 — (—irt1G — 112G + -+ ),
dg 4§ |, ke
where
. ageg + b%egs* ageg + b%egs*
Qg = i————, g = —— >

—i4S* —i4S*

11
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so that
ag ~ —a5,, by ~ —iak,, A o> =1, (35)
ag ~ ibfe,, by ~ —b%,, A< —1. (36)

A similar calculation of the boundary layer at —K gives, finally,

[ df  dfieg dg dgreg]"

freg@ —f dE +gregd%_ g d&

2ibpo(afeg + ibjeg) (1 — (i1G — p2G* + -+ )

. 2 5 if )\,] > —],
— 2iaf (— 1a§eg—|—breg) (1= (=ip1G — u2G* + -+ %) 37)
f . 2 2
2'areg( reg +breg)( — (i1 = G + -+ )?) if A\ < —1.

+ 2ib%, (a4, + ib%) (1 — (—ip1G — p2G? + -+ )

We will see that af, = (bl)" and bfe; = (al.,)" so that the right-hand side is real.

reg reg
4.2. Eigenvalues

We now apply the general methodology to each of the eigenvalues in turn Since the approximate eigenfunctions freg and gg are

given in terms of the steady state solution V;, to identify the coefficients areg, areg, bﬁeg and b?eg that appear in the boundary terms, it is

useful to recall the behaviour of Vs in the far field, which was determined in [46]. There we found that

_ . 2'%aq
Vs ~ ae'¢2/GZA )iG)" + Be ‘4’2/GZA X—=iG)",  Aolp) = i (38)
n=0 n=0 (p )
where
ap = 124,
Y el /4a—7/2G _ o6 ipe2i92(KG)/Gir /40— /2G
1 — ipe2i2(KG)/G 1 — jpe2ita(KG)/G
ﬂ _ _vansz( ayc 1)6214)2('(@/661”/467”/26
1 — ivedie2K0)/G  °
KG — /(K 1
v~ .
KG + /(KG)> — " (KGP
4.2.1. The eigenvalue Ay = 2G
In terms of f and g the approximate eigenfunctions are
. Vs dv;  iGE2V; . A dvy  iGEv;
freg='V5+G< TEg g ) sm= VG e ) (39)

These satisfy the equations exactly so that Rf = R; = 0. The perturbation to the eigenvalue arises solely because of the finiteness of the
domain, since freg and ge; do not satisfy the boundary conditions. From the known expansion, Eq. (38) of the steady state solution, we
need to identify the amplitude coefficients areg, bﬁeg in the WKB expansion [cf. Egs. (25)-(27)]. The easiest way to do this is to compare

the two representations of fie; and gz as p — oo. Comparing Eqgs. (38)-(39) with Egs. (30)-(31) as p — oo gives

47G 95G
aﬁeg (1 —1E> ~ —iﬁaoa (1 _iE _|_> ,

47G G
blt:eg(1+ E) ~ —l\/iaoﬂ< —l@-‘r "),

since
(1—122%) 47
= ——=——.
48 48
Thus,
reg —lfaoot (1-1iG), bieg ~ —iﬁaoﬁ (1-i06), ageg (bieg)* ’ bgeg ~ (a£6g)* :
Then

df dfre dg dgre
I:ffegdg _f dég + gfeg& d%’g ~ Zlbﬁeg( reg + lbgeg) 21a§eg( reg + b%eg)

~ —8aéve’”/GRe ((1 _ iG)zezi¢2(KG)/c) ’

12
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Fig. 7. Comparison between numerical and the asymptotic predictions, for K = 20. The solid blue curve corresponds to Eq. (41), while the purple dots to the
numerical solution.

as v — 0. Evaluating the right-hand side of Eq. (24) gives

i)hexpf (grzeg - rzeg)dg = i)\exp / (greg _freg)(greg +freg)d'§

(o) oo

—2Gexp /oo (—2V; + G*&2Vy) (V + g%) de

o 1 1 1 3
—2Ghexp /W —2v2 (E - 5) + G*&%V2 (E - 5) dg,
since

/OO dvvsdg_—%/ V2 de, /53—Vsd$——f/. £2V2de.

The dominant contribution to these integrals is from the near field [46]. Using the asymptotic expansion of V; in powers of G [46] gives

00 3 3 3(;2 00 3 3
| viae- SELI LLs ) | evias- S o (40)

so that Eq. (24) becomes

2 —7/G : ~\2 2i¢n (KG)/G 1 1 27’2 1 3
—8aZve ™/ Re ((1 — iG)?e*?2KV/C) = —2/3Ghexy ([~ (= — = | +CP = (= — =
o

N V3G hexp
16 ’

since o is exponentially close to 2. Thus, the correction to the eigenvalue is

256ve~7/C

e ~ — g Re (1 -G eONe). (41)

A comparison between Eq. (41) and the numerically calculated eigenvalue for K = 20 is shown in Fig. 7. This shows that our oscillatory
correction excellently captures the correction due to the finiteness of the domain around the dominant A.; = 2G.

13
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4.2.2. The eigenvalue A = G
In terms of f and g, the approximate eigenfunctions are
dvy  iGEV; dvy  iGEVY

freg = E - 5 8reg = dE )

Again these satisfy the equations exactly, so that Rf = R; = 0, and the perturbation to the eigenvalue arises solely because of the
finiteness of the domain.
Comparing Eqs. (42) with Egs. (30)-(31) as p — oo gives

11G 23G 11G G
ag (1 4@) ~ —iv2apa (1 _iEJF"')’ bfeg(1+iﬂ> ~ —iv2a0p (1 —i@+--->,

since

. (42)

(1—1222) 11
= ——" = ——.
48 48

Thus

iG iG
afeg ~ —iv2apa (1 - Z) , bﬁeg ~ —iv2a08 (1 - Z) oot ~b . bE ~dll”

reg reg ° reg reg

Then,

freg@ _f dg +greg£ g ds

Evaluating the right-hand side of Eq. (24) gives

. * 2 * dVs 2
1}Lexp (greg - reg) df = _ZG)\exp %'st dé = G)Lexp Vs d%'-
—00 —00 dg —00

K
[ df  _dfieg dg dgreg] ~ —8ave "/ Re ((1 — iG/4)?e2#2(C)C)

—K

Using Eq. (40) gives

, 3
—8ajve "/“Re ((1 — iG/4)*e*P2V/C) = Gheyy —[2” ,
ie,
32ve /¢ i
hexp ~ e Re (1 — iG/4)e?#2KD/G) (43)
Gr

In this case, a comparison between Eq. (43) and the numerically calculated eigenvalue for K = 20 is shown in Fig. 8. Once again, very
good agreement is observed with the numerical finite-domain-induced oscillations, even for values of G that are quite high (i.e., near
0.5).

4.2.3. The eigenvalue A = —2G
In terms of f and g the approximate eigenfunctions are

. V. dv,  iG£?V. . v dv*  iGg2vr
f‘reg:lvs_(;(;s‘l'gdig'f' 2 S)z greg:_lvs*_G<?S+§d§ - 25 . (44)

This time, the approximate eigenfunctions do not satisfy the equation exactly, but with an exponentially small residual. We find

1 1 1 1
Re=—4iG°Vi [ = —— ), Ry=4iG?V/|-——]),
2 o 2 o

so that
> 2 1 1 > 2 242y72
Rffreg + Rggreg dé = 4G - — — (ZVS -G .‘;: Vs) d%‘
—oo 2 o)) o
1 1 NEV SICNRVEY Sles
=4G (- - — 3 -
(2 o) (f” T 6 2
11 V313G
=4G* |- - = 3~ 2 ).
( 3 G) (xf 7 64 + )
Unfortunately, for A = —2G we will find that we will need to know more than the leading-order behaviour of afeg and bf_eg in order

to find the leading-order approximation to Aex,. Comparing Eqgs. (44) with Egs. (30)—(31) at infinity, including higher-order terms in
both expansions (see [46]), gives
f . 2 . 3 . iG 2021iG?
o, (1+1ip1G — p2G? — iu3G’) ~ —iv/2a T+ —F ——— - ),
reg (141716 = 1267~ 1sC) °K°‘< T8 " 1658880 T

48 24 T 1658880 T
14

i i . 995G 17G*  23899iG3
bleg (1 — ip1G + 12G? +i3G?) ~ —ipv/2aox (l +it— — ) ,
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Fig. 8. Comparison between numerical and the asymptotic predictions, for K = 20. The solid blue curve corresponds to Eq. (43), while the purple dots pertain to

numerical solution.

where
1+ 1272\ 4
~1-— G*+0.0152G* + - - - .
* ( 4608 ) * +
Since
(=122 47 _ m(1—4r)) 5 450581
M= T MT 7 a5 T M7 essss0’
we find
176> iG3
f . .
areg ~ —laﬁaol{ <1+IG— 48 +m+>,
176G  iG?
b, ~ —iB+v2apk [ 14iG— — 4
reg ™ 1P OK( + a3 128 )
as well as
ageg = (bﬁeg)*’ b;geg = (a£6g)* .
Then, as KG — oo,
df  dfeg dg  dgieg "
I:fregd%_ f dE gregd%_ g d& L

~ =Didl(—ialeg) (1= (101G — oG + -+ ) + 2ibly(ibfy) (1 = (—ip1G — 2G4 -+ )

17G* iG?

~ 84/3ie™/C2 [ 1+iG — .
& o 48 128

1762 ic?
—8v3ie /%2 (1 —iG — -—-
V3ie YT T 128

G3
~ —32/3e"%2 (G ).
S ST ViR

15

2
+ s+ ) (1= (i1G = 2@ + -+ %)

2
+ ) (1= (=ip1G = 2@ + -+ )
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Fig. 9. Asymptotic prediction (46) (blue) compared to numerical solution (purple) for the case of the eigenvalue with A = —2G.

Evaluating the right-hand side of Eq. (24) gives

: * 2 2 * 252 VS dvs
1Aexp (greg - reg)dg = 2G)Lexp (—ZVS + G& Vs) —+£& dé
— — o dé

o 11 1 3
= 2cxexp/ —2V2 <; - 5) + Q22 (; _ 5) de,
—0o0

after integrating by parts. Using (40) we find that (24) becomes

G? 1 1 373G?
—324/3e77/%2%G (1 + + - ) + 4G? (5 - 7) (ﬁn RELC
o

2304 64
1 1 (1 3
=2V3GTAep [ — (- — = ) +CP = [ - = =
V3Gn e""( <c7 2) T3 (0 2))
BTy @

Now, since (for v ~ 0) the relation between o and G is (see [46])

1 1\ [(V3r 370G
Gl=— = )22 L X222 = 4 ) =243k2e /6
(2 a>< T V3,

we find the leading terms on the left-hand side of (45) vanish. This is the reason we needed to include the higher-order corrections;
these give the correction to the eigenvalue as

2 1

A comparison between (46) and the numerically calculated eigenvalue for K = 20 is shown in Fig. 9. Note that although we derived
(46) in the limit K — oo, v — 0, when we plot it in Fig. 9 we use the finite-domain approximation to o as a function of G. We can
see that for this eigenvalue we do not purely observe the oscillatory effect induced by the finite nature of the domain as in the two
previous cases. Rather, the relevant correction incorporates also the deviation from the exact scaling symmetry (and hence from the
symmetry of the eigenvalue pair at +2G) which provides the monotonic portion of the relevant correction.
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4.2.4. The eigenvalue A = —G
In terms of f and g, the approximate eigenfunctions are

dv,  iGEV; dvy  iGeV:
freg s 5 8reg = g - B
These satisfy the equations exactly, so that R = R; = 0. However, they do not satisfy the correct radiation condition at infinity. In the

finite domain context, the perturbation of the eigenvalue arises from the boundary terms in Eq. (24).
Comparing Eq. (47) with Eqgs. (30)-(31) as p — oo gives

. 11G . .G 11 23G
afeg(l—lﬂ>~1«/§a0a<1+15+--->, bﬁeg(l—HE) 1fa0ﬂ<l+1E+ )

(1—122%) _ o
48 48"

(47)

since

Mm1 =

Thus,

af, ~ V2000 <1 +Z)’ boe ~ iv2a0p (HZ)’ i, ~ (blg)". Do, ~ (df)”

When A; = —1,S — e292/C as v — 0, so we need to use the full expressions
£ f
a5 ~ breg + aregs , be ~ breg + aregs , (48)
i+S i+S
for ar and bs. Then
d df dg  dgieg "
I:fregdf;“ -f drgeg +gfe%£ -8 d’r;g ~ Re( 4i(a reg bieg )( + 'U“?Gz +-- ))
8iaZ(1 +iG/4)?
~Re< —0 " (fa — B)Se + B) (1 +M$GZ+~-~))
i+S
8iad(1 1G/4)2 /G —
d G+...
<R (T s 1)

1+ ie—2i¢2/C

R (161f 14iG/4) e_”/G).

Since the integrals in Eq. (23) are dominated by the near field, where V; is real, using the near-field solution in Eq. (23) gives

o0 o0
i)‘«exp/ (grzeg - rig)déf = i)\exp‘/ (greg _freg)(greg +freg)d$
— —00

oo

e dv;
ZGXeXp/ SVSE dg

oo
= —Ghexp f VZdé ~ —Ghexp———
—00

Thus the correction to the eigenvalue is

32i(1+iG/4)° 6
)\.exp —Re (me . (49)

A comparison between Eq. (49) and the numerically calculated eigenvalue for K = 20 is shown in Fig. 10. A key feature to observe here
is the presence of vertical asymptotes in this exponentially small (in G) correction. These represent the reason for the jumps observed
in Fig. 10. Indeed, it is relevant to note that a particularly careful observation of the orange line in Fig. 6 will reveal the outcome of
these jumps to the particularly astute reader, as can be discerned, e.g., near the outermost disconnect of the relevant numerical line.
Despite the fact that our theoretical approximation can no longer be considered accurate when M., becomes large, we can still see
that it very accurately captures our numerical results of Fig. 10.

We see from the numerical results that there is a very thin transition region in the vicinity of each asymptote in which the eigenvalue
perturbation switches from large and positive to large and negative. We do not attempt to capture this transition region, which requires
a detailed calculation in the vicinity of S = —i.

4.2.5. The eigenvalues near A = 0
In terms of f and g the approximate eigenfunctions are

freg =1V, 8reg = _iV5*~ (50)

In fact, these satisfy the equations and boundary conditions exactly, so that A = 0 is an exact eigenvalue even for a finite domain.
However, as we have seen numerically, there is a second eigenvalue which is exponentially close to zero, which we now approximate.
This analysis does not fit into the general framework of Section 4, but follows a similar methodology, which we now outline.
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Fig. 10. Asymptotic prediction [cf. Eq. (49)] (blue) compared to numerical solution (purple), for the eigenvalues with Ay = —G and for K = 20.

We write
f = ivs +}\exp1fl +fexp» (51)
g = —iVS* + )\exp1gl + exps (52)
A = hexpy + hexpys (53)

where Aexp, < Aexp; and

d?f; P i(lc —2)G G?g? ;

—dgg +o VTV e+ (0 + DIV —fi - =i + ——h = V7, (54)
d’g oo - i(loc —2)G G’g?
S TP (o + DI - e+ T e = (55)

with

dfi _ iGEfi dgy _ iGEgy
de — 27 de ~ 2

até =K.

Note that the linear operator here is slightly different from (but exponentially close to) that of Egs. (19)-(20), and is chosen so that the
solvability condition is exactly satisfied, so that we can be sure that f;, g exist: multiplying Eq. (54) by Vi and Eq. (55) by —V;* adding
and integrating gives

[ (55 +owrva + o+ vwen - - 2%+ Cp v

- /_’; (cllzsg21 oWV RV, + (o + DIV 8 — g1+ 2—02)ch + szzgl) vFde
- /Z (‘:; F VPV — V- i(o ;,Z)Gvs N sz%)f] "

_ /_’; (d:;/;* FVePTVE -V + i(UZ_UZ)GVS* N szz VS*) .

d dv. d N\
+[vsi—f75—vj£+g1 S}
dg dg dg dé | g

. . . . 1K
_ [Vsncsﬁ e G (—lcevu] o
K

2 2 2 )
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Now, substituting Eqs. (51)-(53) into Eqgs. (19)-(20) gives

de o - i(a - Z)G GZSZ
dge;(p + U|Vs|2 2nggexp + (o + 1)|Vs|2 fexp _fexp - fexp fexp

= hexp 0 [V 2((VS Y = Vg +Aexp1(v -V - ixexplfl + hexpy Ve
dzgexp i(loc —2)G GZSZ

+ U|Vs|2g_2(vg*)2fexp + (o + 1)|Vs|20gexp — 8exp +

8exp + 8exp

dg2 20 4

= Dexp O IVs 2 2(VE = (VI Nt + dexpy (V& — Vo) + ihexp 81 + hexp, Vs

where we have neglected triply-exponentially-small terms involving Aexp,Aexp;. Multiplying by iVs, —iV;, adding and integrating the
LHS is triply exponentially small. After simplifying, and neglecting the triply-exponentially-small term (VS2 —(V*)? JAexp,, the RHS gives

S

o0
/ i)\exp1U|Vs|26_2((Vs*)2 - ng)(vsgl + Vs*fl) + i)\exm(vsz - (Vs*)z) + )\exp%(vsfl + Vs*gl)d%' ~0. (56)
—00

This is the equation which will determine the eigenvalue Aexp,; note that it is quadratic, and Aexp; = 0 is a solution as expected. In the
outer region f; and g; are exponentially small. Thus the integrals involving f; and g, are dominated by the inner region. In the inner
region f; = g1+ exponentially small terms, and

d fl 4 252

— + 5V = V..

dz2 +5Vifi —fi+ fi=
We find

1/Vs dv; 2
= —_— G N

fi 3 ( +é& d ) +Gfi2
where, up to exponentially small terms,

de 62%-2

dglzz +5Vii —fot+ ——fin = *f Vs.

Unfortunately we need to find thls correction term f;, because the leading-order term will integrate to zero. Expanding in powers of
G, we find f;, ~ —2V; where V; ~ Vo + G*V; + - -- (see [46]), so that

(o] 00 V dV (o] G2 3 3
/(VJ1+vs*g1)ds~/ (S+s—g—4czvl) ds~—4czf vovlds=—%.

The dominant contribution to the integral of (VS2 —(VS*)Z) comes from the outer region before the turning point, in which, with & = p/G,

21/2a0 - p ,52 1/2 . je—7/G
Vo o (@ e, g | (1 ) *> dp.  y=
0

(4—p?) 4 2
(see [46]), so that

00 2i [2 2i 2 212q,e9(0)/C 2124 ,,e—8(r)/G
i/oo (V¢ = (V7)) dg ~ E/o (Vs + VI)Vs = V) dp ~ E/o 7 _"pz)m 7 i’/pz)m dp
164/3e /¢ 2 dp 8y/3m e /G
G /0 @—py2 = G
The final term in Eq. (56) is subdominant, so that, to leading order, Eq. (56) gives
N _8J/37me ™ 64  512e77/C (57)
exp1 — G GZ\/§T[3 = C37t2 .

In Appendix D, we show that the asymptotic behaviour (57) can be determined much more simply from the reduced system derived
in [46], which describes the slow evolution of G in the vicinity of the bifurcation.

Fig. 11 shows the asymptotic prediction Eq. (57) against a direct numerical simulation. For this eigenvalue the convergence is slower
as G — 0 so that the leading-order approximation is not as close to the numerical solution. This is because the higher-order corrections
are significant when estimating the integrals in Eq. (56). To demonstrate this we also show in Fig. 11 the approximation

(Vs — (VF)?) d
Aexpy ~ —l-%
ST (Vefy — Vigy)dg

with a numerical solution for V;, f; and g;, which converges more quickly to the numerical value. It is clear that the latter expression
of Eq. (58) captures the dependence on G more accurately than the leading-order correction of the former.

(58)

4.3. Continuous spectrum

Finally we consider the problem of identifying the continuous spectrum asymptotically as G — 0. In the far field with p = G¢,
neglecting the exponentially small terms |V;|>° and (o — 2), we have

d d? 2
1/\f+Gz f f+—f_0 —1Ag+62dg2 g—i—%g:O, (59)
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Fig. 11. Asymptotic prediction [cf. Eq. (57)] (blue) compared to numerical solution (purple), for the eigenvalue in the vicinity of i.s = 0, for K = 20. Also shown
(green) is the approximation (58).

along with the boundary conditions

W il s kG

d,o 2 d,o 2

Let us start by imagining that these equations hold throughout the region [—KG, KG], before returning to investigate the impact of the
inner region near p = 0.

Since the equations for f and g decouple (because we have ignored the inner region), we can treat them separately, and each will
give a set of eigenvalues. In fact, we see that for any eigenfunction-eigenvalue pair (f, A) the conjugates (f*, A*) satisfy the equations
and boundary conditions for g. We therefore start by focusing on the equation for f.

Using the WKB expansion

f = Arel¥/S 1 Bre=i9r/G, (60)
where
o0
A= An(p)iG)', By = ZBf,, X—iG)"
n=0
—(¢;)2—1+%2:0,
2igiA, +ipfAro =0,  —2ig(Bj, — igyfBro =0,
we find
¢f:f0p<iz—1+ix>l/2 MJF —1+4i) log(p+vf4__i_il+4l>
with

02 —1/4 02 —1/4
Af0=af<Z—1+iA> s Bfo:bf(Z_]dl—i)\) .

Note that this expansion differs from that performed previously in that we have included A at leading order rather than assuming that
= 0(G).

There are two turning points, at
0 = pre = £2(1 —ir)"2

In order to define uniquely ¢y let us put branch cuts from these turning points to +ico away from the real axis, as indicated in Fig. 12
for an arbitrary but representative value of A.
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3
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Re(p)

Fig. 12. Branch points and branch cuts in ¢y when A = —0.1 — 1.1i. The contour shading corresponds to Im(¢y).

(a) A= —0.3 — 0.5i (b) A= —0.3 — 2i

Fig. 13. Stokes lines (green) and anti-Stokes lines (red). The contour shading corresponds to Im(¢y). The path along the real axis is indicated, as well as the two
points at which Stokes lines are crossed.

To impose the boundary conditions on Eq. (60) we need to take account of the change in the coefficients a; and by due to Stokes
phenomenon (see e.g. [49,50]). In Fig. 13 we illustrate the Stokes lines associated with each of the turning points for various values of
A. Let us calculate the change in the coefficients a; and by as we cross Stokes lines when moving from p = —KG to p = KG. We suppose
that Re(A) < 0 so that p, is in the first quadrant. Although the topology of the anti-Stokes lines changes as Im(1) varies, as we move
along the real axis from minus infinity to infinity we always cross one Stokes line from each turning point. Across these Stokes lines
the dominant WKB approximation will turn on a multiple of the subdominant WKB approximation.

The first Stokes line we cross, indicated by a “1” in Fig. 13, is that which moves up from p;_, on which Im(¢;(p)) > Im(¢s(05-)).
Thus e %/C is the exponentially dominant term, and the coefficient a; changes by —ibe~2%(%7-)/¢_ The second Stokes line we cross,
indicated by a “2” in Fig. 13, is that which moves down from ps, on which Im(¢7(p)) < Im(¢y(ps+)). This on this Stokes line ei%/C is
the exponentially dominant term, and the coefficient by changes by ia;e?%(#+)/C, Thus, together, the change in the coefficient is

(a7, b ™) — (a7 — iby®e™HW-)/C pro)
s (le_oo _ ibf—we—2i¢f(pf_)/c’ bf—oo + i(af_oo _ ibf—we—Zifﬁf(Pf—)/G)e2i¢f(ﬂf+)/c)’
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so that
a® = a7 ™ — iby e 2lr)C,
b}’o = bf*°° + ia}:ooezi¢f(pf+)/c + b]:ooe_zwf(ﬁf—)/Gezw’f(ﬁf-;—)/c'
The boundary condition at p = KG gives, at leading order,
(KG)> — 4 +4i). —KG _ Byo(KG) ﬁ
V(KG? — 4+ 4ir +KG  Apo(KG)  af°

The boundary condition at p = —KG gives, at leading order,

@29 (—KG)/G (KG? —4+4ir +KG  Bpo(—KG)  b;™

(KG2 — 4+ 4ix —KG  Ajo(—KG) a7’
Noting that ¢ is odd, if we let

o2ty (KG)/G

(KG)? — 4 + 4i) — KG

Qo = Q2idy (KG)/G . (61)
V(KG)? — 4 + 4ix + KG
then we have the following homogeneous system of four equations in the four unknowns a)?", b}’o, ag e, bf‘ e,
b = Q.
—00 __ —00
a > = bef ,
00 __ 4—00 _ ip—00,—2igr(pr_)/G
a” = ay 1bf [ A
bFO — bf—oo + ia}:w62i¢f(;0f+)/c + bj:ooe—zw’f(ﬁf—)/GEZi¢f(Pf+)/G'
Noting that ¢(pr+) = —¢s(pr—) = —(A + 1) /2, the condition for a non-trivial solution is
(Qf _ ie(]—i}»)ﬂ/G)Z =1. (62)

For finite K, Eq. (62) gives a discrete set of eigenvalues with the separation between neighbouring eigenvalues becoming smaller as
K — oo, approximating the continuous spectrum. For large K,

Qo ~ eiKZG/Ze—i(lJriA)/G(_] 4 i) IR G (G2 2+/G

For Im(A) < O we need |Qf] ~ 1 as G — 0 to get a balance in Eq. (62), which requires Re(A) ~ —G. For Im(A) > 0 we need
Qr ~ iel17™7/C 35 G — 0 to get a balance in Eq. (62), which also requires Re(A) ~ —G. Thus the continuous spectrum of the problem
[cf. Eq. (59)] lies close to (but not exactly on) the line Re(A) = —G. The calculation for g is similar and gives the same equation as
Eq. (62) with A — A* as expected. In Fig. 14 we compare the predictions of Eq. (62) (recalling the definition of Eq. (61)) with the
numerical evaluation of the eigenvalues of Eq. (59). A very good agreement is found between the latter (identified as black dots) and
the former (identified via the intersection of the contours of the blue and red curves associated with the real and the imaginary parts
of Eq. (62)).

We now consider how the picture above changes when we include the inner region. Then, in addition to the Stokes lines already
considered, there is a change in the coefficients a and b as we pass from p = 0— to p = 0+. The connection formula comes from
matching the solution in the inner region with the far field expansions on each side. Note that f and g are coupled in the inner region,
so that we no longer have two separate eigenvalue problems. Specifically, at leading order in the inner region V; is real and

. d?
iAf + é +2Vig +3Vif —f =0, (63)
. d?
—irg + @% +2Vf+3Vig—g =0, (64)
with
f~ a0+ﬂ (-2 | po+ ﬂe—u—m”zs as £ — 0o
(=144 Fo(=14in)4 ’
@itg(0)/G o eitg(0)/G o
—(1+ir)12¢ 0+ (1+in)12¢
~a, ———71 b,T————¢ as & — o0,
% iy T S §
f~a eWOC  onpre oo €O e (17N a5 8 5 0o
Fo(=1 x4 (=1 4in)4 ’
g ~d - @O e pom @O0 g £ — —00
£ (—1—in)/4 £ (—1—in)V/4 '

The solution gives connection formulae between the incoming coefficients a}?’, b})’, ag‘ and bg‘ and the outgoing coefficients a}”, b}”,
ag+ and bg*. Unfortunately it is not possible to determine these formulae analytically.

However, when A is large the first two terms in Egs. (63) and (64) dominate, and the solution is of WKB form even in the inner
region. The phase factor is trivial, with no turning points, so that there is no change in coefficient. Thus for large A the eigenvalues

should be well approximated by Eq. (62).
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Fig. 14. Eigenvalues for the problem of Eq. (59) for f (black points), for G = 0.2. The contours show the asymptotic prediction of Eq. (62). The red curves correspond
to Im(Qy — ie(*~*)7/¢) = 0, while the blue curves correspond to Re(Q; — ie!="7/C) e {—1, 1}. The eigenvalues should lie at the intersections of these contours. The
approximation is very good, apart from near A = —i, at which point the two turning points pj+ = £2(1 — ir)!/2 coalesce.

On the other hand when A = 0 we find by solving Eqs. (63)-(64) as a power series in G that

0+ . _ }0— 0+ . p0— 0+ . _ ,0—
bf bg, bg bf, a a,

0+ o q0- 0

a

f g
so that there must be some mixing of the coefficients in f and g for small ). Identifying the details of the relevant spectrum at small
A remains a challenging question for future study.

5. Conclusions & future challenges

In the present work, we have revisited the topic of stability of solutions that are self-similarly blowing up. We followed up
on the earlier work of [45] with substantially improved numerical means and techniques, and also added a systematic theoretical
understanding, building also on important works in the intermediate time interval (such as the key contributions of [43,44]). This has
allowed us to obtain a systematic understanding of the 3 eigenvalue pairs of the Hamiltonian system at the critical point of od = 2
and its continuous spectrum. We advocated the relevance of exploring the self-similar solutions in the co-exploding frame, by analogy
with the study of travelling solutions in a co-travelling frame, as per the standard dynamical systems perspective [41,42]. We have
also explained systematically why, despite the presence of positive real eigenvalues, the relevant self-similar solution is not genuinely
unstable but only subject to effectively neutral eigendirections. To corroborate the relevant results, we performed direct numerical
simulations in the renormalized frame, verifying (in line with earlier computations) the attractivity of the relevant waveforms.

Naturally, this analysis raises a number of interesting questions for further research. Understanding the dynamics (and the potential
role of self-similarity) slightly below the critical point od = 2 is an example of this type. Moreover, we have argued that the supercritical
solutions considered herein are effectively stable, upon explaining the origin of their real eigendirections. Yet, it is well-known that
there are other problems for which multiple, higher-order collapsing solutions branches exist, some among which are dynamically
unstable: a notable example of this sort is, e.g., the complex Ginzburg-Landau equation [51]. It is then of particular interest to explore
such waveforms via the type of spectral analysis proposed herein, and corroborate in a systematic fashion their stability or instability, as
well as leverage such spectral information in an attempt to understand the corresponding direct numerical simulations of the relevant
system in the renormalized frame. In a different vein, there are other important dispersive PDE models that feature similar bifurcations
towards the emergence of collapsing solutions, such as the generalized KdV problem; for a recent exposition of the collapsing solutions
and asymptotics thereof, see, e.g., [40]. It is then of particular interest to adapt the methodology proposed herein to the latter problem
to explore the potential generality of the eigenvalue phenomenology identified in the present work. Such topics are presently under
active investigation and relevant results will be reported in future publications.
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Appendix A. An instructive ODE example

Consider, arguably, one of the simplest self-similar problems, namely the ODE:
x=x", x(t)eR. (A.1)

In order to leverage the self-similar frame to analyse this problem, we seek to absorb the temporal dependence through a transformation
to go to a frame where the solution appears steady. In this (ODE) case, it is not a steady spatial profile, as in the PDE example studied
throughout this work, but instead a “number”. We thus use x(t) = A(t)x with t = t(t) corresponding to a rescaling of time (to be
determined), and obtain the steady-state problem x = x” leading to x = 0 or X = 1. Then, in accordance to general self-similarity
principles [52,53], we select
1 1

A, 1 p-1 1 p-1

T =1=A=A"; p=ATAt)=| ———— =Ay| —— . A2

2 0 t (t) - -0 o\ —n (A2)
In Eq. (A.2), t* denotes the blow-up time, i.e., x(t) — oco ast  t*. In the self-similar frame, we have indeed devised a much more
elaborate way to obtain a simple ODE result. The innate advantage of the method, however, is that in this frame that “explodes” with
the solution it is possible to perform a stability analysis using:

xO=At)x+ey()]=y: =p—-1)y, €K1, (A3)

assuming that we keep the leading order (O(¢)) terms in y. We thus observe that the self-similar frame features a single eigenvalue
(indeed, since it is an ODE rather than a PDE) of A = p — 1. For collapsing solutions with p > 1, this is an eigenvalue associated with
growth since A > 0.

A natural question then is whether this is a true instability. The perturbation A(t)ey can be rewritten as eeP® ~ e(t* — t)P/(1=P), But
then, considering a shift in the collapse time t* — t* 4+ €8t (€ <« 1), and substituting it in the original solution, we obtain:

o [ 1 L L N U L
x(t)—>x(t)_|:p_1:| [W&_J _Ao[t*_t] <p_1>(t 07 (A4)

Namely, the positive eigenvalue does not correspond to a true instability but rather is associated with the translational invariance of
the ODE with respect to the shifting of the collapse time.

Appendix B. Continuous spectra obtained from the rescaled NLS equation

Fig. B.1 depicts numerical spectra of the rescaled NLS equation obtained for different o values. One can observe the alignment of
eigenvalues on a nearly vertical line of continuous spectrum, with real part, A, = —G. As we move away from the critical value, o = 2,
the distortions from the vertical line become progressively larger.

Appendix C. Effect of size domain on the numerical computations

Fig. C.1 presents a comparison of the computed spectra of the rescaled NLS equation for size domain K = 20 and K = 40.
Even by doubling the size of the computational domain, the alignment of eigenvalues on a “vertical” line of the continuous spectrum
remains practically unchanged (although slightly closer to the line Re(1) = —G), and the real eigenvalues deviations are also visually
indistinguishable.

Appendix D. Stability of the reduced system

In [46], asymptotic solutions of Eq. (12) were constructed which result in the following reduced system for the growth rate G and
an associated variable 8, which can be thought of as the normal form associated with the bifurcation:

dG
= B — G, (D.1)
d o—2 . —r

cO£ ! o )bOG—Aﬁ sign(G)e /1€, (D.2)

where A1, ¢ and by are given by (10). This is a slow-fast system with fast Eq. (D.1) and slow Eq. (D.2); Eq. (9) corresponds to the
quasistatic approximation g = G2.
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Fig. B.1. Continuous spectra obtained from the numerical solution of the rescaled NLS equation with K = 20 and o values close to the critical value, o = 2:
o =24 107° (top left panel) and o = 2 + 1076 (top right panel), as well as ¢ = 2.001 (bottom left panel), o = 2.05 (bottom right panel).
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Fig. C.1. Comparison of spectra obtained from the numerical solution of the rescaled NLS equation for size domain K = 20 (left panel) and K = 40 (right panel).

25



SJ. Chapman, M. Kavousanakis, E.G. Charalampidis et al. Physica D 439 (2022) 133396
D.1. Stability of the zero solution

Linearizing about the origin gives

dG

=P

g (o —2)bOG
dr 20

The characteristic equation is
A2 = (0 —2)by
20¢y ’
showing a pair of eigenvalues moving from the imaginary axis to the real axis as o passes through 2 as expected.

D.2. Stability of the non-zero solution
The steady solution (Gg, ) given by
-2
,30 = Gz, —(O )boco = A%E_R/GO.
20

with Gg > 0 corresponds to the blow-up solution in the original frame. Perturbing about this solution by writing G = Gp+x, 8 = Gﬁ +y
and linearizing gives

e _ 2Gox

de =Yy 0X,

dy (0 —2) o om
COE = TboX—A%e ”/Go—zx.

0
The characteristic equation is

1 —2 b4
MA +2Go) — — (Cf—)bo —Ale ™/ ) = 0.
Co 20 G%
One eigenvalue is exponentially close to zero, while one is exponentially close to —2Gy. The exponentially small eigenvalue is
approximately

— - /G
oo (=2 —Re /0 ) o _pemieo TS ﬂao ,
200Go \ 20 G2 2063 512G3n2

in agreement with the detailed calculation of Section 4.2.5. Note that this is also the eigenvalue which remains when reducing
Eqgs. (D.1)-(D.2) to the slow manifold giving
ZCoGd—G = uboc — A?sign(G)e /1€, (D.3)
dr 20
We note that the exponentially small correction to the eigenvalue A ~ —2G does not agree with the detailed calculation in Section 4.2.3.
This is due to the fact that it corresponds to an exponentially small correction of the fast timescale, and the system of Eqs. (D.1)-(D.2)
is accurate at leading-order only in that regime.
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