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Abstract
A family of higher-order rational lumps on non-zero constant background of
Davey—Stewartson (DS) II equation are investigated. These solutions have
multiple peaks whose heights and trajectories are approximately given by
asymptotical analysis. It is found that the heights are time-dependent and for
large time they approach the same constant height value of the first-order
fundamental lump. The resulting trajectories are considered and it is found
that the scattering angle can assume arbitrary values in the interval of (7, )
which is markedly distinct from the necessary orthogonal scattering for the
higher-order lumps on zero background. Additionally, it is illustrated that the
higher-order lumps containing multi-peaked n-lumps can be regarded as a
nonlinear superposition of » first-order ones as |f| — co.

Keywords: Davey—Stewartson II equation, Darboux transformation, lump,
asymptotic analysis.
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1. Introduction

In this paper we consider the Davey—Stewartson (DS) II system, which was first derived by
Davey and Stewartson to model water waves with weak surface tension [1]. This can also be
considered as a long wave limit of Benney—Roskes equation [2] of the form:

ity + ey — ttyy + (26|u|* + S)u =0,

Su+ Sy = —4u(ju) e, k==I, W
where u is the amplitude of a surface wave packet and S characterizes the mean motion gen-
erated by this surface wave. A recent discussion of the derivation of such models and their
multiscale expansion connections can be found in the book of [3]. Apart from the realm of
water waves, relevant models can be found to be relevant in other physical fields, such as non-
linear optics [4-6], plasma physics [7-9] and ferromagnets [10]. The system is integrable in
that it admits Lax pair (see equations (6.1.2)—(6.1.3) in [11]) and can be solved via inverse
spectral transformation with the help of the so-called 0 methods [12]. With regard to the solu-
tions to DS II equation (1), the defocusing case (x = 1) only admits line solitons, but does not
possess lump solutions, as proved in [13]. Consequently, we limit our attention to the focusing
case (k = —1) to derive higher-order lumps and analyze their dynamics.

Lumps, as a class of rational soliton solutions, are localized in the all space and travel
in time. An interesting topic in the realm of soliton dynamics (especially, in connection to
such higher-dimensional settings) is to look at the scattering properties of two or more lump
solitons colliding. The simplest type of interaction lumps was first discovered by Manakov et al
in the Kadomtsev—Petviashvili (KP) equation by employing the dressing method [14]. Sub-
sequently Satsuma and Ablowitz [15] used direct and long-wave limit methods to construct
classes of lumps of the KP and DS equations. These solutions feature a trivial interaction,
i.e. they consist of n lumps traveling with distinct asymptotic velocities and their trajectories
remain unchanged before and after interaction (i.e. for large time). In other words, they exper-
ience a normal scattering [16] and correspond to n-simple pole cases. Such interaction lump
solutions on zero-boundary background of DS II were also obtained by Arkadiev et al via the
inverse scattering method [17]. However, if the individual lumps have the same asymptotic
center-of-mass velocities, they undergo anomalous scattering (an infinite phase shift of their
trajectories) with a non-zero deflection angle after a head-on collision. These correspond to
higher-order poles [18-20].

Many authors have also used different methods to study higher-order lumps of KP-I pre-
viously [16, 21, 22-29]. Gorshkov et al [16] reported a second-order lump solution which
describes the nontrivial interaction and anomalous scattering of two lumps, which defied the
paradigm of solitons as non-interacting entities. Ablowitz er al [20] used the inverse scatter-
ing transformation and binary Darboux Transformation to construct higher-order lumps that
include the solution of [16] as a special case. They found that when ¢ runs from —oo to O,
these n lump peaks first attract each other and overlap, after which time they experience a
large angle scattering, then again separate into n peaks as t — +oc0. Other integrable equations
such as the Boussinesq equation [30, 31], the 2 + 1-dimensional NLS equation [32, 33],2 + 1-
dimensional asymmetric Nizhnik—Novikov—Veselov system [34] and the 2 + 1-dimensional
chiral equation [35, 36] have also been found to feature similar solution structures. In [24, 27—
29], the authors further found that the higher-order lumps split into a certain number of fun-
damental ones whose relative spatial separation grows in proportion to |¢|9 where % <¢g< %
as |t| — oo.
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However, up to now, the asymptotic dynamics and scattering phenomena of the higher-order
lumps of DS II equation were studied, to our knowledge, on a vanishing background. Mafias
and Santini studied a large class of higher-order lumps on the zero background of the DS II
equation with the use of a Wronskian scheme [37] and later different groups [38, 39] also
used the inverse scattering method to construct such rational solutions. They behave highly
nontrivially upon interaction (a head-on collision results in a orthogonal scattering). A natural
question arises whether there exist novel lumps of DS II equation which feature anomalous
scattering phenomena and scatter with non-orthogonal angle after collision. To this end, we
need to construct a family of new rational lump solutions of DS II on a non-zero background
and to explore their interactions which is a focal point of the present work.

The Darboux transformation (DT) has been used successively to obtain soliton, breather and
rogue wave solutions in the last several years [40-52]. Given its earlier success, we utilize this
method herein to construct higher-order rational lump solutions on non-zero constant back-
ground for DS II equation. To realize this goal, first we need to solve the Lax pair equations to
find a hierarchy of solutions, which are used to construct more general DT. Indeed, one of our
key results consists of the confirmation of the feature that arbitrary order Taylor coefficients
of the fundamental eigenfunction (the usual exponential solution to Lax pair) all satisfy Lax
pair equations with the same plane wave seeding solution.

Motivated by the above results, we shall concentrate on the following results.

e Beginning with the plane wave seeding solution, a hierarchy of new eigenfunctions gener-
ated by these Taylor coefficients of a usual exponential solution to the Lax pair, which are
used to generalize the n-fold DT.

e Apart from the 7 scattering occurring in collision between lumps [37, 38], we find a family
of higher-order lumps on nonzero background of the DS II equation where the scattering
angle can be an arbitrary constant in the interval of (7, 7). The anomalous scattering and
the time evolution process are illustrated by analyzing the approximate asymptotic formula
of these lumps’ trajectories.

e The approximate heights of these lump peaks evolve in time and approach the maximum
value of the first-order fundamental lump as |f| — oo, which demonstrates how the nth-order
lumps constitute a superposition of # distinct peaks.

The rest of this paper is organized as follows. In section 2, we begin with the plane wave
seeding solution, and establish that the Taylor coefficients of the fundamental eigenfunction
all satisfy Lax pair equations. In section 3, the rational lump solutions up to the third-order are
obtained by using DT, and their dynamical properties are studied. Our conclusions, as well as
some potential directions of future study are given in the final section.

2. Eigenfunctions and Darboux transformation

The DS II equation (1) admits the following Lax pair equations [11]
U, =JU,+ 0¥, ¥, =2J0,+2U0¥,4 VU, 2)

i
0

(0 u w+10)/2  u,—iu,

U_<v 0)’ V= < Ve +ivy (w—iQ)/Z)' 3)

. . . 0
with a constant diagonal matrix J = ( ; ) and two potential matrices
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Here, the vector U = (1, ¢)” (T denotes transpose), the potentials u, v = —u* € C, and the
field Q = —2|u|> + S € R, are functions of the three independent variables x, y, .
In this work, we restrict our attention to the plane wave seeding solution, i.e.

u=aexp [i(bx+cy+dr)], v=—aexp|[—i(bx+cy+dr)], Q=0 —-c+d, 4

with a,b,c,d € R and assume that the solution of the Lax pair is in the form of the following
exponential function

Y =ayexp [i(bix+cry+dit)],
¢ = azexp [i(byx + coy + dat) ],

where a; € R and by, cx,dy € C (k= 1,2). Insertion of this expression into the Lax pair (2),
results in the parameters of the above fundamental eigenfunction ¥ = (1, ¢) (column vector
solution to Lax pair) satisfying:

(b] +iC1)Ll1 c+ib =

ay = a ) Cit: 7 27

d  (—ib 2ib; )=

= bt~y + 4o (FibH e 2b)E
2 2

bzzbl—b, C)=¢C —¢C, dzzdl—d,

&)

== \/4a2 +c2— (b—2by)2+2ic(b—2by).

For the sake of convenience, without loss of the generality of the possible dynamical behaviors
for DS II equations, in what follows, we always select b = ¢ = d = 0, in which case the seeding
solution becomes

U=-—-v=a, Q:Oa (6)

and the exponential eigenfunction (5) reduces to

YF =exp [iblxi \Ja* — b3 (iy — 2b1t)} ,
by £+/a? —b%i . .
ot = %exp {1b]x:|: \Ja*—bi(iy — 2b1t)] .

By performing a Taylor expansion for the above exponential eigenfunction around the point
by =\ =a+if where a and 3 are real constants and satisfy some constraints as seen in
Remark 1, we have the power series:

Wby =A+¢) =% 4 e+ B2 4. 4 NN 4 oV,

(N

®)
d(br = A +¢) = ¢l 4 plle 4 Pl 4. 4 oMV - o(N T,
where ¥ = %%\blz,\,qb[k] = %%ﬂb,:,\,k: 0,1,2,---,N and £ >0 is an infinitesimal con-
N 1 ° 1

stant.

Remark 1. To obtain higher-order lumps of the DS II equation, the parameters « and 3 satisfy
that « is arbitrary when 3 # 0, or o > a when 8 = 0. In our paper, we focus on the case o =
0,3 # 0 below.

Remark 2. In what follows, since the derivation of the eigenfunction components ¢ and ¢
with respect to the parameter variable b; results in the singularity of the denominator (the
denominator shall contain y/a? — b?), we avoid the degenerate case scenario by assuming
hereafter that « = 0,5 #0 .
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Remark 3. Assume that (1), ¢)7 solves the Lax pair (2) with the seeding solution u = —v =
a,Q = 0. By performing a Taylor expansion as in equation (8), the arbitrary order Taylor coef-
ficients (QN‘] , ¢[k])T are solutions to Lax pair with u = —v =a,Q = 0. Based on the special
seeding solution u = —v = a (irrespectively of the expansion point b; # a as interpreted in
remark 1) and the analyticity of the eigenfunction ¥ (see equation (7)), one can conclude that
all derivatives of ¥ with respect to variable b, satisfy the linear Lax pair equation (2) with
u = —v = a. Its Taylor coefficients W = (¢!, )T a5 above equation (8) are also solutions
to the Lax pair equation (2) with the same seeding solution u = —v = a.

Remark 4. We just consider the case of ()™, ¢ ™), and for simplicity, we still use (v,$)"
instead of (1™, ¢")T below. For the case with (¢)~, ¢~ )T superscripts, the same dynamics of
the solutions are obtained.

Remark 3 implies that there exists a hierarchy of eigenfunctions composed of Taylor coeffi-
cients for the same seeding solution. Based on the conclusion, the nth-order rational solution
of the DS II equation generated by the n-fold DT (equation (49) in [40].) is generalized in the
following Theorem.

Theorem 1. Given the seeding solution u = —v = a and choosing n distinct Taylor coefficients
Ukl = (1/)[’9] , qﬁ[kf])T (ki =1,2,---,n) as eigenfunctions, then the new nth-order rational solu-
tion of DS II equation (1) is given by
1)
ull = a+2i6—? 9)
where
a;t—lw{kl] . a;l—ll[]’[qkﬂ] af—l(b[lkl]* L a;L—l¢’[lkn]*
a;tfzwgkl] . 6)’:721/5[1]("] a§72¢£kl]* o 8;72925%”]*
) wgkl] o wl[1k,,] Qb[lk]]* o [k
1 =
a}r{;—l¢£kl] . 8;’_1¢£,k”] _a)lcl—lwgkl]* L _8;1—1,(/)}[11‘1!]*
a;t—2¢£kl] L a;l_2¢r[zkn] _8;1—2w£k1]* . _8;1—2¢r[lkn]*
gkl] . ’[an] _l[]gkl]* L _ ’Lkn]*
and 0, is the n+ 1 row of 0; replaced by a row vector n = (3)’21/)?(‘],--- ,3;'1/1,[,]("},8;%&](‘}*,
.. -8;’¢,[f‘”]*).

Remark 5. Comparing with the n-fold DT (see equation (49) in [40].), we use here the Taylor
coefficients as new eigenfunctions in order to construct a variety of solutions of DS II.

3. The higher-order lump solutions

For the DS II equations, under certain parameter restrictions, multi-lump solutions have
been obtained in [15] on nonzero background. Later, Mafias and Santini employed a Wron-
skian scheme and Villarroel and Ablowitz employed the inverse scattering transformation and

5
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Laurent coefficients to study the lump solutions on top of a zero background [37, 38]. They
have found that some lumps described a non-trivial interaction, in other words, after a front
collision, these lumps underwent scattering with a 7 scattering angle. In the current work, we
shall investigate higher-order lumps of the DS II equation on top of a nonzero constant back-
ground and show that they possess novel scattering where the scattering angle can be in the
interval of (%, ).

3.1. The first-order fundamental lump

In this part, without loss of diversity of dynamical behaviors of lump solutions, for simplicity,
we choose the pure imaginary expanding point A = iJ in equation (8), i.e. « =0, and consider
the following new moving coordinate frame

2a°

X=x, Y:y—(4ﬂ+?)t. (10)

The two eigenfunction components are given by the first-order Taylor coefficients

i(iB2X+2M3 1+ BMY)
B

(iMX + BY)e
M b
i(is? 3
(M+B8)(1 = MX +iBY)e 5
Ma ’

P =yl =

(11)
¢ =olll =

with M = /a?+ 2. Then, insertion of (¢1,4;)" = (¥[' ¢ll) into the one-fold DT,
equation (9) with parameters n = 1,k; = 1 yields a first-order fundamental lump solution
—142ipY

ull =a 1+ MiB\2 . & :
(MX = %57) " + g3 + 272

12)

It was first obtained by Satsuma and Ablowitz by taking a ‘long wave’ limit of the corres-
ponding one-soliton solution constructed by the direct method [15]. The solution is stationary

2 2
in the moving coordinate (X, Y)-frame. It has a single maximum peak (SM(liT‘w |a| at (g’;f ,0)

M+S 4V 3M2+2

and two local minima 0 at (57 7> 0)- Recalling the transformation connecting the
moving frame to the rest one ((x, y)-plane), this first-order lump travels with a uniform velocity

(0,48 + %lz) Its dynamics is illustrated in the (X, Y)-plane in figure 1.

Remark 6. In the above section, when A is real and |A| < |a|, we observe that the line rogue
wave solutions of DS II are obtained. On the other hand, we note that when ) is a complex
constant (or pure imaginary constant) and | A | > |a| (or A = i) where Ay denotes the real
part of ), the lump solutions of DS II are derived, i.e. the character of the solutions changes
depending on the specific selection of A within the complex plane.

Remark 7. In what follows, we shall set a>0 and 5 >0 without loss of generality.

3.2. The second-order non-fundamental lump

This part is devoted to using one- and two-fold DT to construct two second-order non-
fundamental lump solutions and study their dynamical properties. For the sake of convenience,
the discussion is considered in the moving coordinate frame (10) below.

6
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julll] 3.5 .
2.5
1.5 5!

0.5
10

| —

: - 1"—_'\V \v/'—'

” 7
1010 X -6 -4 -2 0 2 4 6
)

X
(a) (b

Figure 1. (a) The first-order lump of the DS II equation with parameters a = 1,8 =

%,M = ?, (b) the Y-crossection showing one maximum and two minima.

3.2.1. Case 1 the second-order lump using one-fold DT.  In this case, choosing the following
set of parameters in equation (9)

A =iB(B>0), n=1, k=2, (13)

then the one-fold DT yields a second-order non-fundamental lump solution. Because of the
cumbersome expression of this solution, we just provide here the corresponding eigenfunctions

(M BXY — 2M*t + 6M? Bt — M2BY + B°Y + iM* B2X2 — iM B3 Y?)e~ X H M t+MBY)

yol =] ,
2M3B
A : o3 (14
o M+ B)i oy | [IMCXH (BY = )M+ 3] (M4 )e” P XHETIED
T« M33 ’

Distinctly from the first-order case, the two eigenfunction components are dependent on ¢,
so the solution is non-stationary in the moving coordinate frame. When |7| — oo, it contains
two separated individual lump peaks, while in the intermediate times, the two lump peaks fuse
together. In order to analyze their interaction process, their heights and the traveling paths of
the two local maxima for the two lump peaks need to be determined. Since the exact analyt-
ical formulas are very complicated to obtain, we make the following reductions. Taking into
consideration the expression

WP — gl
[P + |l
the maximum of |u?!| shall occur near the minimum of the denominator which is approxim-
ately at the zeros of the leading terms of this polynomial part.
Solving |¢1Z1| =0, when 8 > 0,M? — 3% = a> — 23> > 0, for large time ||, we identify
the two lump peaks whose maximum asymptotic coordinates are given by

ull = a2 15

L -MBM? =32 a’ M+ M, M+p

X=+ MB ETTEREE VIR Y775X+W, t— —oo, (16)
and

B MB(M?* —352)t a’ M+ M, M+

X=+ M3 4ﬁM2+ PR _EX_W’ t — 400, (17)

7
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401 f=*4(|l|‘\'f‘;’ ',;
1= 2008, =
0 =109, Rt
=0, G
Yoo K=
=108 =10
0 t=1003 .
3 =10
=g’ o
K A= -
0wy " fg=-am

Figure 2. The time evolution of the second-order lump of equation (15). The contour
plots of these lumps at distinct times is plotted using the exact analytical solution (15)
by leveraging the eigenfunction of equation (14), and the two dot straight lines denote
the two asymptotic lines given by equations (16) and (17).

4.4 44
4.3 43
42 42
4.1 4.1 L
4 4
39 39 F
38 38
~10000 -8000 -6000 -4000 -1000 1000 3000 5000 7000 10000
t t
(a) (b)
Figure 3. (a) the two maximum amplitude values of the two lumps from r = —10000
to t = —10, (b) the two maximum amplitude values of the two lumps from ¢# =10 to
t =10000.

with M = /a? + 32. It is confirmed by direct comparison with the numerical profiles of the
exact solutions that these approximate asymptotic expressions adequately reflect the lump cen-
ter positions for all times as shown in figure 2.

Before studying the maximum amplitudes of the two lumps, we takea = 1,3 = %,M = %
Substituting the asymptotic coordinates (16) and (17) into the solution ul (15), the amplitude
of one lump is larger than 4 and approaches 4, whereas for the other one, the amplitude is
less than 4 and approaches 4 as t — —oo. The same conclusion holds as t — 400, as shown
in figure 3. Notice there is a slight deviation of our above asymptotic expressions from the
limiting value, given their approximate nature.

From equations (16) and (17), the asymptotic trajectories define two straight lines with dif-
ferent slopes for t — +-co. More concretely, the asymptotic line for # — 4-oc0 is obtained from
the line for t = —oo by reflection with respect to the X-axis, and the angle between the two
asymptotic lines is denoted by ©. Since the two lump peaks first experience a head-on colli-
sion henceforth undergoing a scattering process, according to the coordinates (16) and (17),
the scattering angle O is given by
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20 201
out
Y 0 ¥ 0 P
-20 ~20{ out
-40 —401 in
30 010 30 ~30 010 30 30 010 30
X X X

(a) (b) ()

Figure 4. Location of the two pulses: (a) incoming (= —100) and (b) outgoing

(t=100) with parametersa = 1,5 = %,M = % (c) The nontrivial collision process of
before (t — —o0) and after (t — +o0) scattering and the angle is indicated, and when
|#| = 100, these two lumps nearly totally locate at the two straight lines. In panel (c), a
schematic of the incoming and outgoing wave angles is provided.

a2

COS@ - —m

(18)

Here cos © reaches to the minimum value —1 as @ — oo and attains a maximum value O as a
goes to 0; in other words, the scattering angle © € (7, ). Figure 4 shows the traveling paths of
the two lump peaks before and after collision. It is seen that the two lumps located at the second
and fourth quadrants first accelerate and approach each other along a straight line. After a front
collision and undergoing a large scattering angle, they decelerate and move away each other
along the other straight line (among the ones given above) and, finally, they move along the
first and third quadrants. Also, the approximate estimations of the center positions are nearly
coincident with the exact ones illustrated by the density plots.

Reverting back to the rest coordinate (x, y)-frame, from equation (10), the peak locations
are given by (x,y) = (X, %M )
the following equations,

when |#| > 0. The corresponding coordinate y satisfies

M
By:(2a2+4ﬂ2)t—Mx+LB, t— —o0,
By=(2a* +4B%)t+Mx— ——=, - o0,
2M
where ¢ can given by solving equations (16) and (17), i.e.
C M?2-3p2 43M?

with M > 0,3 > 0 and M? — 3% > 0 when a® > 2/3*>. Combining equations (19) and (20), it
is found that the two lumps locate at two parabolas in the (x, y)-plane, which is illustrated in
figure 5.
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300
200
100

y 0
-100
-200
-300

-4-20 2 4 6
P

Figure 5. The second-order lump peak trajectories with parameters a = 1,5 = % and

M= g in the xy-plane. The blue parabolic curve is given by the first formula of

equations (19) and (20), the red parabolic curve is given by the second formula of
equations (19) and (20), and the black points describe the peak coordinates.

3.2.2. Case 2 the second-order lump using two-fold DT.  To compare with the second-order
lump in Case 1, we choose the following set of parameters in equation (9)

M=A=i8, n=2, k=1, k=2 @21)

A new second-order lump is obtained by using the two-fold DT. For large time ¢, this solution
features a generally opposite time evolution process in comparison to the Case 1 above, that
is, when r — —oo the two lump peaks locate at the first and third quadrants whereas they
move to the second and fourth quadrants as t — +o0o. To demonstrate this phenomenon, the
asymptotical trajectories of these two lump peaks are determined. Similarly to our discussion
above, the approximate coordinates of the maxima of two lumps are given by

—MB(M_362)I a? M-+ M M+
X:Zt _ Y: 7x_7 t - 22
MpB s 5o amp T )
and
x_ LVMBOE 3R & Mt5 o, M MiB 23)
= MB am?g om0 T BT T 2MB '

where M = \/a? + 32 and \/MB(M? —3[32)[1] is well-defined as a®> > 23>. In this case, the
scattering angle is given by

(12

a*+23%
This asymptotic dynamics is illustrated in figure 6. It is clearly seen that these approximate
estimations are in good agreement with the exact solution illustrated by the density plot. Fur-
thermore, comparing figures 6(c) with 4(c), it is also found that the second-order lump obtained
by using the one-fold DT evolves effectively in a time-reversed way in comparison with the
one obtained by using two-fold DT (see also equations (16), (23) and equations (17), (22),
respectively).

cosf = 24)

Remark 8. Though the two scattering angles in Case 1 and Case 2 are the same (see
equations (18) and (24)), the directions of incoming and outgoing waves are opposite. Also,

10
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40
201 out in
Y 0
2 i out
-40
~30 010 30 ~30 010 30
X X
(b) (c)

Figure 6. Location of the two pulses: (a) incoming (f = —100) and (b) outgoing

(t=100) with parameters a = 1,5 = %,M = ? (c) The nontrivial collision process

of before (r = —o0) and after (t = 4-00) scattering and the angle is indicated. When
|#| = 100, these two lumps are practically located at two straight lines. The scattering
angle is also indicted by ©.

the scattering angle is not necessarily normal, which is a central difference of the results herein
from the one of two lumps for DS II equation on zero background [37, 38].

3.3. The non-fundamental third-order lump

The third-order lump and its asymptotics can be studied in the same manner as in the second-
order lump case, and for this reason we omit here some of the technical details. To illustrate
its dynamical evolution process and asymptotic heights, the locations of the three lump peaks
shall be given.

3.3.1. Case 3 the third-order lump using the one-fold DT.  With the choice of the following
set of parameters in equation (9):

A =iB, n=1, k =3, (25)

a third-order lump ul! is obtained by using one-fold DT. The following eigenfunctions are
used,

ol =t (R riol) 0= ZOEED (s igfl) s, o)
with
¢ = —X+i(MBY+2M°t), M=+/a*>+ 32,
B — 3820 X2y — B*M2YP — 6MO1X + 18M* 821X — 33M*XY + 33> M2XY
— 128M*t+ 1233M%t — 35°M*Y + 334,
= MB(M*X — 33°MPXY? + 6M* 1Y — 186°M>1Y + 3MBY? — 35°Y2),
B = g — 68 MIXY + 6M5t — 18M3 B2t + 3BMPY + 33 MY — 68 MY,
Bl Bl 38t X2 4 3M283Y2 + 3MP BX — 332M>X + 3MB> — 353°.

1
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Figure 7. The time evolution process of the third-order lump obtained by using the

one-fold DT with parameters a = 1,3 = % and M = ? at distinct time. (a) t = —200;
(b) t=—10; (c) t=0; (d) + =200.

For large ¢, this solution is split into three lumps whose asymptotic coordinates of the maxima
are given by

3MB(M? —332)t M-8 M M+3 &
X1 =+ +A+—L2  y=""x,+— 24 ,
2 Mp 3MB g Mg Tamp n
oo M+ M, MiS & ’
T T3 0 T BT 2mMB T 3mp?
and
—3MB(M? =332 - ’
Xip=% 3MB( 3P )[+A+M 5, Y:MXl,szi—’_ﬂ* a )
Mp 3MB g ME—aMB oo, 28)
M+ M, M+3 & ’
Xy= 1P yy=— Xy Py L
3 w0 BTN T om Taup

where A = %W and when a® > 23* the quantity \/3MB(M? — 3/3?)|t| is well defined. The
dynamics of this third-order lump is illustrated in figure 7. Figure 8 shows that the exact (density figures)
and approximate peak locations (red, blue and black points) are generally in good agreement for large
|#]. When 7 < 0, the three lump peaks are separated and two of them are located at the second and fourth
quadrants. Subsequently they approach and eventually overlap with the middle one. As time progresses,
the three lump peaks again split into three distinguishable peaks, with the middle one remaining fixed
while the other two peaks separate from each other and move to the first and third quadrants. Note that the
two peaks (located at the first and third quadrants (or the second and fourth quadrants) move along two
distinct straight lines but their slopes are same with the corresponding second-order lump obtained by
using one-fold DT (see also equations (16), (17) and (27), (28)). Furthermore, the approximate heights
of the three lump peaks are also calculated by substituting the asymptotic coordinates into the expression
of the third-order lump solution, as illustrated in figure 9. It is seen that (a) each peak height approaches
the asymptotic value 4 where the minor difference comes from the approximate coordinate estimate
(similarly to what was discussed before) of lump peaks; (b) the peak height (red point) grows as time
evolves whereas the other one (blue point) decreases as ¢ < 0, but the peak height (red point) decreases
as time evolves whereas the other one (blue point) grows for # > 0. Moreover, the middle one (black
point) generally remains unchanged during the evolution process.

Remark 9. The trajectories of the three lump peaks in the xy-plane can be obtained using (10), (27)
and (28) as in the two-lump case but are not shown here.

12
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Figure 8. Location of the three lump peaks in Case 3: (a) t = —200, (b) t=200. The
black point represents the location of the fixed lump; the red point denotes the approx-
imate coordinates of one lump, and the blue point denotes the approximate coordinates
of the other lump.
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Figure 9. The evolution of the heights of the three lump peaks over time: (a) from t =
—100000 to t = —200, (b) from =200 to = 100000. The black line represents the
height of the fixed lump; the red line denotes the height of second lump, and the blue
line denotes the height of the third lump.

3.3.2. Case 4 the third-order lump using three-fold DT.  Comparing with the third-order lump

obtained by using the one-fold DT in Case 3, in the present case, we shall use the three-fold DT to

construct a similar third-order lump, but which possesses a generally ‘opposite’ time evolution process.

Thatis, when ¢ < 0 two lumps are located at the first and third quadrants whereas they move to the second

and fourth quadrants as ¢ > 0, with the middle lump remaining still during the entire time evolution.
Choosing the following set of parameters in equation (9)

M=X=Mh=if, n=3, k=1, k=2 k=3, 29)
a third-order lump ul[lﬂnp of DS Il is obtained by using three-fold DT. Since the expression of this solution
is lengthy and complex, once again we leverage the analytical means of approximating the trajectories
and heights of the three lump peaks similarly to previous cases. Indeed, we omit lengthy details but only

13
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Figure 10. Location of the three lump peaks in Case 4: (a) t = —200, (b) r =200. The
black point represents the location of the fixed lump; the red points denote the approxim-
ate coordinates of the second lump, and the blue points denote the approximate coordin-
ates of the third lump.

focus on some relevant results for the time evolution of the lump peaks. For large #, the approximate
coordinates of these three lumps are given by

L V/3MB(SE =382t M-8 M M+B  3d
Xip==% M3 -A+ M3 Y—EXI,Z‘FW—ZMﬁ,
M 2(M+
X3:A, y:EX3_(1M72[_3)7

t— —oo, (30)

and

2
X _iw/SM,B(SQ—Za‘BZ)t_A_i_M—/B yo My M+B_ 3a

12 = , Y=—7Xip— ——— )
X3=A, y:—EXT" M2B

where A = W and when a* > 23% the quantity \/3MB(M?2 —332)]1| is well defined.
When |¢| = 200 the exact analytical solution and approximate coordinates (30) and (31) are plotted in
figure 10. It is seen that when # <0 the two lumps are located in the first and third quadrants whereas
they move to the second and fourth quadrants after the collision, which is confirmed by figure 10. By
a close observation, we find the evolutions of profile in figures 8 and 10 are opposite approximately
along time ¢. For example, figure 8(a) for t= —200 is corresponding to figure 10(b) for #=200. But,
comparing with equations (27) and (31), one can find that for the same ||, these peak coordinates in
the two cases are not totally uniform. In other words, the modulus of the third-order lump uPl with
parameters (25) is not equal to that one of the third-order lump u[3] with parameters (29) at the same |¢| (i.e.
[l (x,y,1)| # |1;r3] (x,y,—1)|). The heights of three peaks can be computed by inserting the approximate
coordinates into the expression of this solution, hence we do not repeat this step here.

Remark 10. These cases further demonstrate that the scattering process does not necessarily occur at
normal angles for the multi-lump solutions of the DS II equation, a key finding of the present work.
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4. Conclusion and discussion

In this paper, we showed the asymptotic properties of the newly obtained family of the higher-order
lump solutions for the DS II equation in the moving coordinate frame (10). For the higher-order lump,
when |¢f| — oo we find that it splits into multi-peak lumps whose heights evolve with time and approach
the same constant value corresponding to that of the simple first-order fundamental lump, and the peak
trajectories have a time dependence that grows as \/H , a feature similar to what has been found for
the KP I equation [18-20] and for higher-order lumps on zero background of the DS II equation [38].
Nevertheless, they define straight lines with different slopes for t — £o0o. The lumps are found to col-
lide head-on undergoing a scattering process, and the scattering angle © € (7, ) is identified herein as
being different from the higher-order lump on the zero background case where the scattering must be
orthogonal. Besides, though we just discussed solutions up to the third-order, nth-order lumps can be
obtained by using the n-fold DT (9). Generalizing the results obtained herein to arbitrary n would be an
interesting topic for further study.

Our results concerning the dynamics for rational solutions of DS II can be a basis for corresponding
observations in areas of application where the DS 1II is relevant, including most notably in nonlinear
optics and plasma physics, among others. The method of construction and asymptotical analysis of exact
solutions of the DS II in this paper can also be widely used to other 241 dimensional integrable systems,
such as the KP equation, the 2 + 1 dimensional Fokas equation, etc. Indeed, this prompts theoretical,
numerical and even experimental studies to consider the angle of interaction of lump-like solutions that
can arise in settings that bear such solutions.
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