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A B S T R A C T 

Models for cosmic ray (CR) dynamics fundamentally depend on the rate of CR scattering from magnetic fluctuations. In the ISM, 
for CRs with energies ∼MeV-TeV, these fluctuations are usually attributed either to ‘extrinsic turbulence’ (ET) – a cascade from 

larger scales – or ‘self-confinement’ (SC) – self-generated fluctuations from CR streaming. Using simple analytic arguments 
and detailed ‘live’ numerical CR transport calculations in galaxy simulations, we show that both of these, in standard form, 
cannot explain even basic qualitative features of observed CR spectra. For ET, any spectrum that obeys critical balance or 
features realistic anisotropy, or any spectrum that accounts for finite damping below the dissipation scale, predicts qualitatively 

incorrect spectral shapes and scalings of B/C and other species. Even if somehow one ignored both anisotropy and damping, 
observationally required scattering rates disagree with ET predictions by orders of magnitude. For SC, the dependence of driving 

on CR energy density means that it is nearly impossible to reco v er observ ed CR spectral shapes and scalings, and again there is 
an orders-of-magnitude normalization problem. But more severely, SC solutions with super-Alfv ́enic streaming are unstable. In 

liv e simulations, the y rev ert to either arbitrarily rapid CR escape with zero secondary production, or to bottleneck solutions with 

far-too-strong CR confinement and secondary production. Resolving these fundamental issues without discarding basic plasma 
processes requires invoking different drivers for scattering fluctuations. These must act on a broad range of scales with a power 
spectrum obeying several specific (but plausible) constraints. 
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1  I N T RO D U C T I O N  

Understanding how cosmic rays (CRs) propagate and interact as 
the y trav el through the inter -stellar medium (ISM) and circum/inter - 
galactic medium (CGM/IGM) is a problem with crucial implications 
for a wide variety of questions in astrophysics, including star, planet, 
and galaxy formation and evolution; astro-chemistry and chemo- 
dynamics; and space plasma physics (for re vie ws, see Zweibel 2013 , 
2017 ; Amato & Blasi 2018 ; Kachelrieß & Semikoz 2019 ). Most of 
the energy density in CRs (which determines their ability to ionize, 
heat, and interact with the gas) resides around ∼GeV energies, 
and in the range ∼ MeV–TeV. At these energies, CR gyroradii 
( r g, cr ∼ 10 9 − 10 15 cm ) are vastly smaller than the characteristic 
scale-lengths of the galactic disc and the driving scales of ISM 

turbulence. As such, CRs cannot simply ‘free stream’ out of the 
galaxy at speeds ∼c , but rather scatter in pitch angle from magnetic- 
field fluctuations, giving rise to some effective scattering rate νs . 
This, in turn, leads to bulk CR transport, which can be parametrized 
by some ef fecti ve dif fusi vity κeff ∼ c 2 / νs or streaming speed v st ∼
κeff |∇P cr | / P cr ≪ c . 

These scattering rates have major implications for all of the 
astrophysical and space plasma fields abo v e, and are probably the 

⋆ E-mail: phopkins@caltech.edu 

most important uncertainty in our understanding of the role of 
CRs. In understanding star and galaxy formation and the effect of 
CRs on the ISM/CGM/IGM, for example, a multitude of studies 
have shown that if the effective diffusivity or streaming speed is 
‘too small,’ CRs will be trapped in dense gas, and rapidly lose 
their energy to a variety of processes (e.g. pionic, catastrophic, 
and synchrotron/inverse Compton losses) before they can have a 
significant effect on the gas properties. In the opposite limit, if 
the dif fusi vity is ‘too large,’ CRs will free-stream rapidly out of 
the CGM and either ef fecti vely decouple from the gas or build 
up so little pressure that they will again have no effect. But, at 
dif fusi vities ‘in between’ these values, ∼ GeV CRs can have energy 
densities that are comparable to magnetic or thermal energy densities 
and have important effects on the gas (Girichidis et al. (Girichidis 
et al. 2016 ; W iener , Pfrommer & Oh 2017 ; Butsky & Quinn 2018 ; 
Farber et al. 2018 ; Butsky et al. 2020 ; Su et al. 2020 ; Hopkins 
et al. 2020b , 2021c ). Like wise, the ef fect of CRs on astro-chemistry, 
planet formation, and dense gas systems depends sensitively on how 

ef fecti v ely v ery low-energy ( � 100 MeV) CRs are trapped and their 
penetration depth into dense clouds and protostellar discs (Wolfire 
et al. 1995 ; Scalo & Elmegreen 2004 ; Indriolo, Fields & McCall 
2009 ; P ado vani, Galli & Glassgold 2009 ; Thompson 2013 ; Lee & 

Hopkins 2020 ; Parker 2020 ; Bustard & Zweibel 2021 ). And details of 
CR plasma physics, in particular their micro–scale interactions with 
the multiphase ISM/CGM/IGM gas, both shape and are determined 
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by the CR scattering rates (see e.g. Zank 2014 ; Bai et al. 2015 , 
2019 ; Lazarian 2016 ; Zweibel 2017 ; Holcomb & Spitko vsk y 2019 ; 
Thomas & Pfrommer 2019 ; Van Marle, Casse & Marcowith 2019 , 
and references therein) 

The o v erwhelming majority of work studying and attempting to 
constrain CR transport, either in the Milky Way (MW) galaxy from 

observations in and around the Solar system (from e.g. terrestrial 
and space-based CR experiments) or from γ -ray observations, has 
focused on simple, phenomenological constraints. This generally 
involves parametrizing CR transport in terms of ef fecti ve dif fusion 
coefficients or streaming speeds or other transport parameters (see 
Strong & Moskalenko 2001 ; e.g. Blasi & Amato 2012 ; Vladimirov 
et al. 2012 ; Gaggero et al. 2015 ; Cummings et al. 2016 ; Guo, Tian & 

Jin 2016 ; J ́ohannesson et al. 2016 ; Korsmeier & Cuoco 2016 ; Evoli 
et al. 2017 , and references therein). These ‘ef fecti ve’ coef ficients 
represent, by definition, some weighted average in the ISM between 
CR sources (e.g. SNe remnants, in the MW) and the Solar system, 
and are often parametrized as e.g. a power-law function of the CR 

rigidity R cr , such as κeff = κ0 βcr ( R cr /R cr, 0 ) δs . 
But Solar system constraints only measure CR transport in an 

average sense at one point in space and time, while ISM properties 
– both along the CR ‘path’ and in different galaxies and cosmic 
epochs – vary tremendously in both space and time (by many 
orders of magnitude for quantities of interest like magnetic energy 
density). Further, phenomenological models do not explain how 

such coefficients arise in the first place. What is therefore required 
is a physical model of CR transport that can reproduce these 
ef fecti ve constraints and be tested in other regimes. Ho we ver, this 
is particularly challenging at the MeV-TeV CR energies of greatest 
interest, because (1) the observational constraints are limited, (2) the 
extremely small gyro radii are much smaller than spatially resolvable 
scales in most astrophysical ISM studies, (3) the ‘back reaction’ of 
magnetic fields and gas from CRs, e.g. via gyroresonant instabilities 
and macroscopic CR ‘pressure’ effects, is maximized around this 
energy scale, and (4) the ISM, CGM, and IGM phase structure and 
turbulence itself remains uncertain. 

Broadly speaking, historical models that attempt to predict CR 

scattering rates and transport parameters at these energies fall 
into one of two broad cate gories: ‘e xtrinsic turbulence’ (ET) and 
‘self-confinement’ (SC) models. In the simplest ET models, going 
back to e.g. Jokipii ( 1966 ), Wentzel ( 1968 ), Skilling ( 1975a ), and 
Voelk ( 1975 ), CRs scatter from gyroresonant fluctuations in B , i.e. 
those with wavenumbers k ‖ ≡ k · ˆ b ∼ 1 /r g, cr . Those early models 
assumed δB ( k ‖ ) was sourced by an isotropic, undamped, inertial- 
range Kolmogorov ( 1941 )-type (K41) cascade from larger ISM 

scales. This gives rise to a scattering rate νs ∼ �cr | δB ( k ‖ ) | 2 / | B | 2 ∝ 

| B | 1 / 3 ℓ 2 / 3 A R 
−1 / 3 
cr where ℓ A is the Alfv ́en scale of the cascade. 1 In SC 

models, going back to Wentzel ( 1969 ), Skilling ( 1971 ), and Holman, 
Ionson & Scott ( 1979 ), CRs themselves source the scattering modes, 
which they excite via various instabilities as they stream down 
magnetic field lines (Wentzel 1968 ; Kulsrud & Pearce 1969 ). The 
instabilities grow until reaching some saturation amplitude that 
is determined by a wave damping rate Ŵ, thus giving rise to 
scattering rates that scale as νs ∼ �cr v A |∇P cr | / ( Ŵ | B | 2 ) (Skilling 
1975b ). 

Until recently, it has not been possible to directly test and 
compare these models with local CR observations for a variety of 

1 We define the ‘Alfv ́en scale’ ℓ A of any large-scale turbulent cascade as the 
scale where extrapolating the inertial range, 〈| δv turb ( k ∼ 1 /ℓ A ) |〉 ≈ v A, ideal 

(the ideal Alfv ́en speed). 

reasons. Perhaps most importantly, even in the simplest ET and 
SC models, scattering rates are not constant but depend strongly 
on ISM properties. These, in turn, vary dramatically across the 
ISM by as much as ∼10 orders of magnitude, in a manner that 
cannot be captured by simplified models discussed abo v e that assume 
some steady-state CR distribution and solve e.g. a ‘leaky-box’ or 
‘flat-halo diffusion’ model with a simple analytic galaxy model 
(see the re vie w in Hopkins et al. 2021d ). Moreo v er, only recently 
has the fluid theory of CRs been developed to the point where 
SC theories can be ‘coarse-grained’ self consistently into fluid-like 
magnetohydrodynamics (MHD)-CR transport and scattering models 
(Zweibel 2013 , 2017 ; Thomas & Pfrommer 2019 ; Hopkins, Squire & 

Butsky 2022b ), while modern versions of SC and ET models that 
account for important effects such as damping and anisotropy have 
only been developed in the last two decades (Chandran 2000 ; Yan & 

Lazarian 2002 ; Farmer & Goldreich 2004 ; Yan & Lazarian 2004 , 
2008 ; Zweibel 2017 ; Squire et al. 2021 ). Finally, only recently has 
CR data become available from outside of the heliopause, which is 
crucial for the CRs of greatest interest ( � 100 GeV energies) because 
these are strongly modulated by the Sun (Cummings et al. 2016 ; 
Bindi et al. 2017 ; Bisschoff, Potgieter & Aslam 2019 ). These new 

observations help to remo v e the order-of-magnitude degeneracies 
that plagued previous attempts to test CR transport/scattering 
theories. 

In this paper, we therefore revisit the question of whether or not 
state-of-the-art ET or SC models can possibly explain the state-of- 
the-art CR observations. We first consider the problem in a purely 
analytic fashion, synthesizing CR transport theories (beginning from 

general considerations before considering approximations such as 
steady-state behaviour) and re vie wing the state of the art in both SC 

and ET theories in order to treat all potentially important damping 
terms. We then test these models in even greater detail with fully 
non-equilibrium, non-linear, non-steady state CR transport in high- 
resolution galaxy simulations, which explicitly resolve the plasma 
properties that determine CR scattering. While a first attempt at 
such comparisons was presented in Hopkins et al. ( 2021d ), which 
already argued that present ET and SC models failed to reproduce 
the observations, that paper simplified by considering a ‘single- 
bin’ CR approximation, essentially modelling only CR protons in 
a narrow range of energies at ∼ 1 GeV. Here, we expand this to a 
full spectrum of CRs with a wide range of secondary species. This 
dramatically expands the range of observational constraints and will 
allow us to show that the scope of the discrepancy between SC and ET 

models and observations is much larger than previously believed. In 
particular, some of the possible resolutions to the discrepancies noted 
in Hopkins et al. ( 2021d ) – e.g. changing the normalization of SC- 
induced scattering rates by accounting for certain pitch-angle effects 
– cannot possibly provide the full solution. We use these constraints to 
propose that a new class of sources for gyroresonant scattering waves 
is required, which obeys a well-constrained (but plausible) set of 
requirements. 

In Section 2 , we set up the analytic background, including re vie w 

of some key definitions (Section 2.1 ) and description of the CR 

dynamics equations (Section 2.2 ), rele v ant Alfv ́en wave properties 
(Section 2.3 ), and expressions for scattering rates (Section 2.4 ). 
We then re vie w standard damping mechanisms (Section 2.5 ) and 
drivers of scattering fluctuations in both SC (Section 2.6 ) and 
ET (Section 2.7 ) limits, and the resulting steady-state behaviours 
(Section 2.8 ). In Section 3 , we discuss the problems that follow: first 
we re vie w what empirical CR transport models require (Section 3.1 ) 
then describe how both ET (Section 3.2 ) and SC (Section 3.4 ) 
models cannot satisfy these constraints, then propose phenomeno- 
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logical solutions (Section 3.5 ) involving either modified damping 
(Section 3.5.1 ) or driving (Section 3.5.2 ) terms. We then proceed 
to explore these in detailed simulations. Section 4 describes the 
numerical methods, outlining the non-CR (Section 4.1 ) and CR 

(Section 4.2 ) physics simulated, a theoretically moti v ated ‘reference’ 
model (Section 4.3 ), and e xtensiv e variations to that model that we 
have considered (Section 4.4 ). Section 5 describes the results of these 
simulations, first (Section 5.1 ) confirming the analytically predicted 
‘failure modes’ of SC (Section 5.1.1 ) and ET (Section 5.1.2 ) models, 
then testing the proposed alternative damping (Section 5.2 ) or driving 
(Section 5.3 ) scalings to see if these can reproduce observations. We 
summarize and conclude in Section 6 . Appendices A –C contain 
more detailed analytic deri v ations of steady-state CR behaviours and 
turbulent scalings. 

2  A NA LY T I C  B  AC K G R  O U N D  

2.1 Key scales and definitions 

To begin, we re vie w some important concepts. Table 1 collects 
definitions of some of the most-commonly used variables in this 
paper. Per Section 1 , CRs with some rigidity R cr and corresponding 
gyro radius r g , cr = R cr / | B | ( ∼ 10 −6 pc in the diffuse ISM, for 
CRs with R cr ∼ 1 GV) are scattered in pitch angle μ by fluc- 
tuations in the magnetic field δB with some ef fecti ve scattering 
rate νs . In most models (though not all, as we discuss below), 
the CR scattering rate is strongly dominated by gyroresonant 
scattering of CRs from Alfv ́en waves with parallel wavenumbers 
k ‖ ≡ k · ˆ b ∼ 1 /r g, cr . The power in these modes ( e A ∼ 〈| δB ( k ‖ ∼
1/ r g , cr ) | 2 〉 /8 π ), which determines νs , is set by competition be- 
tween some source/driving terms S and damping or dissipation 
rates Q = Ŵ e A . 

We stress that this encompasses both SC and ET models: the 
difference comes down to which dominates S . In SC models, S 

is sourced by parallel Alfv ́en waves excited directly by CRs (via 
e.g. gyroresonant and streaming instabilities), which we denote 
S sc . In ET models, the dominant contribution to S comes from 

a turbulent cascade S et operating o v er a large dynamic range in 
scale. Also note that by definition Ŵ includes any terms which 
remo v e power from the scattering modes, e.g. both traditional 
collisional damping, but also processes which transfer energy to 
other modes with different wavenumbers or weaker scattering 
effects. 

We will show that it is useful to parametrize S and Ŵ in terms 
of their approximate scaling with parallel wavenumber ( k ‖ ), total 
kinetic energy density of CRs around a given rigidity ( ǫcr ), and 
energy in scattering modes at some k ‖ ( e A or e ±), as S ∝ k 

ζk 
‖ e 

ζA 
A ǫ

ζcr 
cr 

and Ŵ ∝ k 
ξk 
‖ e 

ξA 
A ǫ

ξcr 
cr shown in Table 2 . 2 The key qualitative problems 

and failure modes of SC and ET theories can be encapsulated entirely 
in these coefficients ( ζ k , ζ A , ζ cr , ξ k , ξA , ξ cr ). Essentially, we will show 

that whether or not a theory of CR scattering can potentially repro- 
duce CR observations (independent of normalization parameters) 
depends on these few numbers. 

It is also helpful to recall some key scales in turbulence. Most of 
the power in ISM/CGM turbulence is on the driving scale, typically 
� 0 . 1 − 1 kpc (on which scale the turbulence is often trans or super- 
Alfv ́enic, 〈| δv turb ( k ) | 2 〉 1 / 2 � v A, ideal ). Below the Alfv ́en scale ℓ A (typ- 
ically ∼ 10 − 100 pc in the ISM), the turbulent fluctuations are sub- 

2 Note that k ‖ , ǫcr , and e A do not need to be strictly independent variables for 
this parametrization. 

Alfv ́enic ( 〈| δv turb ( k � 1 /ℓ A ) | 2 〉 1 / 2 � v A, ideal ). At the vastly smaller 
gyro scale r g , cr ≪ ℓ A , the scattering fluctuations are fractionally 
small (quasi-linear; | δB ( k ∼ 1/ r g , cr ) | / | B | ≪ 1), and we can treat 
fluctuations (approximately) as a superposition of Alfv ́en, slow, and 
fast magnetosonic modes. 

Alfv ́en modes are only weakly damped down to scales much 
smaller than CR gyroresonant scales (at least down to ion gyro- 
radii). When we refer below to ‘damping’ terms acting directly 
on the CR scattering modes ( Q ± and Ŵ ±), we generally are re- 
ferring to this ‘weak’ damping. Specifically, Alfv ́en-mode-damping 
times ( ∼Ŵ 

−1 ) at some k are much longer than the mode-crossing 
times ∼ 1 / ( k v A, eff ) (by typical factors ∼10 4 –10 8 ). Ho we ver, as 
we discuss below (and in more detail in Appendix C ), it is 
well-established that an Alfv ́enic (or slow magnetosonic) cascade 
must be highly anisotropic on scales below the Alfv ́en scale ℓ A 
( k ≫ 1/ ℓ A ): an isotropic Iroshnikov ( 1963 ), Kraichnan ( 1965 )- 
type (IK) cascade, for example, simply cannot exist (it is not 
mathematically self-consistent) on scales r g , cr ≪ ℓ A . This means 
it is crucial to distinguish between parallel k ‖ and perpendicular 
components of k . 

Fast magnetosonic modes, on the other hand, are orders of 
magnitude more strongly damped on small scales by both collisional 
and collisionless/Landau damping (see Appendix C ). On scales 
below the dissipation scale k diss ∼ 1/ ℓ diss (with typical ℓ diss � 0.001 pc 
in the ISM), the magnetosonic mode damping time Ŵ 

−1 
magnetosonic 

becomes shorter than turbulent ‘cascade’ or decoherence or energy- 
transfer time-scale τ cas (with e.g. τ−1 

cas ( k) ∼ k 〈| δv 2 turb ( k) |〉 1 / 2 in the 
classical K41 picture), so the cascade must be truncated or strongly 
modified by the energy losses. For essentially all plausible ISM/CGM 

conditions, the gyroresonant scales are much smaller than the 
dissipation scale ( r g , cr ≪ ℓ diss ) at rigidities � 100 − 1000 GV, so 
one cannot simply extrapolate an un-damped inertial-range magne- 
tosonic cascade of any form (let alone K41) down to gyroresonant 
scales. 

One additional clarification is important. To be consistent with 
the previous literature, when we refer to the ‘turbulent damping’ of 
gyroresonant modes, Ŵ turb (see Section 2.5 ), we refer specifically 
to a process by which interactions between gyroresonant scattering 
modes and other turbulent modes transfer energy from the weakly 
damped gyroresonant scattering modes (with k ‖ ∼ 1/ r g , cr ) to either 
higher- k or more strongly damped modes. This is different from 

‘damping or dissipation of turbulence,’ which we will use to refer to 
the phenomena described abo v e for e.g. fast magnetosonic modes, in 
which a turbulent cascade is strongly modified by sufficiently strong 
damping on some dissipation scale ℓ diss larger than the gyroresonant 
scales. 

2.2 Cosmic ray dynamics equations 

Consider an arbitrary CR distribution function (DF) f cr = 

f cr ( x , p cr , t, s cr , . . . ) as a function of position x , CR momentum p cr , 
time t , and CR species s cr , on macroscopic scales much larger than 
CR gyroradii. Assuming the DF is approximately gyrotropic, and the 
background gas velocities u gas are non-relativistic, the general Vlasov 
equation for f cr can be written to leading order in O( | u gas | /c) as the 
usual focused transport equation (Skilling 1971 , 1975a ; Isenberg 
1997 ; Le Roux, Matthaeus & Zank 2001 ; Le Roux et al. 2005 ; Zank 
2014 ; Le Roux et al. 2015 ), with the standard quasi-linear theory slab 
scalings for the scattering terms from Schlickeiser ( 1989 ). As shown 
in Hopkins et al. ( 2022b ), taking the zeroth and first pitch-angle ( μ) 
moments of that equation (retaining all terms to leading order in 
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Table 1. Commonly used variables in this paper. 

f cr , μ, p cr , E cr CR DF f cr ≡ f cr ( x , p cr , t, s, . . . ), pitch angle µ≡ ˆ p cr · ˆ b , momentum p cr = | p cr | , energy E cr 

�cr , v cr , r g , cr , R cr CR gyrofrequency �cr , velocity v cr = βcr c, gyroradius r g , cr ≡ v cr / �cr , rigidity R cr 

j cr ( R cr ) CR injection rate/spectrum as a function of rigidity R cr (from SNe and other sources) 
e ±, e A Energy of forward( + ) or backward(-) CR-scattering waves e ± ≡ k ‖ E( k · ˆ b = ±k ‖ ) at wavenumber ±k ‖ , with e A ≡ e + + e −
νs , ±, ̄νs , ± CR scattering rate from forw ard/backw ard propagating waves νs , ±, and pitch-angle averaged ̄νs , ±
δs Average dependence of CR scattering rate on rigidity, e.g. ̄νs ∝ βcr R 

−δs 
cr (observationally required 0.4 � δs � 0.7) 

k , k ‖ , k ⊥ Wavenumber k of CR-scattering modes, with parallel ( k ‖ ≡ k · ˆ b ) and perpendicular ( k ⊥ ) components 
e ′ cr , ǫcr , P ′ cr Differential CR energy density/pressure at a given momentum p cr , e ′ cr ≡ de cr /d ln p cr , ǫcr = ( γcr − 1) e ′ cr , P ′ cr = β2 

cr e 
′ 
cr / 3 

B , ˆ b , e B , δB Magnetic field B , direction ˆ b ≡ B / | B | , energy e B ≡ | B | 2 /8 π , fluctuations δB on scale ∼k 

v A, ideal , v A, eff Ideal-MHD Alfv ́en speed v A, ideal ≡ ( | B | 2 / 4 πρ) 1 / 2 , speed of gyroresonant Alfv ́en waves v A, eff (equation 5 ) 
ℓ A Alfv ́en scale of large-scale turbulence (scale where 〈| δv turb ( k ∼ 1 /ℓ A ) | 2 〉 1 / 2 ∼ v A, ideal ) 

S ± Source terms for CR scattering modes ( D t e ± + . . . = S ±) 
Q ±, Ŵ ± Damping terms for CR scattering modes ( D t e ± + . . . = −Q ± ≡ −Ŵ ± e ±) 

Table 2. Parametrization of generalized damping/driving rates for CR-scattering modes. 

ξ k , ξA , ξ cr Coefficients for damping rates: Q ± ≡ Ŵ ± e ± with Ŵ ± ∝ k 
ξk 
‖ e 

ξA 
± ǫ

ξcr 
cr ξ k ξA ξ cr 

Values explored in our simulation survey 0 ≤ ξ k ≤ 2 0 ≤ ξA ≤ 1 0 ≤ ξ cr ≤ 1 
X in Quantities (e.g. Q , Ŵ, ξ ) for ion-neutral damping 0 0 0 
X dust Quantities for dust damping 0.5 → 0.75 0 0 
X nll Quantities for NLL damping 1 1 0 
X turb/LL Quantities for linear Landau or ‘turbulent’ damping 0.4 → 0.5 0 0 
X new , damp Quantities for proposed no v el damping that could fit observations ∼0.1 → 0.4 ∼0 ∼1 

ζ k , ζA , ζ cr Coefficients for driving/source rates: S ± ∝ k 
ζk 
‖ e 

ζA 
± ǫ

ζcr 
cr ζ k ζA ζ cr 

Values explored in our simulation survey −2 � ζ k � 2 0 ≤ ζA ≤ 1 0 ≤ ζ cr ≤ 1 

X sc Quantities (e.g. S , ζ ) for SC driving (non-steady-state ζ in []) 0 [1] 0 [1] 1 [1] 
X et Quantities for ET driving (with anisotropy/damping) � −1 + ξ turb 

k ∼0 0 
X new , lin Quantities for proposed no v el linear source terms which could fit observations ∼0.6 → 0.9 ∼1 ∼0 
X new , ext Quantities for proposed no v el e xtrinsic source terms which could fit observations ∼−0.25 → −0.1 ∼0 ∼0 

O( | u gas | /c)) gives the evolution equations for the isotropic part of 
the DF f̄ cr , 0 (i.e. the CR number density at a given differential p cr = 

| p cr | ) and its flux: 3 

D t f̄ cr, 0 +∇ ·
(

v cr ˆ b f̄ cr, 1 

)

= j cr, 0 + (1) 

1 

p 2 cr 

∂ 

∂p cr 

[

p 2 cr 

{

R loss f̄ cr, 0 + 
(

D cr : ∇u gas 
)

p cr f̄ cr, 0 + 

˜ D p µ f̄ cr, 1 + ˜ D pp 
∂ f̄ cr, 0 

∂p cr 

}]

D t f̄ cr, 1 + ̂  b ·
[

∇ ·
(

v cr D cr f̄ cr, 0 
)]

= −
[

˜ D µµ f̄ cr, 1 + ˜ D µp 
∂ f̄ cr, 0 

∂p cr 

]

˜ D pp = χ
p 2 cr v 

2 
A 

v 2 cr 
ν̄s , ˜ D p µ = 

p cr ̄v A 

v cr 
ν̄s , ˜ D µµ = ̄νs , ˜ D µp = χ

p cr ̄v A 

v cr 
ν̄s 

(2) 

where f̄ cr, n ≡ 〈 µn f cr 〉 µ is the n ’th pitch-angle moment (so e.g. 
f̄ cr, 0 is the isotropic part of the DF, and f̄ cr, 1 = 〈 µ〉 f̄ cr, 0 ). In 
equations 1 –2 , D t X ≡ ∂ t X + ∇ · ( u gas X ) ≡ ρ d t ( X /ρ) is the con- 
serv ati v e como ving deri v ati ve (with ρ the gas mass density), 
v cr = βcr c is the CR velocity, p = γcr βcr m cr c the CR momentum, 
ˆ b ≡ B / | B | the unit magnetic field vector, j cr represents injection & 

catastrophic losses, R loss represents continuous loss processes, v A 
is the Alfv ́en speed, the coefficients ˜ D are defined in terms of 
the scattering rate ν̄s ≡ ν̄s , + + ν̄s , − (the scattering contributed by 
forw ard-and-backw ard propagating modes with respect to ˆ b ), the 

3 As shown in Section 2.8 below, equation 1 reduces to the somewhat more 
familiar anisotropic ‘streaming + diffusion’ equation for f̄ cr , 0 if one assumes 
D t f̄ cr , 1 is small (i.e. the flux is in ‘local steady-state’). 

signed ̄v A ≡ v A ( ̄νs , + − ν̄s , −) / ( ̄νs , + + ν̄s , −), and the Eddington tensor 
D cr ≡ χ I + (1 − 3 χ ) ̂  b ̂ b and scattering terms are defined in terms 
of χ ≡ (1 − 〈 µ2 〉 ) / 2 = (1 − f̄ cr, 2 / f̄ cr, 0 ) / 2. 

Inte grating o v er an infinitesimal range in momentum for a CR 

group or ‘packet,’ this can be further transformed into the differential 
CR energy equation, which will be useful below: 

D t e 
′ 
cr + ∇ ·

(

F 
′ 
e, cr 

ˆ b 
)

= ˜ S 
′ 
sc − P 

′ 
cr : ∇u gas + S 

′ 
other, cr 

D t F 
′ 
e, cr + c 2 ˆ b ·

(

∇ · P 
′ 
cr 

)

= −ν̄s 

[

F 
′ 
e, cr − 3 χ v̄ A 

(

e ′ cr + P 
′ 
cr 

)]

(3) 

where e ′ cr ≡ de cr /d ln p cr = p 
3 
cr 

∫ 
d µ

∫ 
dφ E( p cr ) f is the total 

CR energy in a differential range of momentum p cr , F 
′ 
e, cr ≡

d F e, cr /d ln p cr = p 
3 
cr 

∫ 
d µ

∫ 
d φ E( p cr ) v µ f is its flux, S 

′ 
other, cr 

collects any other arbitrary sources/sinks (e.g. catastrophic losses, 
injection at shocks, etc.), P 

′ 
cr ≡ 3 P 

′ 
cr D cr (with P 

′ 
cr ≡ β2 

cr e 
′ 
cr / 3), 

and scattering gives rise to the energy loss/gain term 
4 ˜ S 

′ 
sc ≡

−( ̄νs /c 
2 ) 

[

v̄ A F 
′ 
e, cr − 3 χ v 2 A 

(

e ′ cr + P 
′ 
cr 

)]

. 

2.3 Which Alfv ́en speed? 

In partially ionized gas, the Alfv ́en speed v A is not wavelength- 
independent. The correct Alfv ́en speed in the CR dynamics equa- 
tions should be Alfv ́en speed of gyroresonant Alfv ́en waves, as 
the original deri v ation of the rele v ant scattering terms takes v A = 

4 As shown in Hopkins et al. ( 2022b ) the ˜ D µp and ˜ D pp terms, and correspond- 
ing dependence on ∂ / ∂ p cr , do appear implicitly to leading-order in O( u/c) in 
equation 3 in the ˜ S ′ sc term, contributing to the ‘streaming loss’ and ‘dif fusi ve 
reacceleration’ portions of ˜ S ′ sc , respectively. 
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v A, eff ≡ Real ( ω A /k ‖ ) with k ‖ = 1 / µ r g, cr (for gyroradius r g , cr ; see 
e.g. Skilling 1975a ). In the MHD limit (assuming e.g. non-relativistic 
electron gyroradii are vanishingly small), the rele v ant dispersion 
relation is: 

ω 
3 
A + i ω 

2 
A νin (1 + ψ ion ) − k 2 ‖ v 

2 
A, ion ω A − i k 2 ‖ v 

2 
A, ion ψ ion νin = 0 , (4) 

where ν in is the ion-neutral collision frequency (this is distinct from 

νni ≡ ψ ion νin ), v A, ion ≡ ( B 
2 / 4 πρion ) 1 / 2 , and ψ ion ≡ ρ ion / ρneutral ≡

f ion /(1 − f ion ), in terms of the ion and neutral mass densities ρ ion , 
ρneutral ( ρ = ρ ion + ρneutral ). The exact solutions to this are quite 
cumbersome, but the real part of interest can be well-approximated 
in all rele v ant limits by: 

v 2 A, eff ≈ v 2 A, ideal 

[

1 + 
1 

ψ ion [1 + ψ ion ( ψ ion + 1 / 4) ˜ ψ 2 in ] 

]

˜ ψ in ≡
νin 

k ‖ v A, ideal 
≈ 0 . 01 (1 − f ion ) ρ

3 / 2 
−24 R GV T 

1 / 2 
1000 B 

−2 
µG 

(

k ‖ r g, cr 

)−1 

(5) 

where v A, ideal ≡ ( B 
2 / 4 π ρ) 1 / 2 , f ion is the ionized fraction, T 1000 ≡

T / 1000 K, B μG ≡ | B | / μG, ρ−24 ≡ ρ/ 10 −24 g cm 
−3 , and R GV ≡

R cr /GV. This essentially interpolates between the ‘ideal MHD Alfv ́en 
speed’ v A, ideal for long-wavelength modes with frequencies ω A much 
lower than the ion-neutral collision frequency ν in , and the ‘ion Alfv ́en 
speed’ v A, ion for short-wavelength modes with ω A ≫ ν in . For most 
ISM conditions at the (short) gyroresonant wavelengths of interest 
for CR dynamics, ω A ≫ ν in . 

2.4 Scattering rates of CRs from a population of magnetic 

fluctuations 

Everything needed to evolve the CRs in equations ( 1 –2 ) is determined 
by the local plasma properties, except for the scattering rates ν̄s , ±, 
which crucially determine how CRs propagate. Following Zweibel 
( 2013 , 2017 ), quasi-linear theory gives the scattering coefficients: 

νs , ±( p cr , µ) = 
π

4 
�cr 

k ‖ E ±( k ‖ ) 

e B 
→ ν̄s , ± ≡

π

4 
ˆ νs �cr 

e ±

e B 
(6) 

where e B ≡ | B | 2 /8 π , k ‖ = �cr / ( µ v cr ) from the gyroresonant condi- 
tion, and e ± ≡ k ‖ E ±( k · ˆ b = ±k ‖ ) is the energy of scattering waves 
at parallel wavenumber k ‖ (it is important here that we distinguish 
k ‖ ≡ | k · ˆ b | from k = | k | ). We parametrize our ignorance of the 
pitch-angle dependence with ν̄s , ± ≡ ( π/ 4) ̂  νs �cr e ±/e B , where ˆ νs e ±
reflects the angle-averaged energy of w ave-pack ets that interact sig- 
nificantly with the rele v ant CRs (with ˆ νs a dimensionless order-unity 
constant coming from the integration over pitch angle), traveling in 
either the forward ( + ) or backward ( −) direction along ˆ b . As shown 
in Zweibel ( 2013 , 2017 ) and later in Thomas & Pfrommer ( 2019 ), 
one can write a fluid equation for the w avepack ets: 

D t e ± +∇ ·
(

v A, ± e ± ˆ b 
)

= − e ±
2 ∇ · u gas + S ± − Q ± (7) 

where one can think of e ±/2 as the ‘pressure’ or ‘PdV’ term (with 
∇ · u gas being the change of comoving volume), we define v A, ± = 

±v A, eff corresponding to the e ± sign, and S ± and Q ± correspond to 
source and damping terms. We can write 

S ± ≡ S sc , ± + S et, ± + S new , ±

Q ± ≡ Ŵ ± e ± = 
[

Ŵ in + Ŵ dust + Ŵ turb / LL + Ŵ nll , ± + Ŵ new , damp , ±
]

e ±. 

(8) 

Here, S sc , ± corresponds to energy transfer from the CRs themselves 
as they scatter off the waves, S et, ± corresponds to ‘ET’ driving 
(defined below), and S new , ± corresponds to some other, new source(s) 

of driving that we will consider later. Likewise, Ŵ ± is an effective 
damping rate, which we will take in general to be the sum of ion- 
neutral ( Ŵ in ), dust ( Ŵ dust ), linear Landau or ‘turbulent’ ( Ŵ turb/LL ), 
non-linear Landau (NLL; Ŵ nll , ±), and some other arbitrary additional 
( Ŵ new , damp , ±) damping rates (all defined below). 

From equation ( 3 ), note following Hopkins et al. ( 2022b ) that the 
˜ S 
′ 
sc term arises directly from taking the moments of the quasi-linear 

theory scattering rate equations for any scattering rate expressions 
νs ( µ, p cr , . . . ): it is the total energy exchange between CRs and the 
‘scatterers.’ If we assume gyroresonance, so that CRs of a given 
R cr interact only with the gyroresonant w avepack et, 5 then without 
making any specific assumptions about the mechanism for this 
exchange, energy conservation imposes the form of S sc , ±: 

S sc , ± = 
∑ 

species ν̄s , ±
v A,±
c 2 

[

F 
′ 
e, cr − v A, ± 3 χ

(

e ′ cr + P 
′ 
cr 

)]

(9) 

Here, 
∑ 

species represents the sum o v er all CR species with a given 
gyroresonant wavelength/rigidity k ‖ ∼ 1/ r g , cr ∝ 1/ R cr . 

2.5 Damping of parallel alfv ́en waves: standard mechanisms 

We stress that there are many known damping processes contributing 
to Q ± = Ŵ ± e ± for the rele v ant high-frequency scattering modes. 
Here, we briefly re vie w a few that are commonly invoked, focusing on 
the terms which apply to weakly damped Alfv ́en modes (as compared 
to fast magnetosonic modes, which are vastly more strongly damped 
on gyroresonant scales, a case we discuss in Section 2.7 and 
Appendix C below). 

(i) Ion-neutral damping: ion-neutral collisions generically lead 
to a damping rate in equation ( 4 ), which is rather compli- 
cated but for all limits where it is rele v ant can be accurately 
approximated as Q in , ± ≡ Ŵ in e ± with Ŵ in ≈ ( αiH + αiHe ) / 2 ρi ≈
10 −9 s −1 f neutral ( T / 1000 K) 1 / 2 ( ρ/ 10 −24 g cm 

−3 ). 
(ii) Dust damping: from Squire et al. ( 2021 ), charged dust will 

have gyro motion excited by Alfv ́en waves on the wavelengths of 
interest, removing some of the scattering-wave energy (and dissi- 
pating it with dust collisions with ions + neutrals), giving a damp- 
ing term: Q dust, ± ≡ Ŵ dust e ± with Ŵ dust ≈ 0 . 02 k v A, eff f dg ( k/k d ) −ξd 

where f dg ≈ 0 . 01 Z/Z ⊙ is the dust-to-gas ratio [normalized to the lo- 
cal ISM (LISM) value], and k d ∼ 7 . 4 × 10 −11 cm 

−1 ( n/ cm 
−3 ) 1 / 2 ψ d 

with ξ d = 1/4 at k ≪ k d and ξ d = 1/2 at k ≫ k d , and ψ d ≡
Ū 0 ( ̄ρd / g cm 

−3 ) ( T / 10 4 K) ξd, T ∼ 1 depending on Ū 0 and ρ̄d , which 
parametrize the grain charge and internal grain density, ξd, T = 0 − 1 
depending on the wavelength and grain charge regime (see equa- 
tion 18 therein). 

(iii) NLL damping: on gyroresonant scales, oblique magnetosonic 
waves are rapidly damped by resonant ion interactions, pressure 
anisotropy, and other effects (Lee & V ̈olk 1973 ; Foote & Kulsrud 
1979 ; Cesarsk y & K ulsrud 1981 ; V ̈olk & Cesarsk y 1982 ; Squire, 
Quataert & Schekochihin 2016 ; Squire, Schekochihin & Quataert 
2017 ). This strongly suppresses isotropic magnetosonic modes at 
the scales we follow, as noted abo v e. But ev en for the weakly 

5 More generally as noted abo v e, at a giv en momentum CRs can resonate 
with short-wavelength modes k ‖ = �cr / ( µv cr which depends on particle 
pitch angle, so this should be taken to be some ef fecti v e pitch-angle-av erage 
o v er different wav enumbers. F or a close-to-isotropic CR DF (as required 
by observations), it is straightforward (albeit tedious) to show this does not 
change any of our conclusions. A more detailed calculation (e.g. Kempsi 
et al., pri v ate communication) sho ws the same e ven for anisotropic DFs, if 
the dependence of scattering rate on energy predicted by SC theory δs ≈ 0 
(as we show below). 
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damped waves of interest (e.g. parallel Alfv ́en modes), wa ve–wa ve 
interactions and field-line wandering transfer energy from the weakly 
damped modes to strongly damped modes, giving rise to the usual 
NLL damping expression Q nll , ± ≡ Ŵ nll , ± e ± ≡ Ŵ 

0 
nll ( e ±/e B ) e ± with 

Ŵ 
0 
nll ≈ ( 

√ 
π/ 8) c s k (Kulsrud & Pearce 1969 ; Volk & McKenzie 

1981 ). 
(iv) ‘Turbulent,’ linear Landau, and collisionless damping: in 

addition to NLL damping, if there are other modes present as 
part of an extrinsic turbulent cascade (in addition to the parallel 
scattering modes themselves), these will also contribute to shearing 
apart or mixing waves such that power is transferred either to (a) 
a weakly damped b ut higher - k modes (‘turbulent damping’; Yan & 

Lazarian 2002 ; Farmer & Goldreich 2004 ), or (b) strongly damped 
magnetosonic modes (‘linear Landau damping’; Zweibel 2017 ). This 
gives Q turb / LL , ± ≡ Ŵ turb / LL e ± with Ŵ turb/LL ( k ) ∼ 1/ τ cas ( k ) scaling 
with the cascade time-scale τ cas for modes of the given k . Consid- 
ering a realistically anisotropic Goldreich & Sridhar ( 1995 )-type 
(GS95) cascade (which is not strongly damped on gyroresonant 
scales), interacting with primarily parallel modes, gives Ŵ turb / LL = 

Ŵ turb / LL , GS95 ∼ [( v A, ideal + 0 . 4 c s ) /ℓ A ] ( k ‖ ℓ A ) 1 / 2 (where the v A, ideal 

and c s terms represent ‘turbulent’ and ‘linear Landau’, respectively 
from Farmer & Goldreich 2004 ; Zweibel 2017 ). 6 

As discussed abo v e, it is instructiv e to write the damping terms 
in the generic form Q ± ≡ Ŵ ± e ± with Ŵ ± = k 

ξk 
‖ e 

ξA 
± ǫξcr 

cr f Ŵ ISM , where 
f Ŵ ISM ≡ f Ŵ ISM ( ρ, T , f neutral , | B | , f dg , . . . ) is a function of ‘bulk’ ISM 

plasma properties (which do not directly depend on the CRs or k or 
e ±), and we have separated the dependence on the CR kinetic energy 
density ǫcr , scattering-wave energy e ±, and wavelength k ‖ . All the 
damping mechanisms abo v e giv e ξ cr = 0 with 0 ≤ ξA ≤ 1 and 0 ≤
ξ k ≤ 1, as summarized for reference in Table 2 . 

2.6 ‘Self-confinement’ driving 

The standard ‘SC’ limit arises if S ± → S sc , ± (or S et, ±, S new , ± → 0), 
i.e. the only source term for e ± is the CR scattering itself. This excites 
parallel Alfv ́en modes, which then compete against the different 
damping mechanisms in Section 2.5 to set e ±. As sho wn belo w, if the 
CR flux ( D t F 

′ 
e, cr ) and D t e ± equations reach local steady-state, then 

one of e ± is damped to negligible values while the other (opposing 
the direction of the CR flux) becomes large, and the salient driving 
term becomes S sc → −v A, eff ˆ b · ∇P 

′ 
cr . 

Akin to the damping terms, it is useful to parametrize this in terms 
of S eff = k 

ζk 
‖ e 

ζA 
± ǫζcr 

cr f S ISM , where f S ISM parametrizes the ISM structure 
dependence. In local flux-steady-state, the SC limit therefore gives 
ζ k = 0, ζ A = 0, ζ cr ≈ 1, as denoted in Table 2 . 7 But this is not the 

6 Lazarian ( 2016 ) note that on scales 1/ k ‖ approaching or larger than the 

driving and Alfv ́en scales this could steepen to Ŵ turb / LL ∝ k 
2 / 3 
‖ , but that is 

well outside the rele v ant range of scales for � TeV CRs (although assuming 
such a scaling has no effect on our conclusions). Likewise, the Farmer & 

Goldreich ( 2004 ) argument that field-line fluctuations set a minimum | k ⊥ / k ‖ | 
∼ | δB ext ( k ⊥ ) | / | B 0 | can, in principle, be generalized for any external critically 
balanced shearing cascade with different intermittency effects modifying the 
perpendicular spectrum (Schekochihin 2022 ), but these generally lead to only 
minor modifications of Ŵ turb / LL ∼ [( v A, ideal + 0 . 4 c s ) /ℓ A ] ( k ‖ ℓ A ) ξk with 0.4 
� ξ k � 0.5. 
7 When the CR flux and e ± equations are far from local quasi-equilibrium, 
then from equation ( 9 ) the more general form of S cr ( ∝ ν̄s ( v A, ±/c) [ F ′ e, cr −
v A, ±3 χ ( e ′ cr + P ′ cr ) ∝ �cr ( e A /e B ) ǫcr ∝ k e A ǫcr ) would have coefficients 
closer to ζ k ∼ 1, ζA ∼ 1, ζ cr ∼ 1. But because these reach equilibrium on 
short time-scales, and both e xpressions hav e ζ cr ∼ 1, which is the important 

only possible source of e ± – other drivers can be included as we 
discuss below. 

2.7 ‘Extrinsic turbulence’ driving 

In the classic ET picture, the source term for e ± is dominated by an 
external turbulent cascade from much larger scales, which we will 
denote S et, ± (with symmetric S et, + ≈ S et, − = S et ). The traditional 
K41 scenario, for example, is immediately reco v ered if we assume 
an isotropic, un-damped (except for cascade transfer), inertial- 
range cascade, so S et, ± → S et, K41 ∼ | δv 3 | k ∼ constant is just the 
turbulent dissipation/cascade rate, balanced by the damping (cascade 
transfer) term defined in Section 2.5 abo v e Q ± → Ŵ turb , K41 e ± with 
Ŵ turb , K41 ∼ k | δv | , so we obtain e ± ≈ e B ( k ℓ A ) −2 / 3 , with k ‖ ∼ k . 
Similarly one could in principle imagine models that might give 
different isotropic power spectra such as e ± ∼ e B ( k ℓ A ) −1 / 2 (often 
called ‘Kraichnan’ or ‘IK-like’ in the CR literature). But as noted 
abo v e (Section 2.1 ), and re vie wed in more detail in Appendix C , 
these scalings cannot physically apply at gyroresonant scales for 
CRs with rigidities � 0 . 1 − 1 TV, far smaller than the Alfv ́en and 
magnetosonic dissipation scales of turbulence. 

First, consider an Alfv ́enic (or slow-mode) cascade. It is well- 
established that an Alfv ́enic cascade cannot be isotropic on scales 
smaller than the Alfv ́en scale ℓ A , and recall r g , cr ≪ ℓ A by a huge 
factor. In any cascade in which the anisotropy obeys some kind 
of critical balance-type condition (as seen in the solar wind, Chen 
2016 , and essentially all simulations of MHD turbulence cascades; 
see e.g. Sridhar & Goldreich 1994 ; Goldreich & Sridhar 1995 ; 
Boldyrev 2006 ; Terry 2018 ; Beresnyak 2019 ; Schekochihin 2022 , 
and references therein), the cascade power spectrum as a function of 
the par allel wav enumber k ‖ must obe y E( k ‖ ) ∝ k −2 

‖ (where critical 
balance gives k ‖ ∼ | δv ( k ⊥ ) /v A, ideal | k ⊥ ≪ k ⊥ , so | k ⊥ | ∼ k and this 
is independent of the form of E( k ⊥ )). In other words, regardless of 
the dominant structure of the cascade, e ± = e B αt ( k ‖ ) ( k ‖ ℓ A ) −1 and 8 

S et, ± = αt ( k ‖ ) e B Ŵ turb ( k ‖ ℓ A ) −1 where more careful calculation gives 
the dimensionless pre-factor αt ( k ‖ ) ≈ 7 ( v A, eff /v) ln ( k ‖ ℓ A ) ≪ 1 as 
a geometric factor that accounts for gyro-averaging over the modes 
with k ⊥ ≫ k ‖ (Chandran 2000 ). We further show in Appendix C that 
any mathematically consistent Alfv ́enic cascade, even one that does 
not follow critical balance, must obey a similar constraint on E( k ‖ ). 

Alternatively, consider a fast-magnetosonic-mode cascade, which 
at least in principle could be isotropic. But recall, r g , cr is well 
belo w the rele v ant dissipation/Kolmogorov scale ( k diss ∼ 1/ ℓ diss ) 
of the magnetosonic cascade, so we cannot extrapolate an un- 
damped isotropic magnetosonic cascade from large scales. For 
strictly gyroresonant interactions, this generally leads to a strong 
suppression of the power S et, ± on scales r g , cr ≪ ℓ diss . Yan & 

Lazarian ( 2004 ) argue that if the ‘resonance function’ is strongly 
broadened by super -Alfv ́enic turb ulence on large scales (of order the 
CR mean-free-path), then under the right conditions (plasma βplasma 

< 1 or v A, ideal > c s , and negligible ion-neutral damping or f neutral � 

0 . 001 ( v 2 A, ideal /n 1 c 
2 
s ) 

3 / 4 ( c s / 10 km s −1 ) 1 / 4 ( kpc /R GV ℓ A ) 1 / 2 ), a sub- 
stantial contribution to the CR scattering rate can come from the 
transit-time-damping terms owing to magnetosonic modes with 
k ∼ k diss ≪ 1/ r g , cr . In that limit, the resulting scattering rates 

feature that drives the qualitative behaviour discussed below, in our analytic 
models, we will typically work with the local steady-state expressions. 
8 The statement S et ∝ Ŵ turb here is just a rephrasing of the usual relation 
between the turbulent power spectrum and the cascade rate τ cas ∼ 1/ Ŵ turb , 
i.e. e A ∼ k ‖ E( k ‖ ) ∝ S( k ‖ ) / Ŵ turb ( k ‖ ) ∼ S( k ‖ ) τcas ( k ‖ ). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
7
/4

/5
4
1
3
/6

7
5
9
4
3
7
 b

y
 C

a
lifo

rn
ia

 In
s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 2

0
 A

u
g
u
s
t 2

0
2
3



Failure of SC and ET models 5419 

MNRAS 517, 5413–5448 (2022) 

from the Yan & Lazarian ( 2004 ) model can be written as ν̄s ∼
�cr e 

−1 
B ( δB 

2 [ k diss ]) ( k diss /k ‖ ) (Hopkins et al. 2021d ). Even though 
by definition in this scenario some of the scattering modes come 
from larger scales, in our mathematical formalism, this is iden- 
tical to assuming an equi v alent gyroresonant mode or cascade 
power with e ± ∼ ( δB 

2 [ k diss ]) ( k diss /k ‖ ) or (since δB [ k diss ] comes, 
by assumption in this model, from some isotropic cascade on 
larger scales with | δB 

2 [ k diss ] | ∼ B 
2 ( k diss ℓ A ) −ψ turb ) therefore e ± ∼

e B ( k diss ℓ A ) −( ψ turb + 1) ( k ‖ ℓ A ) −1 . Again, we show in Appendix C that a 
similar constraint is generic to any magnetosonic cascade with ℓ diss 

� r g , cr (independent of its detailed form or which terms dominate 
the CR scattering). 

Parametrizing again as S eff = k 
ζk 
‖ e 

ζA 
± ǫζcr 

cr f S ISM , we see that in the 
ET limit generically ζ cr = ζ A = 0 and accounting for anisotropy 
and/or damping, we must have ζk � −1 + ξ turb 

k (where ξ turb 
k is the 

dependence of Ŵ turb ∝ k 
ξ turb 
k 

‖ ), which is equi v alent to δs � 0. For a 
magnetosonic ET cascade, if dissipation is non-negligible outside the 
special limits abo v e (e.g. in gas with plasma βplasma > 1, or partially 
neutral gas), this gives a super-exponential cutoff to the ET power 
spectrum on small scales, which is equi v alent to ζk ≪ −1 + ξ turb 

k . 
In Appendix C , we present a much more detailed re vie w and 

discussion of the anisotropy and damping constraints abo v e. There 
we show that the key conclusion that any cascade model must 
predict ζk < −1 + ξ turb 

k , i.e. e ± ∝ k −1 or steeper if r g , cr is smaller 
than the dissipation and Alfv ́en scale, is robust to any specific 
assumptions about the turbulent cascade, dissipation mechanism, 
or mode structure. 

2.8 Steady-state solutions 

Equations ( 7 ) and ( 2 ) converge to their ‘local steady state’ or 
quasi-equilibrium values with D t e ± → 0 and D t f̄ cr, 1 → 0 (or more 
formally, | D t e ±| ≪ | ̄νs e ±| , | D t f̄ cr, 1 | ≪ | ̄νs f̄ cr, 1 | ), in approximately 
the scattering time ν̄−1 

s . This is ν̄−1 
s ∼ 30 yr R 

0 . 5 
GV from empirically 

fitted models, much faster than other time-scales o v er which e.g. 
bulk ISM properties evolve (see Appendix B ). In this limit, assuming 
strong scattering, the DF becomes nearly isotropic ( χ ≈ 1/3) and 
equations 1 –2 can be combined into a single anisotropic diffusion 
equation: 

D t f̄ cr, 0 ≈ ∇ ·
(

κ‖ ˆ b ̂ b · ∇ f̄ cr, 0 + 
v̄ A 

3 
ˆ b p cr 

∂ f̄ cr, 0 

∂p cr 

)

+ j cr, 0 

+ 
1 

p 2 cr 

∂ 

∂p cr 

[

p 
3 
cr 

{

R loss 

p 
f̄ cr, 0 + 

∇ · u gas 

3 
f̄ cr, 0 

−
v̄ A 

3 
ˆ b · ∇ f̄ cr, 0 + 

(

v 2 A, eff − v̄ 2 A 

)

9 κ‖ 
p 

∂ f̄ cr, 0 

∂p 

}]

(10) 

with κ‖ ≡ v 2 cr / 3 ̄νs . The rele v ant behaviours here are more obvious if 
we again take the CR energy equation, equation ( 3 ): 

D t e 
′ 
cr ≈ ∇ ·

[

κ‖ ˆ b ̂ b · ∇e ′ cr − v̄ A ˆ b e ′ cr 

]

−P 
′ 
cr ∇ ·

(

u gas + v̄ A ˆ b 
)

+ 
v 2 A, eff − v̄ 2 A 

c 2 
ν̄s 

(

e ′ cr + P 
′ 
cr 

)

+ S 
′ 
other, cr , 

(11) 

illustrating that we have anisotropic ‘diffusion’ with κ‖ ≡ v 2 cr / 3 ̄νs = 

v 2 cr / [3 ( ̄νs , + + ν̄s , −)], and ‘streaming’ along ˆ b with speed v̄ A ≡
v A, eff ( ̄νs , + − ν̄s , −) / ( ̄νs , + + ν̄s , −). 

Meanwhile, equation ( 7 ) becomes ∇ · ( v A, ± e ± ˆ b ) + e ± ( ∇ ·
u gas ) / 2 + Q ± − S ± ≈ 0, with S sc ± as a function of F 

′ 
cr given 

by solving the steady-state flux equation F 
′ 
e, cr ≈ v̄ A ( e ′ cr + P 

′ 
cr ) −

( c 2 / ̄νs ) ̂  b · ∇P 
′ 
cr . This gives S sc , ± ≈ −( νs , ±/ ̄νs ) v A, ± ˆ b · ∇P 

′ 
cr −

2 ( v A /c) 2 ( νs , ∓/ ̄νs ) ( e ′ cr + P 
′ 
cr ). Assuming we know the form of S et, ±, 

Ŵ ±, etc., the pair of steady-state equations for e ±, can then be 
numerically solved exactly, given a locally fixed background ( B , 
etc.; see Appendix B ). But the exact solution is given by a fifth- 
order polynomial in e + + e −, without closed-form solutions, which 
is not particularly useful or instructive (defeating the purpose of our 
steady-state assumption here). 

It is much more useful to consider two limiting cases (justified in 
Appendix B ). First, if the extrinsic term dominates the ‘source’ with 
| S et, ±| ≫ | S sc , ±| , then assuming the extrinsic driver is symmetric 
with respect to waves in the ± ˆ b direction, S et, + ≈ S et, −, we have 
ν̄s , + ≈ ν̄s , − and | ̄v A | ≪ v A . Alternatively, if the SC term dominates, 
then either ν̄s , + ≫ ν̄s , − or ν̄s , + ≪ ν̄s , − (the larger corresponding to 
the opposite direction of ˆ b · ∇P 

′ 
cr ), so | ̄v A | ≈ v A, eff . In either case, 

the ‘streaming’ speed ̄v A is not especially important for CR transport, 
because it is subdominant to the ‘dif fusi ve’ term at most energies of 
interest for empirically allowed models (shown below). This can be 
seen both by considering its normalization, which is far smaller than 
allowed by empirical considerations (with a halo size ∼ 10 kpc, the 
CR ‘escape time’ due to this term would be ∼ 10 Gyr, compared to 
the observed ∼ 5 R 

−0 . 5 
GV Myr), or by noting that this would produce 

a residence/escape time that is completely independent of rigidity, 
again in contradiction to CR observations. So, either in the SC or 
ET limit, we can reasonably reduce the key transport physics to 
understanding κ‖ ∝ 1 / ̄νs , and can approximate equation ( 7 ) with a 
single equation for ν̄s to leading order. Moreo v er, for the types of 
models discussed abo v e, the second and third terms in equation ( 7 ; 
∼∇( v A, eff e ±) and ∼e ± ∇u gas ) are relatively small ( ≪S ∼ Q ), so if 
we write Q ± ≡ Ŵ ± e ±, then we can very generically approximate 
S ≈ Ŵ ± e ± in steady-state, giving 

κ‖ ≡ v 2 cr 
3 ̄νs 

= 
4 βcr 
3 π ˆ νs 

c r g, cr 

(

e B 
e + + e −

)

∼ v cr r g, cr 

(

Ŵ ± e B 
S ±

)

. (12) 

We will return to this approximate scaling below. 

3  PROBLEMS  O F  BOTH  

SELF-CONFI NEMENT  &  EXTRI NSI C  

T U R BU L E N C E  M O D E L S  

3.1 Empirical models 

It is well-known that one can reproduce almost all of the observed 
local Solar neighborhood CR data and Galactic γ -ray constraints 
by assuming an empirically parametrized κ‖ ∼ βcr c r 0 ( R cr ).. 9 Most 
modern studies fa v our a scaling close to r 0 ∼ 10 19 cm R 

1 / 2 
GV , or 

equi v alently e A /e B = ( e + + e −) /e B ∼ 3 × 10 −7 B 
−1 
µG R 

1 / 2 
GV , or e A ∼

( k ‖ ℓ 0 ) −1 / 2 e B with ℓ 0 ∼ 3 × 10 25 B 
2 
µG cm (Blasi & Amato 2012 ; 

Vladimirov et al. 2012 ; Gaggero et al. 2015 ; Cummings et al. 2016 ; 
Guo et al. 2016 ; J ́ohannesson et al. 2016 ; Korsmeier & Cuoco 
2016 ; Evoli et al. 2017 ; Amato & Blasi 2018 ). F or e xample, De 
La Torre Luque et al. 2021 show that, even allowing for a wide 
range of model variations with different systematic uncertainties and 
assumptions, the largest plausible deviations in the empirical models 
lie within the range r 0 ∼ 10 18 . 5 −19 . 5 R 

0 . 4 −0 . 7 
GV cm , i.e. e A ∼ (10 −7 −

10 −6 ) 〈 B 
−1 
µG 〉 R 

0 . 3 −0 . 6 
GV e B , or equi v alently | δB( k ‖ ∼ 1 /r g, cr ) | / | B | ∼

(0 . 3 − 1) 0 . 001 R 
(0 . 15 −0 . 3) 
GV . This required scaling seems, at first, re- 

markably simple and plausible. Yet, in practice, it pro v es remarkably 

9 In models that assume an isotropic diffusion Fokker–Planck equation for 
CRs, it is common to quote D xx . For isotropically tangled magnetic fields, 
D xx ≈ κ‖ /3. 
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difficult to actually produce even qualitatively similar scaling from 

either ET or SC models at energies � TeV. 
For reference below, in the CR propagation literature the slope of 

the dependence of dif fusi vity on rigidity is usually parametrized as 
κ‖ ∼ ( βcr c 

2 / ̄νs , 0 ) R 
δs 
GV , so ̄νs = ν̄s , 0 βcr R 

−δs 
GV , with ̄νs , 0 a constant and 

0.4 � δs � 0.7 allowed by observations (abo v e). To reproduce this, 
we require e A ∝ R 

1 −δs 
cr ∝ r 1 −δs 

g, cr ∝ k 
δs −1 
‖ . 

3.2 The problems with extrinsic turbulence 

First, let us consider the standard ET models introduced in Sec- 
tion 2.7 . Naively, the empirically inferred slope δs appears quite 
consistent with the expectation from an isotropic, undamped, inertial- 
range cascade with E( k) ∝ k −3 / 2 , which gives e A ∼ k ‖ E turb ( k ‖ ) ∼
k 

−1 / 2 
‖ and thus δs = 1/2). It is also marginally consistent with an 

isotropic undamped inertial range K41 cascade ( δs = 1/3). But 
there are three major problems: (1) anisotropy, (2) damping, and (3) 
normalization. Once again, recall that for all CR energies of interest 
r g, cr ∼ 10 12 cm R GV /B µG is much smaller than both of the Alfv ́en 
scale – below which the turbulence is sub-Alfv ́enic ( ℓ A � pc) – and 
the magnetosonic dissipation/Kolmogorov scales ( ℓ diss � 10 15 cm ). 

(i) Anisotropy: First, (1) below the Alfv ́en scale, theory and 
simulations robustly predict something akin to critical balance must 
apply to the Alfv ́enic cascade. But as noted in Section 2.7 (see 
Schekochihin 2022 ), any energy-conserving cascade that obeys 
critical balance automatically predicts E( k) ∝ k −2 

‖ ( e A ∝ k −1 
‖ ). This 

implies δs = 0, regardless of how the cascade scales with the 
perpendicular components of k , because it is k ‖ that plays the key 
role for CR scattering. 10 But this further implies scattering rates are 
independent of CR energy, which is strongly ruled-out. 

(ii) Damping/Dissipation: Second, (2) strong dissipation, partic- 
ularly of magnetosonic modes, causes two problems. First, it damps 
fast magnetosonic fluctuations, which makes the normalization of ν̄s 

much too low for scattering from a magnetosonic cascade (generally 
by ∼3–6 orders of magnitude for realistic damping rates, as shown 
in Hopkins et al. 2021d ). But, equally important, dissipation can 
only make the spectrum steeper ( E( k) decreases more-rapidly at 
high k ). This in turn implies that δs generically becomes negative . 
One might argue that at some point, one should ignore the strongly 
damped smaller-scale gyroresonant magnetosonic modes and only 
integrate the contribution from larger magnetosonic modes abo v e 
the dissipation/Kolmogorov scale – this is the argument in Yan & 

Lazarian 2004 (YL04). But, as noted in Section 2.7 , this also gives 
δs ≤ 0, al w ays. In f act δs = 0, i.e. e A ∝ k −1 

‖ , corresponds to the 
‘most efficient’ possible case of the YL04 model so long as ℓ diss 

≫ r g , cr , and in many other limits δs ≪ −1, e.g. when there is 
an exponential-like cutoff due to non-zero ion-neutral damping, 
or plasma βplasma ≡ c 2 s /v 

2 
A, ideal > 1. Again, as shown rigorously in 

Appendix C , this applies to any magnetosonic cascade regardless of 
details, if the gyroscale is smaller than the (fast-mode) dissipation 
scale. So the only way to ‘salvage’ even the qualitative scaling of δs in 
ET models, with turbulence that is either Alfv ́enic or magnetosonic 
in character, is to ignore both anisotropy and damping/dissipation 
effects. This would require discarding almost everything that is 
known about the structure of MHD turbulence. 

10 In Appendix C , we show that δs ≤ 0 is generic to any Alfv ́enic cascade, 
independent of its form, and mathematically allowed violations of critical 
balance or other conditions within a cascade generically lead to δs < 0, 
making the problem worse. 

(iii) Normalization: Third, (3) even if we did invoke an isotropic, 
undamped E( k) ∝ k −3 / 2 cascade, which leads to the observationally 
fa v oured slope, then we would obtain e A ∼ e B ( k ℓ A ) −1 / 2 . This is 
systematically larger than the empirically required value of e A by a 
factor ∼ 1000 B µG ( ℓ A / 10 pc ) −1 / 2 – i.e. this would typically o v er- 
predict observed CR scattering rates by factors of several thousand. 
Thus, some anisotropy and/or damping must be present to prevent 
ET from o v er -confining CRs, b ut as soon as those are invoked, the 
predicted shape ( δs ) is incorrect. 

As re vie wed in Hopkins et al. ( 2021d ) and Appendix C , almost all 
proposed more-detailed corrections and modifications to traditional 
ET models in the literature make the problems abo v e worse, not 
better (i.e. they make the scattering rates even more different from 

those observationally required). 

3.3 Generic alternati v es to extrinsic turbulence 

A generic alternative to ET is to have scattering modes that are 
directly excited ‘at each scale’ by some process, rather than arising 
through a cascade from large scales. In this scenario, the driver must 
operate o v er a wide range of scales – scattering CRs in the range 
∼ MeV-TeV implies a factor ∼10 6 in k – and excite the rele v ant k ‖ 
modes. 

Of course SC, where the excitation comes from the CRs them- 
selv es, does e xactly this, and is v ery natural – indeed, it should occur 
to some extent. And a simple order-of-magnitude calculation shows 
that the SC source term S sc should almost al w ays be dominant o v er 
the ‘standard’ ET source terms for CR energies � TeV, if we account 
for either anisotropy or damping of ET (let alone both). For this 
reason, SC has been the most popular model to explain the scaling 
of e A (hence CR scattering rates) at these energies. 

3.4 The problems with self-confinement 

Ho we ver, there are also three major qualitative problems with SC 

models: (1) normalization, (2) spectral shape/scaling of scattering 
rates, and (3) instability or ‘solution collapse.’ 

(i) Normalization: The normalization problem (1) is discussed 
in detail in both analytic models and full dynamical simulations 
in Hopkins et al. ( 2021d ). In brief, for ∼ 1 − 10 GeV CRs, which 
contain most of the energy, while damping is large in neutral gas, 
the CR energy density in a multiphase ISM is determined by the 
volume-filling phases with the lowest dif fusi vity (the ‘boundary 
condition’) i.e. the WIM and inner CGM. In these regions, NLL 

and ion-neutral damping are both inefficient, so standard models 
suggest that turbulent or linear-Landau damping dominates (see 
Hopkins et al. 2021d , c ; Buck et al. 2020 ). Considering CRs near 
the peak of the CR energy spectrum, and assuming local steady 
state and dominant turbulent damping, the ef fecti ve dif fusi vity 
from equation ( 12 ) would then be (see Hopkins et al. 2021d ) 
κ‖ ∼ v cr r g, cr ( Ŵ ± e B /S sc , ±) ≈ 10 28 δv 

3 / 2 
10 ℓ ∇, cr , kpc ℓ 

−1 / 2 
A, 10 e 

−1 
cr, eV n 

3 / 4 
1 

(with δv 10 ≡ δv turb / 10 km s −1 , ℓ ∇, cr, kpc ≡ ℓ ∇, cr /kpc with 
ℓ ∇, cr ≡ P 

′ 
cr / |∇P 

′ 
cr | , ℓ A, 10 ≡ ℓ A / 10 pc , e cr, eV ≡ e ′ cr / eV cm 

−3 , n 1 ≡
n /cm 

−3 ), or e A /e B ∼ 10 −5 e cr, eV ℓ 
1 / 2 
A, 10 B 

−1 
µG δv 

−3 / 2 
10 ℓ −1 

∇, cr , kpc n 
−3 / 4 
1 . 

This is a factor ∼30–100 smaller than the empirically fa v oured 
value of κ‖ for ∼ 1 − 10 GeV CRs. 
This issue is potentially important, but perhaps the least-serious of 
the three problems: it can be ameliorated by (a) including additional 
damping mechanisms such as the recently proposed dust damping, 
which can be larger than turbulent damping invoked abo v e (raising 
Ŵ ±) by factors ∼10–100 at ∼ 1 GV under MW-like conditions 
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(Squire et al. 2021 ); (b) invoking somewhat slower growth rates S , for 
the rele v ant modes as excited by CRs, which can occur accounting 
more accurately for e.g. the full spectrum of modes which contribute 
to scattering (instead of assuming strict gyroresonance plus the grey 
approximation), as argued in Bai et al. ( 2019 ); (c) accounting more 
accurately for geometric and other non-grey effects, which can lower 
the ef fecti ve scattering rate for gyroresonant modes for a given e A (i.e. 
our ‘ ̂ νs ’ parameter). These corrections arise from accounting more 
accurately for the full shape of the CR spectrum (Kempski et al., in 
prep), accounting for the μ = 0 pitch-angle scattering barrier, which 
has been shown to be significant in some PIC simulations (Bai et al. 
2019 ), and accounting for anisotropy that arises from the fact that the 
CRs only source one helicity of modes in some regimes (Holcomb & 

Spitko vsk y 2019 ). It is noteworthy that all of these corrections go in 
the ‘fa v oured’ direction. 

(ii) Spectral Shapes: Ho we v er problem (2), re garding the 
spectral-shape-dependence of scattering rates, is not resolved by 
the possible solutions abo v e. The issue is that the growth term 

S sc , ± scales with the CR pressure or energy itself, as S sc , ± → 

±v A, eff ˆ b · ∇P 
′ 
cr ∼ ( v A, eff /ℓ ∇, cr ) ǫcr , where ℓ ∇, cr is the CR gradient 

scale length abo v e and ǫcr is the CR kinetic energy density in a 
logarithmic interval in rigidity R cr (or equi v alently, gyroresonant 
k ‖ ). But, for realistic CR spectra, ǫcr ∝ R 

−αcr 
cr ∝ k 

αcr 
‖ , with −1.4 � 

αcr � −0.7 at energies ≪ 1 GV, and αcr ≈ 0.7 at energies from 

∼ 1 − 300 GV (e.g. Cummings et al. 2016 ; Bisschoff et al. 2019 , 
and references therein). So, in our parametrization abo v e, we would 
have S sc , ± ∝ k 

αcr 
‖ , with Ŵ ± ∝ k 

ξk 
‖ e 

ξA 
A (for all the known damping 

mechanisms discussed in Section 2.5 ). In steady-state, i.e. solving 
S ± ∼ Ŵ ± e A , this leads to δs ≈ 1 − ( ξ k − αcr )/(1 + ξA ). But for αcr ∼
0.7 (i.e. R cr � GV), this gives 0.8 � δs � 1.7 for all known damping 
mechanisms (0 ≤ ξk , ξA ≤ 1), while for αcr ∼ −1 (i.e. R cr � GV), 
this gives −1 � δs � 0.5. In other words, δs is generically much too 
low at R cr ≪ 1 GV, owing to the fact that the spectrum is rising, and 
much too high at R cr ≫ 1 GV, owing to the fact that the spectrum 

is falling. This produces a strong minimum in κ‖ , a much-too- 
sharply peaked CR spectrum, and the incorrect dependence in both 
limits of e.g. secondary-to-primary ratios on R cr . In principle, this 
could be solved by imposing a new dominant damping mechanisms 
with a dependence on k or e A that is different to the mechanisms 
discussed in Section 2.5 . But, this would require rather unusual 
values of ξ k , in particular, ξk ≈ αcr + (1 − δs ) (1 + ξA ) implies 1.2 
� ξ k � 1.7 for R cr � 1 GV, and −0.5 � ξ k � 0 for R cr � 1 GV. 
This in turn requires a dramatic difference in the dominant damping 
mechanism between waves that resonate with low and high CR 

energies – longer wavelength waves require larger ξ k , while shorter 
w avelength w aves require much smaller (negative) ξ k – compared to 
the known mechanisms described in Section 2.5 . In other words, it 
is not possible to resolve this problem by simply ‘tweaking’ coef- 
ficients or power-law scalings of standard damping or growth-rate 
terms. 

(iii) Instability: Even if (1) and (2) were solved with some- 
thing like the possibilities mentioned abo v e, a potentially more 
fundamental problem with self-confinement is that the commonly 
adopted ‘local steady-state’ SC solutions for the CR scattering 
rates and fluxes (given some CR energy density at a given CR 

momentum/rigidity) are not stable equilibria of the CR energy 
equation. This is derived in detail in Appendix A . Briefly, the problem 

arises because the SC dri ving/gro wth rate S sc , ± is proportional to the 
CR flux F 

′ 
e, cr or (in local steady-state) to ∝ ∇P 

′ 
cr (i.e. ζ cr ∼ 1), 

while all standard damping processes are independent of e ′ cr (i.e. 
ξ cr = 0). This implies e A ∼ S sc , ±/ Ŵ ± ∝ ∇e ′ cr , where we assumed 
linear damping dominates for simplicity (this assumption is relaxed 

in Appendix A and our simulation tests). But this in turn means 
that the steady-state CR flux F 

′ 
e cr ∝ κ‖ ∇e ′ cr ∝ e −1 

A ∇e ′ cr ∝ constant 
is independent of e ′ cr ; or equi v alently that the CR ‘escape time’ 
(the streaming/diffusion time to some distance ℓ ) is t esc ∼ ℓ 2 /κ‖ ∼
ℓ/v stream , eff ∝ ℓ 2 e A / ( v cr r g, cr e B ) ∝ e ′ cr . This is a fundamental feature 
of SC models, as it is a re-statement of the fact that the confining 
wave energy ultimately comes from the CRs themselves. Indeed, the 
effect clearly manifests in the early kinetic quasi-linear theory and 
solutions of Skilling ( 1971 ), as the absence of the CR distribution in 
the diffusion term (the final term in their eq. (9)). The consequence 
of this feature of the SC model is that if the CR flux is lower than the 
exact value needed to maintain global steady-state in the CR energy 
density equation (or even if there is a perturbation about the exact 
value), the local e ′ cr will increase due to the CR o v erconfinement, 
then causing e A and the CR escape time to also increase, which 
in turn further bottlenecks 11 e ′ cr . Since the steady-state CR energy 
density in some region e ′ cr ∼ j inj t esc , and both j inj and t esc have 
just increased, e ′ cr increases as well. This will grow on a time- 
scale of the injection time ( e ′ cr /j inj ), until t esc ∝ e ′ cr becomes so large 
that the CRs can only mo v e at the local Alfv ́en speed (ef fecti vely 
ν̄s → ∞ ), which is much slower than relevant loss times. They thus 
lose all their energy to catastrophic or radiative losses before they 
can escape. As a result, in steady-state, the energy density is no 
longer set by the escape time but by the calorimetric loss time-scale 
e ′ cr ∼ j inj t loss . The outcome is that CRs at all R cr lose all their energy 
near their injection sites, in gross contradiction to observations. 
Even if we neglect losses, the CRs would all stream at the same 
speed v A , implying δs = 0, which is also in direct contradiction to 
observations. 
This is the ‘SC runaway’ problem described and seen in the 
simulations of Hopkins et al. ( 2021d ), who noted it for just ∼ 1 GV 

CRs. Here, we note that it applies at all energy scales, becoming 
more severe due to the additional constraints on δs . Conversely, if 
one deviates from a balanced initial condition (ICs) by lowering 
e ′ cr , then e A drops, the escape time decreases, so e ′ cr drops more 
rapidly, etc. until CRs essentially ‘free stream’ and produce negligible 
secondaries. 
We will show that, in simulations, this instability or ‘solution col- 
lapse’ problem is quite severe. In controlled restarts from otherwise 
identical ICs, if we start from a ‘high’ CR density e ′ cr (with only 
SC-moti v ated S ), then e ′ cr and scattering rates grow until they reach 
calorimetric losses across a wide range of energies; conversely, if 
we start from a ‘low’ e ′ cr , then e ′ cr and scattering rates decrease 
to an extremely low value, giving negligible secondary production 
(much too-low B/C, p̄ /p, e + / e −) at all energies. It is inevitable that 
real galaxies will almost constantly undergo events that push them 

towards one or the other limit. 

3.5 How to rescue things? 

We now consider what would be qualitatively needed in either the 
damping ( Ŵ ±) or driving ( S ±) terms for e A , in order to obtain some 
plausible consistency between observations and either SC or ET CR 

transport models. 

11 In the literature, CR ‘bottlenecks’ can occur under a variety of different 
conditions and the term is often used to refer to distinct physical processes 
((see e.g. Zweibel 2017 ; Bustard & Zweibel 2021 ; Huang & Davis 2022 ; 
Quataert, Thompson & Jiang 2022a ). Unless otherwise specified, in this paper 
we will generally use the term in connection to this SC ‘solution collapse’ 
problem, specifically to the o v er-confined solution branch. 
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3.5.1 Alternative damping 

First, let us consider the consequences of modifying or adding only 
damping terms, while retaining standard SC & ET driving. 

In the ET-dominated limit – or any model where the dominant 
contribution to the driving term S ± derives from an MHD cascade 
– no addition or modification of the form of the damping terms can 
‘rescue’ the models. This is because, as shown abo v e, the cascade 
assumption itself implies δs < 0 (i.e. the slope of the ‘cascade’ 
is cut off to some non-zero degree) for any finite damping term 

if the damping is significant. Even for negligible damping in ET, 
anisotropy requires δs ≤ 0, independent of the form of the damping 
terms. Ho we ver, for standard scattering expressions moti v ated by 
physical turbulence models (i.e. including anisotropy and damping), 
our naive expectation is that the driving term S ± is dominated by SC 

at all energies of interest (i.e. S et, ± ≪ S sc , ±). Thus, it is most rele v ant 
to consider what (if any) damping terms could resolve the problems 
abo v e for self-confined CRs. 

In the SC-dominated limit, one could in principle solve both the 
‘normalization’ (1) and ‘spectral shape’ (2) problems by invoking 
some arbitrary damping rate Ŵ new , damp , ±, which has the appropriate 
normalization and desired scaling as a function of k and e A (i.e. 
varying ξ k as a function of R cr , to ne w v alues outside the range 
of known damping mechanisms, as explained in Section 3.4 ). This 
in itself would not solve the ‘instability’ problem (3). Ho we ver, 
if the dominant damping mechanism also scaled with e ′ cr , then 
in equilibrium ( S ± ∼ Q ±) this would cancel the e ′ cr dependence 
of S sc , ±, resolving issue (3) as well. Specifically, following the 
parametrization of Section 2.5 , if we had damping with ξ k ≈ 1/2, 
ξA ≈ 0, ξ cr ≈ 1, i.e. Ŵ new , damp , ± ∝ k 

1 / 2 
‖ e ′ cr , then since the SC 

driving term S sc , ± ∝ v A, eff ˆ b · ∇P 
′ 
cr , this would give approximately 

the desired e A ∝ k 
−1 / 2 
‖ independent of e ′ cr , thus curing the ‘spectral 

shape’ and ‘instability’ problems. An example that gives roughly the 
correct normalization as well would be something like Ŵ new , damp , ± ∼
v eff ( k ‖ ℓ A ) 1 / 2 ( e ′ cr /e B ), with v eff ∼ c s ∼ v A, ideal – i.e. something akin 
to standard turbulent or linear Landau damping rates, but multiplied 
by e ′ cr /e B . 

This is perhaps not wildly implausible, if it arose from some 
non-linear process involving CR back-reaction on the gas (perhaps, 
for example, shocks induced on small-scales by CR-gas coupling 
as in Huang & Davis 2022 ; Hin Navin Tsung, Oh & Jiang 2022 ; 
Quataert, Jiang & Thompson 2022b ). Our simulations below will test 
both ‘microscopic’ (i.e. subgrid, added manually) and ‘macroscopic’ 
(spatially resolved, on � pc scales, which should emerge self- 
consistently from the simulation physics) versions of this scenario. 
Ho we ver, it is not a perfect solution. Not only would one need to think 
of an ef fecti ve damping mechanism that produced the desired scaling 
abo v e (for which there is no obvious candidate, and our simulations 
do not appear to produce this ‘macroscopically’), but one would also 
need to ensure that this is the dominant damping process compared to 
the other known damping terms in Section 2.5 , which do not simply 
disappear. This would need to be true, at least on average in the 
ISM, for 0 . 01 GV � R cr � 1000 GV. But at both low and high R cr , 
e ′ cr is low, so it is quite unclear how a damping rate similar to that 
proposed, which is suppressed by e ′ cr , could dominate o v er the entire 
range of interest. 

Briefly, we note that an alternative damping mechanism with ξ cr 

≈ 0 that scales with e A more steeply than NLL damping ( ξA > 1) 
would formally admit steady-state solutions [solving problem (3), 
per Appendix A ]. But since this would give e A ∝ ( e ′ cr ) 

1 / (1 + ξA ) , it 
would still suffer from the spectral shape problem (2), unless one 
takes ξA ≫ 1, with ξ k ∼ (1 + ξA )/2 ≫ 1. This is a rather unusual 

scaling. Moreo v er, in this limit, the required normalization of this 
added Ŵ new , damp ± ∝ e 

ξA 
A k 

(1 + ξA ) / 2 
‖ term at the wavenumbers and e A 

observationally required at ∼ 1 GV would be problematically large: 
∼10 5 times larger than the standard NLL damping term, despite 
its being nominally much higher-order in e A / e B . As such, we will 
not consider this particular class of alternative damping model 
further. 

3.5.2 Alternative driving 

Alternatively, we could invoke a different or additional driving 
term S new , ± while keeping the known damping mechanisms. Con- 
sider an alternative source term as parametrized in Section 2.6 : 
S new , ± = d E/ d ln k ‖ d t d Volume ∝ k 

ζk 
‖ e 

ζA 
A (i.e. ζ cr = 0, so we a v oid 

the problems of SC models abo v e). Giv en some damping rates 
parametrized in similar fashion as in Section 2.5 , a desired δs is 
obtained for ζk = ξk − (1 − δs ) (1 + ξA − ζA ). 

(1) Extrinsic/External sources: First, consider the case with ζ A = 

0, i.e. S new , ± = S new , ext independent of e A , as appropriate for a truly 
‘extrinsic’ or ‘external’ energy driving/pumping term (akin to ET 

in this limited sense). Then, if we consider ξA , ξ k for all possible 
damping mechanisms in Section 2.5 , and allow 0.3 � δ � 0.7, then 
the range of possible ζ k that produces the desired δs is bounded by 
−0.7 � ζ k � 0.5. But more realistically, if we restrict to δs ≈ 1/2, 
and ignore ion-neutral damping (which has a rather different scaling 
ξ k from other rates, and is rarely rele v ant in the volume-filling ISM 

which dominates the statistics as seen in the LISM), then allowing 
for all other damping processes requires a much narrower range of 
−0.1 � ζ k � 0.25. In other words, a model with S new , ext ∼ constant, 
or weakly dependent on k ‖ (hence r g , cr ), is potentially viable. One 
example, which has approximately the correct normalization if we 
assume turb ulent, linear -Landau, or dust damping dominates Ŵ ±, 
would be S new , ext ∼ 0 . 01 ( v A, ideal /ℓ A ) e B (this could be multiplied by 
a weak power of k ‖ or r g , cr , e.g. ( k ‖ r g, cr [1 GV ]) ζk with −0.1 � ζ k � 

0.25). 
(2) Linear sources: Secondly, consider the case with ζ A = 1, 

i.e. S new , ± = S new , lin ∝ e A . This would be appropriate for e.g. any 
linear instability that amplifies e A . The gyroresonant CR instabilities 
(or non-resonant CR instabilities; Bell 2004 ) invoked in SC models 
are one such instability, but suffer from the problems described in 
Section 3.4 . F or an y ζ A ≈ 1, again allowing for a broad range of δs 

and all possible damping mechanisms bounds 0 � ζ k � 0.85, but 
restricting to δs ≈ 1/2 and ignoring ion-neutral damping gives the 
much narrower range 0.4 � ζ k � 0.75. Again, an example here that 
has approximately the correct normalization would be e.g. S new , lin ∼
0 . 001 ( v A, ideal /ℓ A ) ( k ‖ ℓ A ) 1 / 2 e A . 

Either of these no v el source terms seem to be at least plau- 
sible. For the first ‘extrinsic source’ case ( ζ A = 0), the scaling 
S new , ext ∼ constant is just that assumed in isotropic, undamped 
turbulent cascade models. But, the more general condition is simply 
that the driving in energy space – i.e. d | δB 

2 ( k ‖ ) | / d ln k ‖ d t d Volume 
– is only weakly dependent of k ‖ (i.e. the driving rate is comparable 
across scales from ∼ MeV-TeV gyroradii). We emphasize that 
from the constraints in Section 2.5 and assumed structure of the 
competition with scale-dependent damping, this cannot apply to 
any of the standard physically moti v ated models for a traditional 
MHD turbulent cascade from larger scales, which would introduce 
the damping and anisotropy problems. Rather, in order to satisfy 
the requirements, it is more natural to consider modes as driven 
and damped ef fecti vely ‘independently’ on each scale, in a manner 
where the energy driving/injection rate is comparable per logarithmic 
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interval in parallel k ‖ , but allowing for damping and/or anisotropy 
and/or transfer so long as this condition is met. Note that the required 
normalization/total energy driving rate in this scenario is quite small 
– only ∼ 1 per cent of the driving/dissipation rate of ISM turbulence 
on larger scales. 

For the second ‘linear source’ case ( ζ A = 1), the linear scaling 
S new , lin ∼ � new , lin e A with � new , lin ∝ k 0 . 4 −0 . 75 

‖ is physically easy to 
imagine. Most obviously, a huge variety of multifluid instabilities 
present in the ISM exhibit behaviour that could lead to similar 
scalings. F or e xample, at a tw o-fluid interf ace, the Rayleigh–Taylor 
instability (RTI) with � new , lin ∼

√ 
g k where g is some acceleration, 

would require only very weak g ∼ 10 −6 v 2 A /ℓ A to produce roughly 
the correct behaviour. More generally, any ‘co-spatial fluids’ – i.e. 
any two fluids that both share the same volume, such as dust and 
gas, ions and neutrals, radiation and gas, etc. – can be unstable to 
the family of resonant-drag instabilities (RDIs; Squire & Hopkins 
2018 ), many of which drive modes that could scatter CRs with 
the desired scalings. 12 For example, the Alfv ́en-wave dust-gas RDI 
(Hopkins & Squire 2018 ) is unstable on all scales of interest here, and 
has a growth rate � new , lin ∼ ( f dg �a dg k ‖ ) 1 / 2 at intermediate k ‖ and 
∝ k 

1 / 3 
‖ at high k ‖ , where f dg is the dust-to-gas ratio [ f dg � 0.01 in the 

(MW), depending on gas phase], � a dg is any external acceleration 
felt differently by dust and gas (e.g. radiation pressure), and we 
have assumed the dust-gas drift speed is sub-Alfv ́enic. So such a 
mechanism would require f dg �a dg ∼ 10 −6 v 2 A /ℓ A in order to scatter 
CRs sufficiently, well within plausible ranges (see e.g. Weingartner & 

Draine 2001 ). Alternativ ely, v ery similar RDIs can arise between the 
ionized and neutral gas phases in partially ionized gas, several of 
which are studied in Tytarenko, Williams & Falle ( 2002 ) with growth 
rates � new , lin ∝ k 

1 / 3 −2 / 3 
‖ depending on k ‖ (although some of these are 

stabilized on small scales by pressure effects in the neutrals). 
These alternative source models appear more well-motivated than 

the alternative damping model in Section 3.5.1 . To start, there are 
physically moti v ated, kno wn processes that could potentially produce 
the correct additional source terms. But also, they do not require that 
we ‘discard’ major known damping mechanisms or other known 
source terms, in order to make these models ‘work’ (whereas with 
the alternative damping model, we must invoke some other physics to 
explain why other other known damping processes do not dominate). 
In fact, we can simply ‘add’ similar driving terms on top of the known 
terms in Section 2.5 –2.7 . There is, ho we ver, one remaining caveat 
if we do so. We still need to a v oid the SC bottleneck/runaway (if 
we still include S sc ) in regions that do have high e ′ cr , specifically at 
rigidities ∼ 1 − 10 GV where e ′ cr is maximized. In other words, S sc 

would be expected to still be large and potentially dominate over S new 

by a factor as large as ∼100, given the ‘normalization’ problem in 
Section 2.6 (which imposing new driving terms does not solve). This 
is not a serious problem outside of the range ∼ 1 − 10 GV, because 
e ′ cr is smaller. But at ∼ 1 − 10 GV, all of the plausible solutions to 

12 More technically, if a second fluid (e.g. dust, radiation, or neutrals) can 
‘resonate’ with Alfv ́en waves with the desired k ‖ (i.e. if they have a natural 
mode with a frequency that matches that of the Alfv ́en wav e), and an y 
coupling that depends on their relative streaming velocities (e.g. collisions, 
drag, Lorentz forces), then it can produce an RDI. These generally drive 
modes in k ‖ that could scatter CRs and have growth rates γ ∼ k α‖ , where 
1/3 � α � 2/3 depending on the scale and type of mode (see Squire & 

Hopkins 2018 ). For the ‘intermediate’ k ‖ or small- f dg case (where f dg is the 
mass-density ratio of the two fluids), assuming the streaming/drift velocity is 
sub-Alfv ́enic, this generically gives � new , lin ∼ ( f dg �a dg k ‖ ) 1 / 2 where � a dg 

is any difference in the accelerations felt by the two fluids that gives rise to 
non-zero streaming. 

the ‘normalization’ problem discussed in Section 2.6 – e.g. more 
accurately calculating gyroresonant growth rates that account for 
the full CR spectrum, and more accurately calculating SC-induced 
scattering rates ( ̂ νs arising from the SC) – act to reduce the SC 

contribution, so can potentially alleviate this problem. 

4  N U M E R I C A L  SI MULATI ON  M E T H O D S  

We now test these analytic conclusions in detailed numerical sim- 
ulations, beginning by describing our simulation methods. Briefly 
though, we note that there are se veral moti v ations to explore fully 
dynamical simulations of global galaxy formation and structure. One 
is to test whether these conclusions are robust in a more realistic, 
turbulent, multiphase medium (in which plasma properties such as 
v A , etc. vary on scales which are resolved but still small compared 
to the size of the entire Galaxy; see discussion in Paper I) as is 
present in these numerical simulations, but cannot be captured in 
even state-of-the art analytic Galactic structure models (compare e.g. 
Benincasa et al. 2020 ; Maurin 2020 ). Another is to test whether non- 
equilibrium CR dynamics (i.e. dynamical behaviours whether either 
the background plasma, or CR flux or energy equations themselves, 
are not in equilibrium), neglected in any ‘steady-state’ models, could 
impact these conclusions (see e.g. Bustard & Zweibel 2021 ; Hopkins 
et al. 2021d ; Thomas, Pfrommer & Pakmor 2022 ). Yet another 
moti v ation is to test whether ‘feedback’ or back-reaction effects 
from CRs on the medium, necessarily ignored in any post-processing 
models where CRs are not evolved ‘on the fly’ could somehow 

produce different conclusions. Examples of this include the effect 
of global CR pressure gradients and CR coupling to magnetic fields 
re-accelerating outflows to large CGM radii (Salem & Bryan 2014 ; 
Simpson et al. 2016 ; Wiener et al. 2017 ; Hopkins et al. 2021b ); or 
producing strong shocks, mixing via bouyancy effects, or thermally 
heating the CGM (Enßlin et al. 2011 ; W iener , Oh & Guo 2013a ; 
Su et al. 2020 , 2021 ; Wellons et al. 2022 ); or altering the phase 
structure of the CGM via allowing gas to occupy states prohibited in 
strict thermal pressure equilibrium (Salem, Bryan & Corlies 2016 ; 
Butsky & Quinn 2018 ; Butsky et al. 2020 ; Ji et al. 2020 , 2021 ); 
or altering the vertical support, hence pressure balance, turbulent 
strength, or magnetic field strengths of galactic discs (W iener , 
Zweibel & Oh 2013b ; Hopkins et al. 2020b ; Chan et al. 2021 ; 
Ponnada et al. 2022 ); or altering ionization balance in neutral gas in 
e.g. GMCs or galactic nuclei (Gaches & Offner 2018 ; Hopkins et al. 
2021a ; Armillotta, Ostriker & Jiang 2021 ). We emphasize that all of 
these effects have been studied in previous simulations with the same 
physics, code/numerical methods, and resolution (references given), 
demonstrating that they can in fact be captured – the difference is 
that these previous studies have generally treated CRs in the ‘single- 
bin’ approximation (integrating only a total CR energy, rather than 
the full spectrum, and neglecting differences between species) with 
a simple phenomenological transport/scattering rate model (e.g. a 
single universally constant scattering rate or diffusivity or streaming 
speed). 13 

13 Briefly, it is also worth noting that even studies using entirely different 
codes and numerical methods and ICs have largely produced similar results 
to the FIRE simulations referenced here, provided they include similar 
physics and adopt similar CR transport parameters (see e.g. the discussion in 
Armillotta et al. 2021 ). Moreo v er, while there is of course some resolution- 
dependence and there will necessarily be unresolved scales (discussed in 
more detail below), these appear to have little effect on the mean properties 
predicted in the studies abo v e (see references therein) and to manifest weakly 
via effects like the failure to resolve small molecular clouds, leading to 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
7
/4

/5
4
1
3
/6

7
5
9
4
3
7
 b

y
 C

a
lifo

rn
ia

 In
s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 2

0
 A

u
g
u
s
t 2

0
2
3



5424 P . F . Hopkins et al. 

MNRAS 517, 5413–5448 (2022) 

4.1 Non-CR physics 

The simulations studied here are identical to those in Hopkins et al. 
( 2021a ; hereafter Paper I), except for the expressions used for the 
CR scattering rates, so we only briefly summarize the methods here. 
The simulations are run with GIZMO 

14 (Hopkins 2015 ), in meshless 
finite-mass mode, with MHD solved as in Hopkins & Raives ( 2016 ) 
and Hopkins ( 2016 ) with anisotropic Spitzer–Braginskii conduc- 
tion/viscosity as in Hopkins ( 2017 ) and Su et al. ( 2017 ), self-gravity 
solved with adaptive Lagrangian force softening, and cooling, star 
formation, and stellar feedback following the Feedback In Realistic 
Environment (FIRE)-3 implementation of the FIRE physics (Hop- 
kins et al. 2018b , 2022a ). We explicitly follow enrichment, dynamics, 
and chemistry of 11 species (Colbrook et al. 2017 ; Escala et al. 2018 ), 
cooling and non-equilibrium ionization/atomic/molecular chemistry 
from ∼1–10 10 K, including metal-line, molecular, fine-structure, 
photo-electric, ionization, and other processes with local sources 
and a metagalactic (self-shielded) background from Faucher-Gigu ̀ere 
( 2020 ). Locally self-gravitating Jeans-unstable gas in converging 
flows is allowed to form stars following Hopkins, Narayanan & 

Murray ( 2013 ) and Grudi ́c et al. ( 2018 ), and once formed stars evolve 
according to explicit stellar evolution models and return metals, mass, 
momentum, and energy to the ISM via resolved individual SNe (both 
Ia and core-collapse) and O/B and AGB mass-loss as in Hopkins et al. 
( 2018a ), with radiative heating and momentum fluxes solved using 
a five-band radiation-hydrodynamic approximation from Hopkins 
et al. ( 2020a ). We note resolution tests below but the default mass 
resolution is �m i ≈ 7000 M ⊙, so the spatial/force resolution scales 
with density as �x i ∼ 10 pc ( n/ 100 cm 

−3 ) −1 / 3 , and the simulations 
naturally feature a multiphase ISM with hot phases at n ≪ 0 . 01 cm 

−3 

and molecular clouds (with the mass spectrum and other scalings of 
the most massiv e, resolv ed clouds agreeing well with observations; 
Benincasa et al. 2020 ; Guszejnov et al. 2020 ; Keating et al. 2020 ) 
up to the maximum densities where the fragmentation scale can 
be resolved of n ∼ 10 3 − 10 4 cm 

−3 (see Hopkins et al. 2018b , for 
more details). The simulations here are ‘controlled restarts’ where 
we take a fully cosmological simulation run from z ∼ 100 to z = 0 
with a simpler CR treatment from Hopkins et al. ( 2020b ), selected 
because it forms a galaxy similar in all obvious rele v ant properties 
to the MW, and restart it from a snapshot at z ≈ 0.05, modifying 
the CR assumptions, and running for ≈ 500 Myr to z = 0. This 
is sufficient for all CR quantities in the ISM to reach their new 

quasi-steady-state values, but ensures (unlike running an entirely new 

cosmological simulation) that our comparison is ‘controlled’ (bulk 
Galaxy properties are similar). All numerical details of the methods 
are described and tested e xtensiv ely in Hopkins et al. ( 2021a ). 

4.2 CR physics 

Following Hopkins et al. ( 2022b ), we explicitly evolve the CR 

DF f cr = f cr ( x , p cr , t, s, . . . ), assuming a gyrotropic DF following 
equations ( 1 –2 ). By definition, 〈 µ〉 ≡ f̄ cr, 1 / f̄ cr, 0 , and the moments 
hierarchy for f̄ cr, 2 is closed by the interpolated M1-like relation 
〈 µ2 〉 ≈ (3 + 4 〈 µ〉 2 ) / (5 + 2 

√ 
4 − 3 〈 µ〉 2 ), which captures the exact 

behaviour in both the ‘free streaming’ or weak-scattering and 

slightly more-clustered star formation and higher variability (see Hopkins 
et al. 2018b , 2022a ; Armillotta et al. 2021 ), which only strengthens our 
ultimate conclusions since it means the simulations sample a broader range 
of possibilities. 
14 A public version of GIZMO is available at ht tp://www.tapir.calt ech.edu/ ∼p 
hopkins/Site/GIZMO.html 

isotropic-DF or strong-scattering limits (Hopkins et al. 2022b ). All 
the variables abo v e are functions of position and time. CRs act 
on the gas and radiation fields: the appropriate collisional/radiative 
terms are either thermalized or added to the total radiation (e.g. 
Bremstrahhlung, inverse Compton, etc.) or magnetic energy, and 
the CRs e x ert forces on the gas in the form of the Lorentz force 
(proportional to the perpendicular CR pressure gradient) and parallel 
force from scattering as detailed in Hopkins et al. ( 2022b ). 

The momentum-space evolution of f̄ cr, 0 is integrated indepen- 
dently in every resolution element using the finite-momentum-space- 
volume scheme in Girichidis et al. ( 2020 ), treating f̄ cr, 0 ( p cr ) as a 
series of independent piece wise po wer-laws with exactly computed 
number and energy fluxes (so the scheme exactly conserves CR 

number and energy). We discretize with ∼11 independent power- 
law intervals (each with an evolving slope and normalization) 
for f̄ cr, 0 ( p cr ) spanning ∼MeV-TeV energies, per CR species, per 
simulation cell. We cannot resolve first-order Fermi acceleration so 
we model injection by assuming ∼ 10 per cent of the initial pre- 
shock kinetic energy goes into CRs, with ∼ 2 per cent of that into 
leptons, at the formation of the reverse shock around each SNe 
and/or O/B winds, with the relative number per species set by the 
ev olved ab undances at that point (e.g. the test-particle limit) with 
a fixed injection spectrum j cr ( R cr ) ∝ R 

−4 . 2 
cr . We explicitly follow 

the CR species protons p (H), CNO, 7 Be, 9 Be, 10 Be, anti-protons 
p̄ , electrons e −, and positrons e + . In the loss terms R loss and 
j cr , we include Coulomb & ionization, Bremstrahhlung, inverse 
Compton, synchrotron, pionic, fragmentation, radioactive decay, and 
annihilation processes, with standard cross-sections compiled in 
Paper I. This includes the secondary production of e.g. e + , e −, B, C, 
Be, etc. All ISM quantities needed for these rates (e.g. gas densities & 

ionization states, magnetic & radiation energy densities, etc.) are 
taken directly from the dynamically evolved simulation quantities in 
the cell. As also noted in Hopkins et al. ( 2022b ), our equation ( 1 –
2 ) automatically include ‘adiabatic’ ( D cr : ∇u gas ), ‘streaming loss’ 
or ‘gyroresonant’ ( ∝ v̄ A or D μp , D p μ), and ‘dif fusi ve’ ( ∝ D pp ) re- 
acceleration terms, in more general and accurate forms than usually 
considered. 

We calculate ν̄s , ± following equation ( 6 ), with ˆ νs ≈ 3 / 4 appro- 
priate for grey scattering, and e ± determined from equation ( 7 ), 
for a given set of sources S ± = 

∑ 

i S i, ± and damping terms Q ± = 
∑ 

i Ŵ i, ± e ±. We have considered both the cases where we explicitly 
dynamically evolve the time-dependence of equation ( 6 ) alongside 
the CR flux and energy equations, or where we simply set e ± to the 
local-steady-state values (setting D t e ± ± ∇ · ( v A e ± ˆ b ) → 0); these 
giv e v ery similar results for our study below, so we default to the 
local-state-state values as it involves slightly reduced computational 
expense, which allows a larger parameter surv e y. The ke y physics 
we vary in our tests is the scaling of the sources and damping rates 
S i, ± and Ŵ i, ±, or equi v alently scattering rates ν̄s . 

4.3 Reference model and quantities measured 

We stress from the abo v e that (1) all of the CR physics needed to 
resolve, in principle, any of the kno wn rele v ant CR-gas interactions 
or feedback effects on ‘macroscopic’ (simulation-resolved) scales are 
included; (2) all of the plasma properties (e.g. B , n , ℓ A , e cr ) needed to 
calculate the ‘microscopic’ (unresolved, gyroscale) scattering rates 
in the (e xtrapolativ e) models we will consider are self-consistently 
predicted on the resolved simulation scales; and (3) given those 
(assumed) scattering rates, our simulations naturally produce a self- 
consistent prediction for the CR spectra across the range of energies 
and species we consider. 
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The key physics of CR transport in our model therefore reduces 
to our expressions for the source S ± and damping Q ± terms 
in equation ( 7 ). We will explore many model variations, but it 
is useful to first define a ‘reference model,’ which attempts to 
represent the best current theoretical understanding of SC + ET 

ef fects as de veloped in e.g. Zweibel ( 2013 ), Ruszkowski, Yang & 

Zweibel ( 2017 ), Zweibel ( 2017 ), and Thomas & Pfrommer ( 2019 ) 
and other references in Section 2.5 –2.7 . In this ‘baseline’ model, 
we take: S ± = S sc , ± + S et, ± where S sc , ± follows equation ( 9 ), 
and S et, ± = αt ( k ‖ ) e B Ŵ turb ( k ‖ ℓ A ) −1 assumes an anisotropic GS95- 
like Alfv ́enic cascade (Chandran 2000 ). We take Q ± = ( Ŵ in + 

Ŵ dust + Ŵ turb / LL ) e ± + Ŵ 
0 
nll ( e ±/e B ) e ± where the expressions for Ŵ in , 

Ŵ dust , and Ŵ 
0 
nll are in Section 2.5 , and for consistency with our 

driving terms S ± (since we are assuming parallel modes be- 
ing sheared out by a GS95-type cascade), we have Ŵ turb / LL = 

[( v A, ideal + 0 . 4 c s ) /ℓ A ] ( k ‖ ℓ A ) 1 / 2 (where the 0 . 4 c s term is the ‘lin- 
ear Landau’ term). We use the appropriate v A, eff in equation ( 5 ) 
for the rele v ant v A terms in the CR equations, and note that 
these expressions self-consistently determine the relation between 
v̄ A and v A . 

We will focus on comparison of the models here to the Solar- 
neighborhood/LISM constraints – the only place where the full 
CR spectrum of various species can be determined. In Paper I 
(where we study only phenomenological CR transport models), we 
consider a more e xtensiv e suite of constraints, including spatially 
resolved γ -ray emission and ionization constraints that span various 
Galactic environments, as well as comparisons of different CR 

species and abundances not shown here. While of course any 
ultimate ‘successful’ model must produce agreement with all of 
these constraints, our focus here is ruling out a number of models that 
cannot reproduce the observations, for which a simpler comparison 
of the LISM spectral shapes and secondary-to-primary ratios is both 
sufficient and most useful, given that the theoretical slope δs most 
directly manifests in the shape of the predicted secondary-to-primary 
ratio as a function of energy. The details of how we compare to 
observ ations are gi v en in P aper I, but briefly we select all gas cells 
in a mock Solar circle (at galactocentric radii r = 7 − 9 kpc), in the 
mid-plane ( | z| < 1 kpc), with gas densities similar to those observed 
( n ∼ 0 . 3 − 3 cm 

−3 ), and calculate the median CR spectrum of all 
gas in this ensemble. To define the ‘scatter’, we allow for a wider 
range of both galactocentric radii (4 − 10 kpc) – allowing for the 
fact that our galaxies are not perfect MW analogs – and a wider 
range of densities ( n = 0 . 1 − 10 cm 

−3 ) and compute the interquartile 
ranges of all CR spectra in all cells meeting these criteria. Of course, 
we expect CR spectra to vary with Galactic environment, and this 
is discussed e xtensiv ely in P aper I. We further hav e e xamined all 
of our predicted CR spectra in both different Galactic annuli from 

r = 1 − 15 kpc and at different densities 0 . 001 − 10 cm 
−3 , as well 

as gas selected only in different thermal phases (though this is 
closely related to density selection as shown in Paper I); importantly, 
while the normalization and detailed spectral shape of the CRs can 
depend on these environmental properties, none of our conclusions 
(particularly about the shape of B/C and δs , and the success or failure 
of different models) depends on exactly where or how we measure 
the CR spectra. 

4.4 Model variations considered 

We have tested a large number of model variations in our simulations 
(many in concert with one another), in order to systematically surv e y 
whether different changes to our default model could resolve the 
qualitative tensions described above. Here, we outline variations 

considered, grouping them into those that have no appreciable effect 
on the qualitative behaviours of interest in this paper, and those that 
we find to be most significant. 

4.4.1 Variations that do not alter our qualitative conclusions 

The following variations – all of which we have tested in full 
simulations to verify the robustness of our results – do not alter 
our qualitati ve conclusions, e ven if they produce systematic or 
quantitative shifts in predicted quantities. We therefore will not 
discuss them in detail below, but list them for completeness 
here. 

(i) Changing Galaxy and Stellar Assumptions: as studied in detail 
in Paper I for simpler power-law scattering rates, we have rerun 
adopting two different fiducial MW-like galaxy simulations as our 
IC ( m12f and m12m , instead of our usual default m12i here), all 
of which are similar to the real MW but differ in various details 
(Garrison-Kimmel et al. 2019 ; Samuel et al. 2020 ). Also, as in Paper 
I, have also arbitrarily multiplied the magnetic fields in our m12i 

ICs by 10 and 0.1 (even though the ‘default’ values agree well with 
MW observations; Su et al. 2018 ; Guszejnov et al. 2020 ), as these 
are both theoretically and observationally uncertain and influence the 
transport physics. Finally, we have also rerun using both our FIRE-3 
(Hopkins et al. 2022a ) and the older FIRE-2 (Hopkins et al. 2018b ) 
implementation of the FIRE physics, the latter of which uses older 
stellar evolution and cooling tables leading to slightly different SNe 
and stellar mass-loss rates, detailed cooling physics, etc. As shown 
in Paper I, these make significantly smaller differences compared to 
changing CR transport coefficients at the level of detail considered 
here. 

(ii) CR Injection Parameters: we have systematically varied the 
injection spectrum, e.g. considering slopes j cr ∝ R 

−ψ inj 
cr within a 

broad range of ψ inj = 3.2–5.2, allowing for a ‘broken’ power-law with 
a break at ∼ 1 GV, freeing the normalization of the injected energy 
fraction and normalization of different components (e.g. leptonic 
versus hadronic). These variations are again discussed in detail in 
Paper I; they can be used to improve the agreement of a given model 
with observed CR spectral shapes, but do not resolve the qualitative 
problems that are evident in secondary-to-primary ratios. 

(iii) Alfv ́en Speeds and Streaming: we have considered replacing 
the full expression v A, eff [equation ( 5 )] for the gyroresonant Alfv ́en 
speed with either the ‘ion Alfv ́en speed’ ( v A, ion ), which is nearly 
identical to v A, eff , or with the ideal Alfv ́en speed v A, ideal , which is 
much lower in dense neutral gas. While the latter has non-negligible 
quantitati ve ef fects (see P aper I), because the o v erwhelmingly neutral 
gas has a relatively small volume filling-fraction (so contributes only 
modestly in a weighted sense, for dif fusi ve CRs), it does not alter 
the qualitative conclusions here regarding the success or failure 
modes of different models. We have also varied the ‘streaming 
speed’ v̄ A ≡ v A ( ̄νs , + − ν̄s , −) / ( ̄νs , + + ν̄s , −), which we by default 
solv e for e xplicitly, by replacing it with either exactly | ̄v A | = 0 
(the expectation in e.g. ‘pure ET models’) or | ̄v A | = v A, eff (the 
expectation in ‘pure SC models’). This again has little effect, as 
this is generally subdominant to the dif fusi ve or ‘super-Alfv ́enic’ 
streaming speed (Evoli et al. 2017 ; Amato & Blasi 2018 ; Chan et al. 
2019 ; Su et al. 2020 ; De La Torre Luque et al. 2021 ; Hopkins et al. 
2021d ). 

(iv) Renormalizing or Disabling Different ‘Reference Model’ 
Terms: we have rerun our reference model, multiplying each source 
term ( S sc , S et ) and damping term ( Ŵ in , Ŵ dust , Ŵ turb/LL , Ŵ nll ) by 100 
and by 0.01 or 10 −10 (ef fecti vely disabling it entirely). While 
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this can have large effects in some cases (discussed below), and 
ameliorate some of the ‘normalization’ tensions described abo v e, 
none of these modifications, in and of themselv es, resolv es the 
fundamental issues of the failure of SC or ET models (whichever is 
dominant) – i.e. there is no ‘single term’ which drives the qualitative 
problems discussed abo v e, and only the ‘normalization’ problem is 
substantively addressed by these renomalization experiments (see 
also Hopkins et al. 2021d ). 

(v) Variant ET Models: we have experimented with a number 
of variant ‘pure ET’ models (disabling the SC source term S sc ) or 
ET + SC models (retaining S sc ) that vary S et, ± (and Ŵ turb which 
must match appropriately). For each, we have considered both (a) 
retaining all the other, usual damping Ŵ ± terms (e.g. Ŵ in ) or (b) 
disabling all damping terms other than the cascade transfer term 

Ŵ turb , so the spectrum is exactly that predicted by classical ET 

models. We consider each of the ET models re vie wed in Hopkins 
et al. ( 2021d ) and Section 2.7 : (1) ‘standard’ Alfv ́enic turbulence 
(our default S et, ±); (2) ‘Alfv ́en-Max,’ which assumes an anisotropic 
Alfv ́enic cascade but arbitrarily sets αt = 1 (this ignores the gyro- 
averaging correction for anisotropic modes, but still retains the effect 
of anisotropy producing an e A ∝ k −1 

‖ spectrum); (3) ‘YL04’ which 
follows Yan & Lazarian ( 2004 ) as detailed in appendices of Hopkins 
et al. ( 2021d ), accounting for collisionless and viscous damping, 
and accounting for the much stronger effects of damping (super- 
exponentially suppressing S et, ±) when the neutral fraction is non- 
zero or plasma βplasma ≡ c 2 s /v 

2 
A, ideal > 1, as well as a variant where 

we neglect the predicted suppression from ion-neutral damping or 
plasma βplasma > 1 (the ‘Fast-Max’ or ‘YL04-Max’ model from 

Hopkins et al. 2021d ); (4) a model that assumes a critically balanced 
Alfv ́enic cascade but with a modified cascade rate (which might 
be moti v ated by alignment/intermittency ef fects, e.g. α = 1 in 
the notation of Boldyrev 2005 or δ = 1/8 in Schekochihin 2022 ), 
which can modify the perpendicular spectrum significantly, but 
again (necessarily) gives an e A ∝ k −1 

‖ parallel spectrum with only 
a weakly modified Ŵ turb → ( v A, ideal /ℓ A ) ( k ‖ ℓ A ) ξk (we take ξ k = 0.4 
as a somewhat ad hoc example, for the sake of comparison). 

(vi) Numerical Variations: we have considered a number of nu- 
merical variations, including (1) replacing the more general second- 
moment closure relation from Hopkins et al. ( 2022b ) with the 
assumption that the CRs are al w ays near-isotropic (as in Thomas & 

Pfrommer 2019 ), or (2) in flux-steady state (reducing the CR 

equations to a diffusion + streaming equation; Zweibel 2013 ), (3) 
testing different ‘reduced speed of light’ numerical approximations 
from ˜ c ∼ 0 . 01 − 1 c to ensure convergence, (4) comparing a re- 
simulation at 8x impro v ed mass resolution (2x impro v ed force 
resolution), or (5) directly integrating or assuming local steady-state 
for the scattering modes ( D t e ± → 0, as discussed abo v e). As shown 
in Paper I, and Chan et al. ( 2019 ) in more detail, these have quite 
weak effects on our results. 

4.4.2 Variations that matter 

The variations we have studied that do lead to important results, 
discussed below, are summarized here. 

(i) ‘High’ or ‘Low’ Initial CR Energies: As described abo v e, in 
our ‘default’ ICs, we initialize the total CR energy density following 
the consistent result of a cosmological simulation, with spectral 
shapes matched to those observed, but these quickly converge to 
ne w equilibria. Ho we v er, we hav e also e xperimented with a ‘low 

start’ and ‘high start’ IC, in which we multiply the initial CR energy 
(renormalizing all spectra) by factors of 0.001 and 10, respectively. 

This does not change our conclusions and neither IC resolves the 
SC or ET problems abo v e; and for models where the source term S ±
does not depend on CR energy (non-SC-dominated), this has little 
effect (the simulations converge to the same equilibrium, independent 
of this choice). Ho we ver, for SC models, where S sc , ± ∝ e ′ cr , we 
will show that this determines which ‘attractor’ solution the SC 

model converges towards, as described in the ‘instability’ problem 

(Section 3.4 ) for SC. 
(ii) Adding New Damping Mechanisms: we experiment with 

se veral v ariant models where we add a ne w damping term Ŵ new , damp , ±
(optionally disabling other damping terms in our ‘reference’ model 
Ŵ in , Ŵ dust , Ŵ turb/LL , Ŵ nll , in turn), moti v ated by the discussion in 
Section 3.5.1 . In the most interesting of these experiments, we add 
a new damping term with the form Q new , ± = Ŵ new , damp , ± e ± with 
Ŵ new , damp , ± = f Ŵ ISM k 

ξk 
‖ ( e ′ cr /e B ), where f Ŵ ISM and ξ k ∼ 1/2 are varied 

as described below. 
(iii) Adding New Sources: we experiment with variant models 

where we add a new source term, considering both ‘external’ 
and ‘linear’ sources moti v ated by the discussion in Section 3.5.2 , 
with S ± = S new , ± = f S ISM k 

ζk 
‖ e 

ζA 
± with ζ A = 0 (external) or ζ A = 

1 (linear) and f S ISM , ζ k varied as described below. We again con- 
sider both this added directly on top of our reference model, or 
disabling/renormalizing various others of the ‘reference’ source or 
damping terms in turn. 

5  RESULTS:  M O D E L  C O M PA R I S O N  

We now examine the results of the full simulations. To remind the 
reader, these self-consistently follow the dynamics of cosmological 
magnetized gas inflow into galaxies, cooling, and star formation, 
followed by stellar evolution, stellar mass-loss in O/B and AGB 

winds, radiative heating and photo-ionization, and, for massive stars, 
superno va e xplosions, which inject a spectrum of CRs back into the 
ISM alongside energy and momentum that drive galactic outflows. 
Phenomena such as galactic winds, turbulence, clumping, magnetic 
dynamo amplification, and the like are followed self-consistently. 
In this medium, the injected CRs propagate according to the full 
dynamics equations [e.g. equations ( 1 –2 ), incorporating diffusion, 
streaming, adiabatic gains/losses, dif fusi ve re-acceleration, catas- 
trophic losses, radiative losses, and the like], producing secondary 
and tertiary CRs ‘on the fly’ while they propagate. Importantly, the 
CRs interact directly with the gas dynamically as the y trav el (via 
momentum exchange and scattering and heating and ionization), 
which allows not only for the non-linear development of coupled CR- 
gas instabilities, but also CR-driven winds and outflows, CR heating 
altering star formation or ionization coupling to thermochemistry, 
and other unique phenomenology. The CR scattering rate ν̄s for each 
rigidity is calculated self-consistently at every distinct position and 
time, according to the different models we explore (based on the 
local plasma properties). We do not enforce or assume any ‘steady- 
state’ assumptions, so non-equilbrium and non-linear phenomena 
can occur. We wish to understand whether this could change our key 
conclusions abo v e. 

With these simulations, we specifically consider the most rele v ant 
model variations to test the analytic predictions developed above. 
First, for reference, Fig. 1 shows an example of an empirically 
calibrated model (as Section 3.1 ) where one does not solve for 
the CR scattering rate ν̄s according to any physical model at each 
position and time, but simply assumes or imposes a phenomeno- 
logical uniform-in-time-and-space power-law scattering rate, ν̄s ∼
10 −9 s −1 βcr ( R cr / GV ) −0 . 6 , i.e. δs = 0.6. This was studied in Paper I, 
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Figure 1. Example of an ‘empirical model’ from Paper I (see Section 3.1 ) where CR scattering rates are assumed to be a simple constant power-law function 
of rigidity ν̄s = 10 −9 s −1 βcr R 

−0 . 6 
GV . CR spectra are calculated by integrating CR dynamics and losses in a full live galaxy-formation simulation at redshift z = 

0 (Section 4 ). Top: CR intensity/kinetic energy density spectra for different species (labelled). Lines show median ( dashed ) and mean ( solid ) values in the 
simulation for LISM gas in the Solar circle ( r = 7 − 9 kpc) with density n = 0 . 3 − 3 cm −3 . Shaded dark (light) range corresponds to ±1 σ ( ±2 σ ) range, allowing 
for a broader range of galacto-centric radii (4 − 10 kpc) and LISM densities ( n = 0 . 1 − 10 cm −3 ). Points show compiled observations (see text; Section 5 ). 
Middle Left: 10 Be/ 9 Be; dark purple (light cyan) range shows the ±1 σ ( ±2 σ ) range. Middle Right: B/C ratio. Bottom Left: p̄ /p ratio. Note the value at the 
highest-energies is significantly affected by our upper boundary (we do not evolve p or heavier ions with rigidity � 1000 GV). Bottom Right: e + /( e + + e −) 
ratio. All of these properties can be reasonably well-fit with a simple empirical power-law scaling. The spectra are nearly independent of the initial CR spectra 
after ∼100 Myr of evolution. 

where we show explicitly that similar quality fits could be obtained 
for a narrow range of δs ∼ 0.5 − 0.7, independent of all the parameters 
listed as ‘unimportant’ in Section 4.4.1 , as well as the normalization 
(‘high’ or ‘low’) of the CR energies in the ICs (i.e. the system rapidly 

converges to the same steady-state results, independent of the details 
of the IC). 

We compare the predicted spectra of a variety of species including 
H ( p ), p̄ , e + , e −, B, 7 Be, 9 Be, 10 Be, C, N, O, and various secondary- 
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to-primary and radioactive species ratios. As discussed in Paper I, 
the most constraining combination of constraints comes from fitting 
the o v erall shape and normalization of the p and e − spectra (which 
dominate e ′ cr , CR ionization, and γ -ray emission), the positron-to- 
electron and B/C ratio (which give standard secondary-to-primary 
ratios but depend differently on some model parameters owing 
to their different sensitivity to e.g. leptons versus hadrons and 
different loss processes), and 10 Be/ 9 Be (which as a diagnostic of 
radioactiv e species pro vides an independent ‘clock,’ as compared 
to the secondary ratios that are more sensitive to grammage). We 
compare the model to the observations compiled and discussed in 
Paper I (see that paper for more detailed discussion of the comparison, 
along with comparisons to a range of other observables including 
spatially resolved Galactic γ -ray and ionization constraints). In 
Fig. 1 , points show observations (colours denote species), from the 
LISM Voyager ( circles ; Cummings et al. 2016 ), AMS-02 ( squares ; 
Aguilar et al. 2018 , 2019a , b , and references therein), and com- 
piled from other experiments, including PAMELA, HEAO, BESS, 
TRACER, CREAM, NUCLEON, CAPRICE, Fermi-LAT, CALET, 
HESS, DAMPE, and ISO MAX ( pentagons ; Engelmann et al. 1990 ; 
Shikaze et al. 2007 ; Boezio et al. 2000 ; Obermeier et al. 2011 ; Adriani 
et al. 2014 ; Abdollahi et al. 2017 ; Boezio et al. 2017 ; H. E. S. S. 
Collaboration 2017 ; Yoon et al. 2017 ; DAMPE Collaboration 2017 ; 
Adriani et al. 2018 ; Atkin et al. 2019 ). For the non-Voyager data, we 
omit observations at energies where the Solar modulation correction 
is estimated to be important (see Bindi et al. 2017 ; Bisschoff et al. 
2019 , and references therein). For the Voyager data, we show both the 
directly observed values and the ‘modulation-corrected’ value from 

Strong, Moskalenko & Ptuskin ( 2007 ) who consider models where 
modulation could still be important for V1 data (note this would also 
reduce the value of B/C observed at ∼ 1 GeV). 

More e xtensiv e comparisons to other observations, including e.g. 
observed γ -ray emissivities and CR ionization rates as a function of 
Galactic position, are presented in Paper I, all of which demonstrate 
consistency between this particular model and the observations. In 
future work, it will be important to compare some of the proposed 
alternati ve models belo w to this extended set of constraints as 
well. 

5.1 Default SC & ET models: confirmation of failure modes 

Having shown in Fig. 1 that it is possible to simultaneously reproduce 
the observations with a simple phenomenological model, we will now 

show that it is remarkably difficult to achieve the same in physically 
moti v ated SC or ET models. We compare the same observations 
from Fig. 1 to our ‘default’ model (Fig. 2 ), SC-dominated mod- 
els starting from lower and higher CR energy densities (Fig. 3 ), 
and ET-dominated models (Fig. 4 ), defined as in Sections 2 
and 4.3 . 

5.1.1 SC models 

First, we can immediately confirm that in our ‘reference model’ from 

Section 4.3 , the total scattering rate driving is dominated by the SC 

terms S sc , ± (as compared to the Alfv ́enic S et, ±). This is expected since 
the theoretically fa v oured scattering rate from Alfv ́enic turb ulence 
accounting for anisotropy (Section 2.7 ) is equi v alent to a dif fusi vity 
κ � 2 × 10 33 cm 

2 s −1 ( ℓ A / 100 pc ) independent of R cr (and larger 
with damping). So our qualitative conclusions and the key results 
in Figs 2 –3 are identical whether we consider ‘SC + (fa v oured) ET’ 
or ‘SC only’ ( S et, ± → 0) models. 

Figs 2 and 3 illustrate the fundamental ‘instability’ or ‘solution 
collapse’ problem of SC models, as discussed in Section 3.4 and 
derived more rigorously in Appendix A . For either the regular or 
‘low’ or ‘high’ start ICs (Section 4.4.2 ), the system initially rapidly 
converges to the approximate ‘local steady-state’ scattering rates 
(i.e. the steady-state scattering rates assuming the CR and plasma 
properties are frozen at their instantaneous v alues), which allo w for 
‘super-Alfv ́enic’ streaming at some finite multiple of the Alfv ́en 
speed (see Appendix B ). Ho we ver, this is not a steady-state solution 
for the CR energy density equation, and the system then (on the 
CR transport time-scale ∼ 10 Myr) collapses to one of the only 
two truly stable steady-state SC solutions for e ′ cr . If the initial CR 

energy density at some rigidity e ′ cr is too low (and therefore also the 
SC-driving strength S sc ∝ e ′ cr , and the resulting scattering rates ν̄s ), 
the CRs escape more rapidly, further lowering e ′ cr , until the system 

collapses to the ‘free streaming limit’ with no scattering (the tiny 
residual scattering in Fig. 2 is driven by the small ET term). This 
occurs at all CR rigidities in our ‘low start’ (lower initial CR energy 
density) ICs and rigidities � 100 GV (where e ′ cr is still relatively 
low) in our ‘normal start’ ICs. On the other hand, if the initial 
CR energy e ′ cr is too high, the system o v er-scatters ( ̄νs becomes 
very large) slowing transport and producing a bottleneck until the 
system collapses to the ‘infinite scattering’ limit, where CRs can only 
stream at the Alfv ́en speed. This gives a momentum-independent 
CR escape time of ∼ 1 Gyr ( ℓ R , halo / 10 kpc ) ( v A / 10 km s −1 ) −1 (where 
ℓ R , halo is the maximum of either the galacto-centric radius or height 
of the CR scattering halo), which is orders of magnitude larger than 
observ ationally allo wed. The dependence of escape time on rigidity 
is also qualitatively different from that required by observations. 
This produces an order-of-magnitude excess, as well as the wrong 
shape/rigidity-dependence, in the CR spectrum and secondary-to- 
primary ratios. 

We have also compared these models to observed Galactic γ -ray 
emissivities and ionization rates, following the identical procedure 
to Paper I (figs 11 &12 therein) where we compared the phenomeno- 
logical model in Fig. 1 to data from Digel et al. ( 2001 ), Ackermann 
et al. ( 2011 ), Tibaldo ( 2014 , 2015 ), Indriolo et al. ( 2015 ), Acero et al. 
( 2016 ), Yang, Aharonian & Evoli ( 2016 ), and Tibaldo, Gaggero & 

Martin ( 2021 ). We do not show this explicitly as the information is 
redundant with that in Figs 2 and 3 : the ‘default’ and ‘high-start’ 
models, which lead to the o v er-confined limit for ∼ 0 . 1 − 10 GV 

protons that dominate the γ -ray emissivity observed, produce a γ - 
ray emissivity ( ∝ e ′ cr ρ) about a factor ∼30 larger than observed at 
Galactocentric radii ∼ 1 − 10 kpc. Conversely, the ‘low-start’ model 
produces an emissivity a factor ∼100 lower than observed. Note that 
even if the CR proton spectrum in Figs 2 and 3 is lower in some 
low-density ISM gas or at larger galactocentric radii, or even if we 
uniformly increased the Alfv ́en speed of self-confined CR streaming 
by an arbitrary large factor ∼10–30, it is particularly hard to a v oid 
sev erely o v er-predicting the γ -ray flux in the ‘default’ or ‘high-start’ 
models: it only requires some dense regions where the local Alfv ́en 
speed is low to produce e xcessiv e γ -ray emission (see Hopkins et al. 
2021d ). Although the CR ionization rates show the same qualitative 
trend, being o v er-predicted where the CR spectrum at low energies 
is high, they are less constraining. This is because low-energy CRs 
are well-confined (have slo w dif fusion) e ven in the phenomeno- 
logical model in Fig. 1 , and losses can regulate their residence 
time. 

We also clearly see in Fig. 2 the ‘spectral shapes’ problem 

predicted in Section 3.4 for the ‘normal start’ model, where the 
CR proton and electron spectra are much too-sharply peaked around 
∼ 1 GV. In other words, the shape is ‘too steep’ at high energies 
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Figure 2. Predicted CR spectra as Fig. 1 , but for our def ault, ‘theoretically f a v oured’ model. Here, the driving term S ± for scattering includes both SC ( S sc , ±) 
and ET ( S et, ±) terms, accounting self-consistently for anisotropy and damping in both, but the ET terms contribute negligibly at the energies plotted (so our 
results are similar to a ‘pure SC’ model with S et = 0). The ICs have CR spectra set to observed values (the ‘normal start’ in Section 4.4.2 ). We include all 
standard mode-damping mechanisms (Section 2.5 ). From this IC, the initially super-Alfv ́enic streaming at intermediate CR energies (where the CR energy 
density e ′ cr is relatively high) quickly collapses to the ‘bottleneck’ or ‘infinite scattering’ solution that gives very slow CR transport (limited by the Alfv ́en speed, 
and independent of rigidity), o v er-predicting B/C, and e + / e − and e ′ cr by an order of magnitude at ∼ 1 − 30 GV. At higher CR energies ( � 30 − 100 GV) where 
initial e ′ cr is lower the solutions collapse to the ‘unconfined’ or ‘free-streaming-at- c ’ solution with negligible scattering (giving too-low B/C and e + / e −). This is 
the ‘instability’ or ‘solution collapse’ problem (Section 3.4 ): regardless of IC or renormalizing the SC driving or damping rates, no stable intermediate solutions 
between these extremes exist in the context of standard SC models. 

and ‘too shallow’ at low energies. This corresponds to the effec- 
tive δs being ‘too low’ at low energies and ‘too high’ at high 
energies. 

We have confirmed that none of the variations in Section 4.4.1 
make any appreciable difference to these behaviours. Changing, 

for example, the normalization of SC source or damping terms, 
removing damping terms, or changing the wavelength-dependence 
of the SC driving or damping terms, only shifts the value of e ′ cr 

that divides the two unstable ‘solution collapse’ limits. In other 
words, if we systematically lower the normalization of S sc , ± at 
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Figure 3. As Fig. 2 , but for SC models that adopt a lower or higher initial CR energy (see Section 4.4.2 ). Left: a ‘low-start’ IC where we multiply the initial 
e ′ cr by ∼0.001 relative to observed v alues. No w CRs at all energies collapse to the unconfined solution (the small residual scattering is from the non-zero ET 

terms). Right: a ‘high-start’ IC where we impose initially flat CR spectra with total CR energy multiplied by ∼10 relative to observed. Now a broader range of 
CR energies collapse to the ‘bottleneck’ solution, near the calorimetric limit, except for the highest-energy CRs that collapse to the unconfined solutions (note 
the high-energy leptonic spectra are strongly modified by losses here). For simplicity, we omit the plots of 10 Be/ 9 Be, p̄ /p, and the CR intensity: these disagree 
with observations in the same manner as expected from B/C, e + / e −, and CR spectra shown, so the information is redundant. 

some wavelength k ‖ or rigidity R cr by a factor A , then collapse to 
the ‘unconfined’ solution as compared to the ‘infinite scattering’ 
solution will occur at a factor ∼A lower CR energy density e ′ cr at that 
R cr . We also confirm that no variant model we test is somehow able 
to exactly balance at the ‘dividing line’ between the two regimes. 
This is not surprising: even if we could contrive a model that was 

balanced in this respect, our simulations are dynamical so the local 
CR energy density varies (as e.g. clustered SNe explode and star 
formation rates vary across the Galactic disc), and such a solution 
is unstable to variations in Galactic properties (Appendix A ). So, 
the system is perturbed and immediately collapses into either 
extreme. 
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Figure 4. CR spectra (as Fig. 3 ) now for pure-ET models, demonstrating the anisotropy, normalization, and damping problems (Section 3.2 ). Here, we disable 
SC driving ( S sc , ± → 0) and arbitrarily renormalize the ET driving ( S et, ±) or damping rates to force the models to match CR proton spectra at ∼1 GV. Left: 

representative behaviour of any model that accounts for anisotropy in the Alfv ́enic cascade (e.g. any model obeying critical balance, such as GS95). This imposes 
S et, ± = αt e B Ŵ turb ( k ‖ ℓ A ) −1 (Section 2.7 ). We renormalize αt ∼ 1 (a factor ∼10 3 –10 6 larger than theoretically fa v oured) to fit spectra at ∼ 1 GV. But the 
spectral shapes are still incorrect. Accounting for damping or deviating from critical balance makes the disagreement worse (see Section C ). Right: representative 
behaviour of any model assuming an isotropic fast-magnetosonic cascade, accounting for the fact that the spectrum is modified by damping/dissipation on 
a scale λdiss larger than the gyro scale (here following YL04; Section 2.7 ). We renormalize to fit the p spectrum by disabling ion-neutral, dust and other 
parallel or Alfv ́enic damping terms and adopting the YL04 scalings for plasma βplasma < 1 everywhere (otherwise the scattering rate is reduced by ∼10 6 ). 
Even renormalizing to force a reasonable mean scattering rate at ∼GV, these models cannot reproduce observed spectral shapes: accounting for anisotropy 
and/or finite dissipation scales forces ET scattering rates (therefore B/C) to be independent or even increasing functions of CR energy at � GV (e.g. δs ≤ 0), 
contradicting observations. 
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For this reason, the results here are also insensitive to resolution 
or other micro-physical details of how we initialize the simulations 
(changing the magnetic field strengths, phase structure, resolution, 
etc.) – since there are only two limits to which the simulations 
can collapse (each of which contradicts observations) we can only 
indirectly influence ‘which branch’ is collapsed, or the absolute value 
of the Alfv ́en speed in the o v er-confined limit (which will change 
the exact normalization of some predictions, but not the qualitative 
prediction of momentum-independent escape times far in excess of 
those observationally allowed). 15 

Moreo v er, ev en if we take an arbitrarily renormalized SC model, 
and we choose to measure the CR spectra in low-density gas in 
the Solar circle, such that we can reproduce roughly the correct 
normalization of CR spectra and B/C at ∼ 1 GV in the ‘infinite scat- 
tering’ (Alfv ́enic-streaming or ‘high-start’) limit (it is not possible to 
reproduce these under any circumstances in the ‘free escape’ limit), 
we (1) still see the ‘spectral shape’ problem and ‘solution collapse’ 
at energies far from ∼1 GV, (2) see solution collapse at ≪1 GV 

in different environments such as molecular clouds, which would 
violate observational constraints on CR ionization rates (Indriolo 
et al. 2009 ; P ado vani et al. 2009 ; Indriolo & McCall 2012 ; Indriolo 
et al. 2015 ), and (3) find that for this normalization at the Solar 
circle, the fact that most star formation and SNe occur in the MW at 
radii much closer to ( < 5 kpc from) the Galactic centre, where gas 
densities are higher, leads to the prediction that the γ -ray emission 
at ∼ 1 − 10 GeV from the Galaxy would be at nearly the proton- 
calorimetric limit, a factor ∼10–100 larger than observed in the 
MW and other Local Group galaxies (see discussion in Lacki et al. 
2011 ; Blasi & Amato 2012 ; Evoli et al. 2017 ; Fu, Xia & Shen 2017 ; 
Amato & Blasi 2018 ; Lopez et al. 2018 ) 

5.1.2 ET models 

By turning of f SC dri ving, we no w examine ‘pure ET’ models in 
Fig. 4 . While we have tested them to verify this, the ‘most theoret- 
ically fa v oured’ models for ET driving from either Alfv ́enic turb u- 
lence (realistically accounting for anisotropy following e.g. Chan- 
dran 2000 ; Boldyrev 2006 ; Lazarian 2016 ) or fast/magnetosonic 
turbulence (realistically accounting for damping following e.g. Yan & 

Lazarian 2002 ; Cho & Lazarian 2003 ; Yan & Lazarian 2004 , 
2008 ) are not interesting, as (at these CR energies ∼ MeV-TeV) 
they predict extremely low and approximately rigidity-independent 
scattering rates, which correspond to dif fusi vities κ � 10 33 cm 

2 s −1 . 

15 Briefly, we note that in future work it will be particularly interesting to 
explore the behaviour of recently disco v ered instabilities, which rely on the 
behaviour of CRs in the ‘collapsed’ streaming limit, such as the CR ‘staircase’ 
Quataert et al. ( 2022a ), Huang & Davis ( 2022 ), and Hin Navin Tsung et al. 
( 2022 ) in these simulations, as the y hav e thus far been studied only in idealized 
setups. We intentionally include all the coupling terms necessary and the 
resolution requirement noted in e.g. Huang & Davis ( 2022 ) of �x � κ‖ /c s ∼
8 kpc ( T gas / 10 6 K) −1 / 2 (for observationally fa v oured κ at ∼ 1 GeV) is easily 
satisfied, but as noted therein the instability depends on the plasma- β (but 
our experiments in described in Section 4.4.1 and Paper I vary this by factors 
of ∼10 4 ). For now, we note that this behaviour does not appear to change 
any of our conclusions, nor did we expect it to do so, as (1) it only appears 
in the Alfv ́en-streaming (collapsed) limit; (2) in that limit if manifest in the 
ISM/inner CGM, it would not change the fact that the CRs have over-long 
residence times with δs ≤ 0; and (3) as a result the primary regime of interest 
for such behaviours is in the outer CGM (where more interesting observable 
effects for CR-driven outflows could be present), not the ISM. 

As a result, either ‘default’ pure-ET-only (Alfv ́enic/GS95 or magne- 
tosonic/YL04) model predicts CR scattering rates that are so low that 
one sees negligible secondary production at any energy, far-too-low a 
normalization of the CR spectra, etc. – the results are similar to those 
from the ‘free escape’ or ‘low-start’ model shown in Fig. 3 . This is 
also shown explicitly around ∼ 1 GV in Hopkins et al. ( 2021d ). 

So instead, to give ET models the best possible chance of 
reproducing observations, in Fig. 4 , we do not show the ‘most 
theoretically fa v oured’ ET models with their default normalization 
of the ET scattering rate S et, ±, but instead allow the normalization 
of the scattering and damping rates to be free parameters. These 
normalizations are then rescaled to attempt to find a ‘best fit’ to 
observations. 

In Alfv ́enic ET models, as described in Section 2.7 and 3.2 , for 
any type of MHD/Alfv ́enic turbulence that obeys a critical balance- 
type assumption, the ET driving term must have the form S et, ± = 

αt e B Ŵ turb / ( k ‖ ℓ A ). In the ‘theoretically fa v oured’ model, where one 
attempts to calculate αt self-consistently from the same GS95-type 
MHD turbulence model as used for the cascade itself, one predicts 
αt ≪ 1 (as small as ∼10 −6 –10 −3 ; see Chandran 2000 ; Lazarian 
2016 ). Instead treating αt as a free parameter, we find that, in order 
to approach roughly the correct order-of-magnitude normalization of 
the CR spectra and B/C ratios at ∼1–10 GV, we require αt ∼ 1. But 
even then, if we include the standard damping terms (e.g. ion-neutral, 
NLL, dust), the cascade can be ‘o v er-damped,’ and still produce poor 
agreement with observations. So, to give the best-possible chance 
of reproducing observations (and also to highlight the ‘pure ET’ 
prediction), we ignore any damping other than the cascade transfer 
itself Ŵ turb . In other words, we have essentially assumed a pure, 
undamped, Alfv ́enic cascade, with arbitrary fitted normalization, so 
the only constraint on this ET model is the functional dependence on 
k ‖ that is r equir ed by critical balance. 

Alternatively, we can consider a YL04-like magnetosonic model, 
which assumes the inertial-range cascade is isotropic, which is 
possible for e.g. fast modes on scales larger than the turbulent 
dissipation scales. But, this must account for the fact that, at 
� TeV energies, the dissipation/Kolmogorov scale for magnetosonic 
modes is orders of magnitude larger than the gyroresonant scale. 
The ‘theoretically fa v oured’ version of this model is again over- 
damped (giving much-too-low ν̄s ), because any appreciable regions 
of the ISM that have neutral fractions � 10 −3 or plasma βplasma > 

1 produce a superexponential suppression of the scattering term 

S et, ± in this model. So again, to give the best-possible chance 
to reproduce observations, we follow Hopkins et al. ( 2021d ) and 
ignore any ion-neutral or dust-damping and calculate the scat- 
tering and damping rates everywhere assuming βplasma < 1 (re- 
gardless of the real value of B ). We use the full integral expres- 
sions from YL04 in the simulations, but for reference, this gives 
an approximate scattering rate ν̄s ∼ c/ (3 ℓ A f turb ) where f turb ∼
MIN [0 . 04 c s /v A, ideal , M A ( νv /v A, ideal ℓ A ) 1 / 3 ( k ‖ ℓ A ) 1 / 6 ], νv is the 
kinematic viscosity, and M A is the Alfv ́enic Mach number of the 
turbulence at the driving scale. This is independent of rigidity. 

We note these two models are akin to the ‘Alfv ́en-Max’ and ‘Fast- 
Max’ models studied in ‘single-bin’ CR models in Hopkins et al. 
( 2021d ), where we e xtensiv ely varied the normalization and damping 
terms to try and fit the observed grammage as accurately as possible 
for ∼ 1 − 10 GV protons (see also Section 4.4.1 ). We reco v er similar 
conclusions here for those rigidities. 

Ho we ver, we see in Fig. 4 that even if we freely renormalize the 
scattering and/or damping rates in these models to fit the proton spec- 
tra and secondary-to-primary ratios as best as possible at ∼1 − 10 GV, 
there is a much bigger problem: both models qualitatively fail to 
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produce the observed dependence of B/C on rigidity, or the correct 
CR spectral shapes. This is because, as discussed in Section 3.2 , 
at a fundamental level, if we allow for anisotropy/critical balance 
in Alfv ́enic models (even ignoring damping) or allow for finite 
damping/dissipation scales in magnetosonic models (even ignoring 
possible anisotropy and some of the more severe damping terms), 
this implies δs ≤ 0. In other words, the scattering rate cannot 
decrease as a function of CR rigidity as required by observations 
at � 0 . 1 − 1 GV. 16 

F or completeness, we hav e also run simulations assuming an 
undamped, isotropic, E( k) ∝ k −3 / 2 cascade (chosen to have roughly 
the correct δs ) across all energies and wavenumbers (i.e. ignoring 
all anisotropy terms, and all damping terms, and all SC terms, at 
all scales). This trivially gives e A ∼ e B ( k ‖ ℓ A ) −1 / 2 . But as noted 
in Section 3.2 , this is not only unphysical but gives CR scattering 
rates a factor ∼1000 too large at all energies, vastly o v erpredicting 
e.g. secondary-to-primary ratios. We discuss models of this variety 
further below. 

Gi ven ho w widely we v ary the amplitudes and damping rates and 
spectral indices of the ET models abo v e, it should ultimately come 
as no surprise that subtleties such as the difference in the simulation- 
resolved properties of turbulence around the driving scale (e.g. the 
locally varying values of e B and ℓ A , or equi v alently local M A ) 
between different MW-like-simulated galaxies, different resolution 
le vels, dif ferent initial B -field strengths, and other variations in 
Section 4.4.1 make no difference to our conclusions. Even if we 
ignore any of the resolved turbulence structure and simply assume a 
spatially universal M A , we obtain the same results (which again, is 
e xpected, giv en that our simple analytic toy model from Section 3.2 
predicts the same discrepancies with observations). 

5.2 Alternati v e damping r equir es discarding other damping 

models 

We now consider the ‘alternative damping’ model from Sec- 
tion 3.5.1 and 4.4.2 , with two examples illustrated in Fig. 5 . 
First, we simply replace the ‘standard’ linear damping mechanisms 
( Ŵ in + Ŵ dust + Ŵ turb / LL + Ŵ nll , ±) with a new Ŵ new , damp , ± ∝ e ′ cr . We 
use a best-fitting normalization of the variants we have explored, 
which is Ŵ new , damp , ± ∼ ( v A, ideal /ℓ A ) ( k ‖ ℓ A ) ξk ( e ′ cr /e B ) 

ξcr with 0.1 � 

ξ k � 0.4 and ξ cr = 1. This has the desired effect, discussed in 
Section 3.5.1 , of cancelling the e ′ cr dependence in the SC driving 
term S sc , ±, which is responsible for the instability/solution collapse 
problems (see Appendix A ). Thus we can obtain a stable result in 
at least qualitative agreement with the observed behaviour at all 
rigidities, and independent of the CR energy density in the ICs (i.e. 
we converge to the same answer for ‘low’ and ‘high’ start ICs). 

Ho we ver, the challenge with this model is ensuring that Ŵ new , damp , ±
dominates o v er other terms [specifically other damping terms) in 
the D t e ± equation (equation ( 7 )], the balance of which set the 
equilibrium value of e ± in the volume-filling ISM. Among the 
other standard terms in equation ( 7 ), we can retain or remo v e 
the ‘gradient terms’ (i.e. the ‘adv ectiv e’ term ∇ · ( v A, ± e ± ˆ b ) and 

16 At sufficiently low CR energies � 100 MeV, it is notable in Figs 2 –4 that 
even some models which produce qualitatively incorrect δs and qualitatively 
incorrect behaviours at higher energies can reproduce the spectral shapes 
and secondary-to-primary ratios of some species. This is because, as shown 
explicitly in Paper I, at these very low energies the rapidly increasing rate of 
Coulomb and ionization losses means that the residence time (at least in the 
disc mid-plane) can actually determined by the CR loss time-scales, and thus 
becomes independent from the predicted scattering rates ̄νs . 

‘PdV’ term ( e ±/ 2) ∇ · u gas ), and/or the NLL damping term ( Ŵ nll , ±), 
and/or the ‘default’ (theoretically fa v oured, b ut weak) ET driving 
term S et, ±, without qualitatively changing the behaviour seen in the 
top panels of Fig. 5 . But unless we artificially remo v e or suppress 
the standard turbulent/linear Landau ( Ŵ turb/LL ), dust ( Ŵ dust ), and 
ion-neutral damping ( Ŵ in ) terms, they tend to dominate Ŵ ± (e.g. 
Ŵ turb / LL ≫ Ŵ new , damp ). This causes the total damping Ŵ ± to once again 
be dominated by terms that are independent of e ′ cr , and the ‘solution 
collapse’ problem returns. Similarly, we cannot simply increase 
Ŵ new , damp until it dominates o v er all the other damping mechanisms 
at all CR energies: even though this will cure the instability, it will 
necessarily o v er-damp the scattering modes, producing too-low CR 

spectra and secondary abundances. One example of this failure is 
shown in Fig. 5 . This illustrates that the discrepancy is not small – it 
would require more than order-of-magnitude changes in the expected 
strengths of turbulent, dust, and ion-neutral damping for typical MW 

conditions. 
In summary, while a version of this model that can reproduce 

observations does exist, it requires a radical revision to our un- 
derstanding of damping mechanisms. Not only one must introduce 
a no v el damping mechanism with the desired e ′ cr dependence, but 
also argue that the standard turbulent/linear Landau, dust, and ion- 
neutral (in diffuse but partially ionized phases) damping mechanisms 
are much weaker than currently understood, in order for this new 

damping mechanism to dominate with the correct normalization at 
all rele v ant rigidities. 

5.3 Alternati v e sources 

Figs 6 and 7 now consider the ‘alternative driving’ or ‘alternative 
sources’ models discussed in Sections 3.5.2 and 4.4.2 . 

5.3.1 Local/Linear source terms 

First, in Fig. 6 , we consider adding an alternative linear driv- 
ing/source ( ζ A = 1 or S new ∝ e A ) term. We take the form 

S new , ± = S new , lin ≡ � new e A with � new ≡ � 0 ( k ‖ /k 0 ) ζk (where we set 
k 0 ≡ au −1 for convenience without loss of generality). Because 
this is a linear driving term, the ‘net’ linear driving + damp- 
ing S new , lin − Q ± = ( � new − Ŵ ±) e A is only weakly influenced by 
S new , lin if � new � Ŵ ±. So, for an initial experiment, we ignore the 
turbulent/linear Landau and dust damping mechanisms. In Fig. 6 , 
we show that this form can give a plausible fit to the observed 
spectra and ratios for 0.6 � ζ k � 0.9. The required normaliza- 
tion is modest, e.g. � 0 ∼ 10 −12 s −1 (1 + M A ) ( v fast / 10 km s −1 ) ∼
δv turb / pc (or even � 0 ∼ 10 −12 s −1 ∼ constant), or similarly S new , lin ∼
10 −5 k ‖ v fast ( k ‖ au ) −1 / 3 . In other words, the dri ving/gro wth rate 
fa v oured can be as little as ∼10 −5 of the fast mode crossing rate. 

The obvious challenge here, akin to the alternative damping 
discussed abo v e (Section 5.2 ), is ensuring � new � Ŵ ±. Going through 
all terms in equation ( 7 ), the effects of S new , lin are robust to retaining 
or removing the ‘gradient terms,’ or the other default source terms 
( S sc , ±, S et, ±), or the ion-neutral damping term ( Ŵ in ), 17 as well as 

17 Unlike in the ‘modified damping’ case ( Ŵ new , damp , ±; Section 5.2 ), it appears 
that while Ŵ in � � new in dense neutral ISM phases (CNM, molecular), which 
have a low volume-filling fraction and therefore do not strongly alter CR 

spectra in diffuse gas, we generally have Ŵ in � � new in warmer and/or more 
dif fuse phases, e v en if the y are partially neutral. This is especially true if we 
adopt a version of � new that scales with M A or δv turb , which is larger in 
warm or cool phases. 
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Figure 5. As Fig. 3 , for models where we attempt to modify the damping physics to reproduce observations (Section 5.2 ). Left: a model where we take the 
default SC model, remo v e other ET sources ( S et, ± → 0), and replace all the standard known linear damping terms (Section 2.5 ) with a damping term that scales 
as Ŵ new , damp ∼ ( v A, ideal /ℓ A ) ( k ‖ ℓ A ) 1 / 4 ( e ′ cr /e B ), per Section 3.5.1 . This depends on e ′ cr in a way that cancels the term in SC driving which gives rise to the 
‘solution collapse’ problems, and allows for a reasonable and stable solution (independent of the CR energy density in the ICs). Right: results if we retain this 
new damping term Ŵ new , damp , but re-introduce the ET driving and standard linear damping terms from e.g. ion-neutral, linear Landau, turbulence, and dust. Any 
of those linear damping terms is significantly larger than Ŵ new , damp (for the normalization of Ŵ new , damp needed to get a reasonable scattering rate) and ‘swamps’ 
it, producing results closer to our ‘default’ SC behaviour in Fig. 2 , unless we make Ŵ new , damp so large that the SC models are o v er-damped (giving ν̄s → 0, so 
CRs are unconfined). 

retaining or modifying/expanding the non-linear damping terms 
( Ŵ nll , ±). Ho we ver, if we do include the standard turbulent/linear 
Landau ( Ŵ turb/LL ) or dust ( Ŵ dust ) damping terms in their ‘default’ 
forms, these cause Ŵ ± � � new in the volume-filling ISM, negating 
the effects of our added source term S new , lin . 

Thus, while not totally implausible, this model does have theoret- 
ical challenges in dealing with the turb ulent/linear -Landau and dust 
damping terms, akin to the modified damping scenario (Section 5.2 ). 
As discussed in Section 3.5.2 , the advantage of this scenario is that 
it is quite easy to imagine linear instabilities operating on these 
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Figure 6. As Fig. 3 , for models where we consider alternative linear scattering-mode driving/source terms ( S new , lin ∝ e A , i.e. ζA = 1; Section 5.3.1 ). Left: a model 
where we add linear source term S new , lin ∼ � new e A with � new ∼ 10 −12 s −1 ( k ‖ au ) 2 / 3 (1 + M A ) ( v fast / 10 km s −1 ), removing specifically the turbulent/linear 
Landau and dust damping terms (keeping all other damping), and reducing the standard SC driving term by a factor ∼0.01. Note the agreement with observed 
10 Be/ 9 Be and p̄ /p (not shown) is also good. We also obtain broadly similar results for a simpler model with � new 10 −12 s −1 ( k ‖ au ) 2 / 3 , but the fit is not quite as 
good (this leads to flatter B/C at high-energies). Right: as left but re-introducing the dust and turbulent/linear Landau damping terms, which are usually larger 
than the linear growth term, so the behaviour reverts to be closer to the ‘default’ SC model and collapses at intermediate and high-energies to the unconfined 
solutions. 

scales with roughly the correct growth rate and k ‖ -dependence. 
F or e xample, multifluid instabilities like the Kelvin–Helmholtz 
instability would have growth rates ∼ ( δρ/ρ) k δv , so would only 
require ( δρ/ρ) ( δv /v fast ) ∼ 10 −5 on these scales to grow at roughly 
the correct rate. RDIs in the ‘mid- k ’ range, which may be applicable at 
these scales, and RTIs similarly have growth rates of ∼

√ 
a k where 

a is some differential acceleration between e.g. dust and gas (for 
RDIs) or a fluid interface (for the RTI). Given the low normalizations, 
ev en a v ery small differential acceleration a ∼ 10 −4 v 2 A /ℓ A could be 
sufficient to drive the required growth rates. Of course, for ‘interface’ 
instabilities one must ask what the interface would be, while for RDIs, 
the ‘high- k ’ modes often have a less-fa v oured scaling ∝ k 1/3 , and more 
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Figure 7. As Fig. 3 , for models where we consider alternativ e fix ed or ‘external’ ( e A -independent, ζA = 0) scattering-mode driving terms ( S new , ext ; Section 5.3.2 ). 
Here, we do not disable any of the standard damping or other driving terms, we simply add this additional source term. Left: a model with S new , ext = 

( v A, ideal / 0 . 007 c) ( v A, ideal /ℓ A ) ( k ‖ ℓ A ) −1 / 6 e B (we also obtain similar results for S new , ext ∼ 0 . 005 ( v A, ideal /ℓ A ) e B ( k ‖ ℓ A ) −1 / 6 ). Adding a weakly scale-dependent 
driving term of this form ( ζ k ≈ −1/6, ζA = ζ cr = 0), with amplitude comparable to ∼ 1 per cent of turbulent or Alfv ́en dissipation rates can produce reasonable 
behaviours, without having to strongly modify known damping or other driving terms. Note agreement with 10 Be/ 9 Be and p̄ /p is good as well. Right: a model 
with S new , ext = 0 . 01 ( v A, ideal /ℓ A ) e B (roughly ∼ 0 . 01 ρ δv 3 turb /ℓ turb on the driving/resolved ISM scales). This has similar amplitude and behaviour but slightly 
different wavelength-dependence ( ζ k = 0). While it does not fail catastrophically, the agreement with observations is notably worse, demonstrating that the 
fa v oured range of −0.25 � ζ k � −0.1 is relatively constrained. 

extreme conditions and/or certain modes (e.g. the ‘CR like’ RDI 
modes) could produce o v er-confinement (see Squire et al. 2021 and 
Ji et al., in preparation). It is e ven concei v able that S new , lin could arise 
at CR energies ≫ GV from the action of the Bell ( 2004 ) instability 
sourced by the dominant ∼ GV CRs (i.e. the long-wavelength regime 

of the instability sourced by lower-energy CRs); however, this could 
introduce some (but not all) of the ‘instability’ problems from SC 

(Section 3.4 ). 
In these regimes, it is also not implausible to assume that the usual 

Ŵ turb/LL and Ŵ dust terms would be strongly modified. The expressions 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
7
/4

/5
4
1
3
/6

7
5
9
4
3
7
 b

y
 C

a
lifo

rn
ia

 In
s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 2

0
 A

u
g
u
s
t 2

0
2
3



Failure of SC and ET models 5437 

MNRAS 517, 5413–5448 (2022) 

for ‘turbulent/linear Landau’ damping re vie wed in Section 2.5 are 
derived specifically assuming that the modes are sheared out by 
e xternal turb ulence from a standard GS95 cascade from larger 
scales, where the dominant driving of any modes that are not 

exactly parallel modes driven by SC comes from that ET cascade 
(see Yan & Lazarian 2002 ; Farmer & Goldreich 2004 ; Zweibel 
2017 ). But if S new , lin dominates o v er S sc , ± and S et, ±, then some 
of these assumptions will not apply – so there is not necessarily 
any reason to think the modes would be sheared out in this manner. 
Similarly, the dust damping rate Ŵ dust is derived specifically under 
the assumption that the RDIs are negligibly weak/inactive (indeed 
the damping and instability arise from similar physical effects) –
if there is sufficient dust drift to cause an RDI, the dust switches 
from being a ‘damping’ to a ‘driving’ term (see Squire et al. 
2021 ). 

5.3.2 External/fixed-rate source terms 

We now consider adding a ‘constant’ or ‘external’ alternative 
driving/source term ( ζ A = 0 or S new ∝ e 0 A ), in Fig. 7 . This 
is the most straightforward successful model variant we con- 
sider. K eeping e verything else in our ‘reference’ model fixed, 
we can simply add a source term S new , ext ∝ k 

ζk 
‖ (where we find 

best fits with −0.25 � ζ k � −0.1), and normalization e.g. 
S new , ext ∼ 0 . 005 ( v A, ideal /ℓ A ) ( k ‖ ℓ A ) −1 / 6 e B or ∼ 0 . 01 δv 3 turb /ℓ A , i.e. 
∼ 1 per cent of the typical turbulent dissipation rates. This pro- 
duces remarkably good behaviour across all diagnostics we 
consider. 

While a detailed exploration is outside the scope of this work, we 
have also applied the analysis pipeline from Paper I to this model to 
explore its predictions for the spatially resoled γ -ray emissivities and 
spectra and CR ionization rates in the Galaxy (since any successful 
model must reproduce these, as well) and we find agreement there as 
well, broadly similar to the fa v oured phenomenological model from 

Paper I which is shown in Fig. 1 . 
Unlike the alternate linear-damping or driving models, we do not 

hav e to ‘remo v e’ or re-tune an y of the known terms (SC or ET 

dri ving or dif ferent damping mechanisms) to see good behaviour 
here. In other words, this model works with no other unwarranted 
modifications to the wave-damping or source physics. The one caveat 
is the SC driving in ‘high-start’ IC cases. Adding S new , ext with 
ζ A = 0 prevents the SC instability from collapsing to the ‘free- 
streaming’ solution, because S new , ext sets a minimum driving even 
if e ′ cr , and hence S sc , ±, is low. But if e ′ cr is sufficiently high and we 
still include our standard S sc , ± in S ±, we can have S sc , ± � S new , ext , 
with S sc , ± large enough to push the system into the ‘infinite- 
confinement’ branch of solution collapse (so that this causes e ′ cr 
and S sc , ± to continue to rise). This scenario cannot be halted by 
the added S new , ext term, and indeed does still occur if we just add 
S new , ext in ‘high start’ IC simulations. While it is plausible that such 
collapse could occur physically in e xtreme re gions – e.g. galactic 
nuclei, or starburst galaxies, which are observed to be at the proton 
calorimetric limit in γ -ray emission; see Lacki et al. 2011 ; Tang, 
Wang & Tam 2014 ; Griffin, Dai & Thompson 2016 ; Wojaczy ́nski & 

Nied ́zwiecki 2017 ; Wang & Fields 2018 ) – it obviously does not 
occur for typical MW conditions. So to ensure it does not occur, 
we find that our results are most stable if we reduce S sc , ± by a 
factor ∼10–100 from its ‘reference’ value. But as discussed abo v e in 
Section 3.4 and in e.g. section 5.3.4 of Hopkins et al. ( 2021d ), such 
a renormalization of S sc , ± is plausible, based on corrections to S sc 

from more careful detailed PIC modelling of pitch-angle dependence, 

helicity, non-linear, and non-gyroresonant effects (e.g. Bai et al. 
2019 ; Holcomb & Spitko vsk y 2019 ). Of course, these would need 
to be revisited in more realistic situations with some S new , ext term 

present. 
It is also noteworthy that this functional dependence of S new , ext 

on k , e A , and e cr (e.g. ζ A = 0, ζ cr = 0, and | ζ k | small) is 
superficially similar to what one would obtain in the simplest 
‘classical’ isotropic, undamped, inertial-range K41-like turbulent 
cascade, where S et, ± ∼ constant is the turbulent dissipation rate. This, 
plus the fact that the dimensional dependence of Ŵ turb/LL and Ŵ dust on 
k ‖ are similar to the turbulent cascade rate, is indeed why, as many 
have noted previously, the observed δs is not so different from what 
one would naively obtain from a ‘traditional’ isotropic undamped 
ET model with a spectrum similar to E( k) ∝ k −3 / 2 ((neglecting 
dissipation, anisotropy, and finite dynamic-range effects; see e.g. 
discussion in Blasi & Amato 2012 ; Vladimirov et al. 2012 ; Gaggero 
et al. 2015 ; Cummings et al. 2016 ; Guo et al. 2016 ; J ́ohannesson 
et al. 2016 ; Korsmeier & Cuoco 2016 ; Evoli et al. 2017 ; Amato & 

Blasi 2018 ). But there are fundamental physical differences here. 
Most importantly, as argued abo v e and in Appendix C in detail, 
this S new , ext cannot stem from a traditional undamped Alfv ́enic or 
magnetosonic cascade from large ISM scales. All of the effects 
re vie wed therein would prevent S new , ext from having the form 

assumed. It is possible that some sort of ‘mini-cascade’ could occur 
o v er a small range of scales, with smaller-scale driving, provided it 
could a v oid the anisotropy and damping problems we ha ve outlined. 
But as justified formally in Appendix C , we easily a v oid all of 
these conceptual difficulties if we simply assume S new , ext represents 
driving of Alfv ́enic modes competing directly with damping at each 

scale separately – we are simply arguing for a driving mechanism 

whose power is only weakly scale-dependent. Such an effect could 
possibly arise, for example, if reconnection played an important 
role in MHD turbulence at small scales. Such a scenario would 
require that flux ropes formed by reconnection between sheets in the 
perpendicular plane (Schekochihin 2022 ) subsequently broke up in 
the parallel direction with the right spectrum, which is plausible but 
highly speculati ve. Ho we ver, it is worth emphasizing that since the 
required power in S new , ext is two or three orders of magnitude smaller 
than the power in the turbulent cascade, these fluctuations should 
be strongly subdominant and would be very difficult to observe 
in simulations. Finally, we note that the true best-fitting driving 
fa v ours a modest scale-dependence −0.25 � ζ k � −0.1 (cf. left-hand 
and right-hand panels of Fig. 7 ); this is not steep, but is distinctly 
different from the predictions of any turbulence models in the 
literature. 

5.3.3 Summary of r equir ements 

We can summarize the required scaling for a viable driving/source 
term S new for ‘linear’ S new , lin (Section 5.3.1 ) and ‘external’ S new , ext 

(Section 5.3.2 ) cases as follows: 

S new , lin ∼ 10 −12 s −1 e A 

(

k ‖ 

au −1 

)ζk 

f S ( ... ) 
(

0 . 6 � ζk � 0 . 9 
)

S new , ext ∼ 0 . 01 
v A, ideal 

ℓ A 
e B 

(

k ‖ 

au −1 

)ζk 

f S ( ... ) 
(

−0 . 25 � ζk � −0 . 1 
)

(13) 

where f S (...) is some function of ISM/plasma properties. Any viable 
driving mechanism must therefore satisfy the following conditions: 
(1) It must drive modes of interest, i.e. Alfv ́enic modes with k ‖ in 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
7
/4

/5
4
1
3
/6

7
5
9
4
3
7
 b

y
 C

a
lifo

rn
ia

 In
s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 2

0
 A

u
g
u
s
t 2

0
2
3



5438 P . F . Hopkins et al. 

MNRAS 517, 5413–5448 (2022) 

the rele v ant range and that are not too-extreme in their anisotropy. 18 

We stress that equation ( 13 ) refers to the driving rate of these modes, 
specifically, not to other (e.g. nearly perpendicular) modes, which are 
generically less efficient scatterers and would require a larger S new . (2) 

It must be able to drive modes across the wavelength scales of interest. 
For rigidities R ∼ 0 . 001 − 1000 GV studied here, this is 1 /k ‖ ∼
r g, cr ∼ 3 B 

−1 
µG × 10 9 −15 cm . Ho we ver, it is possible that very low- 

energy CRs ( � 100 MeV) have residence times that are primarily 
regulated by ionization/Coulomb losses (as argued empirically in 
Hopkins et al. 2021a and found in some of our experiments), which 
would increase the lower limit to ∼ 10 11 . 5 B 

−1 
µG cm . Similarly, it is 

plausible that gyroradii approach/exceed the dissipation scales of fast 
magnetosonic turbulence (so ‘traditional’ ET theory becomes viable) 
abo v e the scales rele v ant to few-hundred GV CRs (e.g. Fornieri 
et al. 2021 ), in which case the upper limit could decrease to ∼
(0 . 3 − 1) × 10 15 B 

−1 
µG cm . (3) It must have one of the forms abo v e 

in equation ( 13 ), with the range of ζ k corresponding to the extrinsic 
or linear driving ( ζ A = 1 or = 0), with f S (...) parametrizing all the 
dependence on the ISM plasma physics. (4) In order to match the 
normalization in equation ( 13 ), the appropriate volume or scattering- 
rate weighted average 〈 f S (...) 〉 (parametrized in the same way) must 
be ∼1 integrated from CR sources to the Solar LISM in a MW-like 
galaxy through most of the volume-filling ISM. (5) By definition, 
f S must depend weakly or not at all on CR properties (e.g. the DF 

f , number density n cr , energy density e cr , streaming speed v st , etc.); 
weakly or not at all on k ‖ (such that S new has the correct k ‖ dependence 
parametrized by the range of ζ k ); and weakly or not at all on the 
local mode amplitude e A or δB ( k ‖ ) (i.e. the driver has ζ A ≈ 0 or ≈1, 
appropriately). 

Briefly, it is worth noting that the fa v oured ranges of ζ k for these 
driving mechanisms (or the alternative damping in Section 5.2 ) in our 
simulations are slightly different from that analytically anticipated 
from our simple steady-state back-of-the-envelope calculations in 
Sections 3.5.1 –3.5.2 . This is not surprising: in our simple model, 
we neglected losses, adiabatic terms, contributions to transport 
from Alfv ́enic streaming, the interplay of multiple damping/source 
mechanisms, and finite source/scattering halo distributions, all of 
which contribute some additional rigidity-dependence to the final 
behaviour, in a way that only our full simulations can accurately 
capture. But crucially, the qualitative behaviours and conclusions are 
identical, with only modest quantitative corrections. This suggests 
that the general physical principles are robust. 

5.4 Can different galaxy properties rescue SC or ET models? 

It is natural to ask whether there might be some different galaxy 
properties (perhaps some difference between the real MW and our 
models or assumptions here) that could resolve the discrepancies with 
observations, without invoking new driving or damping mechanisms. 
We have attempted to explore this with both our general analytic 
arguments and, to the extent possible in our simulations, with the 
parameter variations discussed in Section 4.4.1 . Specifically, for the 
general SC and ET models in Figs 2 –4 , we have run simulations 
using three different cosmologically selected MW mass galaxies, 
which – while all selected to have properties that are broadly similar 
to the MW – differ in detail (e.g. different sizes, gas density and 
star formation rate distributions, presence or absence of bars and 

18 As shown in Appendix C , the modes do not have to be specifically 
parallel or isotropic, but should at least obey | k ‖ | ≫ ( | δB ( k ‖ ) | / | B | ) | k ⊥ | ∼
0 . 0003 R 0 . 2 GV | k ⊥ | . 

arms, etc.). We have also arbitrarily renormalized the initial magnetic 
fields and CR energy densities in the simulations by large factors 
as discussed abo v e. And for all of our simulations, we have a large 
number of independent snapshots sampling several galaxy dynamical 
times – we have checked to confirm that the results in our figures are 
robust (approximately steady-state) in time, and to see whether there 
could be even a transient phase where the SC and ET models produce 
good simultaneous agreement with different observables. As relates 
to all these differences (variations in time, between different MW 

mass galaxies, or between modified ICs), our key conclusions are 
robust. Indeed, the differences between galaxies or different times 
are much smaller than the differences between models (see Paper I 
for more detailed comparisons). 

Ho we ver, it is not possible in computationally e xpensiv e simu- 
lations like ours to surv e y all possible galaxy properties. So one 
might ask whether there still exists some hypothetical combination 
of plasma parameters that would allow the SC and/or ET models 
to reproduce observations. This is essentially the question explored 
in Kempski & Quataert ( 2022 ), of which we became aware during 
the writing of this manuscript. While our experiments in this paper 
might be described as ‘constraining which CR scattering models can 
reproduce observ ations, gi ven a set of galaxy models,’ K empski & 

Quataert ( 2022 ) ef fecti vely consider the complementary question 
‘given a fixed CR scattering-rate model, what galaxy model could 
reproduce observations?’. Specifically, they consider analytically 
parametrized models of a stratified disc + CGM and show, in 
agreement with our conclusions, that neither SC nor ET models 
can possibly reproduce the observations alone. 19 Ho we v er, the y do 
argue that the combination SC + ET allows a match to observations, 
in principle, if the stratified disc + CGM follows a specific particular 
model. Ho we ver, as K empski & Quataert ( 2022 ) caution, this requires 
a very specific and fine-tuned set of assumptions: their model requires 
that the profile of the Alfv ́en speed, turbulence strength, ionization 
fraction, and e ′ cr follows a specific profile as a function of scale-height. 
This allows ET driving with a scaling close to our modified ‘Fast- 
Max’ model in Fig. 4 to dominate within the thick disc (with a certain 
strength), while SC driving with non-linear-Landau damping and the 
‘collapsed’ Alfv ́enic streaming solution only dominates outside the 
disc in the CGM (with that following a specific vertical Alfv ́en-speed 
profile). Essentially, in their model, the profiles of rele v ant plasma 
properties (like v A ), which appear in the scalings of ̄νs for the SC and 
ET models, are chosen such that they ‘cancel out’ the fundamental 
problematic scalings of SC or ET alone. 

We have attempted to explore a model akin to this best fit of 
Kempski & Quataert ( 2022 ), by (1) replacing all our driving and 
damping terms with just the combination of SC driving plus the 
‘Fast-Max’ ET driving model (the same as the scalings adopted in 
Kempski & Quataert 2022 ), with just NLL damping, while also (2) 
renormalizing B and e ′ cr in our ICs to match the vertical profile of 
e ′ cr and v A assumed therein. But we find this experiment quickly 
undergoes the same ‘solution collapse’ akin to our ‘normal’ or 
‘high’ start ICs in Figs 2 –3 . The difference may be that it is simply 
not possible to exactly reproduce all of the assumptions of the 
analytic model in our ICs; e.g. because the galaxy density profile 
cannot be freely renormalized in our simulations, and/or because 
we include SC + ET terms together, while Kempski & Quataert 

19 See also Fornieri et al. ( 2021 ), who similarly concluded that ET models 
alone (Alfv ́enic or akin to our ‘Fast-Max’ S et, ±) could not reproduce 
observ ations belo w a fe w hundred GV, e ven allo wing for arbitrary freely 
fit galaxy/ISM properties in a parametrized analytic model. 
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( 2022 ) consider a model where only one or the other contributes 
meaningfully at an y giv en scale-height. But the bigger challenge 
may be that our simulations dynamically evolve quantities like B 

and e ′ cr , and these will quickly deviate from their initial values as 
e.g. super -b ubbles and clustered SNe explode. These will then push 
the system away from equilibrium and into one of the solution- 
collapse regimes. This suggests, at least, that this fine-tuning is 
not trivial to achieve in practice, and is unlikely to be the case in 
the MW (as, indeed, is concluded by Kempski & Quataert 2022 
also). 

5.5 What about the ‘meso-scale’? 

In thinking about our conclusions, it is helpful to separate the 
enormous hierarchy of scales into three groups: ‘macro,’ ‘micro,’ 
and ‘meso’ scales. For our purposes, we can think of the ‘macro- 
scale’ structures as those which are at least semiresolved by our 
simulations (larger than a few thousand Solar masses). This includes 
e.g. the multiphase structures of the ISM, and clumping of gas (e.g. 
the existence of GMCs); global galactic structure (the nucleus, disc, 
and bulge, bars, and spiral arms); the scale heights of the cold, star- 
forming disc (and young stellar disc) and the warm/thick gas and 
stellar discs, and the associated driving scales of ISM turbulence; 
clumping of star formation and SNe (in space and time), and 
associated super -b ubbles and galactic chimneys; galactic fountains 
and the ISM-CGM interface; the existence of a turbulent CGM and 
galactic outflows, and the interaction with satellite galaxy ISM/CGM 

structure. All of these, it is worth noting, have been e xtensiv ely 
studied and compared to observations with simulations identical to 
those here (modulo the assumed CR scattering rate scalings; see 
references in Sections 1 and 4 and Chan et al. 2019 ; Hafen et al. 
2019 ; Emami et al. 2019 ; Ji et al. 2020 ; Benincasa et al. 2020 ; 
Gurvich et al. 2020 ; Chan et al. 2021 ; Ponnada et al. 2022 ; Kim et al. 
2022 ; Trapp et al. 2022 ). The point of our numerical simulations, 
fundamentally, was to see if non-linear effects from structure (e.g. 
v arying v alues of terms which go into estimating scattering rates, 
such as | B | or n , as we discussed immediately abo v e in Section 5.4 ) 
could somehow introduce qualitatively different behaviours from 

those predicted by the simple analytic arguments in Section 3 , and so 
somehow ‘rescue’ traditional SC/ET models from the problems we 
anticipated. We also wanted to explore whether macroscopic ‘back- 
reaction’ or CR ‘feedback’ effects, which should be resolveable, 
would somehow lead to a kind of feedback loop that could alter our 
analytic conclusions. This includes e.g. the effects of CRs changing 
galactic wind/outflow dynamics, driving instabilities such as the 
‘staircase,’ or altering the phase structure of the CGM, or e x erting 
‘pressure’ to change the vertical balance or turbulent structure of the 
ISM, or altering the global ionization structure of cold clouds – all of 
these can (and as noted abo v e, man y do to some extent) occur in our 
simulations, which include all of the required physics and coupling 
terms. 

Of course, the simulations have finite resolution and as we clearly 
noted from the beginning of this study, they cannot even approach 
resolving the ‘micro-scale’ by which we refer to gyroresonant scales 
for the CRs of interest ( � 100 au). These are the scales of actual 
‘scattering’ physics, where PIC-type methods are needed to treat the 
CR dynamics. In the simulations, CR scattering is therefore explicitly 
‘subgrid.’ Another way of saying this is that we cannot predict CR 

scattering rates from first principles, but instead are here testing 
different models for how the ‘microscale’ CR scattering rates depend 
on ‘macroscale’ parameters. This allows us to show that some key 
physics or assumptions must be missing from these models. 

But it is also worth mentioning that, given this scale separation, 
there could be interesting dynamics in the ‘meso-scale’ as well, 
by which we mean scales much larger than the gyroresonant 
scales, but much smaller than the resolved simulation scales or 
driving/coherence scales of the volume-filling warm ISM/CGM 

components (and with small volume-filling factors). Consider, for 
example, stellar magnetospheres: we know from the Heliosphere 
that these represent regions with order-one changes in the magnetic 
field on scales ∼ 100 au, vastly smaller than the Alfv ́en/coherence 
scale of magnetic fields in the volume-filling warm ionized ISM 

( ∼ 100 − 200 pc), and that this can (and does) strongly scatter/deflect 
the pitch angles of CRs with energies ≪ TeV. In a sense, we can 
think of this as a tiny patch of the ISM interior to which the 
local Alfv ́en scale ℓ A decreases from ∼ 100 pc to ∼ 100 au. These 
are obviously un-resolved in our simulations. But it is, at least in 
principle, possible to imagine models in which such ‘meso-scale’ 
structures dominate CR scattering, and introduce effects like those 
we sought to explore on the ‘macro-scale’ in our simulations, and so 
could strongly modify the ‘ef fecti ve’ scattering rates and residence 
times of CRs. We stress that any such model would still represent a 
radical departure from traditional CR transport theory: in traditional 
models such as those explored here, scattering is dominated via 
the sum of many small-angle/weak scattering events, and the CR 

residence times (hence ‘ef fecti ve’ scattering rates) are dominated 
by the statistically homogeneous, relatively smooth, volume-filling 
phases of the ISM (e.g. the WIM and warm inner CGM, for CRs 
observed in the LISM; see Paper I and references therein). And any 
such model would still have to solve the problems we present here: 
it would have to predict a physical means by which such structures 
could introduce any (let alone the correct ) energy dependence to 
the ‘ef fecti v e’ CR scattering rates o v er the required energy range. In 
this sense, one can think of such models as a mechanism by which 
something like our alternative damping or driving rates (required on 
macro-scales) could be achieved, just via an intermediate scale effect. 
But in addition, such a model would necessarily have to show that 
meso-scale structures actually dominate CR scattering between their 
initial acceleration and observation in the LISM. For the example 
of stellar magnetospheres given above, this appears impossible: 
the mean-free-path between magnetospheres in the ISM (given a 
stellar density of ∼ 1 pc −3 and radius ∼ 100 au) is ∼ Mpc, while 
the observationally inferred mean-free-path for deflection/scattering 
of ∼ GeV CRs is ∼ 10 pc (10 5 times smaller). And implicit in the 
abo v e, it would still be necessary in such a model to explain how 

the diffuse ISM outside of such structures does not undergo solution 
collapse or SC runaway to over-confinement. Still, it is very much 
w orth k eeping such models in mind, as there is a diverse ensemble of 
phenomology in the ISM on scales not captured in either the simple 
analytic scalings or numerical galaxy-scale simulations explored here 
(for examples, see the scattering processes examined in Bai 2022 ; 
Beattie et al. 2022 ), and we will in future work (Butsky et al., in 
preparation) try to map out in more detail some of the requirements 
of such meso-scale models. 

6  C O N C L U S I O N S  

We have combined analytic models and a suite of detailed numerical 
simulations of CR transport in fully dynamical Galactic environments 
to explore the physics of CR scattering at CR energies ∼MeV- 
TeV. From all of these, we show that standard SC and ET models 
cannot even qualitatively reproduce basic features of the observed CR 

spectra and secondary-to-primary or radioactive species ratios. The 
model failures are not superficial and, across our e xtensiv e surv e y, we 
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find no ‘tweaking’ that acts as a remedy; this is expected, because we 
argue that the problems arise due to fundamental and indeed defining 

assumptions of SC and ET models. Specifically, for SC models, the 
fact that the term driving the growth of the CR scattering rate itself 
depends on the CR flux or energy density causes the SC ‘instability’ 
or ‘solution collapse’ problem, wherein, re gardless of an y details of 
the functional form of SC scattering rates or damping mechanisms, 
CRs quickly converge to either the trapped/infinite-scattering limit or 
the free-streaming/escape-at- c limit. For ET models, the assumption 
that the scattering modes arise from an MHD ‘cascade,’ or other 
transfer between scales o v er a large dynamic range, forces the 
scattering modes to obey the qualitatively incorrect scaling as a 
function of rigidity at scales below the Alfv ́en and/or dissipation 
scale of turbulence (which includes all CRs in the ISM below a few 

hundred GeV). 
We therefore phenomenologically approach the problem and ask 

‘what would be needed’ – in terms of either the driving or damping 
of CR scattering modes – to resolve all of these issues and reproduce 
CR observ ations. While pre vious studies have empirically quantified 
this in terms of an ‘ef fecti ve dif fusi vity’ or ‘mean scattering rate’ 
that best fits observations (e.g. fitting some constant in space and 
time or a simply parametrized function for the diffusion coefficient 
as a function of CR rigidity), we go further and actually solve 
the dynamical equations for the CR scattering rates, incorporating 
what is known about driving and damping rates of parallel magnetic 
fluctuations. For the first time, we constrain ‘what is needed’ directly 
in terms of the local driving rate S ± or damping rate Ŵ ± of CR 

scattering modes, on scales of order the gyroresonant wavelengths. 
These are the quantities that can actually be predicted by detailed 
theoretical calculations and PIC simulations of CR scattering physics. 
We identify three classes of model that could, at least qualitatively, 
reproduce the CR observations and quantify what is needed for 
each. 

(i) Alternative Damping: All the key problems introduced by 
the dominant SC term at ∼MeV-TeV energies can be resolved 
if the linear damping rate scales with the CR energy density (at 
some rigidity) Ŵ new , damp , ± ∝ e ′ cr ∝ de cr /d ln R cr , e.g. Ŵ new , damp , ± ∼
( v A, ideal /ℓ A ) ( k ‖ ℓ A ) ξk ( e ′ cr /e B ) with 0.1 � ξ k � 0.4. Ho we ver, there 
are two key issues: (1) it is not obvious what could physically 
produce such a scaling, and (2) this damping must dominate 
o v er all other linear damping mechanisms in the volume-filling 
ISM, which ef fecti vely requires discarding or drastically reduc- 
ing the normalization of standard linear damping mechanisms 
such as ion-neutral, dust, turbulent/linear Landau, and NLL 

damping. 
(ii) Alternati ve Linear Dri ving/Sources: Alternati vely, if the CR 

scattering waves with energy e A ∼ | δB ( k ‖ ) | 2 are driven by a linear 
source term, S new , lin ∝ e A , where S new , lin does not depend on CR 

energy, this can a v oid the problems of SC models and reproduce 
observations. A form such as S new , lin ∼ 10 −12 s −1 e A ( k ‖ au ) ζk with 
0.6 � ζ k � 0.9 provides reasonable results. Note that SC models 
are intrinsically based on such a ‘linear’ source term (from CR 

gyroresonant instabilities), but the problem is that their dependence 
on the CR energy density introduces the instability/solution-collapse 
problems, and the k dependence scales incorrectly to reproduce 
observations. But a wide variety of other known linear instabilities 
– e.g. a host of multifluid instabilities that are known to operate on 
the rele v ant scales – could potentially explain this scaling, and only 
very modest power is needed in the rele v ant modes. The problem 

with this solution is that the linear source must compete with linear 
damping and SC driving, so reproducing observations with this model 

class requires somewhat weaker linear damping. This problem is not 
as severe as for ‘alternative damping’ above, but in particular the 
standard turb ulent/linear -Landau and dust damping scalings are too 
strong and would need to be revised. 

(iii) Alternative External Driving/Sources: Instead, an alternative 
source term that is independent of e A and e ′ cr , and only weakly de- 
pendent on k – for example, S new , ext ∼ d E( k ‖ ) /d ln k ‖ d t d Volume ∼
0 . 01 ( v A, ideal /ℓ A ) e B ( k ‖ au ) ζk with −0.25 � ζ k � −0.1 – can resolve 
the key problems of SC and ET models and reproduce observations. 
This version requires remarkably little revision to other known damp- 
ing or driving terms. While this ‘external’ scaling is qualitatively 
similar to ET models in that S new , ext is independent of e ′ cr and e A , 
it cannot derive from a standard turbulent cascade from large scales 
without introducing the anisotropy and damping problems, but is 
better thought of as a driver acting over a wide range of scales (or 
some modification of standard MHD turbulence paradigms). The 
total power needed is modest ( ∼ 1 per cent of the dissipation rate in 
ISM turbulence), and it is plausible to imagine a variety of physical 
mechanisms that could act in this way: the challenge may be to ensure 
such a mechanism can act o v er the entire rele v ant dynamic range of 
∼10 3 − 10 6 in k ‖ . 

It is important to note that, although we demonstrate the con- 
clusions abo v e o v er a wide range of CR energies ∼ MeV-TeV, it 
may be possible to somewhat reduce the dynamic range of CR 

energies (and therefore wavenumbers k ‖ ) o v er which alternativ e 
physics must play a key role. For example, as argued in Paper I 
and seen in some (but not all) of the models here, the residence 
time of very low-energy CRs at � 10 − 100 MeV could be regulated 
by Coulomb/ionization losses (making predictions consistent with 
observations and nearly independent of scattering rates), so long as 
the scattering rates at these energies are sufficiently high so that 
the diffusion/escape time is longer than loss times. And depending 
on detailed ISM properties, at some energy � 0 . 1 − 1 TeV, CR 

gyro radii will eventually become comparable to the dissipation 
scales of turbulence, so the ‘classical’ ET scenario of scattering 
from an undamped extrinsic turbulent cascade becomes a reasonable 
approximation (provided there is an isotropic fast-magnetosonic 
inertial-range cascade with approximately k E( k) ∝ k −3 / 2 and the 
correct normalization). It is at intermediate energies, where most of 
the CR energy density resides, that the problems described here are 
most acute. 

We stress that we are not here advocating for any one specific 
physical process as the explanation for CR scattering. Instead, our 
goal is to identify and further investigate generic problems with 
current SC and ET models; some of these problems were already 
known, some have been first identified here. We further identify 
classes of scalings for either driving or damping of CR scattering 
modes that could, in principle, explain the observations, discussing 
several possible physical mechanisms abo v e. In future work, we hope 
to explore some of these candidate processes in more detail to assess 
if any can actually produce the correct scaling and normalizations 
needed to explain observations. It may be that the quantitative details 
will differ by a modest amount, as there are a variety of effects that 
lead to e.g. exact deviations from simple power-law behaviour, but 
we expect that the key qualitative requirements identified herein are 
robust. If mechanisms can be identified that meet these criteria, it 
will be important to also test them in microphysical MHD-PIC-like 
simulations, then use the results as input to galactic simulations such 
as those explored here. This will allow a quantitative comparison 
to CR observations, providing further valuable constraints on the 
important processes at play. 
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APPENDIX  A :  EQUILIBRIUM  

SELF-CONFINEMENT  M O D E L S  

A1 Basic equations and setup 

Here, we consider the behaviour of SC models in steady-state. 
Given that (as shown in Section B below) the CR flux F 

′ 
e, cr and e ±

equations converge to local steady state on a time-scale much shorter 
than the CR energy e ′ cr equation, we can safely assume their steady- 
state values (in Section B ) in e v aluating the CR energy equation. 
We will assume only SC driving (take S ext, ± = S new , ± = 0), giving 
[from equation ( 11 )]: 

D t e 
′ 
cr → −∇ ·

(

F 
′ 
e, cr 

ˆ b 
)

+ S 
′ 
eff (A1) 

where F 
′ 
e, cr ≡ −( v 2 cr / 3 ̄νs ) ̂  b · ∇e ′ cr + v̄ A e 

′ 
cr includes the ‘dif fusi ve’ 

( ∝ ν̄−1 
s ) and ‘streaming’ ( ∝ v̄ A , with v̄ A → −v A, eff sign [ ̂ b · ∇e ′ cr ]) 

terms, and S ′ eff ≡ −P 
′ 
cr ∇ · ( u gas + v̄ A ˆ b ) + S 

′ 
other, cr includes the ‘adi- 

abatic’ and ‘streaming loss’ terms ( ∝ ∇ · [ u gas + v̄ A ˆ b ]) and all 
injection and radiative/catastrophic losses in S 

′ 
other, cr . 

In steady-state ( D t e 
′ 
cr → 0), integrating equation ( A1 ) over some 

volume V with surface ∂V immediately gives: 
〈

F 
′ 
e, cr 

〉

A eff ≡
∮ 

∂V F 
′ 
e, cr ̂

 b · d A = 
∫ 

V d 
3 x S 

′ 
eff ≡ Ė inj , eff . (A2) 

Here, 〈 F 
′ 
e, cr 〉 is the weighted-mean scalar flux from the integral over 

F 
′ 
e, cr , A eff ≡

∮ 

∂V | d A | , and Ė inj , eff is the net CR energy production 
inside ∂V . For simplicity, we will consider CR primary species 
at rigidities � GV where v cr ∼ c (so P 

′ 
cr ≈ e ′ cr / 3) and empirical 

constraints (see text and Paper I) indicate losses are negligible, so 
Ė inj , eff ≈

∫ 

V d 3 x j inj , e ( R cr ) = Ė inj is approximately the total injection 
rate. 

A2 Behaviour of phenomenological or ET models 

First, consider a typical phenomenological model, where ν̄s is 
taken to be constant with ν̄s ∼ 10 −9 s −1 R 

−0 . 5 
GV as in Fig. 1 . With 

ν̄s = constant, equation ( A1 ) indeed behaves like a diffusion 
equation, with the dif fusi ve term much larger than streaming 
terms on scales of interest, and if we assume tangled magnetic 
fields, the ef fecti ve isotropic flux is just 〈 F 

′ 
e, cr 〉 ≈ κiso 〈|∇e ′ cr |〉 

with κiso ≡ ( c 2 / 9 ̄νs ). For the Galaxy, take Ė inj , eff ≈ Ė inj ≈
0 . 1 Ė SNe f inj ( R cr ) ∼ 3 Ṅ SNe , 100 R 

−0 . 2 
GV × 10 40 erg s −1 where Ṅ SNe , 100 

is the SNe rate inside ∂V in units of ∼ 1 / (100 yr ) and f inj ( R cr ) ≡
(1 / ̇E 

total 
inj ) d ̇E 

total 
inj / d ln R cr ∼ R 

−0 . 2 
GV is the fraction injected at the given 

R cr (according to our assumed standard injection slope in the 
text). Assuming e.g. spherical symmetry or a vertically strati- 
fied model, the steady-state e ′ cr profile is then trivially solved by 
∇e ′ cr = −Ė in / ( κiso A eff ). If we assume approximate spherical sym- 
metry at large Galactocentric radii 〈 F 

′ 
e, cr 〉 = Ė inj / (4 π r 2 ), we obtain 

e ′ cr ∼ 0 . 6 eV cm 
−3 Ṅ SNe , 100 R 

−0 . 7 
GV at the Solar circle ( r ∼ 8 . 3 kpc ), in 

excellent agreement with observations (by construction, of course, 
since ν̄s was originally fit to the data). 

In standard ET models, ̄νs → ν̄s ( k ‖ , B , ℓ A , f ion , . . . ) can be some 
arbitrary function of ISM properties, but (crucially) is – like in the 
phenomenological model abo v e – independent of e ′ cr ( ζ cr = ξ cr = 0). 
This means that, again, solutions al w ays exist for a steady-state e ′ cr 

profile, given by solving equation ( A2 ): ∇e ′ cr ∼ −Ė in / ( κiso A eff ) ∼
−9 Ė in ν̄s / ( c 2 A eff ) = F ( r, k ‖ , B , ℓ A , f ion , . . . ). Whether or not 
these solutions have the correct observed behaviour (as a func- 

tion of e.g. CR rigidity) is what we investigate in the main 
text. 

A3 Behaviour of SC models 

But now consider SC models, with ν̄s ≈ (3 π �cr / 16) ( e A /e B ) where 
e A is set (see Section B ) by the competition between damping 
( Ŵ ±) and driving with S sc → | v A, eff ˆ b · ∇P 

′ 
cr | , giving e A /e B → 

( Ŵ lin / 2 Ŵ 
0 
nll ) ( −1 + [1 + 4 S sc Ŵ 

0 
nl / Ŵ 

2 
lin e B ] 

1 / 2 ), where Ŵ lin ≡ Ŵ in + 

Ŵ turb / LL + Ŵ dust + Ŵ new , damp + ... collects all linear damping terms 
and Ŵ 

0 
nl collects the pre-factors of any non-linear terms (e.g. Ŵ 

0 
nl = 

Ŵ 
0 
nll = ( 

√ 
π/ 8) c s k ‖ for NLL damping). The dependence of e A on e ′ cr 

introduces fundamentally distinct behaviour. 

A3.1 Linear damping 

First, assume that linear damping dominates 20 ( Ŵ lin � Ŵ nl = 

Ŵ 
0 
nl ( e A /e B )). Then, e A → S sc / Ŵ lin , giving the ‘diffusive’ flux F 

′ 
e, cr → 

(16 / 3 π ) ( c e B r g, cr Ŵ lin ) /v A, eff = (4 c/ 3 π3 / 2 ) R cr ρ
1 / 2 
ion Ŵ lin . If D t e 

′ 
cr is 

dominated by the dif fusi ve term, then Ŵ lin for any known damping 
mechanism depends on properties extrinsic to the CRs (e.g. turbulent 
velocities, e B , etc.) and so, it and therefore F 

′ 
e, cr are independent of the 

CR energy density, this means there exist no steady-state solutions 

for e ′ cr . It does not seem possible to construct an e ′ cr profile that 
ensures 〈 F 

′ 
e, cr 〉 = Ė inj , eff /A eff . 21 

In practice, what this means is that there are only two real 
equilibrium solutions: if 〈 F 

′ 
e, cr 〉 < Ė inj /A eff , since the dif fusi ve flux 

is independent of e ′ cr , the CR energy density will continue to build 
up (increasing ν̄s ∝ e ′ cr and lowering the effective diffusivity or 
streaming speed) until the streaming term ∝ v A, eff e 

′ 
cr dominates 

F 
′ 
e, cr or catastrophic loss terms (also ∝ e ′ cr ) dominate D t e 

′ 
cr . Thus, 

CRs collapse to the Alfv ́enic streaming and/or calorimetric limit, 
with maximal isotropically averaged streaming speed ≈ v A, eff / 2. 
This is problematic for two reasons: first, the implied residence time 
(neglecting losses) to escape the Galaxy and CR scattering halo 
( ∼ 10 kpc) is ∼ 10 Gyr n 1 / 2 1 B 

−1 
µG , far longer than observationally 

allo wed. Secondly, e ven if we arbitrarily renormalized the Alfv ́en 
speed and/or Galaxy + halo size, the streaming/escape/residence 
time would (by definition) be independent of CR energy (i.e. δs = 

0), also ruled out. Alternatively, if 〈 F 
′ 
e, cr 〉 > Ė inj /A eff , then e ′ cr will 

deplete until ̄νs is so low 
22 that the CRs free-stream and escape at ∼c , 

vastly faster than observed (residence times � 10 4 . 5 yr), with again 
δs = 0. 

An alternative way to see this is to simply insert the full expression 
for the SC-predicted ̄νs directly into equation ( A1 ). As noted by many 
going back to Skilling ( 1971 ) and Cesarsky ( 1971 ), the ‘dif fusi ve’ 
part of the flux-gradient term then formally takes the form of a source 

20 So as long as Ŵ lin � Ŵ nl , explicitly including small-but-finite Ŵ nl changes 
none of our conclusions abo v e. The limit Ŵ lin � Ŵ nl is discussed below. 
21 One might imagine a (contrived) special case where the properties (e.g. B , 
c s ) which enter Ŵ lin scale exactly as required with both Ė inj and position x 
such that 〈 F ′ e, cr 〉 = Ė inj /A eff . Ho we ver, not only does this require exceptional 
fine-tuning, but (1) because Ė inj and F ′ e, cr scale differently with R GV , it is 
impossible to satisfy this at any two CR energies simultaneously, and (2) such 
a solution cannot ‘respond’ to adjust to any perturbations to the source rate 
Ė inj or to the gas quantities which enter F ′ e, cr . 
22 As noted in the main text, if ET is present, then at some sufficiently low ̄νs , 
S et, ± will dominate so ̄νs will not vanish entirely, but in this case the system 

is in the entirely ET-dominated limit. 
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or sink term: 

D t e 
′ 
cr = ±

(

4 c R cr 

3 π3 / 2 

)

∇ · ( ρ1 / 2 
ion Ŵ lin ˆ b ) 

∼ ±
eV cm 

−3 

Myr 
B 

3 / 2 
µG R 

1 / 2 
GV 

(

10 pc 

ℓ ∇,Ŵρ1 / 2 

)

(A3) 

where the sign is determined by the gradient in e ′ cr ; 
ℓ ∇,Ŵρ1 / 2 ≡ ρ1 / 2 

ion Ŵ lin / |∇ · ( ρ1 / 2 
ion Ŵ lin ˆ b ) | is the gradient scale length of 

f 1 / 2 ion ρ1 / 2 Ŵ lin , which can vary on � pc scales (Hopkins et al. 2021d ); 
and in the second equality, we inserted the scalings for Ŵ lin for 
turbulent/linear Landau damping (to give a typical value). From 

equation ( A3 ), it is clear that within a time-scale ∼ Myr, the CR 

energy e ′ cr will either (1) be driven to negligible values if D t e 
′ 
cr is 

ne gativ e (making all other terms in D t e 
′ 
cr smaller, until the ‘free 

escape’ limit is reached), or (2) be driven to increase if D t e 
′ 
cr is 

positive, until the other terms in D t e 
′ 
cr such as the streaming term 

∝ v̄ A, eff e 
′ 
cr dominate (the ‘o v er-confined’ limit). 

A3.2 Non-linear damping 

Now, instead, assume NLL damping dominates. Let us first ask 
when this might occur: for NLL damping to set e A (see Section B ) 
requires the dimensionless ψ nl ≡ | 4 S sc Ŵ 

0 
nl / Ŵ 

2 
lin e B | 1 / 2 ≫ 1. Taking 

the standard linear damping scalings from Section 2.5 , ψ nl ≫ 1 
requires the gas is highly ionized ( f neutral � 10 −3 , so Ŵ in is small), 
has a low dust-to-gas ratio ( f dg � 10 −3 , so Ŵ dust is small), and is 
weakly turbulent with a high CR energy density at the given R cr 

( M 
2 
A � e ′ cr / eV cm 

−3 , so Ŵ turb/LL ≪ Ŵ nll ). While specific, this is not 
impossible around ∼ 1 GV where e ′ cr peaks, in the diffuse warm/hot 
ISM/CGM. 

Assuming ψ nl ≫ 1 with NLL damping dominat- 
ing, we have e A → ( S sc e B / Ŵ 

0 
nl ) 

1 / 2 , so the ‘dif fusi ve’ 
F 

′ 
e, cr → (2 5 / 2 / 3 3 / 2 π3 / 4 ) c ( | ̂ b · ∇e ′ cr | c s e B r g, cr /v A ) 1 / 2 . This 

does formally have a steady-state solution given by 
〈| ̂ b · ∇e ′ cr |〉 ≈ (27 π3 / 2 / 32) ( v A, eff /c 

2 c s e B r g, cr ) ( ̇E inj /A eff ) 2 

with 〈 ̄νs 〉 → (9 π3 / 2 / 32) ( v A, eff Ė inj /c s e B r g, cr A eff ). But this 
solution has some very strange features: using A eff ∼ 4 π r 2 

as abo v e and e v aluating it at the Solar circle we obtain: 
e ′ cr ≈ 2000 eV cm 

−3 R 
−1 . 4 
GV N 

2 
SNe , 100 ( n 1 T 4 ) 

−1 / 2 (with T 4 = T / 10 4 K) 
and ν̄s → 10 −5 s −1 R 

−1 . 2 
GV N SNe , 100 ( n 1 T 4 ) −1 / 2 . These are enormously 

unphysically high-CR energy densities and scattering rates, 
which also exhibit a clearly ruled-out dependence on R GV . In 
practice, this means that, beginning from any physically realistic 
(much smaller) e ′ cr , F 

′ 
e, cr ≪ Ė cr /A eff will drive D t e 

′ 
cr > 0 

so e ′ cr increases until either the streaming or loss terms 
(which scale ∝ e ′ cr , while the dif fusi ve term scales ∝ 

√ 
e ′ cr ) 

dominate D t e 
′ 
cr (e.g. the streaming flux will dominate F 

′ 
e, cr once 

e ′ cr � 0 . 5 eV cm 
−3 R GV ( n 

3 / 2 
1 T 

1 / 2 
4 B 

−2 
µG kpc /ℓ ∇, cr )). 23 

So again, we see immediate ‘solution collapse,’ but the conditions 
where non-linear damping dominates, which require higher e A and 
therefore higher e ′ cr , are such that they al w ays drive the collapse to 
the o v er-confined/streaming solution. 

23 From the scalings abo v e, in this limit the flux should be dominated by 
the Alfv ́enic streaming component at all galacto-centric radii interior to � 

Mpc B µG N SNe , 100 n 
−1 
1 T 

−1 / 2 
4 R 

−1 . 2 
GV . 

A3.3 Summary 

These behaviours abo v e are what we refer to in the text as the 
SC models being globally ‘not stable.’ This is not necessarily a 
linear-stability analysis (in fact the ‘collapsed’ free streaming or 
o v er-confined spherical equilibrium solutions abo v e, if we perturb 
just e ′ cr infinitesimally and ignore all interactions with the gas, are 
formally linearly stable). But it is common, when SC is discussed, 
to refer to ‘super-Alfv ́enic streaming,’ i.e. flux in excess of v A, eff e 

′ 
cr 

with an ef fecti ve contribution to F 
′ 
e, cr from the ν̄s term as defined 

abo v e (i.e. a finite-but-not-infinite CR transport speed in excess of 
v A, eff ). This can arise trivially, in any infinitesimal local patch, if 
one defines ν̄s for a given e ′ cr (e.g. choosing a fixed e ′ cr similar to 
the Solar circle value) – in fact we show this below in Section B , 
where we derive the values of e ± given by assuming local steady- 
state of the CR flux equation. But generically, these solutions will 
not give a self-consistent steady-state for the CR energy equation: 
converging to such a ‘local equilibrium’ value of ̄νs for a given e ′ cr (as 
determined by the CR flux and e ± equations, which evolve on very 
short time-scales) will mean necessarily that the energy equation is 
out-of-steady-state. This then forces e ′ cr , and correspondingly ν̄s , to 
evolve either towards ‘bottleneck’ and the infinite-strong-scattering 
Alfv ́enic streaming regime, or towards ‘escape,’ de-confinement, 
and the negligible-scattering streaming-at- c re gime. An y ICs rapidly 
collapses (o v er ∼Myr) tow ards one of these tw o states for all spatial 
and CR energy scales of interest if S sc is the dominant driving term. 

APPENDI X  B:  L O C A L  STEADY-STATE  

S O L U T I O N S  F O R  SCATTERI NG  R AT E S  IN  

DETA I L  

B1 Relevant equations and limits 

Consider the CR flux and e ± equations in more detail. From the 
general versions of equations ( 3 ), ( 7 ), and ( 9 ), in the text, we can 
write: 

D t F 
′ 
e, cr + c 2 ˆ b ·

(

∇ · P 
′ 
cr 

)

= −
ω 

e B 
( e + + e −) F 

′ 
e, cr 

+ 
ω 

e B 
( e + − e −) H 

′ 
cr (B1) 

D t e ± + ∇ ·
(

v A, ± e ± ˆ b 
)

= −
e ±

2 
∇ · u gas − Ŵ L e ± − Ŵ NL 

e ±

e B 
e ±

+ 
ω v A, ± e ±

c 2 e B 

(

F 
′ 
e, cr − H 

′ 
cr 

)

+ S et, ± (B2) 

where H 
′ 
cr ≡ 3 χ v A, ± ( e ′ cr + P 

′ 
cr ), ω ≡ ( π ˆ νs / 4) �cr , v A, ± ≡

±v A, eff , and we have expanded the damping rates in terms of the 
various linear ( ξA = 0, Ŵ L ) and non-linear ( ξA = 1, Ŵ NL ) damping 
terms as Q ± = Ŵ L e ± + Ŵ NL ( e ±/e B ) e ± (so for e.g. NLL damping, 
Ŵ NL = ( 

√ 
π/ 8) c s k ‖ ). 

As noted in the text, these equations evolve towards local steady- 
state on a time-scale ∼ ν̄−1 

s ∼ 30 yr R 
0 . 5 
GV (if we take empirically 

estimated ν̄s values), much faster than the time-scales for the CR 

energy equation or bulk ISM fluid motion time-scales on the scales 
of interest. Similarly, the ‘gradient terms’ in equation ( B2 ; the 
∇ · ( v A, ± e ± ˆ b ) and ∇ · u gas ) involve time-scales of order those 
same ISM time-scales and are much smaller than the other terms 
in equation ( B2 ). We will justify these assumptions more formally 
below. Let us therefore assume these equations reach local steady- 
state ( D t → 0, or | D t | ≪ ν̄s ) in the comoving Alfv ́en frame 
[neglecting the ‘gradient terms’ in equation ( B2 )] – although we 
stress that this does not mean the CR energy equation is in steady 
state. In this case, we can re-write them in the dimensionless form: 
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˜ g = −( x + + x −) ˜ f + ( x + − x −) ̃  h , (B3) 

± ˜ f x ± = ˜ h x ± + γL x ± + γNL x 
2 
± − s et , (B4) 

where x ± ≡ e ±/ e B , ˜ f ≡ ( v A, eff /c) 2 ( F 
′ 
e, cr /e B v A, eff ), 

˜ h ≡ ( v A, eff /c) 2 ( H 
′ 
cr /e B v A, eff ), ˜ g ≡ ( v A, eff /ω e B ) ̂  b · ( ∇ · P 

′ 
cr ), 

γ L ≡ Ŵ L / ω, γ NL ≡ Ŵ NL / ω, and s et ≡ ( S et, + + S et, −) / (2 ω e B ). This 
has solutions 

4 s et = x̄ 
[

2 
(

γL + ˜ h 
)

+ γNL x̄ 
]

−
˜ g 2 

[

2 
(

γL + ˜ h 
)

+ γNL x̄ 
]

x̄ ( γL + γNL x̄ ) 
2 (B5) 

where x̄ ≡ x + + x −, with x − = x + + ˜ g / ( γL + γNL x̄ ) and ˜ f ≡
[( x + − x −) ̃  h − ˜ g ] / ̄x following immediately. 

B2 Local steady-state behaviour in ET and SC limits 

Unfortunately, equation ( B5 ) is still a fifth-order polynomial for 
x̄ , whose general solutions are neither closed-form analytic nor 
particularly instructive. The solutions do, however, become simple 
in various limits. First consider the case where linear damping 
dominates o v er non-linear ( γ NL can be ne glected). Then 24 x̄ → 

s et (1 + 
√ 

1 + � 2 ) / ( γL + ˜ h ) with 

| � | ≡ | ̃ g | 
s et 

[ 

1 + 
˜ h 

γL 

] 

∼ v A, eff |∇P ′ cr | 
S et,±

[ 

1 + 
π
2 

�cr e ′ cr 
Ŵ L ρion c 2 

] 

. (B6) 

Small | � | ≪ 1 here corresponds to the ET limit, large | � | ≫ 1 to 
the SC limit. 

Now consider each of those limits (SC and ET-dominated) in turn, 
but retain the non-linear term γ NL . 

In the ET limit ( | � | ≪ 1): the dimensionless ‘stream- 
ing speed’ v̄ A /v A, eff = ( x + − x −) / ( x + + x −) → �/ 2 ≪ 1 is small 
and x̄ → γ −1 

NL ( γL + ˜ h ) ( −1 + [1 + 4 γNL s et / ( γL + ˜ h )] 1 / 2 ), which 
corresponds to 25 e + ≈ e − ∼ S et / ( Ŵ L [1 + φ]) (with φ ≡ ˜ h /γL ∼
( v A, eff /c) 2 ( π ˆ νs / 4) ( �cr / Ŵ L ) ( e ′ cr + P 

′ 
cr ) /e B ) when linear damping 

dominates and e + ≈ e − ∼ ( S et e B / Ŵ NL ) 1 / 2 when non-linear damping 
dominates (which occurs when 4 γNL s et � ( γL + ˜ h ) 2 ). 

In the SC limit ( | � | ≫ 1): the streaming speed v̄ A /v A, eff = 

( x + − x −) / ( x + + x −) → −sign ( ̃  g ), so v̄ A is just the ef fecti ve Alfv ́en 
speed ( ±v A, eff ) directed down the CR pressure gradient. Only the 
x ± aligned in this direction is large (the other vanishes), with 
the rele v ant x ≈ x̄ ∼ ( γL / 2 γNL ) ( −1 + [1 + 4 | ̃  g | γNL /γ

2 
L ] 

1 / 2 ) which 
corresponds to e A ∼ S 0 sc / Ŵ L (with S 0 sc ≡ | v A · ∇ · P 

′ 
cr | ) when linear 

damping dominates, and e A ∼ ( S 0 sc e B / Ŵ NL ) 1 / 2 when non-linear 
damping dominates (which occurs when 4 γNL | ̃  g | � γ 2 

L ). 

B3 Justification of approximations 

This allows us to formally justify some of the approximations used 
in the text to estimate scalings: if we write S ± ∼ S et + S 0 sc as the 
‘total’ driving and set S ± equal to Q ± ∼ ( Ŵ L + Ŵ NL e A /e B ) e A to 
solve for e A (this was done in the text to justify our more approximate 
scalings), we obtain the correct qualitative behaviours of e A / e B in all 
the rele v ant limits abo v e. The transition between ET and SC limits 

24 The solution here assumes Ŵ L > 0, i.e. linear damping. If instead there were 
net linear driving from a driving source not considered here, so Ŵ L < 0 in 
our language, then the physical solution branch for γ NL small and γL < − ˜ h 
becomes x̄ → s et (1 −

√ 
1 + � 2 ) / ( γL + ˜ h ). 

25 The φ term here accounts for the fact that dif fusi ve re-acceleration produces 
a net transfer of energy from the scattering modes ( e A ) to the CRs ( e ′ cr ) when 
e + ≈ e − (in the ET limit), so acts like an additional linear damping term even 
when Ŵ L → 0. 

here, S 0 sc � S et , corresponding to | ̃  g | /s et , which usually determines 
� (though there can, in greater detail, be non-negligible corrections 
from the ˜ h / Ŵ term in determining which limit is most rele v ant). 

One interesting limit where this allows us to resolve some 
ambiguities is the case in highly neutral gas ( f ion ≪ 1), with 
gyroresonant Alfv ́en frequencies larger than the ion-neutral colli- 
sion time, so in the e xpressions abo v e v A, eff ≈ ( | B | 2 / 4 π ρion ) 1 / 2 = 

v A, ideal f 
−1 / 2 
ion ≫ v A, ideal . In this case, S et is suppressed by strong 

ion-neutral damping (which usually leads to Ŵ L ∼ Ŵ in ≫ Ŵ NL ), 
while ˜ g 2 ∝ 1 /f ion and ˜ h ∝ 1 /f 1 / 2 ion are enhanced, so for conditions 
of rele v ance in e.g. GMCs this means | � | ≫ 1 and the system 

rapidly converges to the SC regime with streaming at v A, eff ∝ 1 /f 1 / 2 ion , 
essentially independent of the strength of ∇e ′ cr or S et on larger 
scales. 

We can also return to the approximations regarding time-scales 
made abo v e. In equation ( B1 ), we see from our steady-state solutions 
that the c 2 ∇ · P 

′ 
cr term is never negligible (it acts as a source 

term), while the relative importance of the F 
′ 
e, cr and H 

′ 
cr terms 

depends on whether the flux is super or sub-Alfv ́enic. In any case, 
noting that the F 

′ 
e, cr term can be written D t F 

′ 
e, cr ∼ ν̄s F 

′ 
e, cr + ... , 

we immediately confirm that the equation is driven towards steady- 
state on the very short scattering time-scale ∼ ν̄−1 

s ∼ 30 yr R 
1 / 2 
GV (for 

empirically fa v oured ν̄s values). In equation ( B2 ), in steady-state, 
the dominant driving ( S et, ± or SC F 

′ 
e, cr − H 

′ 
cr term) terms have 

magnitude of order the damping terms Ŵ ± e ±, so the equation D t e ± = 

−Ŵ L e ± + ... is driven to steady-state on the local damping time 
∼ Ŵ 

−1 
± ∼ (30 − 300) yr ( R GV /B µG ) 1 / 2 (10 km s −1 /v A, eff ) (using the 

scalings from Section 2.5 for Ŵ turb/LL and Ŵ dust , assuming typical 
LISM properties; if other damping terms are also important, then 
Ŵ 

−1 
± will be even smaller). This is similar to the scattering time. 

The ‘gradient terms’ O( ∇[ u gas , v A, eff ] e ±) are smaller than the 
other terms in equation ( B2 ) by a factor O( |∇[ u gas , v A, eff ] | / Ŵ ±) ∼
10 −4 ( R GV /B µG ) 1 / 2 ℓ 

−1 
∇, ISM , 10 where ℓ ∇, ISM , 10 = ℓ ∇, ISM / 10 pc with 

ℓ ∇, ISM the gradient scale-length of the bulk ISM properties 
( u gas or v A, eff ), justifying their neglect above. These time-scales 
O(1 / ∇[ u gas , v A, eff ]) are of course also the same as the characteristic 
time-scales for bulk ISM properties to evolve (e.g. v A, eff , B , u gas , ρ
from the usual MHD equations). Thus, this justifies our assumption 
that these MHD properties can be taken as approximately constant 
o v er the time-scale for equations ( B1 )–( B2 ) to reach local steady- 
state. 

Now consider the CR energy equation D t e 
′ 
cr = ... , assuming 

the CR flux F 
′ 
e, cr and e ± equations have reached local steady- 

state [equation ( 11 ) in the text]. The source/sink term S 
′ 
other, cr 

is small compared to other terms at rigidities � GV (except in 
special environments, e.g. at sources). Examination shows that the 
‘dif fusi ve re-acceleration’ term ∝ ( v 2 A, eff − v̄ 2 A ) /c 

2 is al w ays small: 
it vanishes identically in the SC limit, but even in the ET limit 
it is suppressed by O( v 2 A, eff /c 

2 ) for any plausible ν̄s (see Hopkins 
et al. 2021a ). The ‘streaming’ and ‘adiabatic’ terms ( ∼ ∇ · ( ̄v A e ′ cr 

ˆ b ) 
and ∼ P 

′ 
cr ∇ · ( u gas + v̄ A ˆ b )) involve the same ‘gradient’ or ISM 

bulk-property time-scales O(1 / ∇[ u gas , v A, eff ]) as defined abo v e. 
The term in the D t e 

′ 
cr equation that can evolve most rapidly is 

the ‘dif fusi ve’ term ∼ ∇ · [ κ‖ ˆ b ̂ b · ∇e ′ cr ] (with κ‖ ≡ v 2 cr / 3 ̄νs ), which 
drives e ′ cr to equilibrium on the diffusive time-scale ∼ ℓ 2 ∇, cr /κ‖ with 
ℓ ∇, cr ∼ e ′ cr / |∇e ′ cr | the CR energy gradient scale length. This is larger 
than the CR scattering time ν̄−1 

s for ℓ ∇, cr � c/ (3 ̄νs ) ∼ 3 pc R 
1 / 2 
GV 

(i.e. ℓ ∇, cr larger than the CR scattering mean free path). Since we 
observ e and e xpect ℓ ∇, cr � kpc, we confirm that e ′ cr will generically 
converge to steady-state on much longer time-scales than F 

′ 
e, cr or 

e ±. 
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APPENDIX  C :  EXTRINSIC  T U R BU L E N C E :  

BA SIC  S C A L I N G S  A N D  RESULTS  

It is helpful to briefly re vie w some properties of ET. In a turbulent 
cascade with velocity and magnetic field fluctuations δv , δB on a 
scale λ ∼ 1/ k , most of the energy ( | δv 2 ( k ) | ∼ k E( k)) is concentrated 
around the driving scale λ ∼ ℓ drive ( � 0 . 1 − 1 kpc in the ISM/CGM), 
with Alfv ́en Mach number M A ∼ 〈| δv 2 ( λ ∼ ℓ drive ) |〉 1 / 2 /v A, ideal � 1. 
On the largest super/trans-sonic/Alfv ́enic scales, this can give rise to 
a compressible and weakly pressurized Burgers ( 1973 )-like power- 
spectrum ( | δv 2 ( λ) | ∝ λ; Schmidt et al. 2009 ; Konstandin et al. 2012 ; 
Hopkins 2013 ; Squire & Hopkins 2017 ). Below the Alfv ́en scale ℓ A , 
where | δv 2 ( λ ∼ ℓ A ) |〉 1 / 2 ∼ v A, ideal the fluctuations are sub-Alfv ́enic, 
by definition. In the Galactic ISM, typically ℓ A ∼ 10 − 100 pc 
(Elmegreen 2002 ; Mac Low & Klessen 2004 ). The defining feature 
of a traditional strong inertial-range cascade is the energy condition, 
S turb ∼ e turb / τ cas ∝ | δv ( λ) | 2 / τ cas ( λ) ∼ constant, where τ cas is the 
cascade or energy-transfer or decoherence time, which can be 
parametrized o v er the inertial range as τcas ∼ ( ℓ A /v A, ideal ) ( λ/ℓ A ) α , 
with some α > 0 (with α ≤ 1 almost al w ays required). 26 For now, we 
neglect the difference between the parallel (to ̂  b ) k ‖ and perpendicular 
k ⊥ components of k , but recall that what we need to calculate CR 

scattering rates is e turb ( k ‖ ), since it is the parallel component k ‖ that 
controls the scattering terms (e.g. Voelk 1975 ; and for gyroresonance, 
k ‖ ∼ 1/ r g , cr ). If there is strong damping/dissipation, then the dissipa- 
tion/Kolmogorov scale of the turbulence k diss ∼ 1/ λdiss occurs when 
some dissipation/damping rate ∼ Ŵ ( k , . . . ) | δv | 2 becomes larger than 
the turbulent dissipation/cascade/transfer rate ∼| δv | 2 / τ cas , i.e. Ŵ � 

1/ τ cas . F or e xample, for some kinematic viscosity Ŵ visc ∼ νvisc k 
2 , 

we have λdiss ∼ ℓ A ( ℓ A v A, ideal /νvisc ) −1 / (2 −α) (i.e. ℓ A v A, ideal /νvisc is 
the Reynolds number). 

The gyroresonant scale λg ∼ 1 /k g ∼ r g, cr ∼ 10 −6 pc R GV /B µG , 
so λg ≪ ℓ A at energies of interest, hence | δv ( λg ) | ≪ v A, ideal and 
| δB ( λg ) | ≪ | B | , but we also know this empirically, since the 
observationally constrained CR scattering rates require | δB | / | B | ∼
3 × 10 −4 R 

0 . 2 
GV . This means we can at least approximately decompose 

the fluctuations into a linear superposition of Alfv ́en, slow, and fast 
magnetosonic modes, with | δB | / | B | ∼ | δv | /v A, ideal ≪ 1, and we can 
treat the gas as weakly compressible and smooth (gradient length 
scales of bulk ISM properties are much larger than λg ). 

C1 Anisotropy: Alfv ́enic and slow cascades 

First consider the Alfv ́enic case. Alfv ́en waves are generally weakly 
damped by collisionless processes in ionized gas down to the ion gyro 
scale, so assume we can temporarily neglect damping. Since these 
are incompressible modes, we can rewrite the MHD equations in 
terms of the convenient Elsasser variables: 

∂ t Z 
+ − ( v A · ∇) Z 

+ + ( Z 
− · ∇ ) Z 

+ = −∇ p/ρ

∂ t Z 
− + ( v A · ∇) Z 

− + ( Z 
+ · ∇ ) Z 

− = −∇ p/ρ (C1) 

where v A = v A ˆ b , Z 
+ ≡ δv + δB /(4 πρ) 1/2 , Z 

− ≡ δv − δB /(4 πρ) 1/2 . 
There are two possible limits to equation ( C1 ). In limit (1) , the 

non-linear term (( Z 
− · ∇) Z 

+ or ( Z 
+ · ∇) Z 

−) is small. If this term 

is negligible, then we trivially recover the equations for Alfv ́en 
w ave pack ets without any interactions: i.e. the equations do not 

26 From the energy condition, this immediately gives e turb ( k ) ∝ k −α , or the 1D 

E( k) ∝ k −(1 + α) . So, e.g. the commonly cited ‘K41-like’ ( E( k) ∝ k −5 / 3 ), ‘IK- 
like’ ( E( k) ∝ k −3 / 2 ), and Burgers ( 1973 )-like ( E( k) ∝ k −2 ) isotropic power 
spectrum scalings correspond to α = (2 / 3 , 1 / 2 , 1), respectively. 

feature any ‘cascade’ per se, but simply admit whatever spectrum 

of Alfv ́en waves we wish to externally impose, by introducing some 
other source term (e.g. SC driving or our proposed no v el driving 
mechanisms). If the non-linear term is not completely ignored but still 
small (e.g. 〈| ( Z 

− · ∇) Z 
+ | 2 〉 ≪ 〈| ( v A · ∇) Z 

+ | 2 〉 ), then we obtain the 
classic assumptions of ‘weak’ Alfv ́enic turbulence. The conditions 
where this might occur in practice (in the absence of some other 
small-scale driving) are restrictive (see Lazarian 2016 ), but there 
is a bigger problem. As shown elegantly in Sridhar & Goldreich 
( 1994 ; see also Schekochihin 2022 for a pedagogical presentation), 
an isotropic IK-type weak ‘cascade’ as envisioned by e.g. Kraichnan 
( 1965 ) cannot exist (it is neither physically nor mathematically 
self-consistent): instead, the weak cascade occurs purely along k ⊥ , 
conserving k ‖ , so there is again no cascade to define e turb ( k ‖ ) nor is 
there any connection between e turb ( k ‖ ) for different k ‖ (weak Alfv ́enic 
turb ulence simply redistrib utes this energy to different k ⊥ at the same 
k ‖ , which has no effect to leading order on CR scattering). In other 
words, we once again simply reco v er whatev er Alfv ́en spectrum 

e turb ( k ‖ ) we choose to impose by introducing some other , non-ET 

source term. 
In limit (2) , the non-linear term is not negligible (e.g. 〈| ( Z 

− ·
∇) Z 

+ | 2 〉 � 〈| ( v A · ∇) Z 
+ | 2 〉 ). In this limit, a cascade linking E at 

different k ‖ is possible, and making additional assumptions leads to, 
for example, the specific ‘strong’ turbulence cascade of Goldreich & 

Sridhar ( 1995 ; GS95, or variations proposed in Boldyrev 2005 or 
others re vie wed in Schekochihin 2022 ), all of which give E ∝ k −1 

‖ , 
i.e. δs = 0, as noted in the main text. More generally, a simple 
argument that δs must be ≤0 in this regime goes as follows. Define 
the parallel scale of a mode as l ‖ ∼ 1/ k ‖ , such that O[( v A · ∇) Z 

+ ] ∼
v A Z λ/l ‖ , and note that since | δv | ≪ v A , this limit (2) requires 
l ‖ � l ⊥ ( v A / | δv | ) ≫ l ⊥ [or else the non-linear term would again be 
negligible, putting us in limit (1) ]. This means k ≈ k ⊥ , so λ ∼ 1/ k = 

l ⊥ . Without loss of generality, define l ‖ ∝ v A τcas ( ℓ A /l ‖ ) α‖ o v er some 
dynamic range, such that O[( v A · ∇) Z 

+ ] ∼ O[( l ‖ /ℓ A ) α‖ Z λ/τcas ]. 
Trivially, α‖ ≥ 0 is required so that the linear term is equal to 
or smaller than the non-linear & ‘cascade’ terms [otherwise, if 
α‖ < 0, for l ‖ ∼ λg ≪ ℓ A we would immediately arrive back in 
limit (1) ]. Note that the critical balance assumption corresponds 
specifically to α‖ = 0. Now, we can also allow for some arbitrary 
losses from the cascade across scales by defining the cascade rate S ∼
e turb /τcas ∼ S 0 ( l ‖ /ℓ A ) αS , where again any physical cascade requires 
αS ≥ 0 (an un-damped cascade corresponds to αS = 0, but non-zero 
dissipation or losses can decrease the energy on smaller scales). Now 

if we recall ν ∝ � | δB ( k ‖ ∼ 1 /r g, cr ) | 2 / | B | 2 ∼ k ‖ e turb ( k ‖ ) | k ‖ ∼1 /r g, cr ∼
S 0 ( l ‖ /ℓ A ) αS τcas /l ‖ ∝ l 

α‖ + αS 
‖ , we have δs = −( α‖ + αS ) ≤ 0. 

In short, it is not possible to construct an internally consistent 
Alfv ́enic cascade with δs > 0. Anisotropy in the form of critical 
balance with an un-damped Alfv ́enic cascade gives δs = 0. Adding 
losses/dissipation at scales between gyroresonant and driving only 
further decreases δs . Violating the critical balance-type assumptions 
(by e.g. introducing a non-zero α‖ , in our notation abo v e) leads to 
one of two outcomes. (1) There is no ‘cascade’ or any interaction 
between modes with different parallel wavenumbers (if α‖ < 0), and 
the power | δB ( k ‖ ) | 2 must be set not by ET but by some other source 
term driving modes independently on each scale. Or (2) the cascade 
produces δs < 0 if α‖ > 0, i.e. if the anisotropy is even larger than 
required for critical balance. 27 

27 Of course, as many have pointed out, any Alfv ́enic cascade THAT does 
not obey critical balance will be pushed (by a weak cascade or causality/de- 
correlation) towards a state of critical balance. We simply wish to stress that 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
7
/4

/5
4
1
3
/6

7
5
9
4
3
7
 b

y
 C

a
lifo

rn
ia

 In
s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 2

0
 A

u
g
u
s
t 2

0
2
3



Failure of SC and ET models 5447 

MNRAS 517, 5413–5448 (2022) 

For more rigorous discussion, we refer interested readers to 
Schekochihin ( 2022 ) for a re vie w of more detailed Alfv ́enic turbu- 
lence models, demonstrating that even models that are imbalanced, 
intermittent, decaying, damped, or otherwise strongly modified, all 
obey δs ≤ 0 in our language. 

Note that, as many others have pointed out, slow modes are subject 
to a similar anisotropy constraint to Alfv ́en waves as described 
abo v e (which again leads to δs ≤ 0), and are subject to additional 
magnetosonic damping terms, which further constrain δs ≤ 0 as we 
discuss for fast modes below (see e.g. Cho & Lazarian 2003 ; Yan & 

Lazarian 2004 ; Schekochihin et al. 2009 , and references therein). 
Thus, we do not discuss them further. 

C2 Fast modes 

Now consider instead a fast magnetosonic cascade. It is at least the- 
oretically possible, in principle, that within the inertial-range these 
could produce an isotropic cascade ( k ‖ ∼ k ⊥ ∼ k ) with the desired 
scaling of e turb ( k ) ∝ k −α : if e.g. δs ∼ 0.6 is observationally required, 
this would imply an inertial-range τ cas ∼ λ0.4 or | δv | ∝ λ0.2 ( α ∼
0.4). But it is important to stress that even the inertial-range behaviour 
on small scales ( ≪ℓ A ) is not theoretically clear: while e.g. Cho & 

Lazarian ( 2003 ) and Ferrand et al. ( 2020 ) argue for a spectrum with a 
Zakharov & Sagdeev ( 1970 )-type weak cascade e turb ( k ) ∝ k −1/2 below 

the sonic/Alfv ́en scale (which would give δs ∼ 0.5 in the inertial 
range, within the observationally allowed range), others have argued 
from both analytic theoretical grounds (Kadomtsev & Petviashvili 
1973 ; Els ̈asser & Schamel 1976 ; Shi v amoggi 1992 ; Galtier et al. 
2000 ; K uznetso v & Krasnoselskikh 2008 ; Galtier & Banerjee 2011 ; 
Shi v amoggi 2011 ; Sun 2016 ) and numerical simulations (Elsasser & 

Schamel 1974 ; Erlebacher et al. 1990 ; Mee & Brandenburg 2006 ; 
Kowal & Lazarian 2010 ; Lee et al. 2010 ; Makwana & Yan 2020 ) that 
the spectrum should be closer to e turb ( k ) ∝ k −1 (giving δs = 0). And 
the classic Kolmogorov ( 1941 ) (K41)-type scaling e turb ( k ) ∝ k −2/3 

( δs = 1/3 in the inertial range), though often cited in older ‘leaky 
box’ models for CR transport that did not include a scattering halo, 
actually provides a poor fit to the observations in modern models that 
include any extended scattering halo (see e.g. Blasi & Amato 2012 ; 
Vladimirov et al. 2012 ; Gaggero et al. 2015 ; Cummings et al. 2016 ; 
Guo et al. 2016 ; J ́ohannesson et al. 2016 ; Korsmeier & Cuoco 2016 ; 
Evoli et al. 2017 ; Amato & Blasi 2018 ; De La Torre Luque et al. 
2021 ; Hopkins et al. 2021a ) 

It is also not clear that isotropy is a good assumption on small scales 
even for fast modes (see e.g. K uznetso v & Krasnoselskikh 2008 ; Lee 
et al. 2010 ; Brandenburg & Nordlund 2011 , and references therein). 
If there is significant anisotropy, for reasons similar to those abo v e, 
it will generically tend to decrease δs . 

But as discussed in the text, an entirely un-ambiguous problem is 
that isotropic fast modes at gyroresonant scales are very strongly 
damped. Even in a fully ionized medium, collisionless damping 
of fast modes is orders of magnitude more efficient than for 
Alfv ́en modes on these scales. 28 Depending on the assumptions 

even transient violations of this condition fail to produce an Alfv ́enic cascade 
with δs > 0. 
28 The dominant fast-mode damping terms (in addition to the weaker terms 
in the main text which also apply to Alfv ́en waves) are: viscous damping 
Ŵ fast, visc (both by neutrals and Braginskii 1965 viscosity from ions) and 
collisionless/Landau damping Ŵ fast, L : 

Ŵ fast, visc ≡ k 2 νvisc , eff (C2) 

Ŵ fast, L ≡ sin 2 ( θ ) 
cos θ k v fast f fast, L (C3) 

of ISM/CGM properties, mode angles, and the cascade time-scale, 
if we define the ‘damping scale’ k diss ∼ 1/ λdiss as that where for 
some mode angle cos θ ≡ k ‖ / k , the most-rapid fast-mode damping 
rate Ŵ fast is larger than the cascade rate 1/ τ cas , we would obtain 
λdiss ∼ 10 −4 − 10 pc (see e.g. fig. 1 and table 1 of Yan & Lazarian 
2004 ). More importantly, accounting for the combination of viscous, 
collisionless, and neutral damping (with realistic ISM/CGM scal- 
ings), it is essentially impossible to make λdiss smaller than r g , cr at 
rigidities < 100 − 1000 GV. 29 As a result, we argued in the text that 
δs ≤ 0. Detailed numerical calculations showing δs � 0 is al w ays 
the case for all R cr � 100 − 1000 GV for fast-mode ET, accounting 
in detail for e xact e xpressions of the scattering rates and their 
detailed dependence on pitch angle, mode angle, and wavelength, 
along with the full range of angle-dependent damping rates from 

different processes (following more exact integral expressions for 
CR scattering physics), have been extensively presented, including 
in YL04 (their fig. 2), Yan & Lazarian ( 2002 , 2004 , 2008 ), and 
Kempski & Quataert ( 2021 ). And of course our fast-mode ET model 
in the main text (Fig. 4 ; right ) is one such calculation as well. So here 
we only seek to justify this heuristically (see Kempski & Quataert 
2021 as well for a similar discussion). 

First, consider the effects of damping on gyroresonant CR scat- 
tering. If the damping is isotropic (as with e.g. neutral viscosity 
or ion-neutral damping per Spitzer 1978 , in regions with neutral 
fraction f neutral � 0.001 − 0.01; see text and Hopkins et al. 2021d ), 
the spectrum is, by definition, truncated at k ‖ � k diss exponentially 
or super-exponentially, 30 equi v alent to δs ≪ 0. But even in a fully 
ionized medium with βplasma ≪ 1 assuming the dominant damping 
is e.g. from Braginskii viscosity or collisionless damping, which are 
anisotropic and do not damp parallel modes, we have a damping rate 
of the form: Ŵ fast ∝ k 1 + αk sin 2 ( θ ), where 0 ≤ αk ≤ 1 depends on e.g. 
whether collisionless or viscous damping dominates (and βplasma ). 
At scales λ < λdiss , modes with θ > θ c will have Ŵ fast ≫ 1/ τ cas and 
be truncated, so if we make the most optimistic assumption that the 

νvisc , eff ≡ νvisc , ion , 0 f v , ion ( θ ) f ion + νvisc , neutral f neutral (C4) 
νvisc , ion , 0 ∼ 0 . 6 × 10 18 cm 

2 s −1 T 
5 / 2 

4 n −1 
1 (C5) 

νvisc , neutral ∼ 3 × 10 20 cm 
2 s −1 T 

1 / 2 
4 n −1 

1 (C6) 

f v , ion ( θ ) ≈
{

sin 2 ( θ ) ( βplasma ≪ 1) 
| 1 − 3 cos 2 ( θ ) | 2 ( βplasma ≫ 1) 

(C7) 

Where for small θ , at βplasma not too large f fast, L ≡
( ω fast /k v fast ) ( 

√ 
π βplasma / 4) 

√ 
m e /m p exp [ −m e /m p βplasma cos 2 ( θ )] 

(Ginzburg & Syro vatsk y 1961 ), while for very large βplasma , 
f fast, L = (2 / cos 2 ( θ )) ( ω fast /k v fast ) ( ω fast /ω c , i ) (with ω fast the fast-mode 
frequenc y at wav enumber k , and ω c, i the ion c yclotron frequenc y; F oote & 

Kulsrud 1979 ). Note that viscous damping in ionized gas with βplasma � 1 
acts similar to isotropic (neutral) damping, in that it strongly damps parallel 
f ast w aves. In e v aluating the full CR scattering rate expressions, this has the 
same practical effect of strongly truncating the gyroresonant scattering term 

(giving δs ≪ 1). 
29 Given the most optimistic possible assumptions for reducing λdiss , it may 
be possible in some phases of the ISM, such as the WIM, to make r g , cr > 

λdiss at > 100 GV, while more typical assumptions for the WIM and even 
the most optimistic assumptions for the WNM and CNM or GMCs require 
� 1000 GV. In hot gas in the Galactic coronae, HIM, and CGM/halo, λdiss 

becomes much larger, and it is plausible that λdiss � r g , cr up to > 10 6 GV (i.e. 
up to PeV CR energies). 
30 Even if we assumed the mathematically ‘weakest possible’ cutoff for 
the spectrum below the damping scale, i.e. we assume S ∝ S 0 ( k diss /k) αS 

continues for k > k diss , we must have αS > 0. Equating this driving 
with the (by definition dominant) neutral damping Q visc , fast = Ŵ visc , fast e A ∼
νvisc , n k 

2 e A , we have e A ∝ k −(2 + αS ) , i.e. δs = −1 − αs < −1. 
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remaining modes simply continue their cascade uninterrupted, the 
surviving modes are confined to a narrow bicone with | θ | < θ c ≪
1, where θ c becomes smaller with increasing k . Equating Ŵ fast and 
τ cas gives sin 2 ( θc ) ∼ θ2 

c ∼ τ−1 
cas ( k ) k 

−(1 + αk ) . So if S ∼ S 0 ∼ constant 
on large scales is the total cascade power and begins (by assumption) 
isotropic, the power on smaller scales is necessarily reduced by a 
factor proportional to the solid angle of the undamped cone ∝ θ2 

c . 
Thus the energy of scattering modes with a given k ‖ must scale as: 
e A ∝ S τcas θ

2 
c ∝ S 0 k 

−(1 + αk ) , i.e. δs = −αk ≤ 0. Note further that if 
there is any ‘leakage,’ i.e. transfer of energy between the weakly 
damped cone and broader mode angles that are rapidly damped, then 
S must decrease further even along the ‘surviving’ directions, so we 
take S → S 0 ( λ k diss ) αS with αS > 0, giving δs = −( αk + αs ) < 0, and 
further reducing δs . 

As pointed out in YL04 and others, if a spectrum is strongly 
suppressed or truncated at scales λdiss ≫ r g , cr , then transit-time 
damping (TTD) from the larger-scale modes near λdiss could still 
produce CR scattering, which dominates o v er the gyroresonant term. 
But for TTD, we must replace our gyroresonant expression from 

the main text ( νs ∼ � | δB ( k ‖ ) | 2 / | B | 2 ∼ ( v cr k ‖ ) ( k ‖ E( k ‖ )) /e B ) with 
νs → 

∫ 
( �2 

cr / | B | 2 ) E( k) dk | J ′ [ k ⊥ v cr, ⊥ /�cr )] | 2 1 / ( k ‖ v ‖ ) R ( k ‖ v ‖ −
ω | k, k g , . . . ) ∼ e −1 

B 

∫ k diss 
0 dk E( k ) k v cr R ∼

( k diss v cr ) | δB ( k diss ) | 2 / | B | 2 R ( k g , k diss , . . . ) ∼ ( constant ) × R 

from e.g. Voelk ( 1975 ). Here, R is some appropriate dimensionless 
‘response’ or resonance function. Heuristically, this is just the 
statement that a CR is scattered in pitch angle by a random 

amplitude | �μ| ∼ | δB ( k ) | / | B | as it crosses a mode in time 
�t ∼ λ/v cr ∼ 1 /k v cr , so will random walk to an order-unity 
change in pitch angle after N ∼ | B | 2 / | δB ( k ) | 2 events, implying a 
scattering time ν−1 

s ∼ N 
2 �t ∼ [( k v cr ) | δB ( k ) | 2 / | B | 2 ] −1 . But if this 

is dominated by the inte gral o v er larger-scale modes, then it is by 
definition independent of R cr , so δs = 0. Moreo v er, if we account for 
any non-trivial response function R (describing how efficiently a 
mode of scale k can deflect the pitch-angle of a CR with gyroradius 
r g , cr ∼ 1/ k g ), it must be the case that R is a decreasing function of 
k g / k for k g ≫ k , hence we must have δs < 0. 

Finally, note that because of how the actual scaling of the spectrum 

S factors out in the abo v e, and that these fast-mode damping 
mechanisms act on all scales of interest, the abo v e conclusion 
that fast-mode damping requires δs ≤ 0 applies not just to fast 
modes sourced by a larger-scale cascade, but any isotropically driven 

population of fast modes, even if they were driven or sourced around 
the gyroresonant scales. 

C3 Summary 

In summary, it is not possible to construct a self-consistent ‘cascade’ 

model which produces δs > 0 for CRs, as required (observed δs ∼
0.5–0.7). We stress that the arguments abo v e are quite generic: this 
is not a statement specific to one particular model of turbulence or 
to various contro v ersial or uncertain assumptions. Rather, they arise 
from fundamental features of the MHD equations themselves (which 
require that any Alfv ́enic or slow ‘cascade’ linking different parallel 
k ‖ have δs ≤ 0) or the fundamental nature of magnetosonic damping 
(which means any magnetosonic cascade where the most-rapidly 
damped-modes begin to be appreciably damped on a spatial scale 
λdiss larger than the gyroradius r g , cr at some R cr must have δs ≤ 0 at 
all smaller R cr ). 

There is, ho we ver, one rather straightforw ard w ay to provide the 
desired scattering: as we show in Section C1 , if there exists some 
other source/driving term of Alfv ́en waves (other than a cascade 
related to any mode-coupling from larger or smaller scales) at 
parallel k ‖ , and those waves are not extremely anisotropic [i.e. have 
typical k ‖ � ( | δv ( k ‖ ) | /v A ) k ⊥ ≫ 0 . 0003 k ⊥ , so limit (1) in Section C1 
applies], then it is perfectly allowed to construct an arbitrary spectrum 

E( k ‖ ) ∝ k 
δs −2 
‖ with the desired δs . These can be weakly damped (by 

e.g. the mechanisms in the text), and undergo a weak cascade mixing 
the perpendicular wavenumbers k ⊥ but leaving E( k ‖ ) unmodified, 
and satisfy all consistency constraints we discuss abo v e. As noted 
in the text, standard SC theory would be one example of precisely 
this case, except that (for entirely different reasons) the form of the 
driving term S sc produces the incorrect spectrum E( k ‖ ) (unless one 
also modifies the damping terms as we discuss). The other driving 
terms we propose: S new , lin and S new , ext also function in this manner. 

At large CR rigidities, � 0 . 1 − 1 TV, it becomes possible (at least 
in some ISM phases) to have r g , cr � λdiss , so a ‘traditional’ ET- 
type theory can apply and at least in principle one could obtain 
a reasonable CR scattering rate from turbulence with an isotropic 
inertial-range spectrum with k ‖ E( k ‖ ) ∝ k 

−1 / 2 
‖ (see e.g. Fornieri et al. 

2021 ). But of course, it is also possible that additional source terms 
like those we propose could still be important on these scales as well. 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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