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ABSTRACT

Models for cosmic ray (CR) dynamics fundamentally depend on the rate of CR scattering from magnetic fluctuations. In the ISM,
for CRs with energies ~MeV-TeV, these fluctuations are usually attributed either to ‘extrinsic turbulence’ (ET) — a cascade from
larger scales — or ‘self-confinement’ (SC) — self-generated fluctuations from CR streaming. Using simple analytic arguments
and detailed ‘live’ numerical CR transport calculations in galaxy simulations, we show that both of these, in standard form,
cannot explain even basic qualitative features of observed CR spectra. For ET, any spectrum that obeys critical balance or
features realistic anisotropy, or any spectrum that accounts for finite damping below the dissipation scale, predicts qualitatively
incorrect spectral shapes and scalings of B/C and other species. Even if somehow one ignored both anisotropy and damping,
observationally required scattering rates disagree with ET predictions by orders of magnitude. For SC, the dependence of driving
on CR energy density means that it is nearly impossible to recover observed CR spectral shapes and scalings, and again there is
an orders-of-magnitude normalization problem. But more severely, SC solutions with super-Alfvénic streaming are unstable. In
live simulations, they revert to either arbitrarily rapid CR escape with zero secondary production, or to bottleneck solutions with
far-too-strong CR confinement and secondary production. Resolving these fundamental issues without discarding basic plasma
processes requires invoking different drivers for scattering fluctuations. These must act on a broad range of scales with a power

spectrum obeying several specific (but plausible) constraints.
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1 INTRODUCTION

Understanding how cosmic rays (CRs) propagate and interact as
they travel through the inter-stellar medium (ISM) and circum/inter-
galactic medium (CGM/IGM) is a problem with crucial implications
for a wide variety of questions in astrophysics, including star, planet,
and galaxy formation and evolution; astro-chemistry and chemo-
dynamics; and space plasma physics (for reviews, see Zweibel 2013,
2017; Amato & Blasi 2018; Kachelrie3 & Semikoz 2019). Most of
the energy density in CRs (which determines their ability to ionize,
heat, and interact with the gas) resides around ~GeV energies,
and in the range ~MeV-TeV. At these energies, CR gyroradii
(rg.r ~ 10° — 10 cm) are vastly smaller than the characteristic
scale-lengths of the galactic disc and the driving scales of ISM
turbulence. As such, CRs cannot simply ‘free stream’ out of the
galaxy at speeds ~c, but rather scatter in pitch angle from magnetic-
field fluctuations, giving rise to some effective scattering rate vg.
This, in turn, leads to bulk CR transport, which can be parametrized
by some effective diffusivity ke ~ A/vg or streaming speed vy ~
Keff| VP |[IPy K c.

These scattering rates have major implications for all of the
astrophysical and space plasma fields above, and are probably the
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most important uncertainty in our understanding of the role of
CRs. In understanding star and galaxy formation and the effect of
CRs on the ISM/CGM/IGM, for example, a multitude of studies
have shown that if the effective diffusivity or streaming speed is
‘too small,” CRs will be trapped in dense gas, and rapidly lose
their energy to a variety of processes (e.g. pionic, catastrophic,
and synchrotron/inverse Compton losses) before they can have a
significant effect on the gas properties. In the opposite limit, if
the diffusivity is ‘too large,” CRs will free-stream rapidly out of
the CGM and either effectively decouple from the gas or build
up so little pressure that they will again have no effect. But, at
diffusivities ‘in between’ these values, ~ GeV CRs can have energy
densities that are comparable to magnetic or thermal energy densities
and have important effects on the gas (Girichidis et al. (Girichidis
et al. 2016; Wiener, Pfrommer & Oh 2017; Butsky & Quinn 2018;
Farber et al. 2018; Butsky et al. 2020; Su et al. 2020; Hopkins
et al. 2020b, 2021c¢). Likewise, the effect of CRs on astro-chemistry,
planet formation, and dense gas systems depends sensitively on how
effectively very low-energy (< 100 MeV) CRs are trapped and their
penetration depth into dense clouds and protostellar discs (Wolfire
et al. 1995; Scalo & Elmegreen 2004; Indriolo, Fields & McCall
2009; Padovani, Galli & Glassgold 2009; Thompson 2013; Lee &
Hopkins 2020; Parker 2020; Bustard & Zweibel 2021). And details of
CR plasma physics, in particular their micro—scale interactions with
the multiphase ISM/CGM/IGM gas, both shape and are determined
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by the CR scattering rates (see e.g. Zank 2014; Bai et al. 2015,
2019; Lazarian 2016; Zweibel 2017; Holcomb & Spitkovsky 2019;
Thomas & Pfrommer 2019; Van Marle, Casse & Marcowith 2019,
and references therein)

The overwhelming majority of work studying and attempting to
constrain CR transport, either in the Milky Way (MW) galaxy from
observations in and around the Solar system (from e.g. terrestrial
and space-based CR experiments) or from y-ray observations, has
focused on simple, phenomenological constraints. This generally
involves parametrizing CR transport in terms of effective diffusion
coefficients or streaming speeds or other transport parameters (see
Strong & Moskalenko 2001; e.g. Blasi & Amato 2012; Vladimirov
et al. 2012; Gaggero et al. 2015; Cummings et al. 2016; Guo, Tian &
Jin 2016; Johannesson et al. 2016; Korsmeier & Cuoco 2016; Evoli
et al. 2017, and references therein). These ‘effective’ coefficients
represent, by definition, some weighted average in the ISM between
CR sources (e.g. SNe remnants, in the MW) and the Solar system,
and are often parametrized as e.g. a power-law function of the CR
rlgldlty Rer, such as ket = ko Ber (Rcr/Rcr, 0)5S~

But Solar system constraints only measure CR transport in an
average sense at one point in space and time, while ISM properties
— both along the CR ‘path’ and in different galaxies and cosmic
epochs — vary tremendously in both space and time (by many
orders of magnitude for quantities of interest like magnetic energy
density). Further, phenomenological models do not explain how
such coefficients arise in the first place. What is therefore required
is a physical model of CR transport that can reproduce these
effective constraints and be tested in other regimes. However, this
is particularly challenging at the MeV-TeV CR energies of greatest
interest, because (1) the observational constraints are limited, (2) the
extremely small gyro radii are much smaller than spatially resolvable
scales in most astrophysical ISM studies, (3) the ‘back reaction’ of
magnetic fields and gas from CRs, e.g. via gyroresonant instabilities
and macroscopic CR ‘pressure’ effects, is maximized around this
energy scale, and (4) the ISM, CGM, and IGM phase structure and
turbulence itself remains uncertain.

Broadly speaking, historical models that attempt to predict CR
scattering rates and transport parameters at these energies fall
into one of two broad categories: ‘extrinsic turbulence’ (ET) and
‘self-confinement’ (SC) models. In the simplest ET models, going
back to e.g. Jokipii (1966), Wentzel (1968), Skilling (1975a), and
Voelk (1975), CRs scatter from gyroresonant fluctuations in B, i.e.
those with wavenumbers k; =k - b ~ 1/r, .. Those early models
assumed SB(k;) was sourced by an isotropic, undamped, inertial-
range Kolmogorov (1941)-type (K41) cascade from larger ISM
scales. This gives rise to a scattering rate v, ~ Q¢ [$B(k))|*/|B|? o
IB|'/3 % R_;'% where €, is the Alfvén scale of the cascade.! In SC
models, going back to Wentzel (1969), Skilling (1971), and Holman,
Ionson & Scott (1979), CRs themselves source the scattering modes,
which they excite via various instabilities as they stream down
magnetic field lines (Wentzel 1968; Kulsrud & Pearce 1969). The
instabilities grow until reaching some saturation amplitude that
is determined by a wave damping rate I', thus giving rise to
scattering rates that scale as vy ~ Qg v4 |V Py | /(T [B|?) (Skilling
1975b).

Until recently, it has not been possible to directly test and
compare these models with local CR observations for a variety of

'We define the ‘Alfvén scale’ £, of any large-scale turbulent cascade as the
scale where extrapolating the inertial range, (|6Virb(k ~ 1/€4)]) = V4 ideal
(the ideal Alfvén speed).
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reasons. Perhaps most importantly, even in the simplest ET and
SC models, scattering rates are not constant but depend strongly
on ISM properties. These, in turn, vary dramatically across the
ISM by as much as ~10 orders of magnitude, in a manner that
cannot be captured by simplified models discussed above that assume
some steady-state CR distribution and solve e.g. a ‘leaky-box’ or
‘flat-halo diffusion’ model with a simple analytic galaxy model
(see the review in Hopkins et al. 2021d). Moreover, only recently
has the fluid theory of CRs been developed to the point where
SC theories can be ‘coarse-grained’ self consistently into fluid-like
magnetohydrodynamics (MHD)-CR transport and scattering models
(Zweibel 2013, 2017; Thomas & Pfrommer 2019; Hopkins, Squire &
Butsky 2022b), while modern versions of SC and ET models that
account for important effects such as damping and anisotropy have
only been developed in the last two decades (Chandran 2000; Yan &
Lazarian 2002; Farmer & Goldreich 2004; Yan & Lazarian 2004,
2008; Zweibel 2017; Squire et al. 2021). Finally, only recently has
CR data become available from outside of the heliopause, which is
crucial for the CRs of greatest interest (< 100 GeV energies) because
these are strongly modulated by the Sun (Cummings et al. 2016;
Bindi et al. 2017; Bisschoff, Potgieter & Aslam 2019). These new
observations help to remove the order-of-magnitude degeneracies
that plagued previous attempts to test CR transport/scattering
theories.

In this paper, we therefore revisit the question of whether or not
state-of-the-art ET or SC models can possibly explain the state-of-
the-art CR observations. We first consider the problem in a purely
analytic fashion, synthesizing CR transport theories (beginning from
general considerations before considering approximations such as
steady-state behaviour) and reviewing the state of the art in both SC
and ET theories in order to treat all potentially important damping
terms. We then test these models in even greater detail with fully
non-equilibrium, non-linear, non-steady state CR transport in high-
resolution galaxy simulations, which explicitly resolve the plasma
properties that determine CR scattering. While a first attempt at
such comparisons was presented in Hopkins et al. (2021d), which
already argued that present ET and SC models failed to reproduce
the observations, that paper simplified by considering a ‘single-
bin’ CR approximation, essentially modelling only CR protons in
a narrow range of energies at ~ 1 GeV. Here, we expand this to a
full spectrum of CRs with a wide range of secondary species. This
dramatically expands the range of observational constraints and will
allow us to show that the scope of the discrepancy between SC and ET
models and observations is much larger than previously believed. In
particular, some of the possible resolutions to the discrepancies noted
in Hopkins et al. (2021d) — e.g. changing the normalization of SC-
induced scattering rates by accounting for certain pitch-angle effects
—cannot possibly provide the full solution. We use these constraints to
propose that a new class of sources for gyroresonant scattering waves
is required, which obeys a well-constrained (but plausible) set of
requirements.

In Section 2, we set up the analytic background, including review
of some key definitions (Section 2.1) and description of the CR
dynamics equations (Section 2.2), relevant Alfvén wave properties
(Section 2.3), and expressions for scattering rates (Section 2.4).
We then review standard damping mechanisms (Section 2.5) and
drivers of scattering fluctuations in both SC (Section 2.6) and
ET (Section 2.7) limits, and the resulting steady-state behaviours
(Section 2.8). In Section 3, we discuss the problems that follow: first
we review what empirical CR transport models require (Section 3.1)
then describe how both ET (Section 3.2) and SC (Section 3.4)
models cannot satisfy these constraints, then propose phenomeno-
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logical solutions (Section 3.5) involving either modified damping
(Section 3.5.1) or driving (Section 3.5.2) terms. We then proceed
to explore these in detailed simulations. Section 4 describes the
numerical methods, outlining the non-CR (Section 4.1) and CR
(Section 4.2) physics simulated, a theoretically motivated ‘reference’
model (Section 4.3), and extensive variations to that model that we
have considered (Section 4.4). Section 5 describes the results of these
simulations, first (Section 5.1) confirming the analytically predicted
‘failure modes’ of SC (Section 5.1.1) and ET (Section 5.1.2) models,
then testing the proposed alternative damping (Section 5.2) or driving
(Section 5.3) scalings to see if these can reproduce observations. We
summarize and conclude in Section 6. Appendices A—C contain
more detailed analytic derivations of steady-state CR behaviours and
turbulent scalings.

2 ANALYTIC BACKGROUND

2.1 Key scales and definitions

To begin, we review some important concepts. Table 1 collects
definitions of some of the most-commonly used variables in this
paper. Per Section 1, CRs with some rigidity R, and corresponding
gyro radius r, o = Re/|B| (~ 1076 pc in the diffuse ISM, for
CRs with R, ~ 1 GV) are scattered in pitch angle p by fluc-
tuations in the magnetic field 6B with some effective scattering
rate vs. In most models (though not all, as we discuss below),
the CR scattering rate is strongly dominated by gyroresonant
scattering of CRs from Alfvén waves with parallel wavenumbers
k=k- b~ 1/rq . The power in these modes (eq ~ (|dB(k; ~
1/rg, )2 /8m), which determines v, is set by competition be-
tween some source/driving terms S and damping or dissipation
rates Q = [Ney.

We stress that this encompasses both SC and ET models: the
difference comes down to which dominates S. In SC models, S
is sourced by parallel Alfvén waves excited directly by CRs (via
e.g. gyroresonant and streaming instabilities), which we denote
Ss.. In ET models, the dominant contribution to S comes from
a turbulent cascade S, operating over a large dynamic range in
scale. Also note that by definition I' includes any terms which
remove power from the scattering modes, e.g. both traditional
collisional damping, but also processes which transfer energy to
other modes with different wavenumbers or weaker scattering
effects.

We will show that it is useful to parametrize S and I' in terms
of their approximate scaling with parallel wavenumber (k|), total
kinetic energy density of CRs around a given rigidity (e.), and
energy in scattering modes at some kj (e4 or e4), as § kﬁ" ef{‘ €l

and I' kﬁk e‘i{‘ €% shown in Table 2.% The key qualitative problems
and failure modes of SC and ET theories can be encapsulated entirely
in these coefficients ({ k., ¢4, Cers ks €45 Ecr)- Essentially, we will show
that whether or not a theory of CR scattering can potentially repro-
duce CR observations (independent of normalization parameters)
depends on these few numbers.

It is also helpful to recall some key scales in turbulence. Most of
the power in ISM/CGM turbulence is on the driving scale, typically
> 0.1 — 1 kpc (on which scale the turbulence is often trans or super-
Alfvénic, (|8Vun(k)]?) /% 2 v4.igea). Below the Alfvén scale £, (typ-
ically ~ 10 — 100 pc in the ISM), the turbulent fluctuations are sub-

2Note that ky, €cr, and e4 do not need to be strictly independent variables for
this parametrization.
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Alfvénic ({|8vum(k 2 1/€0)1)Y? < va idea)- At the vastly smaller
gyro scale ry o < €4, the scattering fluctuations are fractionally
small (quasi-linear; [6B(k ~ 1/ry )|/|B] < 1), and we can treat
fluctuations (approximately) as a superposition of Alfvén, slow, and
fast magnetosonic modes.

Alfvén modes are only weakly damped down to scales much
smaller than CR gyroresonant scales (at least down to ion gyro-
radii). When we refer below to ‘damping’ terms acting directly
on the CR scattering modes (Q+ and I'y), we generally are re-
ferring to this ‘weak’ damping. Specifically, Alfvén-mode-damping
times (~I'~!) at some k are much longer than the mode-crossing
times ~ 1/(k vy o) (by typical factors ~10*-10%). However, as
we discuss below (and in more detail in Appendix C), it is
well-established that an Alfvénic (or slow magnetosonic) cascade
must be highly anisotropic on scales below the Alfvén scale £4
(k > 1/€4): an isotropic Iroshnikov (1963), Kraichnan (1965)-
type (IK) cascade, for example, simply cannot exist (it is not
mathematically self-consistent) on scales r, o << £4. This means
it is crucial to distinguish between parallel k; and perpendicular
components of k.

Fast magnetosonic modes, on the other hand, are orders of
magnitude more strongly damped on small scales by both collisional
and collisionless/Landau damping (see Appendix C). On scales
below the dissipation scale kgiss ~ 1/€4;ss (With typical £45s = 0.001 pc
in the ISM), the magnetosonic mode damping time I‘[;;gnemsonic
becomes shorter than turbulent ‘cascade’ or decoherence or energy-
transfer time-scale 7., (with e.g. rc‘asl (k) ~ k (|8v12urb(k)|)l/ 2 in the
classical K41 picture), so the cascade must be truncated or strongly
modified by the energy losses. For essentially all plausible ISM/CGM
conditions, the gyroresonant scales are much smaller than the
dissipation scale (ry o < faiss) at rigidities < 100 — 1000 GV, so
one cannot simply extrapolate an un-damped inertial-range magne-
tosonic cascade of any form (let alone K41) down to gyroresonant
scales.

One additional clarification is important. To be consistent with
the previous literature, when we refer to the ‘turbulent damping’ of
gyroresonant modes, 'y, (see Section 2.5), we refer specifically
to a process by which interactions between gyroresonant scattering
modes and other turbulent modes transfer energy from the weakly
damped gyroresonant scattering modes (with ky ~ 1/r, () to either
higher-k or more strongly damped modes. This is different from
‘damping or dissipation of turbulence,” which we will use to refer to
the phenomena described above for e.g. fast magnetosonic modes, in
which a turbulent cascade is strongly modified by sufficiently strong
damping on some dissipation scale £ larger than the gyroresonant
scales.

2.2 Cosmic ray dynamics equations

Consider an arbitrary CR distribution function (DF) f; =
for(X, Pers T, Ser, - - .)as afunction of position x, CR momentum p,;,
time #, and CR species s, on macroscopic scales much larger than
CR gyroradii. Assuming the DF is approximately gyrotropic, and the
background gas velocities uy,, are non-relativistic, the general Vlasov
equation for f. can be written to leading order in O(|ugy|/c) as the
usual focused transport equation (Skilling 1971, 1975a; Isenberg
1997; Le Roux, Matthaeus & Zank 2001; Le Roux et al. 2005; Zank
2014; Le Roux et al. 2015), with the standard quasi-linear theory slab
scalings for the scattering terms from Schlickeiser (1989). As shown
in Hopkins et al. (2022b), taking the zeroth and first pitch-angle (1)
moments of that equation (retaining all terms to leading order in
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Table 1. Commonly used variables in this paper.

Jers s Pers Ecr
Qecr, Ver, Fg, crs Rer

CRDF for = fer(X, Per, t, 8, ...), pitch angle pt= pe; - f)’ momentum per = |Per|, €nergy Ec;
CR gyrofrequency 2, velocity ver = Ber ¢, gyroradius rg or = Ver/Qer, rigidity Rer

Jer(Rer) CR injection rate/spectrum as a function of rigidity R, (from SNe and other sources)

ey, e Energy of forward(+) or backward(-) CR-scattering waves e+ = kjE(k - b = £k ) at wavenumber 4k, with e4 = ey + e_
Vs, +, Vs + CR scattering rate from forward/backward propagating waves v 4, and pitch-angle averaged s +

8 Average dependence of CR scattering rate on rigidity, e.g. s o Ber Rc_r‘SS (observationally required 0.4 < 85 < 0.7)

k, ky, k1 Wavenumber k of CR-scattering modes, with parallel (k) =k - b) and perpendicular (k, ) components

el €cr, Pl Differential CR energy density/pressure at a given momentum pey, €l = decr/d In per, €r = (Yor — 1) €y, Pl = ,Bczr el./3
B, f), eg, 6B Magnetic field B, direction b= B/|B|, energy eg = |B|2/8n, fluctuations 5B on scale ~k

VA, ideals VA, eff Ideal-MHD Alfvén speed v4 ideal = (IBJ? JAmp)l/ 2 speed of gyroresonant Alfvén waves v, cfr (€quation 5)

La Alfvén scale of large-scale turbulence (scale where |8V (k ~ 1/ D2 ~ vy ideal)

S+ Source terms for CR scattering modes (Die+ + ... = S+)

[0 Damping terms for CR scattering modes (Dje+ + ... = —Q+ = —T'+ e4)

Table 2. Parametrization of generalized damping/driving rates for CR-scattering modes.

Ers Ens Eor Coefficients for damping rates: Q4 = 't e4 with 'y « kﬁ" eiA € Ex Ea Eor
Values explored in our simulation survey 0<ér<2 0<és4<1 0<é&,<1
Xi Quantities (e.g. Q, I', &) for ion-neutral damping 0 0 0
Xdust Quantities for dust damping 05— 0.75 0 0
X Quantities for NLL damping 1 1 0
Xturb/LL Quantities for linear Landau or ‘turbulent” damping 04— 0.5 0 0
Xnew,damp ~ Quantities for proposed novel damping that could fit observations ~0.1 - 04 ~0 ~1
Cky Cas Cor  Coefficients for driving/source rates: Si o kﬁ"' eftA egﬁ‘ Ck Ca Cer
Values explored in our simulation survey —2=5¢ksS2 0<¢sa<1 0<¢sg<1
Xse Quantities (e.g. S, ¢) for SC driving (non-steady-state ¢ in []) 0[1] 0[1] 1[1]
Xet Quantities for ET driving (with anisotropy/damping) < —1 b ~0 0
Xnew, lin Quantities for proposed novel linear source terms which could fit observations ~0.6 — 0.9 ~1 ~0
Xnew, ext Quantities for proposed novel extrinsic source terms which could fit observations ~—0.25 - —0.1 ~0 ~0

O(Jugys|/c)) gives the evolution equations for the isotropic part of
the DF f..( (i.e. the CR number density at a given differential p., =
[per]) and its flux:3

th_;:r,O +v . (Ucrf)fcr, 1) = jcr,0+ (1)

19
Pé BPer

[Pgr {Rloss .fcr,() + (Dcr : vugas) Per .fcl‘,O +

i~ F A 3fcr0}:|
Dy for1 + Dyp ——
pu Jer, 1 pp 3 per

- - C o 0w
focr,l +b- [V (vcr Der fcr,O)} =- |:Dup fcr,l + Dup a;r
cr
~ p?r U/Z; _ ~ Per Ua _ ~ - ~ Der VA _
Dpp=x =5= Vs, Dpp=——70, Dyyp =75, Dyp=x — 7
Vg Ver Ver
2

where fi, = (1 Jer)w is the n’th pitch-angle moment (so e.g.
fer.0 is the isotropic part of the DF, and fi. | = (i) fir.0). In
equations 1-2, D; X = 6, X + V - (ugs X) = pd,(X/p) is the con-
servative comoving derivative (with p the gas mass density),
Ver = PBer € 1s the CR velocity, p = Yer Ber Mo ¢ the CR momentum,
b = B/|B| the unit magnetic field vector, j.. represents injection &
catastrophic losses, Rjess represents continuous loss processes, vy
is the Alfvén speed, the coefficients D are defined in terms of
the scattering rate b = ¥ . + D5 _ (the scattering contributed by
forward-and-backward propagating modes with respect to b), the

3 As shown in Section 2.8 below, equation 1 reduces to the somewhat more
familiar anisotropic ‘streaming + diffusion’ equation for f, o if one assumes
Dy fer,1 is small (i.e. the flux is in ‘local steady-state’).
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signed U4 = vs (Vs + — D5, )/(Ds 4+ + s —), and the Eddington tensor
De=x014+0-3%) bb and scattering terms are defined in terms
of x = (1= (W2)/2 = (1 = fur.2/ fer.0)/2-

Integrating over an infinitesimal range in momentum for a CR
group or ‘packet,’ this can be further transformed into the differential
CR energy equation, which will be useful below:

Diel,+V - (F. b)) =S, — P, : Vug +8,

other, cr

DfFe/,cr+czl3' (V'IP/cr) = —Ds [Fe/,cr_SXDA (eér+Pc/r)] (3)

where e, =de/dInpy = pl. [du [dp E(pe) f is the total
CR energy in a differential range of momentum p, F, . =
dF, o/dInpe = pd [du [d¢ E(p)vp f is its flux, Sl o
collects any other arbitrary sources/sinks (e.g. catastrophic losses,
injection at shocks, etc.), P.. =3P/ Dy (with P, = p2el./3),
and scattering gives rise to the energy loss/gain term* S‘;C =

_(\—15/6.2) [EA Fe,. cr 3x vf‘x (e</:r + Pc,r)] .

2.3 Which Alfvén speed?

In partially ionized gas, the Alfvén speed v, is not wavelength-
independent. The correct Alfvén speed in the CR dynamics equa-
tions should be Alfvén speed of gyroresonant Alfvén waves, as
the original derivation of the relevant scattering terms takes vy =

4 As shown in Hopkins et al. (2022b) the Du pand D pp terms, and correspond-
ing dependence on 9/dpc;, do appear implicitly to leading-order in O(u/c) in
equation 3 in the S'S’C term, contributing to the ‘streaming loss’ and ‘diffusive

- N S/ .
reacceleration’ portions of S, respectively.
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V4, off = Real(wy/ky) with ky = 1/ur, o (for gyroradius ry o see
e.g. Skilling 1975a). In the MHD limit (assuming e.g. non-relativistic
electron gyroradii are vanishingly small), the relevant dispersion
relation is:

@ + i @3 Vin (1 + Wion) — kj V5 ion @4 — i kj U3 i0n Wion Vin = 0, (4)
where vy, is the ion-neutral collision frequency (this is distinct from
Vni = wion Uin)’ VA, ion = (32/47Tpi0n)1/2’ and ll’ion = pion/pneutral =
Jfion/(1 = fion), in terms of the ion and neutral mass densities pion,
Preutral (0 = Pion + Preurar)- The exact solutions to this are quite

cumbersome, but the real part of interest can be well-approximated
in all relevant limits by:

1
2 2
v X VY e |1F 7
A, eff A, ideal 1//i0n [1 + ¢ion (wion + 1/4) wl%’l]
- v; _ -1
Yin =~ 0.01(1 = fin) 975 Rov Tii B (ki 7er)
|| VA, ideal

(&)

where v 4, igea = (B%/47 p)'/2, fion is the ionized fraction, Tygp =
T/1000K, B, = IB|/uG, p_os = p/107** gem™, and Rgy =
R../GV. This essentially interpolates between the ‘ideal MHD Alfvén
speed’ v4, igeal fOr long-wavelength modes with frequencies w, much
lower than the ion-neutral collision frequency vj,, and the ‘ion Alfvén
speed’ v4 ion for short-wavelength modes with w, > v;,. For most
ISM conditions at the (short) gyroresonant wavelengths of interest
for CR dynamics, w4 > vi,.

2.4 Scattering rates of CRs from a population of magnetic
fluctuations

Everything needed to evolve the CRs in equations (1-2) is determined
by the local plasma properties, except for the scattering rates v i,
which crucially determine how CRs propagate. Following Zweibel
(2013, 2017), quasi-linear theory gives the scattering coefficients:
Us,j:(pcn H) = E ch M i Ds,:(: = E ‘A)s ch ei (6)
4 e 4 €B

where e = |B|?/87, kj = Qcr/(1 ver) from the gyroresonant condi-
tion, and e, = k; Ex(k - b = k) is the energy of scattering waves
at parallel wavenumber kj (it is important here that we distinguish
ky=lk- b| from k = [Kk|). We parametrize our ignorance of the
pitch-angle dependence with ¥ .. = (77/4) D Q¢ e+ /en, Where D e
reflects the angle-averaged energy of wave-packets that interact sig-
nificantly with the relevant CRs (with D a dimensionless order-unity
constant coming from the integration over pitch angle), traveling in
either the forward (+) or backward (—) direction along b. As shown
in Zweibel (2013, 2017) and later in Thomas & Pfrommer (2019),
one can write a fluid equation for the wavepackets:

Dies +V - (v4 1 exb) = —5V Uy + 82 — O (7

where one can think of eL/2 as the ‘pressure’ or ‘PdV’ term (with
V - ug, being the change of comoving volume), we define vy + =
Fv,, o corresponding to the ey sign, and Sy and Q4 correspond to
source and damping terms. We can write

St = Sse, + + Set, £ + Snew, +
Q0+ =T1es = [Tin+ Taue + Tvyir + Tt + 4 Toew, damp, ] €.
®)
Here, S, + corresponds to energy transfer from the CRs themselves

as they scatter off the waves, S. 1 corresponds to ‘ET’ driving
(defined below), and Sy, + corresponds to some other, new source(s)
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of driving that we will consider later. Likewise, I' is an effective
damping rate, which we will take in general to be the sum of ion-
neutral (I'j,), dust (Igug), linear Landau or ‘turbulent’ (T"wpnr),
non-linear Landau (NLL; 'y, +), and some other arbitrary additional
(Tnew, damp, +) damping rates (all defined below).

From equation (3), note following Hopkins et al. (2022b) that the
S'S’C term arises directly from taking the moments of the quasi-linear
theory scattering rate equations for any scattering rate expressions
Vs(H, Per, -..): it is the total energy exchange between CRs and the
‘scatterers.” If we assume gyroresonance, so that CRs of a given
R, interact only with the gyroresonant wavepacket,” then without
making any specific assumptions about the mechanism for this
exchange, energy conservation imposes the form of S 1:

Ssc,i = Zspecies ‘_}S-i U/z-if [Fe/, cr VA, + 3 X (eér + Pc,r)] (9)

Here, D species Tepresents the sum over all CR species with a given
gyroresonant wavelength/rigidity ky ~ 1/7y o o¢ 1/R;.

2.5 Damping of parallel alfvén waves: standard mechanisms

We stress that there are many known damping processes contributing
to QO+ = I'y ex for the relevant high-frequency scattering modes.
Here, we briefly review a few that are commonly invoked, focusing on
the terms which apply to weakly damped Alfvén modes (as compared
to fast magnetosonic modes, which are vastly more strongly damped
on gyroresonant scales, a case we discuss in Section 2.7 and
Appendix C below).

(i) Ion-neutral damping: ion-neutral collisions generically lead
to a damping rate in equation (4), which is rather compli-
cated but for all limits where it is relevant can be accurately
approximated as Qi + = [ipex with Ty & (g + dine) /2 pi &
1079 371 fneulral (T/IO()O K)l/z (9/10724 g Cm73)~

(ii) Dust damping: from Squire et al. (2021), charged dust will
have gyro motion excited by Alfvén waves on the wavelengths of
interest, removing some of the scattering-wave energy (and dissi-
pating it with dust collisions with ions + neutrals), giving a damp-
ing term: Qdusl. + = qusl €+ with qust ~ 0.02k VA, eff fdg (k/kd)igd
where fy, ~ 0.01 Z/Z is the dust-to-gas ratio [normalized to the lo-
cal ISM (LISM) value], and k; ~ 7.4 x 107" em™! (n/ecm™3)"/2 41,
with &, = 1/4 at k < kg and &, = 1/2 at k > ky, and Yy =
U, (Pa/g cm™) (T/lO4 K)ée.m ~ | depending on Uy, and p,, which
parametrize the grain charge and internal grain density, &, r =0 — 1
depending on the wavelength and grain charge regime (see equa-
tion 18 therein).

(iii) NLL damping: on gyroresonant scales, oblique magnetosonic
waves are rapidly damped by resonant ion interactions, pressure
anisotropy, and other effects (Lee & Volk 1973; Foote & Kulsrud
1979; Cesarsky & Kulsrud 1981; Volk & Cesarsky 1982; Squire,
Quataert & Schekochihin 2016; Squire, Schekochihin & Quataert
2017). This strongly suppresses isotropic magnetosonic modes at
the scales we follow, as noted above. But even for the weakly

>More generally as noted above, at a given momentum CRs can resonate
with short-wavelength modes k| = Q¢;/(Lver which depends on particle
pitch angle, so this should be taken to be some effective pitch-angle-average
over different wavenumbers. For a close-to-isotropic CR DF (as required
by observations), it is straightforward (albeit tedious) to show this does not
change any of our conclusions. A more detailed calculation (e.g. Kempsi
et al., private communication) shows the same even for anisotropic DFs, if
the dependence of scattering rate on energy predicted by SC theory §s ~ 0
(as we show below).
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damped waves of interest (e.g. parallel Alfvén modes), wave—wave
interactions and field-line wandering transfer energy from the weakly
damped modes to strongly damped modes, giving rise to the usual
NLL damping expression Qu + = [y 1 e = FSH (es/ep) e+ with
F,?" ~ (/7 /8)cs k (Kulsrud & Pearce 1969; Volk & McKenzie
1981).

(iv) ‘Turbulent,” linear Landau, and collisionless damping: in
addition to NLL damping, if there are other modes present as
part of an extrinsic turbulent cascade (in addition to the parallel
scattering modes themselves), these will also contribute to shearing
apart or mixing waves such that power is transferred either to (a)
a weakly damped but higher-k modes (‘turbulent damping’; Yan &
Lazarian 2002; Farmer & Goldreich 2004), or (b) strongly damped
magnetosonic modes (‘linear Landau damping’; Zweibel 2017). This
gives Quib/LL, + = Dwwyrr ex With Tpn(K) ~ 1/75(K) scaling
with the cascade time-scale 7,5 for modes of the given k. Consid-
ering a realistically anisotropic Goldreich & Sridhar (1995)-type
(GS95) cascade (which is not strongly damped on gyroresonant
scales), interacting with primarily parallel modes, gives I'ymp/ir =
Ciurb/LL, 6595 ~ [(Va,ideal + 0.4¢5) /€41 (ky €4)"/* (Where the v, jdea
and ¢, terms represent ‘turbulent’ and ‘linear Landau’, respectively
from Farmer & Goldreich 2004; Zweibel 2017).°

As discussed above, it is instructive to write the damping terms
in the generic form Qs = 'y ex with 'y = kj* e €for f5y;, where
fim = fimoy Ty facurals B, fag, - . .)is afunction of ‘bulk’ ISM
plasma properties (which do not directly depend on the CRs or k or
e ), and we have separated the dependence on the CR kinetic energy
density €, scattering-wave energy e, and wavelength k. All the
damping mechanisms above give £, = 0 with0 <&, <l and 0 <
&r <1, as summarized for reference in Table 2.

2.6 ‘Self-confinement’ driving

The standard ‘SC’ limit arises if Si. — S, + (01 Set, &, Snew, + — 0),
i.e. the only source term for e is the CR scattering itself. This excites
parallel Alfvén modes, which then compete against the different
damping mechanisms in Section 2.5 to set e... As shown below, if the
CR flux (D, F, e’ o) and D,e,. equations reach local steady-state, then
one of ey is damped to negligible values while the other (opposing
the direction of the CR flux) becomes large, and the salient driving
term becomes Ss. — —UA,effB -VP[.

Akin to the damping terms, it is useful to parametrize this in terms
of Setr = ki e €& fidy where fi$y; parametrizes the ISM structure
dependence. In local flux-steady-state, the SC limit therefore gives
e =0,24 =0, e ~ 1, as denoted in Table 2.7 But this is not the

Lazarian (2016) note that on scales 1/ky approaching or larger than the
driving and Alfvén scales this could steepen to 'L ¢ kﬁ/ 3, but that is
well outside the relevant range of scales for < TeV CRs (although assuming
such a scaling has no effect on our conclusions). Likewise, the Farmer &
Goldreich (2004) argument that field-line fluctuations set a minimum |k /kj |
~ |8Bext(k1)|/|Bo| can, in principle, be generalized for any external critically
balanced shearing cascade with different intermittency effects modifying the
perpendicular spectrum (Schekochihin 2022), but these generally lead to only
minor modifications of Iy LL ~ [(VA, ideat + 0.4 ¢5)/La] (k) £4)5 with 0.4
S & S05.

"When the CR flux and e equations are far from local quasi-equilibrium,
then from equation (9) the more general form of S¢; (o U (V4,4 /¢) [Fg”Cr -
va+3x (eér + Pc/r) X Qr(ea/eB) €cr X kep €r) would have coefficients
closerto & ~ 1, ¢4 ~ 1, Lo ~ 1. But because these reach equilibrium on
short time-scales, and both expressions have ¢ ~ 1, which is the important
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only possible source of ey — other drivers can be included as we
discuss below.

2.7 ‘Extrinsic turbulence’ driving

In the classic ET picture, the source term for e, is dominated by an
external turbulent cascade from much larger scales, which we will
denote Se 1+ (with symmetric Se; + = Se, - = Set). The traditional
K41 scenario, for example, is immediately recovered if we assume
an isotropic, un-damped (except for cascade transfer), inertial-
range cascade, SO Se &+ — Set ka1 ™~ |8v3| k ~ constant is just the
turbulent dissipation/cascade rate, balanced by the damping (cascade
transfer) term defined in Section 2.5 above Q1 — Ty, k41 €+ With
Fmrb’ ka1 ~ k|8v|, so we obtain ey = ep (k KA)*M, with k” ~ k.
Similarly one could in principle imagine models that might give
different isotropic power spectra such as e+ ~ eg (k £4)~"/? (often
called ‘Kraichnan’ or ‘IK-like’ in the CR literature). But as noted
above (Section 2.1), and reviewed in more detail in Appendix C,
these scalings cannot physically apply at gyroresonant scales for
CRs with rigidities < 0.1 — 1 TV, far smaller than the Alfvén and
magnetosonic dissipation scales of turbulence.

First, consider an Alfvénic (or slow-mode) cascade. It is well-
established that an Alfvénic cascade cannot be isotropic on scales
smaller than the Alfvén scale £, and recall r, ., < €4 by a huge
factor. In any cascade in which the anisotropy obeys some kind
of critical balance-type condition (as seen in the solar wind, Chen
2016, and essentially all simulations of MHD turbulence cascades;
see e.g. Sridhar & Goldreich 1994; Goldreich & Sridhar 1995;
Boldyrev 2006; Terry 2018; Beresnyak 2019; Schekochihin 2022,
and references therein), the cascade power spectrum as a function of
the parallel wavenumber k; must obey £(kj) o k[z (where critical
balance gives ky ~ |dv(k1)/va,ideatl k1 K ki, s0 |ky| ~ k and this
is independent of the form of £(k,)). In other words, regardless of
the dominant structure of the cascade, e = ep o, (k}) (kj £4)~" and®
Ser, + = o (ky) eg Ty (ky £ A)~! where more careful calculation gives
the dimensionless pre-factor o, (k) ~ 7 (v, err/v) In (k) €4) < 1 as
a geometric factor that accounts for gyro-averaging over the modes
with k; > kj (Chandran 2000). We further show in Appendix C that
any mathematically consistent Alfvénic cascade, even one that does
not follow critical balance, must obey a similar constraint on £(ky).

Alternatively, consider a fast-magnetosonic-mode cascade, which
at least in principle could be isotropic. But recall, r, . is well
below the relevant dissipation/Kolmogorov scale (kgiss ~ 1/€giss)
of the magnetosonic cascade, so we cannot extrapolate an un-
damped isotropic magnetosonic cascade from large scales. For
strictly gyroresonant interactions, this generally leads to a strong
suppression of the power Sg i+ on scales r, o <K Lgiss. Yan &
Lazarian (2004) argue that if the ‘resonance function’ is strongly
broadened by super-Alfvénic turbulence on large scales (of order the
CR mean-free-path), then under the right conditions (plasma Bpiasma
< 1orvy, igea > s, and negligible ion-neutral damping or fheurar S
0.001 (v jgear /M1 €2)¥*(cs/10kms™)/4(kpc/ Ry £4)'/?), a sub-
stantial contribution to the CR scattering rate can come from the
transit-time-damping terms owing to magnetosonic modes with
k ~ kgiss < 1/rg . In that limit, the resulting scattering rates

feature that drives the qualitative behaviour discussed below, in our analytic
models, we will typically work with the local steady-state expressions.

8The statement Se; o T here is just a rephrasing of the usual relation
between the turbulent power spectrum and the cascade rate t¢as ~ 1/T b,
ie.ea ~ ky Eky) o< Sky)/ Tt (ky) ~ SCkyp) Teas (k).
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from the Yan & Lazarian (2004) model can be written as v ~
Qerep ! (SBz[kdiss])(kdiss/k”) (Hopkins et al. 2021d). Even though
by definition in this scenario some of the scattering modes come
from larger scales, in our mathematical formalism, this is iden-
tical to assuming an equivalent gyroresonant mode or cascade
power with ey ~ (8 B*[kgiss]) (kgiss/ky) or (since 8B[kgss] comes,
by assumption in this model, from some isotropic cascade on
larger scales with |8 B?[kgiss]| ~ B? (kgiss £4)~ V) therefore ey ~
e (kaiss £4)~ Vv *D (k, €,4)7". Again, we show in Appendix C that a
similar constraint is generic to any magnetosonic cascade with £
2 Iy o (independent of its detailed form or which terms dominate
the CR scattering).

Parametrizing again as Seir = kﬁk e el fi3\, we see that in the
ET limit generically ¢, = {4 = 0 and accounting for anisotropy
and/or damping, we must have & < —1 + £ (where £ is the

dependence of 'y o ki’:mh), which is equivalent to 3 < 0. For a
magnetosonic ET cascade, if dissipation is non-negligible outside the
special limits above (e.g. in gas with plasma Bpjusma > 1, or partially
neutral gas), this gives a super-exponential cutoff to the ET power
spectrum on small scales, which is equivalent to ¢, < —1 + S,z‘“b.

In Appendix C, we present a much more detailed review and
discussion of the anisotropy and damping constraints above. There
we show that the key conclusion that any cascade model must
predict & < —1 4+ 5,}“‘1’, ie. ey o k! or steeper if 7y ¢ is smaller
than the dissipation and Alfvén scale, is robust to any specific
assumptions about the turbulent cascade, dissipation mechanism,
or mode structure.

2.8 Steady-state solutions

Equations (7) and (2) converge to their ‘local steady state’ or
quasi-equilibrium values with D;ex — 0 and D, fi;.; — 0 (or more
formally, | D,es| < |Vy ex|, | Dy fr. 1| < |Ps for. 1]), in approximately
the scattering time p!. This is 97! ~ 30 yr R%; from empirically
fitted models, much faster than other time-scales over which e.g.
bulk ISM properties evolve (see Appendix B). In this limit, assuming
strong scattering, the DF becomes nearly isotropic (x ~ 1/3) and
equations 1-2 can be combined into a single anisotropic diffusion
equation:

&

Dt fcr,O 3 ap
cr

1 9 R - Vg -
) |:p2r{ 11:55 fcr‘0+ £ fcr‘O

P2 Per
2 =2 a
(UA eff — UA) 8fcr 0
: : 10
95, Py 10)

oo e A ,
V‘(Kbe'vfcr,()"’7Abpcr fyo)'i_]cr,o

+

Tan -
- ?b’vfcr,O'i‘

with k| = v2/3 7. The relevant behaviours here are more obvious if
we again take the CR energy equation, equation (3):

/A N ’ _ oy
De,, ~ V- [k bb-Ve, —v,be]
2 =2
v — U
A, eff A - / ’ /
c2 Vs (ecr + Pcr) + Smher, cr?

11

illustrating that we have anisotropic ‘diffusion’ with kj = v2/3 ¥ =
vfr [3(Vs+ + Us.—)], and ‘streaming’ along b with speed Uy =
VA, eff (fjs,+ - ‘_)s,—)/(‘js,-%— + ]js.—)~ R
Meanwhile, equation (7) becomes V -(vs +eib)+es (V-
Ug)/2 + QO+ — Sy ~ 0, with S+ as a function of F/ given
by solving the steady-state flux equation F, . ~ ¥4 (e;, + P) —
(c?/9)b-VP,. This gives S+~ —(vg2/T)va+b- VP, —

—P[ V- (g + 04 b) +
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2(vy/c)? (v, £/7s) (el + P[). Assuming we know the form of S +,
'y, etc., the pair of steady-state equations for ey, can then be
numerically solved exactly, given a locally fixed background (B,
etc.; see Appendix B). But the exact solution is given by a fifth-
order polynomial in e + e_, without closed-form solutions, which
is not particularly useful or instructive (defeating the purpose of our
steady-state assumption here).

It is much more useful to consider two limiting cases (justified in
Appendix B). First, if the extrinsic term dominates the ‘source’ with
[Set. x| > |Ssc, +|, then assuming the extrinsic driver is symmetric
with respect to waves in the +b direction, Set. + & Set, —, We have
Ds.+ ~ Ds_ and |U4] < vy. Alternatively, if the SC term dominates,
then either s > 75 _ or ¥s ;. < Vs _ (the larger corresponding to
the opposite direction of b- VP/), s0 |Ua| & va et In either case,
the ‘streaming’ speed 0,4 is not especially important for CR transport,
because it is subdominant to the ‘diffusive’ term at most energies of
interest for empirically allowed models (shown below). This can be
seen both by considering its normalization, which is far smaller than
allowed by empirical considerations (with a halo size ~ 10kpc, the
CR ‘escape time’ due to this term would be ~ 10 Gyr, compared to
the observed ~ 5 R63‘5 Myr), or by noting that this would produce
a residence/escape time that is completely independent of rigidity,
again in contradiction to CR observations. So, either in the SC or
ET limit, we can reasonably reduce the key transport physics to
understanding «} oc 1/, and can approximate equation (7) with a
single equation for 5 to leading order. Moreover, for the types of
models discussed above, the second and third terms in equation (7;
~V(v4, eff €+) and ~ex Viag,) are relatively small («S ~ Q), so if
we write Q1 = 'y e4, then we can very generically approximate
S ~ I'y e, in steady-state, giving

2
— Ya _ 4Ba e ~ Fiep
=3t = 3 cree (520) ~ e (52). (12)

We will return to this approximate scaling below.

3 PROBLEMS OF BOTH
SELF-CONFINEMENT & EXTRINSIC
TURBULENCE MODELS

3.1 Empirical models

It is well-known that one can reproduce almost all of the observed
local Solar neighborhood CR data and Galactic y-ray constraints
by assuming an empirically parametrized k ~ B ¢ ro(Rer).. Most
modern studies favour a scaling close to ro ~ 10" cm Ré/\%, or
equivalently e, /eg = (e, +e_)/eg ~3 x 1077 B;é R(l}/\% or ey ~
(ky £0)" % eg with €5 ~ 3 x 10% BaG cm (Blasi & Amato 2012;
Vladimirov et al. 2012; Gaggero et al. 2015; Cummings et al. 2016;
Guo et al. 2016; Johannesson et al. 2016; Korsmeier & Cuoco
2016; Evoli et al. 2017; Amato & Blasi 2018). For example, De
La Torre Luque et al. 2021 show that, even allowing for a wide
range of model variations with different systematic uncertainties and
assumptions, the largest plausible deviations in the empirical models
lie within the range ry ~ 10'83-195 RE0"cm, ie. ¢4 ~ (1077 —
107°) (B;;) RGy " es. or equivalently |8B(kj ~ 1/rge)l/IB| ~
(0.3 —1)0.001 Rg)vl 5709 This required scaling seems, at first, re-
markably simple and plausible. Yet, in practice, it proves remarkably

In models that assume an isotropic diffusion Fokker—Planck equation for
CRs, it is common to quote D,. For isotropically tangled magnetic fields,
Dy ~ /3.
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difficult to actually produce even qualitatively similar scaling from
either ET or SC models at energies < TeV.

For reference below, in the CR propagation literature the slope of
the dependence of diffusivity on rigidity is usually parametrized as
K~ (Ber € /7s.0) Ry 50 T = T, o Ber Ry » With T, o a constant and
0.4 < 8§ < 0.7 allowed by observations (above). To reproduce this,

i 1-5, 1-5, 8—1
we require eq ¢ Ry~ ocr, o ocky

3.2 The problems with extrinsic turbulence

First, let us consider the standard ET models introduced in Sec-
tion 2.7. Naively, the empirically inferred slope &5 appears quite
consistent with the expectation from an isotropic, undamped, inertial-
range cascade with £(k) oc k=32, which gives e ~ ky Ewrn (ky) ~
k[l/ % and thus 8, = 1/2). It is also marginally consistent with an
isotropic undamped inertial range K41 cascade (6, = 1/3). But
there are three major problems: (1) anisotropy, (2) damping, and (3)
normalization. Once again, recall that for all CR energies of interest
Feor ~ 10" cm Rgy /B is much smaller than both of the Alfvén
scale — below which the turbulence is sub-Alfvénic (£4 = pc) — and
the magnetosonic dissipation/Kolmogorov scales (£ = 10" cm).

(i) Anisotropy: First, (1) below the Alfvén scale, theory and
simulations robustly predict something akin to critical balance must
apply to the Alfvénic cascade. But as noted in Section 2.7 (see
Schekochihin 2022), any energy-conserving cascade that obeys
critical balance automatically predicts £ (k) o k[z (eq k[l). This
implies 8, = 0, regardless of how the cascade scales with the
perpendicular components of k, because it is k| that plays the key
role for CR scattering.'” But this further implies scattering rates are
independent of CR energy, which is strongly ruled-out.

(i) Damping/Dissipation: Second, (2) strong dissipation, partic-
ularly of magnetosonic modes, causes two problems. First, it damps
fast magnetosonic fluctuations, which makes the normalization of ¥
much too low for scattering from a magnetosonic cascade (generally
by ~3-6 orders of magnitude for realistic damping rates, as shown
in Hopkins et al. 2021d). But, equally important, dissipation can
only make the spectrum steeper (£(k) decreases more-rapidly at
high k). This in turn implies that §, generically becomes negative.
One might argue that at some point, one should ignore the strongly
damped smaller-scale gyroresonant magnetosonic modes and only
integrate the contribution from larger magnetosonic modes above
the dissipation/Kolmogorov scale — this is the argument in Yan &
Lazarian 2004 (YLO4). But, as noted in Section 2.7, this also gives
85 < 0, always. In fact §; = 0, i.e. ey ku_l, corresponds to the
‘most efficient’ possible case of the YLO4 model so long as £g;
> 1 o, and in many other limits 8, < —1, e.g. when there is
an exponential-like cutoff due to non-zero ion-neutral damping,
or plasma Byasma = €2/V} iqea > 1. Again, as shown rigorously in
Appendix C, this applies to any magnetosonic cascade regardless of
details, if the gyroscale is smaller than the (fast-mode) dissipation
scale. So the only way to ‘salvage’ even the qualitative scaling of § in
ET models, with turbulence that is either Alfvénic or magnetosonic
in character, is to ignore both anisotropy and damping/dissipation
effects. This would require discarding almost everything that is
known about the structure of MHD turbulence.

19Tn Appendix C, we show that §; < 0 is generic to any Alfvénic cascade,
independent of its form, and mathematically allowed violations of critical
balance or other conditions within a cascade generically lead to §; < 0,
making the problem worse.
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(iii) Normalization: Third, (3) even if we did invoke an isotropic,
undamped & (k) oc k=3/2 cascade, which leads to the observationally
favoured slope, then we would obtain e4 ~ ep (k £4)~'/?. This is
systematically larger than the empirically required value of e4 by a
factor ~ 1000 B, (£4/10pc)~/2 — i.e. this would typically over-
predict observed CR scattering rates by factors of several thousand.
Thus, some anisotropy and/or damping must be present to prevent
ET from over-confining CRs, but as soon as those are invoked, the
predicted shape (§5) is incorrect.

As reviewed in Hopkins et al. (2021d) and Appendix C, almost all
proposed more-detailed corrections and modifications to traditional
ET models in the literature make the problems above worse, not
better (i.e. they make the scattering rates even more different from
those observationally required).

3.3 Generic alternatives to extrinsic turbulence

A generic alternative to ET is to have scattering modes that are
directly excited ‘at each scale’ by some process, rather than arising
through a cascade from large scales. In this scenario, the driver must
operate over a wide range of scales — scattering CRs in the range
~MeV-TeV implies a factor ~10° in k — and excite the relevant k;
modes.

Of course SC, where the excitation comes from the CRs them-
selves, does exactly this, and is very natural — indeed, it should occur
to some extent. And a simple order-of-magnitude calculation shows
that the SC source term S, should almost always be dominant over
the ‘standard’ ET source terms for CR energies < TeV, if we account
for either anisotropy or damping of ET (let alone both). For this
reason, SC has been the most popular model to explain the scaling
of e4 (hence CR scattering rates) at these energies.

3.4 The problems with self-confinement

However, there are also three major qualitative problems with SC
models: (1) normalization, (2) spectral shape/scaling of scattering
rates, and (3) instability or ‘solution collapse.’

(1) Normalization: The normalization problem (1) is discussed
in detail in both analytic models and full dynamical simulations
in Hopkins et al. (2021d). In brief, for ~ 1 — 10 GeV CRs, which
contain most of the energy, while damping is large in neutral gas,
the CR energy density in a multiphase ISM is determined by the
volume-filling phases with the lowest diffusivity (the ‘boundary
condition’) i.e. the WIM and inner CGM. In these regions, NLL
and ion-neutral damping are both inefficient, so standard models
suggest that turbulent or linear-Landau damping dominates (see
Hopkins et al. 2021d, c; Buck et al. 2020). Considering CRs near
the peak of the CR energy spectrum, and assuming local steady
state and dominant turbulent damping, the effective diffusivity
from equation (12) would then be (see Hopkins et al. 2021d)
K| ™ Ver T er (F:(: eB/Ssc. j:) ~ 1028 ‘Sv%z ev,cr,kpc Z;,l{é e;ﬂlev n?/4
(with  8vip = Svuw/10kms™, Ly cipe = Ly o/kpe with
by = PLIIVPL, €a10=104/10pc, € ey =€, /eVem™, ny =
nfem™3), or es/ep ~ 1075 e oy 6%210 B;é 8vﬂ)3/2 Z;}cr,kpc 173/4
This is a factor ~30-100 smaller than the empirically favoured
value of k| for ~ 1 — 10GeV CRs.

This issue is potentially important, but perhaps the least-serious of
the three problems: it can be ameliorated by (a) including additional
damping mechanisms such as the recently proposed dust damping,
which can be larger than turbulent damping invoked above (raising
I'y) by factors ~10-100 at ~ 1 GV under MW-like conditions
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(Squire et al. 2021); (b) invoking somewhat slower growth rates S, for
the relevant modes as excited by CRs, which can occur accounting
more accurately for e.g. the full spectrum of modes which contribute
to scattering (instead of assuming strict gyroresonance plus the grey
approximation), as argued in Bai et al. (2019); (c) accounting more
accurately for geometric and other non-grey effects, which can lower
the effective scattering rate for gyroresonant modes for a given e, (i.e.
our ‘D;’ parameter). These corrections arise from accounting more
accurately for the full shape of the CR spectrum (Kempski et al., in
prep), accounting for the i = 0 pitch-angle scattering barrier, which
has been shown to be significant in some PIC simulations (Bai et al.
2019), and accounting for anisotropy that arises from the fact that the
CRs only source one helicity of modes in some regimes (Holcomb &
Spitkovsky 2019). It is noteworthy that all of these corrections go in
the ‘favoured’ direction.

(ii) Spectral Shapes: However problem (2), regarding the
spectral-shape-dependence of scattering rates, is not resolved by
the possible solutions above. The issue is that the growth term
Sec.+ scales with the CR pressure or energy itself, as Si + —
:tUA,effB - VP ~ (v4, cft /v cr) €, Where Ly ¢ is the CR gradient
scale length above and €, is the CR kinetic energy density in a
logarithmic interval in rigidity R (or equivalently, gyroresonant
ky). But, for realistic CR spectra, €, o< R® o k", with —1.4 <
ae S —0.7 at energies < 1 GV, and «., ~ 0.7 at energies from
~ 1 —=300GV (e.g. Cummings et al. 2016; Bisschoff et al. 2019,
and references therein). So, in our parametrization above, we would
have Sg 1+ kﬁ‘“, with Ty oc kﬁk ef(‘ (for all the known damping
mechanisms discussed in Section 2.5). In steady-state, i.e. solving
St ~T'iey,thisleadsto §s ~ 1 — (§x — ae)/(1 + &4). But for o, ~
0.7 (i.e. R; 2 GV), this gives 0.8 < §; < 1.7 for all known damping
mechanisms (0 < &, &4 < 1), while for a, ~ —1 (i.e. R, S GV),
this gives —1 < §; < 0.5. In other words, d; is generically much too
low at R.; < 1 GV, owing to the fact that the spectrum is rising, and
much too high at R, > 1 GV, owing to the fact that the spectrum
is falling. This produces a strong minimum in «j, a much-too-
sharply peaked CR spectrum, and the incorrect dependence in both
limits of e.g. secondary-to-primary ratios on R. In principle, this
could be solved by imposing a new dominant damping mechanisms
with a dependence on k or e4 that is different to the mechanisms
discussed in Section 2.5. But, this would require rather unusual
values of &, in particular, § ~ o + (1 — &) (1 + §4) implies 1.2
S & S 1.7 for Ry 221GV, and —0.5 < &, < 0 for R, S 1GV.
This in turn requires a dramatic difference in the dominant damping
mechanism between waves that resonate with low and high CR
energies — longer wavelength waves require larger &, while shorter
wavelength waves require much smaller (negative) &, — compared to
the known mechanisms described in Section 2.5. In other words, it
is not possible to resolve this problem by simply ‘tweaking’ coef-
ficients or power-law scalings of standard damping or growth-rate
terms.

(iii) Instability: Even if (1) and (2) were solved with some-
thing like the possibilities mentioned above, a potentially more
fundamental problem with self-confinement is that the commonly
adopted ‘local steady-state’ SC solutions for the CR scattering
rates and fluxes (given some CR energy density at a given CR
momentum/rigidity) are not stable equilibria of the CR energy
equation. This is derived in detail in Appendix A. Briefly, the problem
arises because the SC driving/growth rate Sy, 4 is proportional to the
CR flux F . or (in local steady-state) to o< VP (ie. Lo ~ 1),
while all standard damping processes are independent of ¢/, (i.e.
& = 0). This implies e4 ~ Sg, +/ '+ o Ve, where we assumed

linear damping dominates for simplicity (this assumption is relaxed
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in Appendix A and our simulation tests). But this in turn means
that the steady-state CR flux F._ o<k Ve, o e;' Ve, occonstant
is independent of e..; or equivalently that the CR ‘escape time’
(the streaming/diffusion time to some distance £) is fes. ~ £2 /K|~
£/ Ustream, eff X ey /(Ver Tg.cr€B) O e,.. This is a fundamental feature
of SC models, as it is a re-statement of the fact that the confining
wave energy ultimately comes from the CRs themselves. Indeed, the
effect clearly manifests in the early kinetic quasi-linear theory and
solutions of Skilling (1971), as the absence of the CR distribution in
the diffusion term (the final term in their eq. (9)). The consequence
of this feature of the SC model is that if the CR flux is lower than the
exact value needed to maintain global steady-state in the CR energy
density equation (or even if there is a perturbation about the exact
value), the local e/, will increase due to the CR overconfinement,
then causing e4 and the CR escape time to also increase, which
in turn further bottlenecks'' ¢/.. Since the steady-state CR energy
density in some region e, ~ jinjfesc, and both ji,j and e, have
just increased, e[, increases as well. This will grow on a time-
scale of the injection time (e, / jisj), until s o< e, becomes so large
that the CRs can only move at the local Alfvén speed (effectively
Py — 00), which is much slower than relevant loss times. They thus
lose all their energy to catastrophic or radiative losses before they
can escape. As a result, in steady-state, the energy density is no
longer set by the escape time but by the calorimetric loss time-scale
el ~ Jinj oss- The outcome is that CRs at all R, lose all their energy
near their injection sites, in gross contradiction to observations.
Even if we neglect losses, the CRs would all stream at the same
speed vy, implying §; = 0, which is also in direct contradiction to
observations.

This is the ‘SC runaway’ problem described and seen in the
simulations of Hopkins et al. (2021d), who noted it for just ~ 1 GV
CRs. Here, we note that it applies at all energy scales, becoming
more severe due to the additional constraints on §;. Conversely, if
one deviates from a balanced initial condition (ICs) by lowering
e,., then ey drops, the escape time decreases, so e, drops more
rapidly, etc. until CRs essentially ‘free stream’ and produce negligible
secondaries.

We will show that, in simulations, this instability or ‘solution col-
lapse’ problem is quite severe. In controlled restarts from otherwise
identical ICs, if we start from a ‘high’ CR density e/, (with only
SC-motivated S), then e/, and scattering rates grow until they reach
calorimetric losses across a wide range of energies; conversely, if
we start from a ‘low’ e, then e/, and scattering rates decrease
to an extremely low value, giving negligible secondary production
(much too-low B/C, p/p, e*/e™) at all energies. It is inevitable that
real galaxies will almost constantly undergo events that push them
towards one or the other limit.

3.5 How to rescue things?

We now consider what would be qualitatively needed in either the
damping (') or driving (S1) terms for ey, in order to obtain some
plausible consistency between observations and either SC or ET CR
transport models.

1n the literature, CR ‘bottlenecks’ can occur under a variety of different
conditions and the term is often used to refer to distinct physical processes
((see e.g. Zweibel 2017; Bustard & Zweibel 2021; Huang & Davis 2022;
Quataert, Thompson & Jiang 2022a). Unless otherwise specified, in this paper
we will generally use the term in connection to this SC ‘solution collapse’
problem, specifically to the over-confined solution branch.
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3.5.1 Alternative damping

First, let us consider the consequences of modifying or adding only
damping terms, while retaining standard SC & ET driving.

In the ET-dominated limit — or any model where the dominant
contribution to the driving term Sy derives from an MHD cascade
— no addition or modification of the form of the damping terms can
‘rescue’ the models. This is because, as shown above, the cascade
assumption itself implies §; < O (i.e. the slope of the ‘cascade’
is cut off to some non-zero degree) for any finite damping term
if the damping is significant. Even for negligible damping in ET,
anisotropy requires é; < 0, independent of the form of the damping
terms. However, for standard scattering expressions motivated by
physical turbulence models (i.e. including anisotropy and damping),
our naive expectation is that the driving term S is dominated by SC
at all energies of interest (i.e. Ser, + << Ssc, +)- Thus, it is most relevant
to consider what (if any) damping terms could resolve the problems
above for self-confined CRs.

In the SC-dominated limit, one could in principle solve both the
‘normalization’ (1) and ‘spectral shape’ (2) problems by invoking
some arbitrary damping rate Iy, damp, +> Which has the appropriate
normalization and desired scaling as a function of k and e4 (i.e.
varying &, as a function of R, to new values outside the range
of known damping mechanisms, as explained in Section 3.4). This
in itself would not solve the ‘instability’ problem (3). However,
if the dominant damping mechanism also scaled with e, then
in equilibrium (S ~ Q4) this would cancel the ¢/, dependence
of S, &, resolving issue (3) as well. Specifically, following the
parametrization of Section 2.5, if we had damping with &, ~ 1/2,
4 =0, o ~ 1, ie. Thew, damp, + X kll‘ /2 e.., then since the SC
driving term Sg. 1+ X Vg, eff b- V P/, this would give approximately
the desired e, o k[l/ : independent of ¢/, thus curing the ‘spectral
shape’ and ‘instability’ problems. An example that gives roughly the
correct normalization as well would be something like I"new, damp, + ~
verr (ky L0)'7? (e.,/eB), With vegr ~ ¢; ~ V4, ideat — 1.€. something akin
to standard turbulent or linear Landau damping rates, but multiplied
by e./es.

This is perhaps not wildly implausible, if it arose from some
non-linear process involving CR back-reaction on the gas (perhaps,
for example, shocks induced on small-scales by CR-gas coupling
as in Huang & Davis 2022; Hin Navin Tsung, Oh & Jiang 2022;
Quataert, Jiang & Thompson 2022b). Our simulations below will test
both ‘microscopic’ (i.e. subgrid, added manually) and ‘macroscopic’
(spatially resolved, on Zpc scales, which should emerge self-
consistently from the simulation physics) versions of this scenario.
However, it is not a perfect solution. Not only would one need to think
of an effective damping mechanism that produced the desired scaling
above (for which there is no obvious candidate, and our simulations
do not appear to produce this ‘macroscopically’), but one would also
need to ensure that this is the dominant damping process compared to
the other known damping terms in Section 2.5, which do not simply
disappear. This would need to be true, at least on average in the
ISM, for 0.01 GV < R, < 1000 GV. But at both low and high R,
el. is low, so it is quite unclear how a damping rate similar to that
proposed, which is suppressed by e/, could dominate over the entire
range of interest.

Briefly, we note that an alternative damping mechanism with &,
~ () that scales with e¢4 more steeply than NLL damping (§4 > 1)
would formally admit steady-state solutions [solving problem (3),
per Appendix A]. But since this would give es o (el)/(H) it
would still suffer from the spectral shape problem (2), unless one
takes &4 > 1, with &, ~ (1 + £4)/2 > 1. This is a rather unusual

MNRAS 517, 5413-5448 (2022)

scaling. Moreover, in this limit, the required normalization of this
added Tpew, damp+ X eiA kﬁlﬁ/‘)/ % term at the wavenumbers and e
observationally required at ~ 1 GV would be problematically large:
~10° times larger than the standard NLL damping term, despite
its being nominally much higher-order in es/eg. As such, we will
not consider this particular class of alternative damping model

further.

3.5.2 Alternative driving

Alternatively, we could invoke a different or additional driving
term Syew, + While keeping the known damping mechanisms. Con-
sider an alternative source term as parametrized in Section 2.6:
Shew, + = dE/dInky df dVolume oc kf* €5' (i.e. {er = 0, s0 we avoid
the problems of SC models above). Given some damping rates
parametrized in similar fashion as in Section 2.5, a desired d; is
obtained for & = & — (1 — &) (1 + &4 — Ca).

(1) Extrinsic/External sources: First, consider the case with {4 =
0,1.€. Snew, + = Snew, ext independent of e,, as appropriate for a truly
‘extrinsic” or ‘external’ energy driving/pumping term (akin to ET
in this limited sense). Then, if we consider &4, &, for all possible
damping mechanisms in Section 2.5, and allow 0.3 < é < 0.7, then
the range of possible ¢ that produces the desired §, is bounded by
—0.7 S ¢, < 0.5. But more realistically, if we restrict to §; &~ 1/2,
and ignore ion-neutral damping (which has a rather different scaling
& from other rates, and is rarely relevant in the volume-filling ISM
which dominates the statistics as seen in the LISM), then allowing
for all other damping processes requires a much narrower range of
—0.1 < ¢ < 0.25. In other words, a model with Spey, ext ~ constant,
or weakly dependent on k; (hence r, ), is potentially viable. One
example, which has approximately the correct normalization if we
assume turbulent, linear-Landau, or dust damping dominates I"y,
would be Spew, ext ~ 0.01 (4, ideal/£ 4) ep (this could be multiplied by
a weak power of kj or 7y ¢, €.8. (kj g o[l GV with —0.1 S ¢ S
0.25).

(2) Linear sources: Secondly, consider the case with ¢4 = 1,
i.e. Spew. + = Snew.lin X e4. This would be appropriate for e.g. any
linear instability that amplifies e4. The gyroresonant CR instabilities
(or non-resonant CR instabilities; Bell 2004) invoked in SC models
are one such instability, but suffer from the problems described in
Section 3.4. For any {4 ~ 1, again allowing for a broad range of §
and all possible damping mechanisms bounds 0 < ¢; < 0.85, but
restricting to §; & 1/2 and ignoring ion-neutral damping gives the
much narrower range 0.4 < ¢, < 0.75. Again, an example here that
has approximately the correct normalization would be e.g. Spew, 1in ™~
0.001 (v, igeat/£4) (ky £4)"* €4.

Either of these novel source terms seem to be at least plau-
sible. For the first ‘extrinsic source’ case ({4 = 0), the scaling
Snew, ext ~ constant is just that assumed in isotropic, undamped
turbulent cascade models. But, the more general condition is simply
that the driving in energy space — i.e. d|§B>(ky)|/d Ink; dr dVolume
—is only weakly dependent of k; (i.e. the driving rate is comparable
across scales from ~MeV-TeV gyroradii). We emphasize that
from the constraints in Section 2.5 and assumed structure of the
competition with scale-dependent damping, this cannot apply to
any of the standard physically motivated models for a traditional
MHD turbulent cascade from larger scales, which would introduce
the damping and anisotropy problems. Rather, in order to satisfy
the requirements, it is more natural to consider modes as driven
and damped effectively ‘independently’ on each scale, in a manner
where the energy driving/injection rate is comparable per logarithmic
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interval in parallel kj, but allowing for damping and/or anisotropy
and/or transfer so long as this condition is met. Note that the required
normalization/total energy driving rate in this scenario is quite small
—only ~ 1 per cent of the driving/dissipation rate of ISM turbulence
on larger scales.

For the second ‘linear source’ case ({4 = 1), the linear scaling
Snew, lin ~ Whew, 1in €4 With Wy jin O kh’“‘f(”5 is physically easy to
imagine. Most obviously, a huge variety of multifluid instabilities
present in the ISM exhibit behaviour that could lead to similar
scalings. For example, at a two-fluid interface, the Rayleigh—Taylor
instability (RTI) with Wy, 1in ~ /g kK Where g is some acceleration,
would require only very weak g ~ 107%v3 /¢, to produce roughly
the correct behaviour. More generally, any ‘co-spatial fluids’ — i.e.
any two fluids that both share the same volume, such as dust and
gas, ions and neutrals, radiation and gas, etc. — can be unstable to
the family of resonant-drag instabilities (RDIs; Squire & Hopkins
2018), many of which drive modes that could scatter CRs with
the desired scalings.'” For example, the Alfvén-wave dust-gas RDI
(Hopkins & Squire 2018) is unstable on all scales of interest here, and
has a growth rate Wyew, in ~ (fag Aaag ky)'/? at intermediate k; and
6 kﬁ/3 at high kj, where fy, is the dust-to-gas ratio [fg; < 0.01 in the
(MW), depending on gas phase], Aag, is any external acceleration
felt differently by dust and gas (e.g. radiation pressure), and we
have assumed the dust-gas drift speed is sub-Alfvénic. So such a
mechanism would require fy; Aag, ~ 107 v3 /£, in order to scatter
CRs sufficiently, well within plausible ranges (see e.g. Weingartner &
Draine 2001). Alternatively, very similar RDIs can arise between the
ionized and neutral gas phases in partially ionized gas, several of
which are studied in Tytarenko, Williams & Falle (2002) with growth
rates Wyew. in X kﬁ /3=213 depending on k; (although some of these are
stabilized on small scales by pressure effects in the neutrals).

These alternative source models appear more well-motivated than
the alternative damping model in Section 3.5.1. To start, there are
physically motivated, known processes that could potentially produce
the correct additional source terms. But also, they do not require that
we ‘discard’” major known damping mechanisms or other known
source terms, in order to make these models ‘work’ (whereas with
the alternative damping model, we must invoke some other physics to
explain why other other known damping processes do not dominate).
In fact, we can simply ‘add’ similar driving terms on top of the known
terms in Section 2.5-2.7. There is, however, one remaining caveat
if we do so. We still need to avoid the SC bottleneck/runaway (if
we still include S,.) in regions that do have high e/, specifically at
rigidities ~ 1 — 10 GV where e/, is maximized. In other words, S
would be expected to still be large and potentially dominate over S,
by a factor as large as ~100, given the ‘normalization’ problem in
Section 2.6 (which imposing new driving terms does not solve). This
is not a serious problem outside of the range ~ 1 — 10 GV, because
e,. is smaller. But at ~ 1 — 10 GV, all of the plausible solutions to

2More technically, if a second fluid (e.g. dust, radiation, or neutrals) can
‘resonate’ with Alfvén waves with the desired k| (i.e. if they have a natural
mode with a frequency that matches that of the Alfvén wave), and any
coupling that depends on their relative streaming velocities (e.g. collisions,
drag, Lorentz forces), then it can produce an RDI. These generally drive
modes in k| that could scatter CRs and have growth rates y ~ k‘ﬁ‘, where
1/3 < o < 2/3 depending on the scale and type of mode (see Squire &
Hopkins 2018). For the ‘intermediate’ kj or small-fy, case (where fqg is the
mass-density ratio of the two fluids), assuming the streaming/drift velocity is
sub-Alfvénic, this generically gives Wyew, 1in ~ (fag Addg k”)l/2 where Aagg
is any difference in the accelerations felt by the two fluids that gives rise to
non-zero streaming.
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the ‘normalization’ problem discussed in Section 2.6 — e.g. more
accurately calculating gyroresonant growth rates that account for
the full CR spectrum, and more accurately calculating SC-induced
scattering rates (¥ arising from the SC) — act to reduce the SC
contribution, so can potentially alleviate this problem.

4 NUMERICAL SIMULATION METHODS

We now test these analytic conclusions in detailed numerical sim-
ulations, beginning by describing our simulation methods. Briefly
though, we note that there are several motivations to explore fully
dynamical simulations of global galaxy formation and structure. One
is to test whether these conclusions are robust in a more realistic,
turbulent, multiphase medium (in which plasma properties such as
v4, etc. vary on scales which are resolved but still small compared
to the size of the entire Galaxy; see discussion in Paper I) as is
present in these numerical simulations, but cannot be captured in
even state-of-the art analytic Galactic structure models (compare e.g.
Benincasa et al. 2020; Maurin 2020). Another is to test whether non-
equilibrium CR dynamics (i.e. dynamical behaviours whether either
the background plasma, or CR flux or energy equations themselves,
are not in equilibrium), neglected in any ‘steady-state’ models, could
impact these conclusions (see e.g. Bustard & Zweibel 2021; Hopkins
et al. 2021d; Thomas, Pfrommer & Pakmor 2022). Yet another
motivation is to test whether ‘feedback’ or back-reaction effects
from CRs on the medium, necessarily ignored in any post-processing
models where CRs are not evolved ‘on the fly’ could somehow
produce different conclusions. Examples of this include the effect
of global CR pressure gradients and CR coupling to magnetic fields
re-accelerating outflows to large CGM radii (Salem & Bryan 2014;
Simpson et al. 2016; Wiener et al. 2017; Hopkins et al. 2021b); or
producing strong shocks, mixing via bouyancy effects, or thermally
heating the CGM (EnBlin et al. 2011; Wiener, Oh & Guo 2013a;
Su et al. 2020, 2021; Wellons et al. 2022); or altering the phase
structure of the CGM via allowing gas to occupy states prohibited in
strict thermal pressure equilibrium (Salem, Bryan & Corlies 2016;
Butsky & Quinn 2018; Butsky et al. 2020; Ji et al. 2020, 2021);
or altering the vertical support, hence pressure balance, turbulent
strength, or magnetic field strengths of galactic discs (Wiener,
Zweibel & Oh 2013b; Hopkins et al. 2020b; Chan et al. 2021;
Ponnada et al. 2022); or altering ionization balance in neutral gas in
e.g. GMCs or galactic nuclei (Gaches & Offner 2018; Hopkins et al.
2021a; Armillotta, Ostriker & Jiang 2021). We emphasize that all of
these effects have been studied in previous simulations with the same
physics, code/numerical methods, and resolution (references given),
demonstrating that they can in fact be captured — the difference is
that these previous studies have generally treated CRs in the ‘single-
bin’ approximation (integrating only a total CR energy, rather than
the full spectrum, and neglecting differences between species) with
a simple phenomenological transport/scattering rate model (e.g. a
single universally constant scattering rate or diffusivity or streaming
speed).3

3Briefly, it is also worth noting that even studies using entirely different
codes and numerical methods and ICs have largely produced similar results
to the FIRE simulations referenced here, provided they include similar
physics and adopt similar CR transport parameters (see e.g. the discussion in
Armillotta et al. 2021). Moreover, while there is of course some resolution-
dependence and there will necessarily be unresolved scales (discussed in
more detail below), these appear to have little effect on the mean properties
predicted in the studies above (see references therein) and to manifest weakly
via effects like the failure to resolve small molecular clouds, leading to
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4.1 Non-CR physics

The simulations studied here are identical to those in Hopkins et al.
(2021a; hereafter Paper I), except for the expressions used for the
CR scattering rates, so we only briefly summarize the methods here.
The simulations are run with GIZMO™" (Hopkins 2015), in meshless
finite-mass mode, with MHD solved as in Hopkins & Raives (2016)
and Hopkins (2016) with anisotropic Spitzer—Braginskii conduc-
tion/viscosity as in Hopkins (2017) and Su et al. (2017), self-gravity
solved with adaptive Lagrangian force softening, and cooling, star
formation, and stellar feedback following the Feedback In Realistic
Environment (FIRE)-3 implementation of the FIRE physics (Hop-
kins etal. 2018b, 2022a). We explicitly follow enrichment, dynamics,
and chemistry of 11 species (Colbrook et al. 2017; Escala et al. 2018),
cooling and non-equilibrium ionization/atomic/molecular chemistry
from ~1-10"°K, including metal-line, molecular, fine-structure,
photo-electric, ionization, and other processes with local sources
and a metagalactic (self-shielded) background from Faucher-Giguere
(2020). Locally self-gravitating Jeans-unstable gas in converging
flows is allowed to form stars following Hopkins, Narayanan &
Murray (2013) and Grudi¢ et al. (2018), and once formed stars evolve
according to explicit stellar evolution models and return metals, mass,
momentum, and energy to the ISM via resolved individual SNe (both
Ia and core-collapse) and O/B and AGB mass-loss as in Hopkins et al.
(2018a), with radiative heating and momentum fluxes solved using
a five-band radiation-hydrodynamic approximation from Hopkins
et al. (2020a). We note resolution tests below but the default mass
resolution is Am; =~ 7000 M, so the spatial/force resolution scales
with density as Ax; ~ 10 pc (2/100cm™3)"!/3, and the simulations
naturally feature a multiphase ISM with hot phases atn < 0.01 cm™3
and molecular clouds (with the mass spectrum and other scalings of
the most massive, resolved clouds agreeing well with observations;
Benincasa et al. 2020; Guszejnov et al. 2020; Keating et al. 2020)
up to the maximum densities where the fragmentation scale can
be resolved of n ~ 10®> — 10* cm™* (see Hopkins et al. 2018b, for
more details). The simulations here are ‘controlled restarts’ where
we take a fully cosmological simulation run from z ~ 100 to z = 0
with a simpler CR treatment from Hopkins et al. (2020b), selected
because it forms a galaxy similar in all obvious relevant properties
to the MW, and restart it from a snapshot at z ~ 0.05, modifying
the CR assumptions, and running for ~ 500 Myr to z = 0. This
is sufficient for all CR quantities in the ISM to reach their new
quasi-steady-state values, but ensures (unlike running an entirely new
cosmological simulation) that our comparison is ‘controlled’ (bulk
Galaxy properties are similar). All numerical details of the methods
are described and tested extensively in Hopkins et al. (2021a).

4.2 CR physics

Following Hopkins et al. (2022b), we explicitly evolve the CR
DF fi. = foa(X, Pors t, S, ...), assuming a gyrotropic DF following
equations (1-2). By definition, (W) = fir.1/ fer. 0, and the moments
hierarchy for f,. , is closed by the interpolated M1-like relation
(W2 ~ B +4(W?)/(5 +2+/4 — 3 (w)?), which captures the exact
behaviour in both the ‘free streaming’ or weak-scattering and

slightly more-clustered star formation and higher variability (see Hopkins
et al. 2018b, 2022a; Armillotta et al. 2021), which only strengthens our
ultimate conclusions since it means the simulations sample a broader range
of possibilities.

14 A public version of GIZMO is available at http://www.tapir.caltech.edu/~p
hopkins/Site/GIZMO.html
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isotropic-DF or strong-scattering limits (Hopkins et al. 2022b). All
the variables above are functions of position and time. CRs act
on the gas and radiation fields: the appropriate collisional/radiative
terms are either thermalized or added to the total radiation (e.g.
Bremstrahhlung, inverse Compton, etc.) or magnetic energy, and
the CRs exert forces on the gas in the form of the Lorentz force
(proportional to the perpendicular CR pressure gradient) and parallel
force from scattering as detailed in Hopkins et al. (2022b).

The momentum-space evolution of f ¢ is integrated indepen-
dently in every resolution element using the finite-momentum-space-
volume scheme in Girichidis et al. (2020), treating fcr,o(pcr) as a
series of independent piecewise power-laws with exactly computed
number and energy fluxes (so the scheme exactly conserves CR
number and energy). We discretize with ~11 independent power-
law intervals (each with an evolving slope and normalization)
for fir o(per) spanning ~MeV-TeV energies, per CR species, per
simulation cell. We cannot resolve first-order Fermi acceleration so
we model injection by assuming ~ 10 per cent of the initial pre-
shock kinetic energy goes into CRs, with ~ 2 per cent of that into
leptons, at the formation of the reverse shock around each SNe
and/or O/B winds, with the relative number per species set by the
evolved abundances at that point (e.g. the test-particle limit) with
a fixed injection spectrum je(Rcr) o< R;“. We explicitly follow
the CR species protons p (H), CNO, "Be, °Be, 'Be, anti-protons
P, electrons e, and positrons e*. In the loss terms Ry, and
Jjor» We include Coulomb & ionization, Bremstrahhlung, inverse
Compton, synchrotron, pionic, fragmentation, radioactive decay, and
annihilation processes, with standard cross-sections compiled in
Paper L. This includes the secondary production of e.g. e*, ¢, B, C,
Be, etc. All ISM quantities needed for these rates (e.g. gas densities &
ionization states, magnetic & radiation energy densities, etc.) are
taken directly from the dynamically evolved simulation quantities in
the cell. As also noted in Hopkins et al. (2022b), our equation (1—
2) automatically include ‘adiabatic’ (D : Vug,), ‘streaming loss’
or ‘gyroresonant’ (o< ¥4 or D,,, D,,), and ‘diffusive’ (o< D,,) re-
acceleration terms, in more general and accurate forms than usually
considered.

We calculate 7 4 following equation (6), with D3 &~ 3/4 appro-
priate for grey scattering, and e, determined from equation (7),
for a given set of sources Sy = Zi S; + and damping terms Q4 =
> Ti 1 ex. We have considered both the cases where we explicitly
dynamically evolve the time-dependence of equation (6) alongside
the CR flux and energy equations, or where we simply set e to the
local-steady-state values (setting D;er =V - (v4 e+ b) — 0); these
give very similar results for our study below, so we default to the
local-state-state values as it involves slightly reduced computational
expense, which allows a larger parameter survey. The key physics
we vary in our tests is the scaling of the sources and damping rates
S; + and I'; 1, or equivalently scattering rates ;.

4.3 Reference model and quantities measured

We stress from the above that (1) all of the CR physics needed to
resolve, in principle, any of the known relevant CR-gas interactions
or feedback effects on ‘macroscopic’ (simulation-resolved) scales are
included; (2) all of the plasma properties (e.g. B, n, €4, e.;) needed to
calculate the ‘microscopic’ (unresolved, gyroscale) scattering rates
in the (extrapolative) models we will consider are self-consistently
predicted on the resolved simulation scales; and (3) given those
(assumed) scattering rates, our simulations naturally produce a self-
consistent prediction for the CR spectra across the range of energies
and species we consider.

€20z 1snbny oz uo Jasn ABojouyos | 10 axnmnsu| eluioned Aq ZE46S529/€ L ¥S/y/ L L S/o/onie/seiuw/woo dnoolwepese//:sdiy Woll papeojumod



The key physics of CR transport in our model therefore reduces
to our expressions for the source S; and damping Q. terms
in equation (7). We will explore many model variations, but it
is useful to first define a ‘reference model,” which attempts to
represent the best current theoretical understanding of SC + ET
effects as developed in e.g. Zweibel (2013), Ruszkowski, Yang &
Zweibel (2017), Zweibel (2017), and Thomas & Pfrommer (2019)
and other references in Section 2.5-2.7. In this ‘baseline’ model,
we take: Sy = Si + + Ser.+ where S + follows equation (9),
and Se + = o, (k) eg T (k) £4)~" assumes an anisotropic GS95-
like Alfvénic cascade (Chandran 2000). We take Q. = (I, +
Caust + Cwrvyrr) ex + T 211 (e+/ep) e+ where the expressions for [y,
I"gust, and Fgu are in Section 2.5, and for consistency with our
driving terms Si (since we are assuming parallel modes be-
ing sheared out by a GS95-type cascade), we have [y =
[(Va, idear + 0.4 ¢5) /€] (ky £,)Y? (where the 0.4 ¢, term is the ‘lin-
ear Landau’ term). We use the appropriate v, ¢ in equation (5)
for the relevant vs terms in the CR equations, and note that
these expressions self-consistently determine the relation between
VA and V4.

We will focus on comparison of the models here to the Solar-
neighborhood/LISM constraints — the only place where the full
CR spectrum of various species can be determined. In Paper I
(where we study only phenomenological CR transport models), we
consider a more extensive suite of constraints, including spatially
resolved y-ray emission and ionization constraints that span various
Galactic environments, as well as comparisons of different CR
species and abundances not shown here. While of course any
ultimate ‘successful’ model must produce agreement with all of
these constraints, our focus here is ruling out a number of models that
cannot reproduce the observations, for which a simpler comparison
of the LISM spectral shapes and secondary-to-primary ratios is both
sufficient and most useful, given that the theoretical slope §; most
directly manifests in the shape of the predicted secondary-to-primary
ratio as a function of energy. The details of how we compare to
observations are given in Paper I, but briefly we select all gas cells
in a mock Solar circle (at galactocentric radii 7 = 7 — 9kpc), in the
mid-plane (|z] < 1kpc), with gas densities similar to those observed
(n ~ 0.3 —3cm™), and calculate the median CR spectrum of all
gas in this ensemble. To define the ‘scatter’, we allow for a wider
range of both galactocentric radii (4 — 10kpc) — allowing for the
fact that our galaxies are not perfect MW analogs — and a wider
range of densities (n = 0.1 — 10 cm™>) and compute the interquartile
ranges of all CR spectra in all cells meeting these criteria. Of course,
we expect CR spectra to vary with Galactic environment, and this
is discussed extensively in Paper 1. We further have examined all
of our predicted CR spectra in both different Galactic annuli from
r =1— 15kpc and at different densities 0.001 — 10cm™3, as well
as gas selected only in different thermal phases (though this is
closely related to density selection as shown in Paper I); importantly,
while the normalization and detailed spectral shape of the CRs can
depend on these environmental properties, none of our conclusions
(particularly about the shape of B/C and 4, and the success or failure
of different models) depends on exactly where or how we measure
the CR spectra.

4.4 Model variations considered

We have tested a large number of model variations in our simulations
(many in concert with one another), in order to systematically survey
whether different changes to our default model could resolve the
qualitative tensions described above. Here, we outline variations
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considered, grouping them into those that have no appreciable effect
on the qualitative behaviours of interest in this paper, and those that
we find to be most significant.

4.4.1 Variations that do not alter our qualitative conclusions

The following variations — all of which we have tested in full
simulations to verify the robustness of our results — do not alter
our qualitative conclusions, even if they produce systematic or
quantitative shifts in predicted quantities. We therefore will not
discuss them in detail below, but list them for completeness
here.

(1) Changing Galaxy and Stellar Assumptions: as studied in detail
in Paper I for simpler power-law scattering rates, we have rerun
adopting two different fiducial MW-like galaxy simulations as our
IC (m12f and m12m, instead of our usual default m12i here), all
of which are similar to the real MW but differ in various details
(Garrison-Kimmel et al. 2019; Samuel et al. 2020). Also, as in Paper
I, have also arbitrarily multiplied the magnetic fields in our m12i
ICs by 10 and 0.1 (even though the ‘default’ values agree well with
MW observations; Su et al. 2018; Guszejnov et al. 2020), as these
are both theoretically and observationally uncertain and influence the
transport physics. Finally, we have also rerun using both our FIRE-3
(Hopkins et al. 2022a) and the older FIRE-2 (Hopkins et al. 2018b)
implementation of the FIRE physics, the latter of which uses older
stellar evolution and cooling tables leading to slightly different SNe
and stellar mass-loss rates, detailed cooling physics, etc. As shown
in Paper I, these make significantly smaller differences compared to
changing CR transport coefficients at the level of detail considered
here.

(i1) CR Injection Parameters: we have systematically varied the
injection spectrum, e.g. considering slopes jo; o R;V/i"j within a
broad range of ¥, = 3.2-5.2, allowing for a ‘broken’ power-law with
a break at ~ 1 GV, freeing the normalization of the injected energy
fraction and normalization of different components (e.g. leptonic
versus hadronic). These variations are again discussed in detail in
Paper I; they can be used to improve the agreement of a given model
with observed CR spectral shapes, but do not resolve the qualitative
problems that are evident in secondary-to-primary ratios.

(iii) Alfvén Speeds and Streaming: we have considered replacing
the full expression vy . [equation (5)] for the gyroresonant Alfvén
speed with either the ‘ion Alfvén speed’ (v4. ion), Which is nearly
identical to v, ., or with the ideal Alfvén speed vy, igear, Which is
much lower in dense neutral gas. While the latter has non-negligible
quantitative effects (see Paper I), because the overwhelmingly neutral
gas has a relatively small volume filling-fraction (so contributes only
modestly in a weighted sense, for diffusive CRs), it does not alter
the qualitative conclusions here regarding the success or failure
modes of different models. We have also varied the ‘streaming
speed’ U4 = vy (Vs 4+ — Us.—)/(Js+ + Vs.—), which we by default
solve for explicitly, by replacing it with either exactly |04 =0
(the expectation in e.g. ‘pure ET models’) or [U4] = va e (the
expectation in ‘pure SC models’). This again has little effect, as
this is generally subdominant to the diffusive or ‘super-Alfvénic’
streaming speed (Evoli et al. 2017; Amato & Blasi 2018; Chan et al.
2019; Su et al. 2020; De La Torre Luque et al. 2021; Hopkins et al.
2021d).

(iv) Renormalizing or Disabling Different ‘Reference Model’
Terms: we have rerun our reference model, multiplying each source
term (Ssc» Set) and damplng term (Fina qust’ l—‘turb/LL, l—‘nll) by 100
and by 0.01 or 107!° (effectively disabling it entirely). While
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this can have large effects in some cases (discussed below), and
ameliorate some of the ‘normalization’ tensions described above,
none of these modifications, in and of themselves, resolves the
fundamental issues of the failure of SC or ET models (whichever is
dominant) —i.e. there is no ‘single term’ which drives the qualitative
problems discussed above, and only the ‘normalization’ problem is
substantively addressed by these renomalization experiments (see
also Hopkins et al. 2021d).

(v) Variant ET Models: we have experimented with a number
of variant ‘pure ET’ models (disabling the SC source term Ss.) or
ET 4 SC models (retaining Ss.) that vary S 1+ (and I'y which
must match appropriately). For each, we have considered both (a)
retaining all the other, usual damping I'y terms (e.g. I'yy) or (b)
disabling all damping terms other than the cascade transfer term
[, SO the spectrum is exactly that predicted by classical ET
models. We consider each of the ET models reviewed in Hopkins
et al. (2021d) and Section 2.7: (1) ‘standard’ Alfvénic turbulence
(our default S¢(, 1); (2) ‘Alfvén-Max,” which assumes an anisotropic
Alfvénic cascade but arbitrarily sets o, = 1 (this ignores the gyro-
averaging correction for anisotropic modes, but still retains the effect
of anisotropy producing an e, k[l spectrum); (3) “YLO4’ which
follows Yan & Lazarian (2004) as detailed in appendices of Hopkins
et al. (2021d), accounting for collisionless and viscous damping,
and accounting for the much stronger effects of damping (super-
exponentially suppressing S, +) when the neutral fraction is non-
zero or plasma Bylasma = €2/ vi, wear > 1, as well as a variant where
we neglect the predicted suppression from ion-neutral damping or
plasma Bpasma > 1 (the ‘Fast-Max’ or ‘YL04-Max’ model from
Hopkins et al. 2021d); (4) a model that assumes a critically balanced
Alfvénic cascade but with a modified cascade rate (which might
be motivated by alignment/intermittency effects, e.g. « = 1 in
the notation of Boldyrev 2005 or § = 1/8 in Schekochihin 2022),
which can modify the perpendicular spectrum significantly, but
again (necessarily) gives an ey o k[l parallel spectrum with only
a weakly modified 'y, = (V4, idea/€a) (k) £4)% (we take &, = 0.4
as a somewhat ad hoc example, for the sake of comparison).

(vi) Numerical Variations: we have considered a number of nu-
merical variations, including (1) replacing the more general second-
moment closure relation from Hopkins et al. (2022b) with the
assumption that the CRs are always near-isotropic (as in Thomas &
Pfrommer 2019), or (2) in flux-steady state (reducing the CR
equations to a diffusion + streaming equation; Zweibel 2013), (3)
testing different ‘reduced speed of light’ numerical approximations
from ¢ ~ 0.01 — 1 ¢ to ensure convergence, (4) comparing a re-
simulation at 8x improved mass resolution (2x improved force
resolution), or (5) directly integrating or assuming local steady-state
for the scattering modes (D,ex — 0, as discussed above). As shown
in Paper I, and Chan et al. (2019) in more detail, these have quite
weak effects on our results.

4.4.2 Variations that matter

The variations we have studied that do lead to important results,
discussed below, are summarized here.

(1) ‘High’ or ‘Low’ Initial CR Energies: As described above, in
our ‘default’ ICs, we initialize the total CR energy density following
the consistent result of a cosmological simulation, with spectral
shapes matched to those observed, but these quickly converge to
new equilibria. However, we have also experimented with a ‘low
start” and ‘high start’ IC, in which we multiply the initial CR energy
(renormalizing all spectra) by factors of 0.001 and 10, respectively.
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This does not change our conclusions and neither IC resolves the
SC or ET problems above; and for models where the source term S1
does not depend on CR energy (non-SC-dominated), this has little
effect (the simulations converge to the same equilibrium, independent
of this choice). However, for SC models, where Sy + o e, we
will show that this determines which ‘attractor’ solution the SC
model converges towards, as described in the ‘instability’ problem
(Section 3.4) for SC.

(i) Adding New Damping Mechanisms: we experiment with
several variant models where we add a new damping term I'yew, damp, +
(optionally disabling other damping terms in our ‘reference’ model
Cins Tausts Dwrbie, Tops in turn), motivated by the discussion in
Section 3.5.1. In the most interesting of these experiments, we add
a new damping term with the form Qpew, + = new, damp, + €+ With
Tiew, damp, + = fisw k' (ely/en), where fi5 and & ~ 1/2 are varied
as described below.

(iii) Adding New Sources: we experiment with variant models
where we add a new source term, considering both ‘external’
and ‘linear’ sources motivated by the discussion in Section 3.5.2,
with St = Spew,+ = fiw k{* €% with ¢4 = 0 (external) or ¢4 =
1 (linear) and flgM, ¢y varied as described below. We again con-
sider both this added directly on top of our reference model, or
disabling/renormalizing various others of the ‘reference’ source or
damping terms in turn.

5 RESULTS: MODEL COMPARISON

We now examine the results of the full simulations. To remind the
reader, these self-consistently follow the dynamics of cosmological
magnetized gas inflow into galaxies, cooling, and star formation,
followed by stellar evolution, stellar mass-loss in O/B and AGB
winds, radiative heating and photo-ionization, and, for massive stars,
supernova explosions, which inject a spectrum of CRs back into the
ISM alongside energy and momentum that drive galactic outflows.
Phenomena such as galactic winds, turbulence, clumping, magnetic
dynamo amplification, and the like are followed self-consistently.
In this medium, the injected CRs propagate according to the full
dynamics equations [e.g. equations (1-2), incorporating diffusion,
streaming, adiabatic gains/losses, diffusive re-acceleration, catas-
trophic losses, radiative losses, and the like], producing secondary
and tertiary CRs ‘on the fly’ while they propagate. Importantly, the
CRs interact directly with the gas dynamically as they travel (via
momentum exchange and scattering and heating and ionization),
which allows not only for the non-linear development of coupled CR-
gas instabilities, but also CR-driven winds and outflows, CR heating
altering star formation or ionization coupling to thermochemistry,
and other unique phenomenology. The CR scattering rate s for each
rigidity is calculated self-consistently at every distinct position and
time, according to the different models we explore (based on the
local plasma properties). We do not enforce or assume any ‘steady-
state” assumptions, so non-equilbrium and non-linear phenomena
can occur. We wish to understand whether this could change our key
conclusions above.

With these simulations, we specifically consider the most relevant
model variations to test the analytic predictions developed above.
First, for reference, Fig. 1 shows an example of an empirically
calibrated model (as Section 3.1) where one does not solve for
the CR scattering rate Vs according to any physical model at each
position and time, but simply assumes or imposes a phenomeno-
logical uniform-in-time-and-space power-law scattering rate, vs ~
1072571 By (Rt /GV) ™, iLe. 8, = 0.6. This was studied in Paper I,
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Figure 1. Example of an ‘empirical model” from Paper I (see Section 3.1) where CR scattering rates are assumed to be a simple constant power-law function
of rigidity 75 = 1072 57! B¢, RES‘G. CR spectra are calculated by integrating CR dynamics and losses in a full live galaxy-formation simulation at redshift z =
0 (Section 4). Top: CR intensity/kinetic energy density spectra for different species (labelled). Lines show median (dashed) and mean (solid) values in the
simulation for LISM gas in the Solar circle (r = 7 — 9 kpc) with density n = 0.3 — 3 cm™>. Shaded dark (light) range corresponds to +1¢ (+20) range, allowing
for a broader range of galacto-centric radii (4 — 10kpc) and LISM densities (n = 0.1 — 10 cm™3). Points show compiled observations (see text; Section 5).
Middle Left: '"Be/°Be; dark purple (light cyan) range shows the 10 (£20) range. Middle Right: B/C ratio. Bottom Left: j/p ratio. Note the value at the
highest-energies is significantly affected by our upper boundary (we do not evolve p or heavier ions with rigidity > 1000 GV). Bottom Right: e*/(e* + ¢™)
ratio. All of these properties can be reasonably well-fit with a simple empirical power-law scaling. The spectra are nearly independent of the initial CR spectra

after ~100 Myr of evolution.

where we show explicitly that similar quality fits could be obtained
for a narrow range of §; ~ 0.5 — 0.7, independent of all the parameters
listed as ‘unimportant’ in Section 4.4.1, as well as the normalization
(‘high’ or ‘low’) of the CR energies in the ICs (i.e. the system rapidly

C

onverges to the same steady-state results, independent of the details

of the IC).

We compare the predicted spectra of a variety of species including

H (p), p, e, e, B, Be, °Be, '’Be, C, N, O, and various secondary-
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to-primary and radioactive species ratios. As discussed in Paper I,
the most constraining combination of constraints comes from fitting
the overall shape and normalization of the p and e~ spectra (which
dominate ¢, CR ionization, and y-ray emission), the positron-to-
electron and B/C ratio (which give standard secondary-to-primary
ratios but depend differently on some model parameters owing
to their different sensitivity to e.g. leptons versus hadrons and
different loss processes), and '°Be/’Be (which as a diagnostic of
radioactive species provides an independent ‘clock,” as compared
to the secondary ratios that are more sensitive to grammage). We
compare the model to the observations compiled and discussed in
Paper I (see that paper for more detailed discussion of the comparison,
along with comparisons to a range of other observables including
spatially resolved Galactic y-ray and ionization constraints). In
Fig. 1, points show observations (colours denote species), from the
LISM Voyager (circles; Cammings et al. 2016), AMS-02 (squares;
Aguilar et al. 2018, 2019a, b, and references therein), and com-
piled from other experiments, including PAMELA, HEAO, BESS,
TRACER, CREAM, NUCLEON, CAPRICE, Fermi-LAT, CALET,
HESS, DAMPE, and ISOMAX (pentagons; Engelmann et al. 1990;
Shikaze et al. 2007; Boezio et al. 2000; Obermeier et al. 2011; Adriani
et al. 2014; Abdollahi et al. 2017; Boezio et al. 2017; H. E. S. S.
Collaboration 2017; Yoon et al. 2017; DAMPE Collaboration 2017;
Adriani et al. 2018; Atkin et al. 2019). For the non-Voyager data, we
omit observations at energies where the Solar modulation correction
is estimated to be important (see Bindi et al. 2017; Bisschoff et al.
2019, and references therein). For the Voyager data, we show both the
directly observed values and the ‘modulation-corrected’ value from
Strong, Moskalenko & Ptuskin (2007) who consider models where
modulation could still be important for V1 data (note this would also
reduce the value of B/C observed at ~ 1 GeV).

More extensive comparisons to other observations, including e.g.
observed y-ray emissivities and CR ionization rates as a function of
Galactic position, are presented in Paper I, all of which demonstrate
consistency between this particular model and the observations. In
future work, it will be important to compare some of the proposed
alternative models below to this extended set of constraints as
well.

5.1 Default SC & ET models: confirmation of failure modes

Having shown in Fig. 1 that it is possible to simultaneously reproduce
the observations with a simple phenomenological model, we will now
show that it is remarkably difficult to achieve the same in physically
motivated SC or ET models. We compare the same observations
from Fig. 1 to our ‘default’” model (Fig. 2), SC-dominated mod-
els starting from lower and higher CR energy densities (Fig. 3),
and ET-dominated models (Fig. 4), defined as in Sections 2
and 4.3.

5.1.1 SC models

First, we can immediately confirm that in our ‘reference model” from
Section 4.3, the total scattering rate driving is dominated by the SC
terms S, + (as compared to the Alfvénic S, 1 ). Thisis expected since
the theoretically favoured scattering rate from Alfvénic turbulence
accounting for anisotropy (Section 2.7) is equivalent to a diffusivity
k22 x 103 cm?s7! (£4,/100pc) independent of R, (and larger
with damping). So our qualitative conclusions and the key results
in Figs 2-3 are identical whether we consider ‘SC + (favoured) ET’
or ‘SC only’ (Ser, + — 0) models.
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Figs 2 and 3 illustrate the fundamental ‘instability’ or ‘solution
collapse’ problem of SC models, as discussed in Section 3.4 and
derived more rigorously in Appendix A. For either the regular or
‘low’ or ‘high’ start ICs (Section 4.4.2), the system initially rapidly
converges to the approximate ‘local steady-state’ scattering rates
(i.e. the steady-state scattering rates assuming the CR and plasma
properties are frozen at their instantaneous values), which allow for
‘super-Alfvénic’ streaming at some finite multiple of the Alfvén
speed (see Appendix B). However, this is not a steady-state solution
for the CR energy density equation, and the system then (on the
CR transport time-scale ~ 10 Myr) collapses to one of the only
two truly stable steady-state SC solutions for ¢/ If the initial CR
energy density at some rigidity e, is too low (and therefore also the
SC-driving strength Sy o e/, and the resulting scattering rates ),
the CRs escape more rapidly, further lowering ¢, , until the system
collapses to the ‘free streaming limit’ with no scattering (the tiny
residual scattering in Fig. 2 is driven by the small ET term). This
occurs at all CR rigidities in our ‘low start’ (lower initial CR energy
density) ICs and rigidities 2 100 GV (where ¢/, is still relatively
low) in our ‘normal start’ ICs. On the other hand, if the initial
CR energy e/, is too high, the system over-scatters (s becomes
very large) slowing transport and producing a bottleneck until the
system collapses to the ‘infinite scattering’ limit, where CRs can only
stream at the Alfvén speed. This gives a momentum-independent
CR escape time of ~ 1 Gyr (¢, hato/10kpe) (v4/10km s~1)~! (where
LR halo 18 the maximum of either the galacto-centric radius or height
of the CR scattering halo), which is orders of magnitude larger than
observationally allowed. The dependence of escape time on rigidity
is also qualitatively different from that required by observations.
This produces an order-of-magnitude excess, as well as the wrong
shape/rigidity-dependence, in the CR spectrum and secondary-to-
primary ratios.

We have also compared these models to observed Galactic y-ray
emissivities and ionization rates, following the identical procedure
to Paper I (figs 11 &12 therein) where we compared the phenomeno-
logical model in Fig. 1 to data from Digel et al. (2001), Ackermann
etal. (2011), Tibaldo (2014, 2015), Indriolo et al. (2015), Acero et al.
(2016), Yang, Aharonian & Evoli (2016), and Tibaldo, Gaggero &
Martin (2021). We do not show this explicitly as the information is
redundant with that in Figs 2 and 3: the ‘default’ and ‘high-start’
models, which lead to the over-confined limit for ~ 0.1 — 10GV
protons that dominate the y-ray emissivity observed, produce a y-
ray emissivity (o e, p) about a factor ~30 larger than observed at
Galactocentric radii ~ 1 — 10 kpc. Conversely, the ‘low-start” model
produces an emissivity a factor ~100 lower than observed. Note that
even if the CR proton spectrum in Figs 2 and 3 is lower in some
low-density ISM gas or at larger galactocentric radii, or even if we
uniformly increased the Alfvén speed of self-confined CR streaming
by an arbitrary large factor ~10-30, it is particularly hard to avoid
severely over-predicting the y-ray flux in the ‘default’ or ‘high-start’
models: it only requires some dense regions where the local Alfvén
speed is low to produce excessive y-ray emission (see Hopkins et al.
2021d). Although the CR ionization rates show the same qualitative
trend, being over-predicted where the CR spectrum at low energies
is high, they are less constraining. This is because low-energy CRs
are well-confined (have slow diffusion) even in the phenomeno-
logical model in Fig. 1, and losses can regulate their residence
time.

We also clearly see in Fig. 2 the ‘spectral shapes’ problem
predicted in Section 3.4 for the ‘normal start’ model, where the
CR proton and electron spectra are much too-sharply peaked around
~ 1 GV. In other words, the shape is ‘too steep’ at high energies
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Figure 2. Predicted CR spectra as Fig. 1, but for our default, ‘theoretically favoured” model. Here, the driving term S+ for scattering includes both SC (S, +)
and ET (Se(, +) terms, accounting self-consistently for anisotropy and damping in both, but the ET terms contribute negligibly at the energies plotted (so our
results are similar to a ‘pure SC’ model with S¢¢ = 0). The ICs have CR spectra set to observed values (the ‘normal start’ in Section 4.4.2). We include all
standard mode-damping mechanisms (Section 2.5). From this IC, the initially super-Alfvénic streaming at intermediate CR energies (where the CR energy
density e/, is relatively high) quickly collapses to the ‘bottleneck’ or ‘infinite scattering’ solution that gives very slow CR transport (limited by the Alfvén speed,
and independent of rigidity), over-predicting B/C, and e*/e™ and ¢, by an order of magnitude at ~ 1 — 30 GV. At higher CR energies (> 30 — 100 GV) where
initial e/, is lower the solutions collapse to the ‘unconfined’ or ‘free-streaming-at-¢” solution with negligible scattering (giving too-low B/C and e*/e™). This is
the ‘instability’ or ‘solution collapse’ problem (Section 3.4): regardless of IC or renormalizing the SC driving or damping rates, no stable intermediate solutions
between these extremes exist in the context of standard SC models.

and ‘too shallow’ at low energies. This corresponds to the effec-

tive 8¢ be

energies.
We havi

make any

ing ‘too low’ at low energies and ‘too high’ at high

e confirmed that none of the variations in Section 4.4.1
appreciable difference to these behaviours. Changing,

for example, the normalization of SC source or damping terms,
removing damping terms, or changing the wavelength-dependence
of the SC driving or damping terms, only shifts the value of e,
that divides the two unstable ‘solution collapse’ limits. In other
words, if we systematically lower the normalization of S 4+ at
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Figure 3. As Fig. 2, but for SC models that adopt a lower or higher initial CR energy (see Section 4.4.2). Left: a ‘low-start’ IC where we multiply the initial
e, by ~0.001 relative to observed values. Now CRs at all energies collapse to the unconfined solution (the small residual scattering is from the non-zero ET
terms). Right: a ‘high-start’ IC where we impose initially flat CR spectra with total CR energy multiplied by ~10 relative to observed. Now a broader range of
CR energies collapse to the ‘bottleneck’ solution, near the calorimetric limit, except for the highest-energy CRs that collapse to the unconfined solutions (note
the high-energy leptonic spectra are strongly modified by losses here). For simplicity, we omit the plots of '°Be/’Be, 5/ p, and the CR intensity: these disagree
with observations in the same manner as expected from B/C, et/e™, and CR spectra shown, so the information is redundant.

some wavelength kj or rigidity R., by a factor A, then collapse to
the ‘unconfined’ solution as compared to the ‘infinite scattering’

solution
R... We

will occur at a factor ~A lower CR energy density ., at that
also confirm that no variant model we test is somehow able

to exactly balance at the ‘dividing line’ between the two regimes.
This is not surprising: even if we could contrive a model that was

MNRAS 517, 5413-5448 (2022)

balanced in this respect, our simulations are dynamical so the local
CR energy density varies (as e.g. clustered SNe explode and star
formation rates vary across the Galactic disc), and such a solution
is unstable to variations in Galactic properties (Appendix A). So,
the system is perturbed and immediately collapses into either
extreme.
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Figure 4. CR spectra (as Fig. 3) now for pure-ET models, demonstrating the anisotropy, normalization, and damping problems (Section 3.2). Here, we disable
SC driving (Ss, + — 0) and arbitrarily renormalize the ET driving (S, +) or damping rates to force the models to match CR proton spectra at ~1 GV. Left:
representative behaviour of any model that accounts for anisotropy in the Alfvénic cascade (e.g. any model obeying critical balance, such as GS95). This imposes
Set, + = & eB L'wury (ky £ )~ (Section 2.7). We renormalize a; ~ 1 (a factor ~103-10° larger than theoretically favoured) to fit spectra at ~ 1 GV. But the
spectral shapes are still incorrect. Accounting for damping or deviating from critical balance makes the disagreement worse (see Section C). Right: representative
behaviour of any model assuming an isotropic fast-magnetosonic cascade, accounting for the fact that the spectrum is modified by damping/dissipation on
a scale Agiss larger than the gyro scale (here following YLO04; Section 2.7). We renormalize to fit the p spectrum by disabling ion-neutral, dust and other
parallel or Alfvénic damping terms and adopting the YLO4 scalings for plasma Bpasma < 1 everywhere (otherwise the scattering rate is reduced by ~109).
Even renormalizing to force a reasonable mean scattering rate at ~GV, these models cannot reproduce observed spectral shapes: accounting for anisotropy
and/or finite dissipation scales forces ET scattering rates (therefore B/C) to be independent or even increasing functions of CR energy at 2> GV (e.g. 85 < 0),
contradicting observations.
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For this reason, the results here are also insensitive to resolution
or other micro-physical details of how we initialize the simulations
(changing the magnetic field strengths, phase structure, resolution,
etc.) — since there are only two limits to which the simulations
can collapse (each of which contradicts observations) we can only
indirectly influence ‘which branch’ is collapsed, or the absolute value
of the Alfvén speed in the over-confined limit (which will change
the exact normalization of some predictions, but not the qualitative
prediction of momentum-independent escape times far in excess of
those observationally allowed).!

Moreover, even if we take an arbitrarily renormalized SC model,
and we choose to measure the CR spectra in low-density gas in
the Solar circle, such that we can reproduce roughly the correct
normalization of CR spectra and B/C at ~ 1 GV in the ‘infinite scat-
tering’ (Alfvénic-streaming or ‘high-start’) limit (it is not possible to
reproduce these under any circumstances in the ‘free escape’ limit),
we (1) still see the ‘spectral shape’ problem and ‘solution collapse’
at energies far from ~1 GV, (2) see solution collapse at <1 GV
in different environments such as molecular clouds, which would
violate observational constraints on CR ionization rates (Indriolo
et al. 2009; Padovani et al. 2009; Indriolo & McCall 2012; Indriolo
et al. 2015), and (3) find that for this normalization at the Solar
circle, the fact that most star formation and SNe occur in the MW at
radii much closer to (< 5kpc from) the Galactic centre, where gas
densities are higher, leads to the prediction that the y-ray emission
at ~ 1 —10GeV from the Galaxy would be at nearly the proton-
calorimetric limit, a factor ~10-100 larger than observed in the
MW and other Local Group galaxies (see discussion in Lacki et al.
2011; Blasi & Amato 2012; Evoli et al. 2017; Fu, Xia & Shen 2017;
Amato & Blasi 2018; Lopez et al. 2018)

5.1.2 ET models

By turning off SC driving, we now examine ‘pure ET” models in
Fig. 4. While we have tested them to verify this, the ‘most theoret-
ically favoured’ models for ET driving from either Alfvénic turbu-
lence (realistically accounting for anisotropy following e.g. Chan-
dran 2000; Boldyrev 2006; Lazarian 2016) or fast/magnetosonic
turbulence (realistically accounting for damping following e.g. Yan &
Lazarian 2002; Cho & Lazarian 2003; Yan & Lazarian 2004,
2008) are not interesting, as (at these CR energies ~MeV-TeV)
they predict extremely low and approximately rigidity-independent

scattering rates, which correspond to diffusivities ¥ > 10* cm?s™!.

I5Briefly, we note that in future work it will be particularly interesting to
explore the behaviour of recently discovered instabilities, which rely on the
behaviour of CRs in the ‘collapsed’ streaming limit, such as the CR ‘staircase’
Quataert et al. (2022a), Huang & Davis (2022), and Hin Navin Tsung et al.
(2022) in these simulations, as they have thus far been studied only in idealized
setups. We intentionally include all the coupling terms necessary and the
resolution requirement noted in e.g. Huang & Davis (2022) of Ax < «/cs ~
8 kpc (Tgas/ 10° K)~1/2 (for observationally favoured « at ~ 1 GeV) is easily
satisfied, but as noted therein the instability depends on the plasma-p (but
our experiments in described in Section 4.4.1 and Paper I vary this by factors
of ~10*). For now, we note that this behaviour does not appear to change
any of our conclusions, nor did we expect it to do so, as (1) it only appears
in the Alfvén-streaming (collapsed) limit; (2) in that limit if manifest in the
ISM/inner CGM, it would not change the fact that the CRs have over-long
residence times with §5 < 0; and (3) as a result the primary regime of interest
for such behaviours is in the outer CGM (where more interesting observable
effects for CR-driven outflows could be present), not the ISM.
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As aresult, either ‘default’ pure-ET-only (Alfvénic/GS95 or magne-
tosonic/YL04) model predicts CR scattering rates that are so low that
one sees negligible secondary production at any energy, far-too-low a
normalization of the CR spectra, etc. — the results are similar to those
from the ‘free escape’ or ‘low-start’” model shown in Fig. 3. This is
also shown explicitly around ~ 1 GV in Hopkins et al. (2021d).

So instead, to give ET models the best possible chance of
reproducing observations, in Fig. 4, we do not show the ‘most
theoretically favoured” ET models with their default normalization
of the ET scattering rate S +, but instead allow the normalization
of the scattering and damping rates to be free parameters. These
normalizations are then rescaled to attempt to find a ‘best fit’ to
observations.

In Alfvénic ET models, as described in Section 2.7 and 3.2, for
any type of MHD/Alfvénic turbulence that obeys a critical balance-
type assumption, the ET driving term must have the form S¢ . =
a; eg N /(ky €4). In the ‘theoretically favoured’ model, where one
attempts to calculate «, self-consistently from the same GS95-type
MHD turbulence model as used for the cascade itself, one predicts
o, < 1 (as small as ~107°-1073; see Chandran 2000; Lazarian
2016). Instead treating «;, as a free parameter, we find that, in order
to approach roughly the correct order-of-magnitude normalization of
the CR spectra and B/C ratios at ~1-10 GV, we require o, ~ 1. But
even then, if we include the standard damping terms (e.g. ion-neutral,
NLL, dust), the cascade can be ‘over-damped,’ and still produce poor
agreement with observations. So, to give the best-possible chance
of reproducing observations (and also to highlight the ‘pure ET’
prediction), we ignore any damping other than the cascade transfer
itself T'ymm. In other words, we have essentially assumed a pure,
undamped, Alfvénic cascade, with arbitrary fitted normalization, so
the only constraint on this ET model is the functional dependence on
ky that is required by critical balance.

Alternatively, we can consider a YL0O4-like magnetosonic model,
which assumes the inertial-range cascade is isotropic, which is
possible for e.g. fast modes on scales larger than the turbulent
dissipation scales. But, this must account for the fact that, at
< TeV energies, the dissipation/Kolmogorov scale for magnetosonic
modes is orders of magnitude larger than the gyroresonant scale.
The ‘theoretically favoured’ version of this model is again over-
damped (giving much-too-low 1), because any appreciable regions
of the ISM that have neutral fractions 2}10*3 or plasma Bplasma >
1 produce a superexponential suppression of the scattering term
Se, + in this model. So again, to give the best-possible chance
to reproduce observations, we follow Hopkins et al. (2021d) and
ignore any ion-neutral or dust-damping and calculate the scat-
tering and damping rates everywhere assuming Bpiama < 1 (re-
gardless of the real value of B). We use the full integral expres-
sions from YLO4 in the simulations, but for reference, this gives
an approximate scattering rate bs ~ ¢/(3 €4 fun) Where fuun ~
MIN[0.04 ¢ /v 4 ideal, Ma (Vy/Va igeas €)1 (ky £4)V6], v, is the
kinematic viscosity, and M, is the Alfvénic Mach number of the
turbulence at the driving scale. This is independent of rigidity.

We note these two models are akin to the ‘Alfvén-Max’ and ‘Fast-
Max’ models studied in ‘single-bin” CR models in Hopkins et al.
(2021d), where we extensively varied the normalization and damping
terms to try and fit the observed grammage as accurately as possible
for ~ 1 — 10 GV protons (see also Section 4.4.1). We recover similar
conclusions here for those rigidities.

However, we see in Fig. 4 that even if we freely renormalize the
scattering and/or damping rates in these models to fit the proton spec-
tra and secondary-to-primary ratios as best as possible at ~1 — 10 GV,
there is a much bigger problem: both models qualitatively fail to
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produce the observed dependence of B/C on rigidity, or the correct
CR spectral shapes. This is because, as discussed in Section 3.2,
at a fundamental level, if we allow for anisotropy/critical balance
in Alfvénic models (even ignoring damping) or allow for finite
damping/dissipation scales in magnetosonic models (even ignoring
possible anisotropy and some of the more severe damping terms),
this implies s < 0. In other words, the scattering rate cannot
decrease as a function of CR rigidity as required by observations
at> 0.1 — 1GV.1

For completeness, we have also run simulations assuming an
undamped, isotropic, £(k) o< k~3/? cascade (chosen to have roughly
the correct §5) across all energies and wavenumbers (i.e. ignoring
all anisotropy terms, and all damping terms, and all SC terms, at
all scales). This trivially gives e, ~ ep (kj £4)~"/2. But as noted
in Section 3.2, this is not only unphysical but gives CR scattering
rates a factor ~1000 too large at all energies, vastly overpredicting
e.g. secondary-to-primary ratios. We discuss models of this variety
further below.

Given how widely we vary the amplitudes and damping rates and
spectral indices of the ET models above, it should ultimately come
as no surprise that subtleties such as the difference in the simulation-
resolved properties of turbulence around the driving scale (e.g. the
locally varying values of ep and €4, or equivalently local M,)
between different MW-like-simulated galaxies, different resolution
levels, different initial B-field strengths, and other variations in
Section 4.4.1 make no difference to our conclusions. Even if we
ignore any of the resolved turbulence structure and simply assume a
spatially universal M 4, we obtain the same results (which again, is
expected, given that our simple analytic toy model from Section 3.2
predicts the same discrepancies with observations).

5.2 Alternative damping requires discarding other damping
models

We now consider the ‘alternative damping’ model from Sec-
tion 3.5.1 and 4.4.2, with two examples illustrated in Fig. 5.
First, we simply replace the ‘standard’ linear damping mechanisms
(Fin + qust + 1-‘turb/LL + 1—‘nll, :E) with a new 1-‘new, damp, + X Eér. We
use a best-fitting normalization of the variants we have explored,
which is l-‘new. damp, + ™7 (UA,ideal/eA) (k\l EA)sk (e(/;r/eB)scr with 0.1 5
Er S 04 and &, = 1. This has the desired effect, discussed in
Section 3.5.1, of cancelling the e/, dependence in the SC driving
term S, 4, which is responsible for the instability/solution collapse
problems (see Appendix A). Thus we can obtain a stable result in
at least qualitative agreement with the observed behaviour at all
rigidities, and independent of the CR energy density in the ICs (i.e.
we converge to the same answer for ‘low’ and ‘high’ start ICs).
However, the challenge with this model is ensuring that I'yew, damp, +
dominates over other terms [specifically other damping terms) in
the D,es equation (equation (7)], the balance of which set the
equilibrium value of ey in the volume-filling ISM. Among the
other standard terms in equation (7), we can retain or remove
the ‘gradient terms’ (i.e. the ‘advective’ term V - (v 4 ey f)) and

16 At sufficiently low CR energies << 100 MeV, it is notable in Figs 2—4 that
even some models which produce qualitatively incorrect &5 and qualitatively
incorrect behaviours at higher energies can reproduce the spectral shapes
and secondary-to-primary ratios of some species. This is because, as shown
explicitly in Paper I, at these very low energies the rapidly increasing rate of
Coulomb and ionization losses means that the residence time (at least in the
disc mid-plane) can actually determined by the CR loss time-scales, and thus
becomes independent from the predicted scattering rates vs.
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‘PAV’ term (e+/2) V - ugy), and/or the NLL damping term (I'yy, 1),
and/or the ‘default’ (theoretically favoured, but weak) ET driving
term S 4+, without qualitatively changing the behaviour seen in the
top panels of Fig. 5. But unless we artificially remove or suppress
the standard turbulent/linear Landau (T"ywpr), dust (Igys), and
ion-neutral damping (I'j,) terms, they tend to dominate I'y (e.g.
Curb/LL 3> Tnew, damp)- This causes the total damping I'. to once again
be dominated by terms that are independent of e, , and the ‘solution
collapse’ problem returns. Similarly, we cannot simply increase
Inew, damp until it dominates over all the other damping mechanisms
at all CR energies: even though this will cure the instability, it will
necessarily over-damp the scattering modes, producing too-low CR
spectra and secondary abundances. One example of this failure is
shown in Fig. 5. This illustrates that the discrepancy is not small — it
would require more than order-of-magnitude changes in the expected
strengths of turbulent, dust, and ion-neutral damping for typical MW
conditions.

In summary, while a version of this model that can reproduce
observations does exist, it requires a radical revision to our un-
derstanding of damping mechanisms. Not only one must introduce
a novel damping mechanism with the desired ¢/, dependence, but
also argue that the standard turbulent/linear Landau, dust, and ion-
neutral (in diffuse but partially ionized phases) damping mechanisms
are much weaker than currently understood, in order for this new
damping mechanism to dominate with the correct normalization at
all relevant rigidities.

5.3 Alternative sources

Figs 6 and 7 now consider the ‘alternative driving’ or ‘alternative
sources’ models discussed in Sections 3.5.2 and 4.4.2.

5.3.1 Local/Linear source terms

First, in Fig. 6, we consider adding an alternative linear driv-
ing/source (L4 = 1 or Spew X e4) term. We take the form
Snew, + = Suew. 1in = Whew €4 With Wyey, = Wy (ky /ko)* (where we set
ko = au~! for convenience without loss of generality). Because
this is a linear driving term, the ‘net’ linear driving + damp-
ing Spew.iin — O+ = (Whew — ['1) €4 is only weakly influenced by
Snew. 1in if Whew S T'x. So, for an initial experiment, we ignore the
turbulent/linear Landau and dust damping mechanisms. In Fig. 6,
we show that this form can give a plausible fit to the observed
spectra and ratios for 0.6 < ¢ < 0.9. The required normaliza-
tion is modest, e.g. Wy ~ 10712571 (1 + M) (va/10kms™1) ~
S Vb /pc (or even Wy ~ 102 s~! ~ constant), or similarly Syew, 1in ™~
107 ki vrase (K au)~'/3. In other words, the driving/growth rate
favoured can be as little as ~10~> of the fast mode crossing rate.
The obvious challenge here, akin to the alternative damping
discussed above (Section 5.2), is ensuring W e, = I'+. Going through
all terms in equation (7), the effects of Syew, 1in are robust to retaining
or removing the ‘gradient terms,” or the other default source terms
(Ssc. 4> Ser,+), or the ion-neutral damping term (I';,),!” as well as

17Unlike in the ‘modified damping’ case (I'new, damp, + ; Section 5.2), it appears
that while 'y, 2 Wy in dense neutral ISM phases (CNM, molecular), which
have a low volume-filling fraction and therefore do not strongly alter CR
spectra in diffuse gas, we generally have I'j; S Wyeyw in warmer and/or more
diffuse phases, even if they are partially neutral. This is especially true if we
adopt a version of Wy, that scales with My or Svym, Which is larger in
warm or cool phases.
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Figure 5. As Fig. 3, for models where we attempt to modify the damping physics to reproduce observations (Section 5.2). Left: a model where we take the
default SC model, remove other ET sources (Se, + — 0), and replace all the standard known linear damping terms (Section 2.5) with a damping term that scales

as Tnew, damp ~ (Va, ideat/€4) (k| €4)"/* (€L,/eB), per Section 3.5.1. This depends

on e, in a way that cancels the term in SC driving which gives rise to the

‘solution collapse’ problems, and allows for a reasonable and stable solution (independent of the CR energy density in the ICs). Right: results if we retain this
new damping term I"pew, damp, but re-introduce the ET driving and standard linear damping terms from e.g. ion-neutral, linear Landau, turbulence, and dust. Any
of those linear damping terms is significantly larger than I"new, damp (for the normalization of yew, damp Needed to get a reasonable scattering rate) and ‘swamps’
it, producing results closer to our ‘default” SC behaviour in Fig. 2, unless we make I'yew, damp S0 large that the SC models are over-damped (giving vs — 0, so

CRs are unconfined).

retaining or modifying/expanding the non-linear damping terms
(T'nii, +). However, if we do include the standard turbulent/linear
Landau (I'ymr) or dust (I'gue) damping terms in their ‘default’
forms, these cause 'y 2 W, in the volume-filling ISM, negating
the effects of our added source term Syey, fin-
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Thus, while not totally implausible, this model does have theoret-
ical challenges in dealing with the turbulent/linear-Landau and dust
damping terms, akin to the modified damping scenario (Section 5.2).
As discussed in Section 3.5.2, the advantage of this scenario is that
it is quite easy to imagine linear instabilities operating on these
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Figure 6. AsFig. 3, for models where we consider alternative linear scattering-mode driving/source terms (Spew, lin < €4,1.€. {4 = 1; Section 5.3.1). Left: amodel
where we add linear source term Spew, lin ~ Whew €4 With Wpey ~ 1071251 (k| au)?3 (1 4+ M) (vgast /10km s7h, removing specifically the turbulent/linear
Landau and dust damping terms (keeping all other damping), and reducing the standard SC driving term by a factor ~0.01. Note the agreement with observed
10Be/*Be and 5/ p (not shown) is also good. We also obtain broadly similar results for a simpler model with Wy ey, 10712 571 (k| au)?/3, but the fit is not quite as
good (this leads to flatter B/C at high-energies). Right: as left but re-introducing the dust and turbulent/linear Landau damping terms, which are usually larger
than the linear growth term, so the behaviour reverts to be closer to the ‘default’” SC model and collapses at intermediate and high-energies to the unconfined

solutions.

scales with roughly the correct growth rate and kj-dependence.
For example, multifluid instabilities like the Kelvin—Helmholtz
instability would have growth rates ~ (§p/p) k év, so would only
require (6p/p) (8v/Vgas) ~ 1073 on these scales to grow at roughly
the correctrate. RDIs in the ‘mid-k’ range, which may be applicable at
these scales, and RTIs similarly have growth rates of ~ +/a k where

a is some differential acceleration between e.g. dust and gas (for
RDISs) or a fluid interface (for the RTI). Given the low normalizations,
even a very small differential acceleration a ~ 107 vﬁ /£ 4 could be
sufficient to drive the required growth rates. Of course, for ‘interface’
instabilities one must ask what the interface would be, while for RDIs,
the ‘high-k’ modes often have a less-favoured scaling o k'?, and more
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Figure 7. AsFig. 3, for models where we consider alternative fixed or ‘external’ (e4-independent, { 4 = 0) scattering-mode driving terms (Syew, ext; Section 5.3.2).
Here, we do not disable any of the standard damping or other driving terms, we simply add this additional source term. Left: a model with Spew, ext =
(VA, ideal /0-007 €) (V4. ideal /£4) (k) £4)™/® ep (we also obtain similar results for Spew, ext ~ 0.005 (v4, igear/£4) e (kj £4)~1/%). Adding a weakly scale-dependent
driving term of this form ({ & —1/6, {4 = { o = 0), with amplitude comparable to ~ 1 per cent of turbulent or Alfvén dissipation rates can produce reasonable
behaviours, without having to strongly modify known damping or other driving terms. Note agreement with '°Be/’Be and jp/p is good as well. Right: a model
with Spew, ext = 0.01 (v4, idea1/€4) ep (roughly ~ 0.01 p 8vl3urb /Ly on the driving/resolved ISM scales). This has similar amplitude and behaviour but slightly
different wavelength-dependence (£ = 0). While it does not fail catastrophically, the agreement with observations is notably worse, demonstrating that the

favoured range of —0.25 < ¢ < —0.1 is relatively constrained.

extreme conditions and/or certain modes (e.g. the ‘CR like’ RDI
modes) could produce over-confinement (see Squire et al. 2021 and
Jietal., in preparation). It is even conceivable that Sy, 1in could arise
at CR energies > GV from the action of the Bell (2004) instability
sourced by the dominant ~ GV CRs (i.e. the long-wavelength regime
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of the instability sourced by lower-energy CRs); however, this could
introduce some (but not all) of the ‘instability’ problems from SC
(Section 3.4).

In these regimes, it is also not implausible to assume that the usual
[Mubr and I guge terms would be strongly modified. The expressions
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for ‘turbulent/linear Landau” damping reviewed in Section 2.5 are
derived specifically assuming that the modes are sheared out by
external turbulence from a standard GS95 cascade from larger
scales, where the dominant driving of any modes that are not
exactly parallel modes driven by SC comes from that ET cascade
(see Yan & Lazarian 2002; Farmer & Goldreich 2004; Zweibel
2017). But if Spew,.1in dominates over Sg. + and Se 4, then some
of these assumptions will not apply — so there is not necessarily
any reason to think the modes would be sheared out in this manner.
Similarly, the dust damping rate I'g, is derived specifically under
the assumption that the RDIs are negligibly weak/inactive (indeed
the damping and instability arise from similar physical effects) —
if there is sufficient dust drift to cause an RDI, the dust switches
from being a ‘damping’ to a ‘driving’ term (see Squire et al.
2021).

5.3.2 External/fixed-rate source terms

We now consider adding a ‘constant’ or ‘external’ alternative
driving/source term (¢4 = 0 or Spey o< €9), in Fig. 7. This
is the most straightforward successful model variant we con-
sider. Keeping everything else in our ‘reference’ model fixed,
we can simply add a source term Spew, ext X kﬁk (where we find
best fits with —0.25 < ¢ < —0.1), and normalization e.g.
Snew,ext ~ 0.005 (UA,ideal/EA) (k” KA)71/6 eg or ~ 0.01 (Svfurb/KA, ie.
~ 1 per cent of the typical turbulent dissipation rates. This pro-
duces remarkably good behaviour across all diagnostics we
consider.

While a detailed exploration is outside the scope of this work, we
have also applied the analysis pipeline from Paper I to this model to
explore its predictions for the spatially resoled y -ray emissivities and
spectra and CR ionization rates in the Galaxy (since any successful
model must reproduce these, as well) and we find agreement there as
well, broadly similar to the favoured phenomenological model from
Paper I which is shown in Fig. 1.

Unlike the alternate linear-damping or driving models, we do not
have to ‘remove’ or re-tune any of the known terms (SC or ET
driving or different damping mechanisms) to see good behaviour
here. In other words, this model works with no other unwarranted
modifications to the wave-damping or source physics. The one caveat
is the SC driving in ‘high-start’ IC cases. Adding Spew exx With
¢4 = 0 prevents the SC instability from collapsing to the ‘free-
streaming’ solution, because Syew, ext S€tS @ minimum driving even
if ¢/, and hence Sy ., is low. But if ¢/, is sufficiently high and we
still include our standard Sy 1 in Si, we can have Si + 2 Snew. ext
with S 1 large enough to push the system into the ‘infinite-
confinement’ branch of solution collapse (so that this causes e,
and Sy 1+ to continue to rise). This scenario cannot be halted by
the added Spew, ext term, and indeed does still occur if we just add
Snew, ext 10 ‘high start’ IC simulations. While it is plausible that such
collapse could occur physically in extreme regions — e.g. galactic
nuclei, or starburst galaxies, which are observed to be at the proton
calorimetric limit in y-ray emission; see Lacki et al. 2011; Tang,
Wang & Tam 2014; Griffin, Dai & Thompson 2016; Wojaczynski &
Niedzwiecki 2017; Wang & Fields 2018) — it obviously does not
occur for typical MW conditions. So to ensure it does not occur,
we find that our results are most stable if we reduce S, 1+ by a
factor ~10-100 from its ‘reference’ value. But as discussed above in
Section 3.4 and in e.g. section 5.3.4 of Hopkins et al. (2021d), such
a renormalization of S, 1 is plausible, based on corrections to S
from more careful detailed PIC modelling of pitch-angle dependence,
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helicity, non-linear, and non-gyroresonant effects (e.g. Bai et al.
2019; Holcomb & Spitkovsky 2019). Of course, these would need
to be revisited in more realistic situations with some Spew, ext term
present.

It is also noteworthy that this functional dependence of Spew, ext
on k, eq, and ey (e.g. 4 = 0, ¢ = 0, and [gy| small) is
superficially similar to what one would obtain in the simplest
‘classical’ isotropic, undamped, inertial-range K41-like turbulent
cascade, where S, + ~ constantis the turbulent dissipation rate. This,
plus the fact that the dimensional dependence of I" 1. and I"gyg 0N
k) are similar to the turbulent cascade rate, is indeed why, as many
have noted previously, the observed d; is not so different from what
one would naively obtain from a ‘traditional’ isotropic undamped
ET model with a spectrum similar to £(k) oc k=3 ((neglecting
dissipation, anisotropy, and finite dynamic-range effects; see e.g.
discussion in Blasi & Amato 2012; Vladimirov et al. 2012; Gaggero
et al. 2015; Cummings et al. 2016; Guo et al. 2016; Jéhannesson
et al. 2016; Korsmeier & Cuoco 2016; Evoli et al. 2017; Amato &
Blasi 2018). But there are fundamental physical differences here.
Most importantly, as argued above and in Appendix C in detail,
this Syew.ext cannot stem from a traditional undamped Alfvénic or
magnetosonic cascade from large ISM scales. All of the effects
reviewed therein would prevent Spew exx from having the form
assumed. It is possible that some sort of ‘mini-cascade’ could occur
over a small range of scales, with smaller-scale driving, provided it
could avoid the anisotropy and damping problems we have outlined.
But as justified formally in Appendix C, we easily avoid all of
these conceptual difficulties if we simply assume Spew, ext T€presents
driving of Alfvénic modes competing directly with damping at each
scale separately — we are simply arguing for a driving mechanism
whose power is only weakly scale-dependent. Such an effect could
possibly arise, for example, if reconnection played an important
role in MHD turbulence at small scales. Such a scenario would
require that flux ropes formed by reconnection between sheets in the
perpendicular plane (Schekochihin 2022) subsequently broke up in
the parallel direction with the right spectrum, which is plausible but
highly speculative. However, it is worth emphasizing that since the
required power in Spew, ext 1S two or three orders of magnitude smaller
than the power in the turbulent cascade, these fluctuations should
be strongly subdominant and would be very difficult to observe
in simulations. Finally, we note that the true best-fitting driving
favours a modest scale-dependence —0.25 < ¢ < —0.1 (cf. left-hand
and right-hand panels of Fig. 7); this is not steep, but is distinctly
different from the predictions of any turbulence models in the
literature.

5.3.3 Summary of requirements

We can summarize the required scaling for a viable driving/source
term Syey, for ‘linear’ Spew 1in (Section 5.3.1) and ‘external’ Spew. ext
(Section 5.3.2) cases as follows:

k Sk
Shew,tin ~ 10757 ey (KL) fs(.) (0.6 S & $09)
N V4, ideal ke \* _ < o< _
Shew. ext 0.01T e | == f5(.) (=025 < ¢ < —0.1)
A
(13)

where fs(...) is some function of ISM/plasma properties. Any viable
driving mechanism must therefore satisfy the following conditions:
(1) It must drive modes of interest, i.e. Alfvénic modes with kj in
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the relevant range and that are not too-extreme in their anisotropy.'8
We stress that equation (13) refers to the driving rate of these modes,
specifically, not to other (e.g. nearly perpendicular) modes, which are
generically less efficient scatterers and would require a larger Syey . (2)
It must be able to drive modes across the wavelength scales of interest.
For rigidities R ~ 0.001 — 1000GV studied here, this is 1/kj ~
Feor ~ 3 B;é x 10°~15 cm. However, it is possible that very low-
energy CRs (< 100 MeV) have residence times that are primarily
regulated by ionization/Coulomb losses (as argued empirically in
Hopkins et al. 2021a and found in some of our experiments), which
would increase the lower limit to ~ 10" B, cm. Similarly, it is
plausible that gyroradii approach/exceed the dissipation scales of fast
magnetosonic turbulence (so ‘traditional’ ET theory becomes viable)
above the scales relevant to few-hundred GV CRs (e.g. Fornieri
et al. 2021), in which case the upper limit could decrease to ~
(03 —1)x 10" B;é cm. (3) It must have one of the forms above
in equation (13), with the range of ¢, corresponding to the extrinsic
or linear driving ({4 = 1 or =0), with fs(...) parametrizing all the
dependence on the ISM plasma physics. (4) In order to match the
normalization in equation (13), the appropriate volume or scattering-
rate weighted average (fs(...)) (parametrized in the same way) must
be ~1 integrated from CR sources to the Solar LISM in a MW-like
galaxy through most of the volume-filling ISM. (5) By definition,
fs must depend weakly or not at all on CR properties (e.g. the DF
f, number density n,, energy density e, streaming speed vy, etc.);
weakly or not at all on k; (such that Sy, has the correct k; dependence
parametrized by the range of ¢;); and weakly or not at all on the
local mode amplitude e4 or §B(k) (i.e. the driver has ¢4 ~ 0 or ~1,
appropriately).

Briefly, it is worth noting that the favoured ranges of ¢, for these
driving mechanisms (or the alternative damping in Section 5.2) in our
simulations are slightly different from that analytically anticipated
from our simple steady-state back-of-the-envelope calculations in
Sections 3.5.1-3.5.2. This is not surprising: in our simple model,
we neglected losses, adiabatic terms, contributions to transport
from Alfvénic streaming, the interplay of multiple damping/source
mechanisms, and finite source/scattering halo distributions, all of
which contribute some additional rigidity-dependence to the final
behaviour, in a way that only our full simulations can accurately
capture. But crucially, the qualitative behaviours and conclusions are
identical, with only modest quantitative corrections. This suggests
that the general physical principles are robust.

5.4 Can different galaxy properties rescue SC or ET models?

It is natural to ask whether there might be some different galaxy
properties (perhaps some difference between the real MW and our
models or assumptions here) that could resolve the discrepancies with
observations, without invoking new driving or damping mechanisms.
We have attempted to explore this with both our general analytic
arguments and, to the extent possible in our simulations, with the
parameter variations discussed in Section 4.4.1. Specifically, for the
general SC and ET models in Figs 2—4, we have run simulations
using three different cosmologically selected MW mass galaxies,
which — while all selected to have properties that are broadly similar
to the MW — differ in detail (e.g. different sizes, gas density and
star formation rate distributions, presence or absence of bars and

18As shown in Appendix C, the modes do not have to be specifically
parallel or isotropic, but should at least obey |k | > (|6B(ky)|/IB|) k| ~
0.0003 R%2 [k .
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arms, etc.). We have also arbitrarily renormalized the initial magnetic
fields and CR energy densities in the simulations by large factors
as discussed above. And for all of our simulations, we have a large
number of independent snapshots sampling several galaxy dynamical
times — we have checked to confirm that the results in our figures are
robust (approximately steady-state) in time, and to see whether there
could be even a transient phase where the SC and ET models produce
good simultaneous agreement with different observables. As relates
to all these differences (variations in time, between different MW
mass galaxies, or between modified ICs), our key conclusions are
robust. Indeed, the differences between galaxies or different times
are much smaller than the differences between models (see Paper 1
for more detailed comparisons).

However, it is not possible in computationally expensive simu-
lations like ours to survey all possible galaxy properties. So one
might ask whether there still exists some hypothetical combination
of plasma parameters that would allow the SC and/or ET models
to reproduce observations. This is essentially the question explored
in Kempski & Quataert (2022), of which we became aware during
the writing of this manuscript. While our experiments in this paper
might be described as ‘constraining which CR scattering models can
reproduce observations, given a set of galaxy models,” Kempski &
Quataert (2022) effectively consider the complementary question
‘given a fixed CR scattering-rate model, what galaxy model could
reproduce observations?’. Specifically, they consider analytically
parametrized models of a stratified disc + CGM and show, in
agreement with our conclusions, that neither SC nor ET models
can possibly reproduce the observations alone.!® However, they do
argue that the combination SC+ET allows a match to observations,
in principle, if the stratified disc + CGM follows a specific particular
model. However, as Kempski & Quataert (2022) caution, this requires
avery specific and fine-tuned set of assumptions: their model requires
that the profile of the Alfvén speed, turbulence strength, ionization
fraction, and e, follows a specific profile as a function of scale-height.
This allows ET driving with a scaling close to our modified ‘Fast-
Max’ model in Fig. 4 to dominate within the thick disc (with a certain
strength), while SC driving with non-linear-Landau damping and the
‘collapsed’ Alfvénic streaming solution only dominates outside the
disc in the CGM (with that following a specific vertical Alfvén-speed
profile). Essentially, in their model, the profiles of relevant plasma
properties (like v4), which appear in the scalings of v, for the SC and
ET models, are chosen such that they ‘cancel out’ the fundamental
problematic scalings of SC or ET alone.

We have attempted to explore a model akin to this best fit of
Kempski & Quataert (2022), by (1) replacing all our driving and
damping terms with just the combination of SC driving plus the
‘Fast-Max’ ET driving model (the same as the scalings adopted in
Kempski & Quataert 2022), with just NLL damping, while also (2)
renormalizing B and e/, in our ICs to match the vertical profile of
e/, and v, assumed therein. But we find this experiment quickly
undergoes the same ‘solution collapse’ akin to our ‘normal’ or
‘high’ start ICs in Figs 2-3. The difference may be that it is simply
not possible to exactly reproduce all of the assumptions of the
analytic model in our ICs; e.g. because the galaxy density profile
cannot be freely renormalized in our simulations, and/or because
we include SC + ET terms together, while Kempski & Quataert

19See also Fornieri et al. (2021), who similarly concluded that ET models
alone (Alfvénic or akin to our ‘Fast-Max’ Se +) could not reproduce
observations below a few hundred GV, even allowing for arbitrary freely
fit galaxy/ISM properties in a parametrized analytic model.
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(2022) consider a model where only one or the other contributes
meaningfully at any given scale-height. But the bigger challenge
may be that our simulations dynamically evolve quantities like B
and ¢, and these will quickly deviate from their initial values as
e.g. super-bubbles and clustered SNe explode. These will then push
the system away from equilibrium and into one of the solution-
collapse regimes. This suggests, at least, that this fine-tuning is
not trivial to achieve in practice, and is unlikely to be the case in
the MW (as, indeed, is concluded by Kempski & Quataert 2022
also).

5.5 What about the ‘meso-scale’?

In thinking about our conclusions, it is helpful to separate the
enormous hierarchy of scales into three groups: ‘macro,” ‘micro,’
and ‘meso’ scales. For our purposes, we can think of the ‘macro-
scale’ structures as those which are at least semiresolved by our
simulations (larger than a few thousand Solar masses). This includes
e.g. the multiphase structures of the ISM, and clumping of gas (e.g.
the existence of GMCs); global galactic structure (the nucleus, disc,
and bulge, bars, and spiral arms); the scale heights of the cold, star-
forming disc (and young stellar disc) and the warm/thick gas and
stellar discs, and the associated driving scales of ISM turbulence;
clumping of star formation and SNe (in space and time), and
associated super-bubbles and galactic chimneys; galactic fountains
and the ISM-CGM interface; the existence of a turbulent CGM and
galactic outflows, and the interaction with satellite galaxy ISM/CGM
structure. All of these, it is worth noting, have been extensively
studied and compared to observations with simulations identical to
those here (modulo the assumed CR scattering rate scalings; see
references in Sections 1 and 4 and Chan et al. 2019; Hafen et al.
2019; Emami et al. 2019; Ji et al. 2020; Benincasa et al. 2020;
Gurvich et al. 2020; Chan et al. 2021; Ponnada et al. 2022; Kim et al.
2022; Trapp et al. 2022). The point of our numerical simulations,
fundamentally, was to see if non-linear effects from structure (e.g.
varying values of terms which go into estimating scattering rates,
such as |B| or n, as we discussed immediately above in Section 5.4)
could somehow introduce qualitatively different behaviours from
those predicted by the simple analytic arguments in Section 3, and so
somehow ‘rescue’ traditional SC/ET models from the problems we
anticipated. We also wanted to explore whether macroscopic ‘back-
reaction’ or CR ‘feedback’ effects, which should be resolveable,
would somehow lead to a kind of feedback loop that could alter our
analytic conclusions. This includes e.g. the effects of CRs changing
galactic wind/outflow dynamics, driving instabilities such as the
‘staircase,” or altering the phase structure of the CGM, or exerting
‘pressure’ to change the vertical balance or turbulent structure of the
ISM, or altering the global ionization structure of cold clouds — all of
these can (and as noted above, many do to some extent) occur in our
simulations, which include all of the required physics and coupling
terms.

Of course, the simulations have finite resolution and as we clearly
noted from the beginning of this study, they cannot even approach
resolving the ‘micro-scale’ by which we refer to gyroresonant scales
for the CRs of interest (< 100 au). These are the scales of actual
‘scattering’ physics, where PIC-type methods are needed to treat the
CR dynamics. In the simulations, CR scattering is therefore explicitly
‘subgrid.” Another way of saying this is that we cannot predict CR
scattering rates from first principles, but instead are here testing
different models for how the ‘microscale’ CR scattering rates depend
on ‘macroscale’ parameters. This allows us to show that some key
physics or assumptions must be missing from these models.
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But it is also worth mentioning that, given this scale separation,
there could be interesting dynamics in the ‘meso-scale’ as well,
by which we mean scales much larger than the gyroresonant
scales, but much smaller than the resolved simulation scales or
driving/coherence scales of the volume-filling warm ISM/CGM
components (and with small volume-filling factors). Consider, for
example, stellar magnetospheres: we know from the Heliosphere
that these represent regions with order-one changes in the magnetic
field on scales ~ 100 au, vastly smaller than the Alfvén/coherence
scale of magnetic fields in the volume-filling warm ionized ISM
(~ 100 — 200 pc), and that this can (and does) strongly scatter/deflect
the pitch angles of CRs with energies <« TeV. In a sense, we can
think of this as a tiny patch of the ISM interior to which the
local Alfvén scale €4 decreases from ~ 100 pc to ~ 100 au. These
are obviously un-resolved in our simulations. But it is, at least in
principle, possible to imagine models in which such ‘meso-scale’
structures dominate CR scattering, and introduce effects like those
we sought to explore on the ‘macro-scale’ in our simulations, and so
could strongly modify the ‘effective’ scattering rates and residence
times of CRs. We stress that any such model would still represent a
radical departure from traditional CR transport theory: in traditional
models such as those explored here, scattering is dominated via
the sum of many small-angle/weak scattering events, and the CR
residence times (hence ‘effective’ scattering rates) are dominated
by the statistically homogeneous, relatively smooth, volume-filling
phases of the ISM (e.g. the WIM and warm inner CGM, for CRs
observed in the LISM; see Paper I and references therein). And any
such model would still have to solve the problems we present here:
it would have to predict a physical means by which such structures
could introduce any (let alone the correct) energy dependence to
the ‘effective’ CR scattering rates over the required energy range. In
this sense, one can think of such models as a mechanism by which
something like our alternative damping or driving rates (required on
macro-scales) could be achieved, just via an intermediate scale effect.
But in addition, such a model would necessarily have to show that
meso-scale structures actually dominate CR scattering between their
initial acceleration and observation in the LISM. For the example
of stellar magnetospheres given above, this appears impossible:
the mean-free-path between magnetospheres in the ISM (given a
stellar density of ~ 1 pc™ and radius ~ 100 au) is ~Mpc, while
the observationally inferred mean-free-path for deflection/scattering
of ~GeV CRs is ~ 10pc (10° times smaller). And implicit in the
above, it would still be necessary in such a model to explain how
the diffuse ISM outside of such structures does not undergo solution
collapse or SC runaway to over-confinement. Still, it is very much
worth keeping such models in mind, as there is a diverse ensemble of
phenomology in the ISM on scales not captured in either the simple
analytic scalings or numerical galaxy-scale simulations explored here
(for examples, see the scattering processes examined in Bai 2022;
Beattie et al. 2022), and we will in future work (Butsky et al., in
preparation) try to map out in more detail some of the requirements
of such meso-scale models.

6 CONCLUSIONS

We have combined analytic models and a suite of detailed numerical
simulations of CR transport in fully dynamical Galactic environments
to explore the physics of CR scattering at CR energies ~MeV-
TeV. From all of these, we show that standard SC and ET models
cannot even qualitatively reproduce basic features of the observed CR
spectra and secondary-to-primary or radioactive species ratios. The
model failures are not superficial and, across our extensive survey, we
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find no ‘tweaking’ that acts as a remedy; this is expected, because we
argue that the problems arise due to fundamental and indeed defining
assumptions of SC and ET models. Specifically, for SC models, the
fact that the term driving the growth of the CR scattering rate itself
depends on the CR flux or energy density causes the SC ‘instability’
or ‘solution collapse’ problem, wherein, regardless of any details of
the functional form of SC scattering rates or damping mechanisms,
CRs quickly converge to either the trapped/infinite-scattering limit or
the free-streaming/escape-at-c limit. For ET models, the assumption
that the scattering modes arise from an MHD ‘cascade,’ or other
transfer between scales over a large dynamic range, forces the
scattering modes to obey the qualitatively incorrect scaling as a
function of rigidity at scales below the Alfvén and/or dissipation
scale of turbulence (which includes all CRs in the ISM below a few
hundred GeV).

We therefore phenomenologically approach the problem and ask
‘what would be needed” — in terms of either the driving or damping
of CR scattering modes — to resolve all of these issues and reproduce
CR observations. While previous studies have empirically quantified
this in terms of an ‘effective diffusivity’ or ‘mean scattering rate’
that best fits observations (e.g. fitting some constant in space and
time or a simply parametrized function for the diffusion coefficient
as a function of CR rigidity), we go further and actually solve
the dynamical equations for the CR scattering rates, incorporating
what is known about driving and damping rates of parallel magnetic
fluctuations. For the first time, we constrain ‘what is needed’ directly
in terms of the local driving rate Sy or damping rate ' of CR
scattering modes, on scales of order the gyroresonant wavelengths.
These are the quantities that can actually be predicted by detailed
theoretical calculations and PIC simulations of CR scattering physics.
We identity three classes of model that could, at least qualitatively,
reproduce the CR observations and quantify what is needed for
each.

(1) Alternative Damping: All the key problems introduced by
the dominant SC term at ~MeV-TeV energies can be resolved
if the linear damping rate scales with the CR energy density (at
some rlgldlt}’) l—‘ncw, damp, £ X eér X decr/d In Rcry c.g. 1-‘ncw,damp, + 7~
(UA,ideal/eA) (k“ KA)E" (eér/eB) with 0.1 < é—k < 04. HOWGVGI’, there
are two key issues: (1) it is not obvious what could physically
produce such a scaling, and (2) this damping must dominate
over all other linear damping mechanisms in the volume-filling
ISM, which effectively requires discarding or drastically reduc-
ing the normalization of standard linear damping mechanisms
such as ion-neutral, dust, turbulent/linear Landau, and NLL
damping.

(i1) Alternative Linear Driving/Sources: Alternatively, if the CR
scattering waves with energy es ~ |8B(k)| are driven by a linear
source term, Spew,lin X €4, Where Spew 1in does not depend on CR
energy, this can avoid the problems of SC models and reproduce
observations. A form such as Spew.1in ~ 107257 e4 (kj au)®* with
0.6 < ¢x < 0.9 provides reasonable results. Note that SC models
are intrinsically based on such a ‘linear’ source term (from CR
gyroresonant instabilities), but the problem is that their dependence
on the CR energy density introduces the instability/solution-collapse
problems, and the k dependence scales incorrectly to reproduce
observations. But a wide variety of other known linear instabilities
— e.g. a host of multifluid instabilities that are known to operate on
the relevant scales — could potentially explain this scaling, and only
very modest power is needed in the relevant modes. The problem
with this solution is that the linear source must compete with linear
damping and SC driving, so reproducing observations with this model
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class requires somewhat weaker linear damping. This problem is not
as severe as for ‘alternative damping’ above, but in particular the
standard turbulent/linear-Landau and dust damping scalings are too
strong and would need to be revised.

(iii) Alternative External Driving/Sources: Instead, an alternative
source term that is independent of e, and e/, and only weakly de-
pendent on k—for example, Syew, exk ~ d E(ky)/d Ink; dt d Volume ~
0.01 (v4,idea /€ 4) e (k) au)® with —0.25 < ¢; < —0.1 — can resolve
the key problems of SC and ET models and reproduce observations.
This version requires remarkably little revision to other known damp-
ing or driving terms. While this ‘external’ scaling is qualitatively
similar to ET models in that Syew, ext 1S independent of ¢, and ey,
it cannot derive from a standard turbulent cascade from large scales
without introducing the anisotropy and damping problems, but is
better thought of as a driver acting over a wide range of scales (or
some modification of standard MHD turbulence paradigms). The
total power needed is modest (~ 1 per cent of the dissipation rate in
ISM turbulence), and it is plausible to imagine a variety of physical
mechanisms that could act in this way: the challenge may be to ensure
such a mechanism can act over the entire relevant dynamic range of
’\’103 — 106 in k”.

It is important to note that, although we demonstrate the con-
clusions above over a wide range of CR energies ~MeV-TeV, it
may be possible to somewhat reduce the dynamic range of CR
energies (and therefore wavenumbers k) over which alternative
physics must play a key role. For example, as argued in Paper I
and seen in some (but not all) of the models here, the residence
time of very low-energy CRs at < 10 — 100 MeV could be regulated
by Coulomb/ionization losses (making predictions consistent with
observations and nearly independent of scattering rates), so long as
the scattering rates at these energies are sufficiently high so that
the diffusion/escape time is longer than loss times. And depending
on detailed ISM properties, at some energy = 0.1 — 1 TeV, CR
gyro radii will eventually become comparable to the dissipation
scales of turbulence, so the ‘classical’ ET scenario of scattering
from an undamped extrinsic turbulent cascade becomes a reasonable
approximation (provided there is an isotropic fast-magnetosonic
inertial-range cascade with approximately k £(k) oc k=3/? and the
correct normalization). It is at intermediate energies, where most of
the CR energy density resides, that the problems described here are
most acute.

We stress that we are not here advocating for any one specific
physical process as the explanation for CR scattering. Instead, our
goal is to identify and further investigate generic problems with
current SC and ET models; some of these problems were already
known, some have been first identified here. We further identify
classes of scalings for either driving or damping of CR scattering
modes that could, in principle, explain the observations, discussing
several possible physical mechanisms above. In future work, we hope
to explore some of these candidate processes in more detail to assess
if any can actually produce the correct scaling and normalizations
needed to explain observations. It may be that the quantitative details
will differ by a modest amount, as there are a variety of effects that
lead to e.g. exact deviations from simple power-law behaviour, but
we expect that the key qualitative requirements identified herein are
robust. If mechanisms can be identified that meet these criteria, it
will be important to also test them in microphysical MHD-PIC-like
simulations, then use the results as input to galactic simulations such
as those explored here. This will allow a quantitative comparison
to CR observations, providing further valuable constraints on the
important processes at play.
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APPENDIX A: EQUILIBRIUM
SELF-CONFINEMENT MODELS

A1 Basic equations and setup

Here, we consider the behaviour of SC models in steady-state.
Given that (as shown in Section B below) the CR flux F,  and e+
equations converge to local steady state on a time-scale much shorter
than the CR energy e/, equation, we can safely assume their steady-
state values (in Section B) in evaluating the CR energy equation.
We will assume only SC driving (take Sex;, + = Spew, + = 0), giving
[from equation (11)]:

Die,, — =V - (F. .b) + Sl (A1)

—(v2/37)b - Vel + 74 ¢, includes the ‘diffusive’
(x v;l) and ‘streaming’ (X D4, With 04 — —v4 ef sign[ﬁ -Vel.D
terms, and Sl = — P2, V - (Uges + 04 B) + Sper o, includes the “adi-
abatic’ and ‘streaming loss’ terms (o< V - [Ugy + Uy b)) and all
injection and radiative/catastrophic losses in S, -
In steady-state (D;e,, — 0), integrating equation (A1) over some

volume V with surface 0V immediately gives:

<Fe/ Cr> off = j;av .. crb dA = fv xSl = Einj, et (A2)

Here, (F, ) is the weighted-mean scalar flux from the integral over
F e’ o Actt = 3? sv|dA|, and Emj,eff is the net CR energy production
inside dV. For simplicity, we will consider CR primary species
at rigidities 2 GV where vy ~ ¢ (so P/ ~ e, /3) and empirical
constraints (see text and Paper I) indicate losses are negligible, so
Einj,eft [, @Xjjinj, (Rer) = Eiyy is approximately the total injection
rate.

where F, =

A2 Behaviour of phenomenological or ET models

First, consider a typical phenomenological model, where 7 is
taken to be constant with B, ~ 107°s~' Ry’ as in Fig. 1. With
Dy = constant, equation (Al) indeed behaves like a diffusion
equation, with the diffusive term much larger than streaming
terms on scales of interest, and if we assume tangled magnetic
fields, the effective isotropic flux is just (F, .) ~ ki (|Vecr|)
with ki = (¢? /97). For the Galaxy, take Ell1J off N Ean
0.1 Esxe finj(Rer) ~ 3 None, 100 Rgy” x 10% ergs™" where Nsxe, 100
is the SNe rate inside dV in units of ~ 1/(100yr) and finj(Rer) =
( 1/ERM dERM /dIn Re ~ RGO? is the fraction injected at the given

R, (accordlng to our assumed standard injection slope in the
text). Assuming e.g. spherical symmetry or a vertically strati-
fied model, the steady-state e, profile is then trivially solved by
Ve, = —Ein/(Kiso Acip). If we assume approximate spherical sym-
metry at large Galactocentric radii (F, = Einj /(41 r?), we obtain
e, ~0.6eVcem™ 3 Nsne. 100 RGV at the Solar circle (r ~ 8.3 kpc), in
excellent agreement with observations (by construction, of course,
since s was originally fit to the data).

In standard ET models, b, — ¥s(k), B, €4, fion, --.) canbe some
arbitrary function of ISM properties, but (crucially) is — like in the
phenomenological model above — independent of e, ({ s = £ = 0).
This means that, again, solutions always exist for a steady-state e[,
profile, given by solving equation (A2): Ve, ~ —Ep /(Kiso Aett) ~
—9E;, \_15/(C2 Aer) = F(r, ky, B, €4, fion, -..). Whether or not
these solutions have the correct observed behaviour (as a func-

e, Cl'>
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tion of e.g. CR rigidity) is what we investigate in the main
text.

A3 Behaviour of SC models

But now consider SC models, with ¥ ~ (37 Q,/16) (e4/ep) where
ey is set (see Section B) by the competition between damping
(I'y) and driving with S — |va, b VP |, giving es/ep —
(FIm/2 Fnll)( 1+ [1 + 4 Ssg Fnl/ Flm eB]l/z)’ Where l—‘]in = l—‘in +
Fturb/LL + Laust + Thew, damp + .. collects all linear damping terms
and T'Y, collects the pre-factors of any non-linear terms (e.g. T, =
Y = (f 7 /8) cs ky for NLL damping). The dependence of ¢4 on e,
introduces fundamentally distinct behaviour.

A3.1 Linear damping

First, assume that linear damping dominates® (I'y, > Fnl =

(eA/eB)) Then, ey — Si/T'1in, giving the “diffusive’ flux F,
(16/37t) (C €B rg cr 1—‘lm)/vA eff — (46/37[3/2) RLr Pl/z 1—‘Im If D[ecr
dominated by the diffusive term, then I'ji, for any known damping
mechanism depends on properties extrinsic to the CRs (e.g. turbulent
velocities, eg, etc.) and so, it and therefore F, . are independent of the
CR energy density, this means there exist no steady-state solutions
for e/,. It does not seem possible to construct an e, profile that
ensures (F, ) = Eij et/ Actr.”!

In practice, what this means is that there are only two real
equilibrium solutions: if (F, .) < Einj/ A, since the diffusive flux
is independent of ¢, the CR energy density will continue to build
up (increasing ¥ o< ey, and lowering the effective diffusivity or
streaming speed) until the streaming term o vy o €, dominates
F] . or catastrophic loss terms (also o< e)) dominate D,e,.. Thus,
CRs collapse to the Alfvénic streaming and/or calorimetric limit,
with maximal isotropically averaged streaming speed ~ v, off/2.
This is problematic for two reasons: first, the implied residence time
(neglecting losses) to escape the Galaxy and CR scattering halo
(~ 10kpc) is ~ 10 Gyrnl/ ’ uG’ far longer than observationally
allowed. Secondly, even if we arbitrarily renormalized the Alfvén
speed and/or Galaxy + halo size, the streaming/escape/residence
time would (by definition) be independent of CR energy (i.e. §; =
0), also ruled out. Alternatlvely, if (F o) > Emj /A, then e, will
deplete until T is so low?? that the CRs free-stream and escape at ~c,
vastly faster than observed (residence times < 10*3 yr), with again
8, =0.

An alternative way to see this is to simply insert the full expression
for the SC-predicted v directly into equation (A1). As noted by many
going back to Skilling (1971) and Cesarsky (1971), the ‘diffusive’
part of the flux-gradient term then formally takes the form of a source

2080 as long as ['jiy = 'y, explicitly including small-but-finite 'y, changes
none of our conclusions above. The limit 'y, < I'yy is discussed below.
210One might imagine a (contrived) special case where the properties (e.g. B,
cs) which enter 'y, scale exactly as required with both Einj and position x
suchthat (F, ) = Einj / Aetr. However, not only does this require exceptional
fine-tuning, but (1) because Einj and Fé’ o scale differently with Rgy, it is
impossible to satisfy this at any two CR energies simultaneously, and (2) such
a solution cannot ‘respond’ to adjust to any perturbations to the source rate
Eipj or to the gas quantities which enter F .

22 As noted in the main text, if ET is present, then at some sufficiently low vy,
Set, + Will dominate so s will not vanish entirely, but in this case the system
is in the entirely ET-dominated limit.
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or sink term:

4c R, N
Die,, = & (73;2) V - (o Tiin b)

3
% 3 10
Myr Ly rpir

where the sign is determined by the gradient in e[
Ly = o2 Tin/IV - (PY2 Thin b)| is the gradient scale length of
fl(l){f 172 Iyin, which can vary on <pc scales (Hopkins et al. 2021d);
and in the second equality, we inserted the scalings for I'j, for
turbulent/linear Landau damping (to give a typical value). From
equation (A3), it is clear that within a time-scale ~ Myr, the CR
energy e, will either (1) be driven to negligible values if D;e is
negative (making all other terms in D,e/ smaller, until the ‘free
escape’ limit is reached), or (2) be driven to increase if D,el, is
positive, until the other terms in D;e, such as the streaming term
o Uy, eft €, dominate (the ‘over-confined’ limit).

A3.2 Non-linear damping

Now, instead, assume NLL damping dominates. Let us first ask
when this might occur: for NLL damping to set e4 (see Section B)
requires the dimensionless ¥y = |4 Si. 'Y/ T2, ep|'/? > 1. Taking
the standard linear damping scalings from Section 2.5, ¥y, > 1
requires the gas is highly ionized (foeugar < 1073, so Ty, is small),
has a low dust-to-gas ratio (fg, < 1073, 50 Igug is small), and is
weakly turbulent with a high CR energy density at the given R,
(M3 Sel/eVem™, so Dy < Ton). While specific, this is not
impossible around ~ 1 GV where e, peaks, in the diffuse warm/hot
ISM/CGM.

Assuming ¥y > 1 with NLL damping dominat-

ing, we have ex — (Siep/ Fgl)'/z, so the ‘diffusive’
Fl o — (2523273 ¢ (1b - Vel,| ¢s e rg./va)'/% This
does formally have a steady state  solution given by
<|b ve(,r|> (277[3/2/32) (UA eff/c Cs € rg cr) (EmJ/Aetf)

with  (§,) — (97%?/32) (VA eff Emj/cs egrgcr Acff).  But  this
solution has some very strange features: using Aeg ~ 47 r?
as above and evaluating it at the Solar circle we obtain:
e, ~2000eVcm™3 Ra\l,'4 Nxe 100 (1 Ta)™'% (with Ty = T /10*K)
and 7 — 1072 57! Rgy? Nsne 100 (21 Ty)~'/2. These are enormously
unphysically high-CR energy densities and scattering rates,
which also exhibit a clearly ruled-out dependence on Rgy. In
practice, this means that, beginning from any physically realistic
(much smaller) e, F, . < Ecr/Aeff will drive Dyel, >0
so e, increases until either the streaming or loss terms
(which scale ocel,, while the diffusive term scales o /e
dominate D,e/. (e.g. the streaming ﬂux will dominate F, . once
¢l 2 0.5eVem™ Roy (n)* T, B & kpe/ by o).

So again, we see 1mmed1ate solution collapse,” but the conditions
where non-linear damping dominates, which require higher e4 and
therefore higher ¢/, are such that they always drive the collapse to
the over-confined/streaming solution.

2From the scalings above, in this limit the flux should be dominated by

the Alfvénic streaming component at all galacto-centric radii interior to <
=1/2 p—1.2

Mpc B, NSNe,]OO”] T, / Ry~
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A3.3 Summary

These behaviours above are what we refer to in the text as the
SC models being globally ‘not stable.” This is not necessarily a
linear-stability analysis (in fact the ‘collapsed’ free streaming or
over-confined spherical equilibrium solutions above, if we perturb
just e/, infinitesimally and ignore all interactions with the gas, are
formally linearly stable). But it is common, when SC is discussed,
to refer to ‘super-Alfvénic streaming,’ i.e. flux in excess of v4 cfr €,
with an effective contribution to F, . from the s term as defined
above (i.e. a finite-but-not-infinite CR transport speed in excess of
Va,efr). This can arise trivially, in any infinitesimal local patch, if
one defines 5 for a given ¢/, (e.g. choosing a fixed e/ similar to
the Solar circle value) — in fact we show this below in Section B,
where we derive the values of e, given by assuming local steady-
state of the CR flux equation. But generically, these solutions will
not give a self-consistent steady-state for the CR energy equation:
converging to such a ‘local equilibrium’ value of ¥ for a given ¢, (as
determined by the CR flux and e equations, which evolve on very
short time-scales) will mean necessarily that the energy equation is
out-of-steady-state. This then forces e, and correspondingly 7, to
evolve either towards ‘bottleneck’ and the infinite-strong-scattering
Alfvénic streaming regime, or towards ‘escape,” de-confinement,
and the negligible-scattering streaming-at-c regime. Any ICs rapidly
collapses (over ~Myr) towards one of these two states for all spatial
and CR energy scales of interest if Sy is the dominant driving term.

APPENDIX B: LOCAL STEADY-STATE
SOLUTIONS FOR SCATTERING RATES IN
DETAIL

B1 Relevant equations and limits

Consider the CR flux and e, equations in more detail. From the
general versions of equations (3), (7), and (9), in the text, we can
write:

D,F’

A w
e, cr + Czb' (V[P;r) = _g(e-i—_i—e—)Fe,.cr

[ ’
+ ey —e ) H,, (B1)
€B

o ey €+
Dies + V- (v4rech) = _Tv'ugas —TLes — FNL:ei

B
Ms;iz;ei (Fe/ cr Hc/r) + Set,i (B2)
where H, =3 xva (el + P, w=@D/4) QL v4+=
Fv4 eff, and we have expanded the damping rates in terms of the
various linear (§4 = 0, I't) and non-linear (§4 = 1, ') damping
terms as Q4 = I'y ex 4+ I'ni (e+/ep) e+ (so for e.g. NLL damping,
ne = (V7 /8) ¢ ky).

As noted in the text, these equations evolve towards local steady-
state on a time-scale ~ D' ~ 30yr R%Y (if we take empirically
estimated U, values), much faster than the time-scales for the CR
energy equation or bulk ISM fluid motion time-scales on the scales
of interest. Similarly, the ‘gradient terms’ in equation (B2; the
V- (va, +ex b) and V - U,,) involve time-scales of order those
same ISM time-scales and are much smaller than the other terms
in equation (B2). We will justify these assumptions more formally
below. Let us therefore assume these equations reach local steady-
state (D, — 0, or |D,| < V) in the comoving Alfvén frame
[neglecting the ‘gradient terms’ in equation (B2)] — although we
stress that this does not mean the CR energy equation is in steady
state. In this case, we can re-write them in the dimensionless form:
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g =—(p+x)f+ @y —x)h, (B3)
+ fxy =hxe+yxe + e xl — s (B4)
where  xi = esen, f=@aen/)(F. /B Va )

h = (va,err /) (HL/en va,er), §=ar/wep)b- (V- PL),
yL = IN't/o, ynL = Inc/o, and seg = (Ser, 4 + Ser, —)/(2 w ep). This
has solutions

FZR20m+h)+mex]

dsg =x {2 ()’L+}~l) +VNL3?] - Ot 5

(B5)

where ¥ =x, +x_, with x_ =x, + /(). + %) and f =
[(xy — x_)h — g]/% following immediately.

B2 Local steady-state behaviour in ET and SC limits

Unfortunately, equation (BS) is still a fifth-order polynomial for
X, whose general solutions are neither closed-form analytic nor
particularly instructive. The solutions do, however, become simple
in various limits. First consider the case where linear damping
dominates over non-linear (yNp can be neglected). Then?* ¥ —

st (14 +/14 ®2) /(3 + h) with

o) = & [14 L]

Set

~ ae VPG| [1+1 Dy ] (B6)

Set, + 2 TL. pion ?

Small |®| < 1 here corresponds to the ET limit, large |®| > 1 to
the SC limit.

Now consider each of those limits (SC and ET-dominated) in turn,
but retain the non-linear term y .

In the ET limit (|]®| <« 1): the dimensionless ‘stream-
ing speed’ Ua/va erf = (X —x_)/ (x4 +x_) = &/2 <« 1 is small
and % — yq! (L + 1) (=1 4 [1 + 4y ser /(1 + 1)]1'7?),  which
corresponds t0® e, A e_ ~ So/(TL[1 4 ¢]) (with ¢ = h/y ~
(Va,eft/€)* (7T D/4) (Qer/ TL) (€], + P(;)/es) when linear damping
dominates and e ~ e_ ~ (S ep/ I'n.)'/?> when non-linear damping
dominates (which occurs when 4 yn e = (L + 7)?).

In the SC limit (|®| > 1): the streaming speed D4/va eff =
(xy —x_)/(x4 +x_) = —sign(g), so U4 is just the effective Alfvén
speed (Fv,, o) directed down the CR pressure gradient. Only the
x+ aligned in this direction is large (the other vanishes), with
therelevantx ~ X ~ (y./2 ynu) (—1 + [1 + 48] )/NL/yf]'/z) which
corresponds to ey ~ S% /' (with S, = |v, - V - P.|) when linear
damping dominates, and es ~ (S% eg/'ni)"/> when non-linear
damping dominates (which occurs when 4 yxy. [g] 2 12).

B3 Justification of approximations

This allows us to formally justify some of the approximations used
in the text to estimate scalings: if we write Sy ~ S¢ + SSC as the
‘total’” driving and set S+ equal to Q+ ~ (I'L + 'nLea/es)ea to
solve for e, (this was done in the text to justify our more approximate
scalings), we obtain the correct qualitative behaviours of e4/ep in all
the relevant limits above. The transition between ET and SC limits

24The solution here assumes I'. > 0, i.e. linear damping. If instead there were
net linear driving from a driving source not considered here, so I', < 0 in
our language, then the physical solution branch for yn, small and y1, < —/
becomes ¥ — se¢ (1 — /1 + ®2)/(yL + h).

25The ¢ term here accounts for the fact that diffusive re-acceleration produces
a net transfer of energy from the scattering modes (e4) to the CRs (e/,.) when
e4 ~ e_ (in the ET limit), so acts like an additional linear damping term even
when I't, — 0.
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here, S;’C = S, corresponding to |g|/se, which usually determines
@ (though there can, in greater detail, be non-negligible corrections
from the /2/ " term in determining which limit is most relevant).

One interesting limit where this allows us to resolve some
ambiguities is the case in highly neutral gas (fion, < 1), with
gyroresonant Alfvén frequencies larger than the ion-neutral colli-
sion time, so in the expressions above v4 o ~ (|B|?/47 pion)'/? =
VA, ideal fig/? 3> VA ideal- In this case, Se is suppressed by strong
ion-neutral damping (which usually leads to 'y ~ I['y; > I'np),
while g% o< 1/ fion and 7 oc 1/ f,1/? are enhanced, so for conditions
of relevance in e.g. GMCs this means |®| > 1 and the system
rapidly converges to the SC regime with streaming at v, e oc 1/ £1/2,
essentially independent of the strength of Ve or S, on larger
scales.

We can also return to the approximations regarding time-scales
made above. In equation (B1), we see from our steady-state solutions
that the >V - P, term is never negligible (it acts as a source
term), while the relative importance of the F, . and H/ terms
depends on whether the flux is super or sub-Alfvénic. In any case,
noting that the F, . term can be written D, F,  ~ ¥ F, , + ..,
we immediately confirm that the equation is driven towards steady-
state on the very short scattering time-scale ~ 9! ~ 30 yr Ré/\% (for
empirically favoured s values). In equation (B2), in steady-state,
the dominant driving (Se,+ or SC F, , — H/ term) terms have
magnitude of order the damping terms I' ;. e, so the equation D,e, =
—I'Lex + ... is driven to steady-state on the local damping time
~ F;l ~ (30 — 300) yr (RGV/Bu(;)'/2 (10km s~ /vy o) (using the
scalings from Section 2.5 for I'ywir and gy, assuming typical
LISM properties; if other damping terms are also important, then
I'z! will be even smaller). This is similar to the scattering time.
The ‘gradient terms’ O(V([ugas, va, el e+) are smaller than the
other terms in equation (B2) by a factor O(|V[ugs, va, crll/ Tx) ~
107 (Rav/Buc)"? €3 1sm 10 Where £y 1sm10 = £v.ism/10pc with
ly.ism the gradient scale-length of the bulk ISM properties
(ugqs OF Vg4 cfr), justifying their neglect above. These time-scales
O(1/Vugas, va,err]) are of course also the same as the characteristic
time-scales for bulk ISM properties to evolve (€.g. v ett, B, gy, 0
from the usual MHD equations). Thus, this justifies our assumption
that these MHD properties can be taken as approximately constant
over the time-scale for equations (B1)—(B2) to reach local steady-
state.

Now consider the CR energy equation D;e,. = ..., assuming
the CR flux F] . and ey equations have reached local steady-

e,cr
state [equation (11) in the text]. The source/sink term Sy .
is small compared to other terms at rigidities =GV (except in
special environments, e.g. at sources). Examination shows that the
‘diffusive re-acceleration’ term o< (v 4 — 93)/c? is always small:
it vanishes identically in the SC limit, but even in the ET limit
it is suppressed by O(v ./c?) for any plausible v (see Hopkins
etal. 2021a). The ‘streaming’ and ‘adiabatic’ terms (~ V - (T4 e, b)
and ~ PV - (Ugy + Uy b)) involve the same ‘gradient’ or ISM
bulk-property time-scales O(1/V[ugs, va, cir]) as defined above.
The term in the D,e, equation that can evolve most rapidly is
the “diffusive’ term ~ V - [k; bb - Ve ] (with «y = v2/3 1), which
drives e/, to equilibrium on the diffusive time-scale ~ €2/« with
Ly o ~ e../|Vel,| the CR energy gradient scale length. This is larger
than the CR scattering time D;l for Ly 2 ¢/(30s) ~ 3pc Ré/\%
(i.e. Ly, o larger than the CR scattering mean free path). Since we
observe and expect £y . 2 kpc, we confirm that e/, will generically
converge to steady-state on much longer time-scales than F, . or

€.
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APPENDIX C: EXTRINSIC TURBULENCE:
BASIC SCALINGS AND RESULTS

It is helpful to briefly review some properties of ET. In a turbulent
cascade with velocity and magnetic field fluctuations v, §B on a
scale A ~ 1/k, most of the energy (|8v2(k)| ~ k £(k)) is concentrated
around the driving scale A ~ £gve (= 0.1 — 1 kpc in the ISM/CGM),
with Alfvén Mach number M4 ~ (|8VZ(A ~ Laive) )2/ VA ideal 2 1.
On the largest super/trans-sonic/Alfvénic scales, this can give rise to
a compressible and weakly pressurized Burgers (1973)-like power-
spectrum (|8v2(A)| o< A; Schmidt et al. 2009; Konstandin et al. 2012;
Hopkins 2013; Squire & Hopkins 2017). Below the Alfvén scale ¢4,
where [8v2(A ~ £,4)])'/? ~ V4. igea the fluctuations are sub-Alfvénic,
by definition. In the Galactic ISM, typically €4 ~ 10 — 100 pc
(Elmegreen 2002; Mac Low & Klessen 2004). The defining feature
of a traditional strong inertial-range cascade is the energy condition,
Swrb ~ Curb/Teas X |8V(A)|*/Teas(A) ~ constant, where T, is the
cascade or energy-transfer or decoherence time, which can be
parametrized over the inertial range as Tcas ~ (£4/V4, ideal) (A/€4)%,
with some & > 0 (with & < 1 almost always required).?® For now, we
neglect the difference between the parallel (to b) k; and perpendicular
k, components of k, but recall that what we need to calculate CR
scattering rates is ey (kj), since it is the parallel component k that
controls the scattering terms (e.g. Voelk 1975; and for gyroresonance,
ky ~ 1/rg ). If there is strong damping/dissipation, then the dissipa-
tion/Kolmogorov scale of the turbulence kgiss ~ 1/Agiss 0Occurs when
some dissipation/damping rate ~ I'(k, ...) |8v|> becomes larger than
the turbulent dissipation/cascade/transfer rate ~|8v|*/ s, i.e. ' >
1/7 5. For example, for some kinematic viscosity Iy ~ Dyise k2,
we have Agiss ~ £a (€4 Va,idea/Vyise) ™™ (.. €4 Va,ideal/Vise 1
the Reynolds number).

The gyroresonant scale A, ~ 1/ky ~ rg o ~ 107 pc Rgv /By,
S0 A, K £, at energies of interest, hence |8v(A,)| < V4 igear and
[6B(Ay)] < |B|, but we also know this empirically, since the
observationally constrained CR scattering rates require [6B|/|B| ~
3 x 107* R%Z. This means we can at least approximately decompose
the fluctuations into a linear superposition of Alfvén, slow, and fast
magnetosonic modes, with |§B|/|B| ~ [6v|/v4, idea < 1, and we can
treat the gas as weakly compressible and smooth (gradient length
scales of bulk ISM properties are much larger than A,).

C1 Anisotropy: Alfvénic and slow cascades

First consider the Alfvénic case. Alfvén waves are generally weakly
damped by collisionless processes in ionized gas down to the ion gyro
scale, so assume we can temporarily neglect damping. Since these
are incompressible modes, we can rewrite the MHD equations in
terms of the convenient Elsasser variables:

LT — (Vi - VT +(Z -VZT = —Vp/p
WL + (vy - VL +(ZY - VYL =—-Vp/p (C1)

where v, = vy b, ZT = 8v + §B/(4m p)2, 2~ = §v — B/(47 p)'2.

There are two possible limits to equation (C1). In limit (1), the
non-linear term ((Z~ - V)Z™" or (Z* - V)Z~) is small. If this term
is negligible, then we trivially recover the equations for Alfvén
wave packets without any interactions: i.e. the equations do not

26From the energy condition, this immediately gives eqp (k) oc k=%, or the 1D
E(k) o k=1+9) S0, e.g. the commonly cited ‘K41-like’ (£(k) oc k=5/3), ‘IK-
like’ (£(k) oc k=3/2), and Burgers (1973)-like (£(k) oc k2) isotropic power
spectrum scalings correspond to o = (2/3, 1/2, 1), respectively.
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feature any ‘cascade’ per se, but simply admit whatever spectrum
of Alfvén waves we wish to externally impose, by introducing some
other source term (e.g. SC driving or our proposed novel driving
mechanisms). If the non-linear term is not completely ignored but still
small (e.g. {(|(Z~ - V)Z*?) < {|(v4 - V)Z*|?)), then we obtain the
classic assumptions of ‘weak’ Alfvénic turbulence. The conditions
where this might occur in practice (in the absence of some other
small-scale driving) are restrictive (see Lazarian 2016), but there
is a bigger problem. As shown elegantly in Sridhar & Goldreich
(1994; see also Schekochihin 2022 for a pedagogical presentation),
an isotropic IK-type weak ‘cascade’ as envisioned by e.g. Kraichnan
(1965) cannot exist (it is neither physically nor mathematically
self-consistent): instead, the weak cascade occurs purely along &,
conserving kj, so there is again no cascade to define ey (k) nor is
there any connection between ey, (k) for different k; (weak Alfvénic
turbulence simply redistributes this energy to different k; at the same
ky, which has no effect to leading order on CR scattering). In other
words, we once again simply recover whatever Alfvén spectrum
ewrb(k) we choose to impose by introducing some other, non-ET
source term.

In limit (2), the non-linear term is not negligible (e.g. (|(Z~ -
V)ZF?) 2 (|(v4 - V)ZT)?)). In this limit, a cascade linking £ at
different k) is possible, and making additional assumptions leads to,
for example, the specific ‘strong’ turbulence cascade of Goldreich &
Sridhar (1995; GS95, or variations proposed in Boldyrev 2005 or
others reviewed in Schekochihin 2022), all of which give £ oc k| n
ie. §; = 0, as noted in the main text. More generally, a simple
argument that §; must be <0 in this regime goes as follows. Define
the parallel scale of a mode as [ ~ 1/k;, such that O[(v, - V)ZT] ~
va Z, /1y, and note that since [§v|] < vy, this limit (2) requires
Iy 2 1 (va/l8v]) > 1, [or else the non-linear term would again be
negligible, putting us in limit (1)]. This means k ~ k,, so A ~ 1/k =
1, . Without loss of generality, define /|| o< v4 Tcas (€4/1))%! over some
dynamic range, such that O[(v4 - V)ZT] ~ O} /LA)* Z; [Tcas]-
Trivially, ¢y > 0 is required so that the linear term is equal to
or smaller than the non-linear & ‘cascade’ terms [otherwise, if
ay <0, for [j ~ A, < €4 we would immediately arrive back in
limit (1)]. Note that the critical balance assumption corresponds
specifically to oy = 0. Now, we can also allow for some arbitrary
losses from the cascade across scales by defining the cascade rate S ~
b/ Teas ~ So (Ij/€4)*S, where again any physical cascade requires
s > 0 (an un-damped cascade corresponds to og = 0, but non-zero
dissipation or losses can decrease the energy on smaller scales). Now
if we recall v o< 2 |8B(k” ~ 1/7’g’cr)|2/|B|2 ~ k” em,b(k”)|k“~1/,~g_cr ~
So (Ly/€a)*S Teas/1y o< 1}, we have 8, = — (o + arg) < 0.

In short, it is not possible to construct an internally consistent
Alfvénic cascade with §; > 0. Anisotropy in the form of critical
balance with an un-damped Alfvénic cascade gives §; = 0. Adding
losses/dissipation at scales between gyroresonant and driving only
further decreases §. Violating the critical balance-type assumptions
(by e.g. introducing a non-zero o, in our notation above) leads to
one of two outcomes. (1) There is no ‘cascade’ or any interaction
between modes with different parallel wavenumbers (if o < 0), and
the power [§B(k;)|* must be set not by ET but by some other source
term driving modes independently on each scale. Or (2) the cascade
produces &, < 0 if o) > 0, i.e. if the anisotropy is even larger than
required for critical balance.?’

270f course, as many have pointed out, any Alfvénic cascade THAT does
not obey critical balance will be pushed (by a weak cascade or causality/de-
correlation) towards a state of critical balance. We simply wish to stress that
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For more rigorous discussion, we refer interested readers to
Schekochihin (2022) for a review of more detailed Alfvénic turbu-
lence models, demonstrating that even models that are imbalanced,
intermittent, decaying, damped, or otherwise strongly modified, all
obey §; < 0 in our language.

Note that, as many others have pointed out, slow modes are subject
to a similar anisotropy constraint to Alfvén waves as described
above (which again leads to é; < 0), and are subject to additional
magnetosonic damping terms, which further constrain ; < 0 as we
discuss for fast modes below (see e.g. Cho & Lazarian 2003; Yan &
Lazarian 2004; Schekochihin et al. 2009, and references therein).
Thus, we do not discuss them further.

C2 Fast modes

Now consider instead a fast magnetosonic cascade. It is at least the-
oretically possible, in principle, that within the inertial-range these
could produce an isotropic cascade (k; ~ k; ~ k) with the desired
scaling of ey (k) oc k=% if e.g. s ~ 0.6 is observationally required,
this would imply an inertial-range 7., ~ A%* or |8v] o< A%? (o ~
0.4). Butitis important to stress that even the inertial-range behaviour
on small scales («¢,) is not theoretically clear: while e.g. Cho &
Lazarian (2003) and Ferrand et al. (2020) argue for a spectrum with a
Zakharov & Sagdeev (1970)-type weak cascade ey, (k) oc k=12 below
the sonic/Alfvén scale (which would give 8; ~ 0.5 in the inertial
range, within the observationally allowed range), others have argued
from both analytic theoretical grounds (Kadomtsev & Petviashvili
1973; Elsédsser & Schamel 1976; Shivamoggi 1992; Galtier et al.
2000; Kuznetsov & Krasnoselskikh 2008; Galtier & Banerjee 2011;
Shivamoggi 2011; Sun 2016) and numerical simulations (Elsasser &
Schamel 1974; Erlebacher et al. 1990; Mee & Brandenburg 2006;
Kowal & Lazarian 2010; Lee et al. 2010; Makwana & Yan 2020) that
the spectrum should be closer to ey, (k) o k! (giving 6 = 0). And
the classic Kolmogorov (1941) (K41)-type scaling ey (k) o< k=23
(8s = 1/3 in the inertial range), though often cited in older ‘leaky
box’ models for CR transport that did not include a scattering halo,
actually provides a poor fit to the observations in modern models that
include any extended scattering halo (see e.g. Blasi & Amato 2012;
Vladimirov et al. 2012; Gaggero et al. 2015; Cummings et al. 2016;
Guo et al. 2016; J6hannesson et al. 2016; Korsmeier & Cuoco 2016;
Evoli et al. 2017; Amato & Blasi 2018; De La Torre Luque et al.
2021; Hopkins et al. 2021a)

Itis also not clear that isotropy is a good assumption on small scales
even for fast modes (see e.g. Kuznetsov & Krasnoselskikh 2008; Lee
et al. 2010; Brandenburg & Nordlund 2011, and references therein).
If there is significant anisotropy, for reasons similar to those above,
it will generically tend to decrease J;.

But as discussed in the text, an entirely un-ambiguous problem is
that isotropic fast modes at gyroresonant scales are very strongly
damped. Even in a fully ionized medium, collisionless damping
of fast modes is orders of magnitude more efficient than for
Alfvén modes on these scales.”® Depending on the assumptions

even transient violations of this condition fail to produce an Alfvénic cascade
with §5 > 0.

28The dominant fast-mode damping terms (in addition to the weaker terms
in the main text which also apply to Alfvén waves) are: viscous damping
[ast, vise (both by neutrals and Braginskii 1965 viscosity from ions) and
collisionless/Landau damping I, 1.0

Fl’asl, vise = kz Vyisc, eff (CZ)
sin?(0
Ffasl, L = “CI:)S((.)) k Ufast ffasl. L (CS)
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of ISM/CGM properties, mode angles, and the cascade time-scale,
if we define the ‘damping scale’ kgiss ~ 1/Aqiss as that where for
some mode angle cos @ = k;/k, the most-rapid fast-mode damping
rate ['gy is larger than the cascade rate 1/t.,s, we would obtain
Adiss ~ 107* =10 pc (see e.g. fig. 1 and table 1 of Yan & Lazarian
2004). More importantly, accounting for the combination of viscous,
collisionless, and neutral damping (with realistic ISM/CGM scal-
ings), it is essentially impossible to make Ag;s smaller than ry . at
rigidities < 100 — 1000 GV.? As aresult, we argued in the text that
8s < 0. Detailed numerical calculations showing é; < 0 is always
the case for all R, < 100 — 1000 GV for fast-mode ET, accounting
in detail for exact expressions of the scattering rates and their
detailed dependence on pitch angle, mode angle, and wavelength,
along with the full range of angle-dependent damping rates from
different processes (following more exact integral expressions for
CR scattering physics), have been extensively presented, including
in YLO4 (their fig. 2), Yan & Lazarian (2002, 2004, 2008), and
Kempski & Quataert (2021). And of course our fast-mode ET model
in the main text (Fig. 4; right) is one such calculation as well. So here
we only seek to justify this heuristically (see Kempski & Quataert
2021 as well for a similar discussion).

First, consider the effects of damping on gyroresonant CR scat-
tering. If the damping is isotropic (as with e.g. neutral viscosity
or ion-neutral damping per Spitzer 1978, in regions with neutral
fraction freura = 0.001 — 0.01; see text and Hopkins et al. 2021d),
the spectrum is, by definition, truncated at k; 2 kqiss exponentially
or super-exponentially,?® equivalent to 8§, < 0. But even in a fully
ionized medium with Bjusma << 1 assuming the dominant damping
is e.g. from Braginskii viscosity or collisionless damping, which are
anisotropic and do not damp parallel modes, we have a damping rate
of the form: 'y oc k' sin?(0), where 0 < o, < 1 depends on e.g.
whether collisionless or viscous damping dominates (and Bplasma)-
At scales A < Agiss, modes with 6 > 6. will have Mg > 1/755 and
be truncated, so if we make the most optimistic assumption that the

Vvisc, eff = Vvisc, ion, 0 fv. ion(e) fion + Vvisc, neutral fneulral (C4)

Wise.ion,0 ~ 0.6 x 108 cm? s~ 7,/ 7! (C5)

Wise, neutral ~ 3 X 102 cm? s~ 7,77 ! (C6)
sin® (0) (Bplasma K 1)

. (0) ~ plasma 7

fv, lon( ) {Il -3 COSZ(Q)lz (ﬂplasme\ > 1) ( )

Where for small 6, at Ppasma not too large  fras L =

(wﬁ\sl /k vfi\st) (\/7[ ﬁplasmi\/‘l’) \/me/mp exp [_me/mp ,Bpli\sma C052(9)]
(Ginzburg & Syrovatsky 1961), while for very large Bplasmas
ffasl, L= (2/ 0052(9)) (wfast/k Vtast) (wfast/wc, i) (with wgy the fast-mode
frequency at wavenumber &, and o ; the ion cyclotron frequency; Foote &
Kulsrud 1979). Note that viscous damping in ionized gas with Bplasma 2 1
acts similar to isotropic (neutral) damping, in that it strongly damps parallel
fast waves. In evaluating the full CR scattering rate expressions, this has the
same practical effect of strongly truncating the gyroresonant scattering term
(giving §s < 1).

29Given the most optimistic possible assumptions for reducing Agjss, it may
be possible in some phases of the ISM, such as the WIM, to make rg ; >
Adiss at >100 GV, while more typical assumptions for the WIM and even
the most optimistic assumptions for the WNM and CNM or GMCs require
2 1000 GV. In hot gas in the Galactic coronae, HIM, and CGM/halo, Agiss
becomes much larger, and it is plausible that Agiss 2 7, cr Up to > 100GV (i.e.
up to PeV CR energies).

30Even if we assumed the mathematically ‘weakest possible’ cutoff for
the spectrum below the damping scale, i.e. we assume S o So (kgiss/k)™S
continues for k > kgiss, we must have ag > 0. Equating this driving
with the (by definition dominant) neutral damping Qyisc, fast = visc, fast €4 ~
Vvise.n k2 €4, we have eq o k=G1es) je §; = —1 —ag < —1.
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remaining modes simply continue their cascade uninterrupted, the
surviving modes are confined to a narrow bicone with |0 < 0, <
1, where 6, becomes smaller with increasing k. Equating g, and
Teas gives sin?(0,) ~ 02 ~ 11 (k) k=119, So if § ~ Sy ~ constant
on large scales is the total cascade power and begins (by assumption)
isotropic, the power on smaller scales is necessarily reduced by a
factor proportional to the solid angle of the undamped cone 67
Thus the energy of scattering modes with a given k; must scale as:
ea O S Teys 02 ¢ So k=149 je. 8, = —ay < 0. Note further that if
there is any ‘leakage,’ i.e. transfer of energy between the weakly
damped cone and broader mode angles that are rapidly damped, then
S must decrease further even along the ‘surviving’ directions, so we
take S — So (A kgiss)*S with g > 0, giving §; = —(oy + «5) <0, and
further reducing ds.

As pointed out in YLO4 and others, if a spectrum is strongly
suppressed or truncated at scales Agiss > 7 or, then transit-time
damping (TTD) from the larger-scale modes near Agiss could still
produce CR scattering, which dominates over the gyroresonant term.
But for TTD, we must replace our gyroresonant expression from
the main text (vs ~ Q |B(k))>/IBI* ~ (ver ky) (ky E(ky))/ep) with
vy = [(Q%/BPE®K) dk | Tky ver, 1/ QeI 1/ ey vp) Ry vy —
wlk, kg, o)~ eg! [19 dkEk) kv R ~
(kaiss Ver) 8B kaiss)|*/IBI? Rk, kaiss, - ..) ~ (constant) X R
from e.g. Voelk (1975). Here, R is some appropriate dimensionless
‘response’ or resonance function. Heuristically, this is just the
statement that a CR is scattered in pitch angle by a random
amplitude |Aup| ~ |[6B(k)|/|B| as it crosses a mode in time
At ~ X/vg ~ 1/k vy, so will random walk to an order-unity
change in pitch angle after N ~ |B|?/|6B(k)|> events, implying a
scattering time v;! ~ N2 At ~ [(k ve) [B(k)[>/|B|*]~". But if this
is dominated by the integral over larger-scale modes, then it is by
definition independent of R, so §; = 0. Moreover, if we account for
any non-trivial response function R (describing how efficiently a
mode of scale k can deflect the pitch-angle of a CR with gyroradius
g or ~ 1/kg), it must be the case that R is a decreasing function of
ky/k for k, > k, hence we must have 6, < 0.

Finally, note that because of how the actual scaling of the spectrum
S factors out in the above, and that these fast-mode damping
mechanisms act on all scales of interest, the above conclusion
that fast-mode damping requires §; < O applies not just to fast
modes sourced by a larger-scale cascade, but any isotropically driven
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population of fast modes, even if they were driven or sourced around
the gyroresonant scales.

C3 Summary

In summary, it is not possible to construct a self-consistent ‘cascade’
model which produces §; > 0 for CRs, as required (observed 8, ~
0.5-0.7). We stress that the arguments above are quite generic: this
is not a statement specific to one particular model of turbulence or
to various controversial or uncertain assumptions. Rather, they arise
from fundamental features of the MHD equations themselves (which
require that any Alfvénic or slow ‘cascade’ linking different parallel
k have & < 0) or the fundamental nature of magnetosonic damping
(which means any magnetosonic cascade where the most-rapidly
damped-modes begin to be appreciably damped on a spatial scale
Adiss larger than the gyroradius 7, . at some R, must have §; < 0 at
all smaller R,).

There is, however, one rather straightforward way to provide the
desired scattering: as we show in Section C1, if there exists some

other source/driving term of Alfvén waves (other than a cascade
related to any mode-coupling from larger or smaller scales) at

parallel &, and those waves are not extremely anisotropic [i.e. have
typical ky 2 (18v(ky)|/va) ki > 0.0003 &, solimit (1) in Section C1
applies], then it is perfectly allowed to construct an arbitrary spectrum
Eky) o kﬁrz with the desired §;. These can be weakly damped (by
e.g. the mechanisms in the text), and undergo a weak cascade mixing
the perpendicular wavenumbers k; but leaving £(k;) unmodified,
and satisfy all consistency constraints we discuss above. As noted
in the text, standard SC theory would be one example of precisely
this case, except that (for entirely different reasons) the form of the
driving term S, produces the incorrect spectrum E(kj) (unless one
also modifies the damping terms as we discuss). The other driving
terms we propose: Spew, 1in and Spew ext also function in this manner.
At large CR rigidities, 2 0.1 — 1 TV, it becomes possible (at least
in some ISM phases) to have r, o 2 Adiss, SO a ‘traditional’” ET-
type theory can apply and at least in principle one could obtain
a reasonable CR scattering rate from turbulence with an isotropic
inertial-range spectrum with k E(k;) o k[l/ * (see e.g. Fornieri et al.
2021). But of course, it is also possible that additional source terms
like those we propose could still be important on these scales as well.

This paper has been typeset from a TEX/IZTEX file prepared by the author.
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