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Abstract

Radio images of protoplanetary disks demonstrate that dust grains tend to organize themselves into rings. These
rings may be a consequence of dust trapping within gas pressure maxima, wherein the local high dust-to-gas ratio
is expected to trigger the formation of planetesimals and eventually planets. We revisit the behavior of dust near
gas pressure perturbations enforced by a planet in two-dimensional, shearing-box simulations. While dust grains
collect into generally long-lived rings, particles with a small Stokes parameter τs< 0.1 tend to advect out of the
ring within a few drift timescales. Scaled to the properties of ALMA disks, we find that rings composed of larger
particles (τs� 0.1) can nucleate a dust clump massive enough to trigger pebble accretion, which proceeds to ingest
the entire dust ring well within ∼1 Myr. To ensure the survival of the dust rings, we favor a nonplanetary origin
and typical grain size τs 0.05–0.1. Planet-driven rings may still be possible but if so we would expect the orbital
distance of the dust rings to be larger for older systems.

Unified Astronomy Thesaurus concepts: Planet formation (1241); Protoplanetary disks (1300); Astrophysical dust
processes (99); Gas-to-dust ratio (638)

1. Introduction

Planets are born in disks of gas and dust around a central
star. Despite the vast progress in understanding the process of
planet formation, the earliest phases remain unclear (e.g.,
Armitage 2018). In particular, the physical processes behind
the growth of micrometer-sized dust particles into rocky bodies
with sizes of thousands of kilometers remain unresolved.

One of the major obstacles in the coagulation of large solid
bodies is the rapidity at which dust grains drift onto the central
star due to aerodynamic drag (Whipple 1972; Weidenschilling
1977). In typical circumstellar disks around Sun-like stars, one-
meter grain at one astronomical unit will be dragged to the
inner disk edge within ∼200 yr, approximately 4−5 orders of
magnitude shorter than the typical disk lifetime (e.g., Chiang &
Youdin 2010). While CO measurements reveal the gas disk to
appear larger than the dust disk probed in radio continuum
(e.g., Ansdell et al. 2018; Long et al. 2022), suggesting the
grains undergo some degree of radial drift (e.g., Birnstiel &
Andrews 2014);3 the fact that these dust disks are extended to a
few 10 s of au implies that the drift must be halted or delayed.

The classic calculation of radial drift derives from the
assumption of a smooth gas disk. Substructures such as local
pressure maxima within gas can act as traps collecting
inflowing dust grains into ring-like structures (e.g., Pinilla
et al. 2012). In fact, most of the bright protoplanetary disks
imaged by the Atacama Large Millimeter/submillimeter Array
(ALMA) show concentric rings (ALMA Partnership et al.
2015; Andrews et al. 2018). What produces these pressure
maxima is an open question (see, e.g., Pinilla & Youdin 2017,

for a review). Some suggestions include anticyclonic vortices
in the gas (e.g., Lin 2014), edges of a gap carved out by
perturbation from massive planets (e.g., Zhu et al. 2012; Dong
et al. 2017), ice lines where volatiles condense (e.g., Brauer
et al. 2008), and magnetic zonal winds (e.g., Dittrich et al.
2013; Suriano et al. 2017; Hu et al. 2022). Although their
origin is not well understood, as dust can collect within
pressure traps, they have been proposed to be the regions where
planetesimals and eventually planets form.
But can dust near and within pressure maxima be collected

into sufficiently high-density clumps to trigger secondary
instabilities (e.g., streaming instability; Youdin & Goodman
2005; Johansen et al. 2007; Squire & Hopkins 2020) and/or
collapse into bound planetesimals via self-gravity (Chiang &
Youdin 2010; Simon et al. 2016; Gerbig et al. 2020)? Using 1D
(radial) and 2D (radial–vertical) hydrodynamic simulations,
Taki et al. (2016) found that once the dust grains collect within
a pressure bump and reach a local dust-to-gas ratio of ∼1, the
dust back-reaction destroys the pressure bump within ∼500
orbital periods, suggesting that any long-lived gas/dust
substructure as a viable site of planetesimal and planet
formation requires continuous forcing (see however Onishi &
Sekiya 2017 for a different view, who report that dust clumps
of sufficiently high density can undergo gravitational instability
but away from the disk midplane). With more sophisticated 3D
hydrodynamic simulations of a gas pressure bump that is
continuously reinforced including dust grains and dust self-
gravity, Carrera et al. (2021) find that particles can clump to the
Roche density (and therefore be expected to collapse into
planetesimals) robustly and efficiently through the action of the
streaming instability over multiple bump widths of their
simulation box, although whether it is the streaming or the
gravitational instability that ultimately creates planetesimals
may depend on the size of the grains (Carrera & Simon 2022).4
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3
We note however that the size discrepancy between the CO gas and the

continuum dust emission may arise from different optical depths even in the
absence of radial drift (Facchini et al. 2017; Trapman et al. 2019).

4
It is not surprising that the streaming instability is active away from the

formal center of the pressure bump, as at the bump center, the dust-gas relative
velocity would approach zero, likely deactivating any drag-induced
instabilities.
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Once these planetesimals coagulate within a dust ring, would
they grow into massive bodies quickly enough to spawn gas
giants? Morbidelli (2020) provided analytic arguments apply-
ing the theory of pebble accretion (Ormel & Klahr 2010;
Lambrechts & Johansen 2012) to the B77 ring in the Elias 24
system in Dullemond et al. (2018). Under the assumption that
the dust rings are created by a Gaussian pressure bump,
Morbidelli (2020) concluded that a 0.1M⊕ seed core can only
grow up to 1M⊕ within these dust rings, mostly because of
the large orbital distances where the dynamical timescales are
long. The final core mass is even smaller if the seed is situated
sufficiently far away from the center of the dust ring, where the
dust density would be significantly lower.

In this work, we revisit the question of planet formation in
dust rings. Our approach differs from and extends previous
work in several important ways. First, while we focus primarily
on 2D local, shearing-box simulations, we investigate the dust-
gas interaction in the R− f (radial–azimuthal) plane rather than
in the R− z (radial–vertical) plane of the disk (i.e., we do not
assume axisymmetry), under the assumption that the gravita-
tional settling to the midplane occurs over a much shorter
timescale than any dynamical timescale on the plane of the disk
(verified with a small number of explicit 3D simulations).
Second, instead of initializing our simulation boxes with a
predetermined amount of dust particles distributed uniformly
throughout the disk, we supply them over time from one side of
the box, to simulate the drift of dust from the outer disk into a
site of gas pressure bump, allowing (in principle) for an
arbitrarily large buildup of dust mass as required in many
models. Third, instead of simply imposing a pressure bump as
an initial condition (where it would represent a purely transient
effect and may not be able to act efficiently), we model it as an
explicit acceleration term acting on the gas by a gravitational
force, which mimics the presence of an embedded planet in the
disk. And fourth, we extensively consider the subsequent
evolution of dense dust rings and bound clumps in simulated
bumps, including comparison to observations of dust rings, and
the ability of clumps to collapse under self-gravity (including
shear and diffusion/turbulence effects).

This paper is organized as follows. Section 2 describes the
model and numerical simulations used in this work. Further, we
discuss the conditions for trapping particles in terms of the
shape of the pressure bump and dust properties. In Section 3,
we investigate the dust distributions and trap efficiencies in
simulations with bumps due to a perturbation by a planet. In
Section 4, we use the trap efficiencies from the simulations to
estimate the expected mass evolution of the axisymmetric ring
as well as the masses of the densest bound clumps within the
rings we simulate (and compare to observational constraints).
In Section 5, we investigate the ability of clumps to form and
collapse under self-gravity, and the expected mass growth of
the densest clumps after said collapse via pebble accretion.
Finally, we summarize and conclude in Section 6.

2. Problem & Methods

2.1. Problem Setup & Equations Solved

We investigate the dynamics of dust grains near and at local
pressure perturbations in a gas disk, established by a tidal
interaction with a planet. To concentrate on the local dynamics,
we adopt the “shearing-box” approximation, i.e., calculations
are performed on a small Cartesian patch of the disk defined in

a rotating frame centered on (R0, f0+Ω0 t, 0), where
Ω0=Ω(R0) is the Keplerian orbital frequency at R0. In this
frame, the locally Cartesian coordinates are x= (x, y,
z)= (R− R0, R0(f− f0)− R0Ω0 t, z). Expanding the equations
of motion to  - (∣ ∣ )R R R 10 0 gives the momentum
equation for gas:

r
= -


- W ´ + W - W + +ˆ

u
z u x z a a
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P
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2
0
2

dust bump

where D/Dt= ∂/∂t+ (u · ∇) is the Lagrangian derivative, ρ is

the gas density, P is the gas pressure, u is the gas velocity, adust
is the “back-reaction” acceleration from the force of gas drag

on grains (defined below), and abump is the acceleration due to

an imposed force that models the pressure bump. For

simplicity, in all our calculations we consider an inviscid gas

described by an isothermal equation of state r=P cs
2 with cs

the constant gas sound speed.
The simulation box is initially uniform in density (and

therefore uniform in pressure), and the initial velocity field is
set to the equilibrium solution in the absence of dust “back-
reaction” (adust→ 0), and in the absence of a planet:
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where P0= P0(R0) is the unperturbed gas pressure evaluated at

the center of the simulation box, UK≡Ω0 R0 is the Keplerian

velocity at the center of the simulation box, h hº = =( )R R0

r h- ¶ ¶ W º( ( ) ) ( ) ˜ ( )P R R R c U2 s K0 0
2 2 is the usual dimen-

sionless pressure support parameter (defined at R0 for the disk

profile without a bump), and P ºh h=( ) ˜( )U c c UK s s K .
Next, we consider the gravitational perturbation by a planet

of mass Mp located at (xp, yp, zp), whose gravitational field only
acts on the gas (we turn off the planet’s gravity on dust grains
so that we can isolate the effect of dust-gas dynamics in the
presence of perturbations in the underlying disk gas).5 In
general, this planet will drive a wave (Goldreich &
Tremaine 1980; Lin & Papaloizou 1986), and planets that are
massive enough will carve out a gap (e.g., Rafikov 2002; Kley
& Nelson 2012) in the vicinity of its orbit, creating a pressure
bump located a few pressure scale heights away (Dong &
Fung 2017). We write the bump acceleration as

= P W - Fˆ ( )a xc2 , 3s pbump 0

where the first term on the right-hand side takes into account

the acceleration due to the large-scale gas pressure gradient

because the shear-periodic boundaries do not otherwise allow a

pressure discontinuity between the x̂ boundaries, and Φp is

the planet’s gravitational potential

F = -
- + - + - +( ) ( ) ( )

( )
GM

x x y y z z r
, 4p

p

p p p s
2 2 2 2

5
We verify with a limited set of simulations with the planet’s gravity on dust

grains turned on that the overall qualitative behavior of the dust grains does not
change.
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where we introduce a smoothing length parameter, rs=0.1 (in

the unit of the disk scale height), to avoid the divergence of the

planet’s gravitational attraction.
In the shearing-box approximation, the momentum equation

for dust particles is

= -
-

- W ´ + W - Wˆ ( )
v v u

z v x z
d

dt t
2 3 , 5

s

0 0
2

0
2

where v is the dust particle velocity, and dv/dt is its Lagrangian
derivative. We can thus write the acceleration on gas from dust

grains (i.e., the “back-reaction” force on gas) as
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where ts is the stopping time of a single dust grain. We cannot

assume that all grains at a given location move with the same

velocity, so dρd/d
3
v is the phase-space distribution of grains

and ρd≡ ∫(dρd/d
3
v)d3v is the dust density. As we are primarily

interested in small grains, we assume an Epstein drag law such

that the stopping time is given by

p r

r
p

º +
-

-

⎜ ⎟
⎛
⎝

⎞
⎠

∣ ∣
( )

v u
t

a

c c8
1

9

128
7s

s s

grain grain 2

2

1 2

(Paardekooper & Mellema 2006), where ρgrain and agrain are the

internal grain density and radius, respectively. Because ts can

depend on the local gas conditions (e.g., ρ), we define the usual

dimensionless “effective Stokes number” τs≡Ω0 ts(ρ= ρ0,

P= P0, R= R0, - =∣ ∣ )v u 0 ≈ 0.63 ρgrain agrain/ρ0H, where

r = P cs0 0
2, in terms of the value of ts evaluated for the

equilibrium gas properties outside or absent the “bump”. In the

steady state without a bump and neglecting back-reaction on

the gas, the dust equilibrium density is ρd= μ0 ρ0 (where μ0 is

the equilibrium dust-to-gas mass ratio) with the Nakagawa–

Sekiya–Hayashi drift velocities (Nakagawa et al. 1986):

t t t= - P +¯ ¯ ( ) ( ) ( )v u c2 , , 0 1 . 8s s s s
2 2

While GIZMO has the capability of taking the physical size

and the internal density of the grains as input, we emphasize

that our calculation is parameterized by the Stokes number τs
and so the absolute values of ρ, cs, ρgrain, or agrain never directly

factor into our simulations (in other words, our input parameter

is τs).

2.2. Numerical Methods

We integrate the equations described in Section 2.1 in
GIZMO (Hopkins 2015),6 using the Lagrangian “meshless
finite mass” (MFM) method for the hydrodynamics (validated
in, e.g., Hopkins & Raives 2016; Hopkins 2016, 2017; Su et al.
2017). Grains are integrated using the “super-particle” method
(see, e.g., Carballido et al. 2008; Johansen et al. 2009; Bai &
Stone 2010; Pan et al. 2011), whereby the motion of each
dust “particle” in the simulation follows Equation (5), but
each represents an ensemble of dust grains with similar
properties. Numerical methods for the integration are described
and tested in Hopkins & Lee (2016), Lee et al. (2017), and

Hopkins et al. (2020) with the back-reaction accounted for as in
Moseley et al. (2019) and Seligman et al. (2019), in a manner
guaranteeing exact conservation.
We initialize a box of side length Lbox, with shear-periodic

boundary conditions for gas (Hawley et al. 1995) and ND
1D,gas

resolution elements, where D is the number of dimensions. As
described in Section 2.1, the gas density is initially uniform
within the box and the initial velocity field follows
Equation (2). In all our calculations, we set Lbox= 6H to
capture the bump without degrading the physical resolution. To
find the optimal resolution for our study, we increase gradually
N1D,gas and find convergence in the results when N1D,gas= 128.
We set the mass of individual dust “super-particles” to be

= á ñ =m m M N0.01 0.01i i
D

,dust ,gas gas,box 1D,gas, where Mgas,box

is the total mass of the gas in the box. Dust grains enter the
right side of the box+x̂ (i.e., R> R0+ Lbox/2) and exit the left
side of the box -x̂ (i.e., R< R0− Lbox/2). For the inflow
boundary at +x̂, we spawn new dust particles on a D− one-
dimensional mesh (with -ND

1D,gas
1 elements) at a constant rate, set

to the equilibrium drift v̄, such that the steady-state dust flux
into the box is m r= á ñ ¯F v0 0 with 〈μ0〉= 0.01 (so that, without
a bump, the steady-state dust-to-gas ratio in the box is 〈μ0〉).

7

We emphasize that the dynamically relevant quantity in our
simulation is the dust-to-gas ratio—which enters into dust
back-reaction—rather than the absolute mass of the gas (or
dust), which is a wholly scalable quantity.
As the timescale for vertical settling is short in comparison

with the dynamical scales of interest in this work, we focus on
2D (R− f or x− y) simulations. The 2D cases allow us to
reach much higher resolution and are a plausible approximation
for thin dust layers.

2.3. Parameter Space

In our setup, there are three physically meaningful
parameters: τs, Π, and Mp. Other parameters either scale out
entirely from the problem (e.g., absolute values of ρ, cs, R, Ω),
or simply rescale the rate of supply of dust, or are purely
numerical parameters (e.g., dust and gas resolution, box size in
units of H).
Among the three parameters, Π is narrowly constrained to

∼0.1: much larger values (Π 1) imply the “disk” is actually a
quasi-spherical hydrostatic object, while much smaller
(Π 0.01) would automatically mean the disk has Toomre
Q< 1 in the gas and should fragment via gravitational
instability. In all our simulations, Π is set to 0.05.
The planet mass Mp controls the shape of the resulting

pressure bump. For inviscid disks, Lin & Papaloizou (1993)
showed that gas surrounding the planet can be marginally
stable against Rayleigh’s rotational instability when the Hill
radius of the planet, = ( )R r M M3pHill

1 3, is comparable to
the disk scale height, H, which yields the “thermal mass”

=
W

( )M
c

G

2

3
. 9s

th

3

0

We vary the mass of the planet in the interval 0.1–2.7Mth and

find that pressure bumps form when Mp 0.5Mth. As our

simulation boxes are focused on a small local patch of the

protoplanetary disk, we keep the mass of the planet

6
A public version of the code, including all methods used in this paper, is

available at http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html.

7
We stress that the dust flux is a “nuisance parameter,” as it only controls the

rate of dust flowing into the bump, so changing it only changes the simulation
time required for the bump to reach some interesting local dust-to-gas ratio.
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Mp< 2.5Mth to make sure the planet does not accrete

significant amount of gas in the box. These constraints result

in a narrow range of Mp, and we find that both the size of the

bump and the dust dynamics do not change significantly so

long as the pressure bumps are created. Therefore, we focus our

discussion to Mp= 2.25Mth. We also fix the planet location at

x=−2H from the center of the simulation box so that the

bump generated by the planet is contained in the box while

giving enough room for dust particles to drift inward and

interact with the bump.
Pressure bumps, once formed, need to be able to trap

particles of a given τs. By approximating the shape of the bump
as a Gaussian

d= + = + -( ) ( )P P P P e1 , 10b
x w

0 bump 0
2 b

2 2

where Pbump is the resulting perturbation to the gas pressure

because of planet’s gravity, we can identify the physically

reasonable values of the bump amplitude δb and the bump

width wb to determine whether our choice of Mp produces a

pressure bump that is strong enough for a range of τs:

1. To be effectively a bump, the acceleration of the
Gaussian bump (i.e., ρ−1∂Pbump/∂R) has to be greater
than that of the background pressure gradient (i.e.,
ρ−1∂P0/∂R= 2ΠcsΩ0), particularly at one sigma from
the peak where the acceleration is greater than at larger
distances. In other words, the pressure gradient of the
bump at x= wb needs to be greater than the background
gradient, which results in

d
d

> P <
P

˜ ˜ ( )w w3.3 or
3.3

, 11b b b
b

where ºw̃ w Hb b . Note that to guarantee an effective
bump, we only need the exterior portion of the bump (i.e.,
where abump> 0) to be steeper than the background
gradient.

2. Dust particles need to slow down (on a timescale ∼t̃s
“stopping time in the bump”) before the equilibrium drift
speed vd,0 carries them “through” the bump (width wb),
i.e., ~t̃ t w vs d b d,0 ,0. Using t t~ P +( )v c2 1d s s s,0

2 ,
this requires

t t
t

t
t

P
+

= P
+d˜

˜
( )w f2

1
2

1
, 12b

s s

s

s

s
2

2

2

where t̃s is the Stokes number “in the bump” with
t t d t» + = d˜ ( ) f1s s b s in the Epstein regime.

3. The bump needs to “catch” grains accelerated by itself.
As dust grains enter into the bump, assuming criteria
above are met, grains accelerate up toward a new terminal
velocity of r t d~ ¶ ¶ ~-˜ ˜ ( ˜ )v t P R w c0.6d b s s b s,

1
bump ,

crossing the peak (i.e., the “trap region” of width wb) in
a time td,b∼wb/vd,b, which must be<t̃s. Altogether, this
gives

d t˜ ˜ ( )w . 13b b s
1 2

We note that condition 3 effectively describes the
requirement to trap the particles once they cross over
the peak into the inner side of the bump; it is also a more
stringent condition than condition 2 in the limit τs< 1

unless d pt 2b s
1 2 . In the parameter space we explore, if

condition 3 is met, condition 2 is automatically met.

4. For the bump to be stable (i.e., the acceleration by the
bump pressure gradient does not exceed Keplerian
acceleration), we must have:

d ~
P

 ⎜ ⎟⎛
⎝

⎞
⎠

˜
˜

( )
v

c
w

w
0.5 . 14b

K

s

b
b

Figure 1 illustrates the region of the parameter space d - w̃b b

that produces a pressure bump that meets the trapping
requirement outlined above. By fitting a Gaussian function to
the planet-induced bump, we find δb= 1.44 and =w̃ 0.96b ,
strong enough to meet our trapping conditions. The most
widely variable parameter is therefore τs. For very large τs> 1,
the arguments above show that no physically reasonable values
of “bump” parameters can actually trap the dust (such grains
are decoupled from the gas after all). So we focus on smaller
grains, with τs∼ 0.01–1. We do not explore smaller τs to keep
the run times of our simulations reasonable.
Note that with our choice of Π= 0.05, which is approxi-

mately the disk aspect ratio, our trapping requirements imply
that these bumps may be Rossby-wave unstable (e.g., see Ono
et al. 2016, their Table 2, case iv). Ono et al. (2016) provide a
fitting formula for the maximum Gaussian amplitude for
stability against Rossby wave over two regimes: 0.02� wb/
R� 0.05 and 0.05�wb/R� 0.2. At the boundary wb/R= 0.05
(equivalent to our =w̃ 1b ), the two fitting formulae differ by at
least an order of magnitude. Nevertheless, according to either
of their criteria, our bump (d =w̃ 1.5b b ) is expected to be
Rossby-wave unstable.

3. Identifying Dust Rings

3.1. Gap Formation and Pressure Bump

With the introduction of gravity from a thermal mass object,
some of the surrounding gas is rapidly accreted onto the planet
and density waves are excited in the gas, pushing the gas away
toward the radial boundaries. This process results in a density
gap around the planet’s orbit and a pile up of gas a few H away
from the planet (see left panel in Figure 2). The gas responds to
the initial perturbation on a short time and equilibrates after a
few hundred orbital times. As expected of bumps strong
enough to be Rossby-wave unstable, we observe vortices near
the bump (see the gas streamlines in the right panel of
Figure 2).
We note that after about 20 orbital times, the gas pressure

at the location of the planet remains roughly constant. To make
sense of this timescale, we estimate analytically the character-
istic time for the accretion process. For 2D accretion, the gas
mass accretion rate is given by

~ S ( )M R v , 15acc,g g acc,g

where Racc,g and vacc,g are the accretion radius and velocity,

respectively, and Σg is the gas surface density. For Mp∼Mth,

the Hill radius of the planet becomes smaller than its Bondi

radius, and therefore Racc,g∼ RHill. As the ambient gas flow

approaches Racc,g∼ RHill, it will reach the shear velocity:

~ Wv Racc,g
3

2 Hill . The gas accretion rate onto the planet is then

~ S W ( )M R
3

2
. 16Hill

2
g
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As the planet orbits the star, it sweeps up the gas material

around on a timescale ~ t M Msweep av , where Mav=

4πΣgrRHill is the mass available to the planet at orbital distance

r. Noting that RHill= fH, where = ( )f M M2 9p th
1 3, and

recalling that for a thin disk Π∼ cs/UK∼H/r, we obtain

~ P W
-

- -
⎜ ⎟⎛
⎝

⎞
⎠

( )t
M

M
14 . 17

p
sweep

th

1 3

1 1

As a check, for Mp/Mth= 2.25, and Π= 0.05, Equation (17)

gives tsweep∼ 207Ω−1, approximately within an order of

magnitude of the time it took for the gas at the location of

the planet to reach some steady state in our simulation. The

longer tsweep we arrive at likely reflects the difference between a

global view adopted in our analytic calculations here compared

to the local box approximation in our numerical simulations.

3.2. Dust Distribution

Figure 3 visualizes the radial distribution of the gas pressure
and dust-to-gas mass ratio, as well as the 2D spatial distribution of
dust particles. We find that the morphology of the dust band is
strongly dependent on τs. For τs= 0.05, any dust concentration
we see is transient and is advected away following the gas flow
onto the planet over just one drift time. We also observe more
complex geometry of the dust ring with signatures of vortices,
likely following the vortices in the gas streamlines (Figure 2). In
general, the gas pressure bump is constantly deformed not just by
the dust feedback but also by the density waves driven by the
planet. The complex morphology of gas streamlines begets the
complex morphology of dust bands.

For particles of τs= 0.05, the pressure bump is an ineffective
barrier. We observe the particles going through the bump and
arriving at the location of the planet, from where they are
constantly kicked out of the box by gas outflows. For τs= 0.1,
0.25, and 0.5, we find that particles become trapped slightly inside
the center of the bump, as expected for a disk with a smooth
pressure gradient on top of a local pressure maximum. We find
that μ∼ 1 in these locations and that the radial extent of the dust-
rich region becomes smaller for larger τs as larger particles are
more strongly affected by aerodynamic drag and able to collect
into a pressure maximum more quickly. The fact that the large
particles are more decoupled from the gas also implies that they
are more resilient against the advective outflow from the gas

bump. We note that in spite of the initial vortex formation in dust
rings, over time, the dust concentrations transition to axisymmetric
rings (see the bottom right panel of Figure 3).

3.3. Trap Efficiency

We calculate the efficiency of the trap òtrap as the ratio
between the number of dust particles inside the “dust-rich
bands” and the cumulative number of particles supplied to the
bump at a given time. We define a dust-rich band by fitting a
Gaussian function to the radial distribution of dust grains,
centered at the peak of such distribution, and the “total” width
of the ring is taken as two Gaussian standard deviations.
As we want to compare results for particles of different τs,

which are supplied to the box at a different rate, in the
following we present results at times normalized by the radial
drift time across the box

t
t

~
P

+
W-⎜ ⎟⎛

⎝
⎞
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⎛
⎝

⎞
⎠

( )t
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2

1
, 18

H s

s
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2
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where NH is the number of pressure scale heights (NH= 6 in our

simulations). For particles of τs= (0.05, 0.1, 0.25, 0.5) , the radial

drift times are tdrift≈ (1203, 606, 255, 150)Ω−1, respectively.
As demonstrated in Figure 4, òtrap quickly rises to ∼0.8 within

∼1tdrift then either decreases with time or stays constant (at least for
the duration of our simulations), depending sensitively on τs. We
identify the source of the high initial trapping efficiency with
vortices acting as effective dust traps. At lower τs (especially for
τs= 0.05), the particles, being coupled to the gas flow, are
eventually advected out of the pressure bump before they can
collect into thin rings. We find this behavior persists when we turn
off dust feedback—in fact, dust feedback aids the stabilization of
dust rings against advection—and we did not observe any
noticeable difference in the morphology of planet-induced pressure
bump when we increased (or decreased) the resolution from our
fiducial 1282 particles, suggesting the effect is not dominated by,
e.g., numerical viscosity. For these small τs, the dust band leaks out
more easily when we turn on planet gravity on dust grains as the
grains are attracted to the planet on top of being advected out
following the gas flow. As τs< 0.1 grains have been shown to
collect into thin rings under the presence of a planet both
subthermal and superthermal over thousands of orbital times in
global disk simulations with different numerical schemes (e.g.,

Figure 1. Parameter space constraints on the bump amplitude δb and width w̃b, with Π = 0.05. The blue region represents the region of the parameter space that allows
dust particles to be trapped by the bump, and the different lines denote the limits from the trapping requirements in Section 2.3. As the size of the box is fixed to Lbox/
H = 6, we limit the width of the bump up to a maximum of =w̃ 2b , to ensure the bump is contained within the box. The line corresponding to the constraint

d= Pw̃ 3.3b b is above =w̃ 2b and therefore not shown here.
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Dong et al. 2017), we suspect that the transient ring we observe
may be a feature of our local shearing-box simulation, which will
need to be verified (in the future) using 2D global simulations with
GIZMO.

For particles of τs= 0.1, the bump is able to trap dust and
òtrap remains high until t≈ 8 tdrift. Afterwards, we find that òtrap
decays with time until the system reaches an equilibrium
between the number of particles that escape from the bump and
the number of particles supplied to the bump. Finally, for
particles of τs= 0.25 and 0.5, we do not observe a significant
particle leak, and the efficiency of the trap remains high and
stable over long timescales.

4. Initial Mass Reservoir and Rings

We now evaluate the amount of solid mass that could be
trapped in the rings we simulate and compare to the inferred
ring masses in ALMA disks. The initial solid mass reservoir is
inferred from the mass and radius measurements of Class 0/I
disks in the Orion cluster that are detected with both ALMA
(0.87 mm) and the VLA (9 mm), reported by Tobin et al.
(2020). Following the procedure of Chachan et al. (2022), we
take the dust masses from VLA observations as disks are
expected to be more optically thin at longer wavelengths (and
so they are closer to the true masses). Disk sizes are taken from
ALMA measurements as protoplanetary disks tend to appear
smaller at longer wavelengths (e.g., Tazzari et al. 2016), which
may be an effect of different optical depths (Tripathi et al.
2018). By taking the average dust mass of these young disks at
each radius bin, we obtain the initial solid mass profile (see
Figure 5):8

» Å⎛
⎝

⎞
⎠

( ) ( )M R M
R

54
1 au

. 19solids disk
disk

0.49

By integrating the radial drift velocity in Equation (8), we
obtain the initial location from which dust grains are sourced
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where Rf is the orbital distance of the dust after drift in over a

time t. For a dust ring located at Rf, we use Equation (19) to

compute the total dust mass that drifts into Rf at any given

time:
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We can then express the total dust dust mass in the ring at time

t as
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where t0 is the time at which we identify a dust ring for each

simulation. We stop the integration at time t when

Ro(t)= 200 au, taken as the maximum size of a solid disk.
For a quantitative comparison with real data, we use the

properties of ring B77 in Elias 24 for its “median” properties
—i.e., this ring has an approximately median mass and
orbital distance out of all the rings studied by Dullemond
et al. (2018); furthermore, only a single ring is resolved and
so it is more closely analogous to our simulations. The total
estimated mass of the ring is ≈40.8M⊕, and it is located at
Rf = 76.7 au from a star of mass M

å
= 0.78Me. Placing the

center of our simulation box at Rf and using the Må of Elias
24, one orbital time in our simulation corresponds to ∼760
yr and so we scale our simulation times to this value.
Figure 6 demonstrates that all the dust rings in our
simulations are able to collect enough mass fast enough to
match the inferred mass of B77 and the age of its host system
Elias 24 within 1σ uncertainty. (We do not show τs = 0.05

Figure 2. Left: radial distribution of the gas pressure, P/P0, for Mp/Mth = 2.25 at different times. The planet of mass 2.5Mth is located at x = −2H. Note that a
Gaussian bump external to the planet’s orbit establishes after a few hundred orbital times. Right: 2D field of the gas density with streamlines of the gas velocity field
(blue lines). We observe the formation of vortices, which is expected given that the pressure bump created by the planet is formally unstable to Rossby-wave
instability. All our numerical experiments show the same qualitative behavior.

8
We exclude the first bin as typical ALMA rings are located at orbital

distances distances beyond 10–20 au.
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case as its dust ring is transient.) The maximum ring mass is

reached earlier at larger τs as larger grains undergo more

rapid drift.

Figure 3. Top row + bottom left panel: snapshots of 2D gas density field (background) and the spatial distribution of dust particles (cyan points) for τs = 0.05 (top
left), 0.10 (top middle), 0.25 (top right), and 0.50 (bottom left), shown here at 5tdrift. In all cases, the pressure bump was created by a planet of massMp = 2.25Mth, and
the planet’s location is (−2H, 0). The solid lines correspond to radial profiles of the gas pressure (P/P0 in blue) and dust-to-gas mass ratio (μ in yellow). The snapshots
are shown at t = 5 tdrift. Bottom right: particle number distribution along the azimuthal coordinate (y/H) for τs = 0.1. While the particles show nonaxisymmetric
pattern, they evolve toward a more axisymmetric distribution. We observe the same qualitative behavior for particles of larger τs.

Figure 4. Trap efficiency òtrap of planet-driven rings as a function of time.
Planet mass is fixed toMp = 2.25Mth. At the lowest τs, the dust ring is advected
away within ∼1 drift time, and we also see a gradual loss of particles from the
ring of particles at τs = 0.10.

Figure 5. Disk dust mass and radius estimates for Class 0 and I sources (Tobin
et al. 2020, black circles) where we take the mass measurements from VLA and
the size measurement from ALMA (see text for the rationale). We binned the
data over Rdisk (the vertical lines denote the edge of each bin) and take the mean
value of each bin as a representative value of Msolids (orange dots). The blue
line is a power-law fit to the last six bins (Equation (19)).
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4.1. Dust Ring Evolution

Another way to compare our simulated dust rings with those
observed is to analyze the width of the rings. Assuming the
dust rings are established by the drift-diffusion steady state:

S = S ( )v D d , 23x d rsolid ,ring solid

where

t
~

W
( )D v 24d

s
,ring rms

2

is the diffusion coefficient of particles inside the ring (Youdin

& Lithwick 2007), and

å= - á ñ + - á ñ( ) ( ) ( )v
N

v v v v
1

, 25
j

N

j x x j y yrms ,
2

,
2

is the rms dispersion velocity of all particles within the dust

ring, defined as ±2σ from the center of the Gaussian fit. Here, j

and N denote the jth-particle and the total number of dust

particles in the dust ring, respectively, and 〈〉 is the average of
the N particles in the clump.
While we directly compute vrms numerically, we can express

it in terms of gas sound speed:

a
t

=
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( )v c
1

, 26s

s

rms
eff

where αeff is the effective turbulence parameter. We stress that

this αeff is limited to “turbulence” within the radial–azimuthal

plane and is distinct from the degree of vertical turbulence. For

all our simulations, vrms rises with time and αeff∼ 0.01–0.1

with larger τs characterized by smaller vrms due to their relative

ease with being collected into a pressure bump.
If the center of the dust ring is located at the center of the gas

pressure bump (in Gaussian form), then Σsolid can be expressed
as a Gaussian with a width (see Equation (46) of Dullemond
et al. (2018) with Dd,ring in Equation (24))

t
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s
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in the limit of τs< 1 with vrms expressed as Equation (26) and

wb representing the width of the gas pressure bump. We then

expect the dust to thicken with time as vrms rises as we see in

Figure 7. Figure 8 demonstrates that the measured width of our

dust ring under tidal forcing by a planet tracks well the

expected ring width from drift-diffusion steady state.
From Figure 7, we infer that under tidal forcing by a planet,

τs= 0.10 rings can reproduce the width of the B77 ring within
the age of Elias 24. Larger τs particles tend to create sharper
rings as they are more efficiently dragged and collect more
easily into pressure traps. Overall, compared to B77, rings of
τs= 0.25 and 0.50 have generally larger mass than the median
measured value (see Figure 6) and are generally thinner than
the median quoted width (see Figure 7), resulting in dense
rings. In fact, within ∼0.2 Myr, these high-τs rings reach solid

Figure 6. Dust mass inside a ring as a function of time (Equation (22)) for
different particle Stokes number τs. The total amount of solid mass that would
have drifted into the ring is annotated with Mavail (see Equation (21)). The
inferred mass of the ring B77 (Dullemond et al. 2018) and the age of the host
system Elias 24 (Andrews et al. 2018) are represented by the horizontal and
vertical lines, respectively, with their 1σ error illustrated with blue bars.

Figure 7. Time evolution of dust ring width in units of the width of the gas
pressure bump (set to one 0.96H in all cases). The horizontal and vertical blue
bars represent 1σ uncertainty in the ratio of dust-to-gas pressure bump width
(Dullemond et al. 2018, see their Figure 5 and Table 3) and in the estimated age
of the host system Elias 24 (Andrews et al. 2018), respectively. Under planet’s
tidal forcing, the particle ring puffs up over time.
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surface density Σsolid that is comparable to and slightly larger

than the maximum gas surface density to be stable against gas

self-gravity (estimated under the assumption of irradiation-

dominated midplane temperature; see Figure 9). While this is

technically an allowed solution as the local dust-to-gas ratio in

τs= 0.25 and 0.50 runs reach 2–3, and so the local gas

density can be smaller than the local solid density, it is still

uncomfortably close to the limit of stability. We conclude that

the rings observed in the DSHARP survey (Andrews et al.

2018) can be created by planetary perturbers with the additional

constraint that τs is more likely 0.10.

4.2. Gravitational Collapse of Dust Inside the Trap

While we do not explicitly simulate the effect of self-gravity

of the dust particles in our calculations,9 we can estimate the

mass of clumps in the dust-rich bands that are expected to
collapse into planetesimals or planetary bodies. We use the
virial parameter for a spherical clump (e.g., Bertoldi &
McKee 1992) to determine the size and mass of the bound
clump in our simulations:

a ~  ( )
v R

GM

5
1, 28vir

rms,cl
2

cl

cl

where vrms,cl is the root mean squared dispersion velocity of the

dust particles in the clump, Rcl is the clump’s radius, and Mcl is

the total mass of dust in the clump. If αvir> 1, dust particles

have enough kinetic energy to expand and move through the

gas, whereas dust clumps with αvir� 1 are gravitationally

bound. We note that this collapse condition is equivalent

(within a numerical factor) to the diffusion-limited collapse

criterion for planetesimals outlined by Klahr et al. (2018) and

Gerbig et al. (2020), which derives from the condition in which

the contraction timescale
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(where r p= M R3 4cl cl cl
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than the diffusion timescale
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being the particle diffusion coefficient (Youdin & Lithwick

2007). The collapse criterion <t tcontr diff boils down to
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By defining a bound clump as those with αvir< 1, our dust

clumps are guaranteed to collapse against turbulent diffusion.
We identify a bound clump for all our simulations as

follows:

1. We obtain the (x,y) coordinates of the densest point

within the dust ring, defined as a radial strip of total width

4σ centered at the peak of the Gaussian fit. Before

identifying the densest point, we smooth the two-

dimensional distribution of dust grains using a Gaussian

kernel density estimator (KDE).10 These (x,y) coordinates

locate the center of our clump.

Figure 8. Ratio between the measured dust ring width and the expected width
under drift-diffusion steady state (Equation (27)). The dust ring driven by the
planet’s tidal forcing is described well by the balance between the radial drift
and turbulent diffusion.

Figure 9. Time evolution of ring solid surface density. Greater ring mass and
thinner ring begets larger solid density for larger τs. The horizontal dashed line
delineates the maximum gas surface density to be Toomre-stable under the
assumption of irradiation-dominated midplane temperature (see Table 2 of
Dullemond et al. 2018). Values are shown until the solids out to the maximum
disk radius 200 au drift into Rf = 76.7 au (see Equation (22) and the
surrounding text).

9
Gas and dust self-gravity are available only in three-dimensional version of

GIZMO, which is beyond the scope of this manuscript and is a subject of
future work.

10
The smoothness of the KDE is set by the bandwidth parameter, which for

the present work is given by the “Scottʼs Rule”(i.e., N−1/( d+4), where N is the
number of data points and d the number of dimensions; see, e.g., Scott 2015).
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2. We first set Rcl=Hsolid, where, following Youdin &
Lithwick (2007), we define Hsolid as the dust scale height

a
a t

=
+

( )H H 33
s

solid

with Shakura–Sunyaev parameter α= 10−3 as this is the
maximum expected value from the geometry of ringed
disks (Pinte et al. 2016) and from CO line measurements
in protoplanetary disks (e.g., Flaherty et al. 2017). We
note that this α probes the vertical turbulence and is
distinct from αeff previously defined.

3. Within a radius of Rcl centered at the densest point, we
calculate the vrms,cl of dust particles using Equation (25).

4. The mass of the clump is calculated as p= SM Rcl cl
2

solid,
where Σsolid is the solid surface density of the dust ring.
To estimate Σsolid as a function of time, we integrate the
Gaussian fit of the dust ring within 2σ, and normalize it to
the mass of the ring as computed in Equation (22):

p
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The normalization C is close to and slightly larger than
2Rfσ. We note that in all our simulation snapshots (except
at the very earliest times), the x coordinate of the center of
the clump is close enough to the radial center of the dust
ring so that we do not need to worry about the Gaussian
falloff in Σsolid.

5. If the clump’s virial parameter at Rcl=Hsolid is larger
than 1, we iteratively shrink Rcl and follow steps 3 and 4
above until we reach αvir� 1. We find that step 5 is never
invoked in any of our simulation snapshots (i.e., all our
“bound” clumps are at the maximum size).

In protoplanetary disks, clumps that can gravitationally
collapse against turbulent diffusion may still be sheared apart.
To be stable against tidal shear, the clump’s self-gravity must
be larger than tidal acceleration in three-body dynamics
(Gerbig et al. 2020):
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We find that Rclump=Hsolid always to keep the clump’s

αvir� 1 and so setting the clump radius as the dust scale height,

the condition for stability against shear becomes:
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As illustrated in Figure 10, our dust rings, scaled to the
properties of B77 in Elias 24, are able to nucleate stable bound
clumps although the τs= 0.10 ring is expected to nucleate
clumps that are just barely massive enough to be stable against
tidal shear. The increasing difficulty in creating stable
planetesimal/planetary bodies at lower τs stems from two
effects. At small τs, the minimum clump mass to be stable
against shear is larger because of larger Hd (i.e., clumps are
more extended). Dust rings need to collect more mass to reach
the stability limit but this collection takes a while as the radial

drift is slower at smaller τs so that at a given time (i.e., the
given age of the system), Mring is smaller. Furthermore, rings
made of small τs particles are puffier and so Σsolid drops even
more, reducingMcl. We note that creating a stable clump within
the age of the system becomes easier even at small τs if the dust
ring is located closer to the star where the dynamical timescales
are shorter and if the system is older.
At large τs, the minimum clump mass for shear stability is

smaller because of smaller Hd (i.e., clumps are more compact)
and so dust rings do not need to collect as much mass.
Nevertheless, larger τs rings tend to create more massive
clumps as their rings are narrower (see Equation (27)), and so
Σsolid is boosted. With the innate ability to nucleate more
massive clumps and with the minimum mass for stability
lower, it is significantly easier to maintain these bound clumps
with larger τs particles.
It may be possible that we could define a smaller dust clump

Rcl<Hsolid so that it is shear-stable within the age of Elias 24

Figure 10. Mass evolution of the bound dust clump in the dust-rich bands;
annotations are identical to that of Figure 6, with the addition of a gray
horizontal line delineating the minimum mass for stability against tidal shear.
At lower τs, the bound clumps, at their maximal size, are more likely to be
sheared apart.
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for any τs. Consider Rcl= fRHsolid where fR� 1 is a numerical
factor. The collapse criterion against turbulent diffusion
(Equation (32)) sets the lower limit on fR:
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solid solid
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where we used p= SM Rcl solid cl
2. In order for this clump to be

stable against tidal shear,
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It follows that this condition will be met if
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As demonstrated in Figure 11, for the majority of the
evolution, our dust rings meet the density criterion for the
creation of the smallest planetesimal stable against tidal shear.
Again, we observe that satisfying the stability criterion against
shear is increasingly harder for smaller τs due to their larger
vrms,cl (and therefore largerSmin,sh) and smaller Σsolid at a given
time due to slower radial drift. The corresponding mass of the
smallest bound clump stable against shear is


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where fR,min is given by the right-hand side of Equation (38).

Figure 12 shows that these minimum core masses are smaller

than Ceres ∼10−4M⊕. We conclude that down to τs∼ 0.1, it is

possible to create large planetesimals out to the size of the dust

scale height in the dust rings we simulate, and for smaller τs (if

we can keep these dust rings stable against advection), it is

possible to create smaller bodies down to sub-Ceres masses.

5. Planet Formation in Dust Rings

Tidal forcing by a planet creates a long-lasting pressure
bump that can collect particles into an axisymmetric or nearly
axisymmetric ring. Scaled to the properties of B77 in Elias 24
(Andrews et al. 2018), we find that all of our rings are able to
collect enough dust grains to match the measured mass
(Dullemond et al. 2018). In addition, all our dust rings are
expected to nucleate small, bound and shear-stable clumps. In
this section, we investigate the expected mass growth of these
clumps via pebble accretion.
In general, the mass growth rate of a core embedded in a disk

of solids is

= S ´ ( ) ( )M R v R H2 min 1, , 42core solid acc acc acc solid

where particles that enter within a radius Racc of the core at

speeds of vacc will be accreted to the core. Growth by pebble

accretion begins in earnest when τ< 1 and when the particle

stopping time is shorter than its interaction time with the core

(i.e., the “settling” regime as identified by Ormel & Klahr 2010;

see also review by Ormel 2017):

t W < ( )R V . 43s acc acc

We first establish the bound clump mass at which accretion
is in this settling regime. Following the procedure of Lin et al.
(2018), we compute Racc and vacc in the settling regime and
verify that Equation (43) is satisfied. For all our simulations,
τs< 1 so we use

= + W +⎛
⎝

⎞
⎠

( )v v R v
3

2
, 44acc hw acc

2

rms
2

where º - W ¶ ¶( )( )v c a P a2 log log ,shw
2 which we compute

directly from our simulations as t t-á ñ +f ( )v 1x s s
2 evaluated

at the location of the bound clump (i.e., the radial center of the

dust ring) with<> f denoting azimuthal average, cs the sound

speed, a the orbital distance, P the gas pressure, and vrms the

rms velocity computed within the dust ring as defined in

Equation (25). Under the settling condition (Equation (43)),

particles that accrete onto the core attain a terminal velocity

Figure 11. Ratio of solid density in the dust ring to the minimum density
required to for a clump to be bound against turbulent diffusion and be stable
against tidal shear (see Equation (40)). Values are shown until the solids out to
the maximum disk radius 200 au drift into Rf = 76.7 au. Except for the initial
fraction of evolution, all dust rings are dense enough to nucleate smallest stable
planetesimals.

Figure 12.Masses of smallest possible bound clumps stable against tidal shear.
Values are shown from when S Ssolid min,sh and until the solids out to
maximum disk radius 200 au drift into Rf = 76.7 au.
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during the encounter so that

t
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W
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where G is the gravitational constant. From this, Racc is solved

for by finding the root of
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where b≡ Racc/RHill, m=R a
MHill
1 3 , m º M M3M core , ζ≡

vhw/vHill, vHill=ΩRHill, and ζrms≡ vrms/vHill. We find that dust

clumps need to be at least 0.03, 0.03, and 0.1M⊕ for τs= 0.1,

0.25, and 0.5, respectively, to be in the settling regime.
For these initial cores to be stable against tidal shear, the dust

ring needs to be sufficiently dense. Labeling the minimum core
mass for pebble accretion as Msettl and letting =Msettl

pS ( )f HRsolid ,settl solid
2 with fR,settl< 1, the shear-stability condi-

tion can be rewritten as
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In addition,
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to ensure fR,settl< 1. We find that the above conditions are met

for all our simulated rings.
We find that, as soon as pebble accretion begins, the clumps

can immediately accrete the entire mass of the ring; see the
growth tracks illustrated in Figure 13. To understand these
short accretion times, we provide analytic estimates of the
timescales to ingest the entire content of the ring ( M Mring core).

From Figure 14, we infer that the accretion is initially in the
three-dimensional regime ( = <( )R R w Hmin , 2 dacc settl solid). In
this case, we obtain

t a t
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s
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s
core

solid core
1 2

by combining Equations (42) and (45). The core mass grows

exponentially in time with the mass doubling time

( M Mcore core) being independent of the core mass. As shown

in the third panel from the top of Figure 15, our mass doubling

timescales are extremely short as compared to the age of Elias

24, which explains the rapid climb in Mcore (annotated as

“Pebble accretion”) seen in Figure 13.
The transition to the two-dimensional regime (Racc>Hsolid)

is almost immediate in all the runs except for τs= 0.25 whose
accretion stays in the 3D regime for at least ∼0.1–0.2 Myrs. In
the 2D accretion, the growth rate depends on the exact behavior
of Racc and vacc. From Figure 14, we infer that the accretion
radius of a clump in planet-driven rings will be limited by the
width of the dust ring once the accretion enters the 2D regime
(Racc= 2wd) and that the accretion velocity is dominated by the
local headwind at all times (while the ring still exists). The
accretion rate is then

p
=

W
W

 ⎛
⎝

⎞
⎠

( )M M
v

a
4

2
. 50core ring

hw

From Figure 14, we infer vhw∼ 0.4–1cs and since H/a= 0.05,

vhw/aΩ∼ 0.02–0.05. As the orbital time at 76.7 au around 0.78

M☉ star is ∼760 yr, Equation (50) implies the core is able to

accrete the entire ring mass over just 760 yr/4/0.05
∼4× 103–104 yr, as shown in the bottommost panel of

Figure 15.
All the rings we simulate are capable of creating a stable

clump massive enough for pebble accretion, and the mass
growth of such a clump is rapid, so much so that we expect the
entire ring to be engulfed by the core within the age of the
system 1Myr. Our result differs from that of Morbidelli
(2020) who report that planets can only grow at best (defined
by them as when the pebble-accreting planetary object is at the
radial center of the dust ring) up to ∼1M⊕ in rings such as B77
in Elias 24. One minor difference is our higher Σsolid, stemming
from our tight ring width wd, which accelerates the initial mass
doubling in the 3D regime. More crucially, we adopt a larger τs
(mainly for the cost of numerical simulation): our smallest
τs= 0.05 as compared to Morbidelli (2020) who used
τs= 10−3 and pebble accretion is expected to be slow for
smaller τs.

Figure 13. Mass growth of a bound clump under pebble accretion within each
dust ring (black dashed line annotated with “Pebble accretion”). Accretion
begins when the bound clump (gray dotted–dashed line) reaches Msettl, and the
conditions for shear stability are met (Equations (47) and (48)). For our
simulation parameters, the pebble isolation mass (red dashed line; annotated
here as “Iso”) is ∼22.2M⊕ as computed using the scaling relationship of Bitsch
et al. (2018). The black solid line tracks the mass evolution of the ring under
the growth by the radial drift of solids exterior to the ring’s orbit and the loss of
mass to the accreting clump. The vertical and horizontal lines delineate the
inferred ages and ring masses of B77 in Elias 24 with the blue bars illustrating
1σ uncertainty (Andrews et al. 2018; Dullemond et al. 2018).
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In 3D pebble accretion, tµM score
3 2 for τs= α, and we see

the expected overall increase in the mass doubling timescale
with smaller τs in this regime in Figure 15. Once the accretion
enters the 2D phase, the trend with τs is less obvious. In this
regime (Racc= 2wd; headwind-dominated), M Mring core is
independent of τs. The core mass doubling time
( M Mcore core) however would be τs-dependent at a given time,
Mring would be smaller at lower τs due to a slower radial drift.
As far as we can tell, the accretion regime used by Morbidelli
(2020) is a 2D, local-headwind-dominated regime under the
assumption of absolute maximum possible accretion (i.e., the
entire dust front undergoing radial drift has the potential to be
accreted onto the core, not just the ones that enter Racc).

We conclude that the dust rings of characteristics similar to
those of the DSHARP data set are, under some circumstances,
capable of creating planetary mass objects and if so, these
objects would engulf the entire dust within the ring almost
instantly. We note that before the ingestion of the entire dust
ring, it is likely that these clumps would reach the isolation
mass and perturb the ring, perhaps creating another dust ring
external to its orbit. To estimate the expected pebble isolation
mass, we adopt the scaling relationship of Bitsch et al. (2018)
assuming α= 10−3, and the disk aspect ratio to be spatially
constant at 0.05 (i.e., equal to our Π). To calculate the local
dlnP/dlnR, we take the logarithmic derivative of Equation (10)
with the background gas surface density to follow∝ a−0.5, δb,
wb= (1.44, 0.96) as measured for our planet, and the solid
accreting clump to be located at 0.5 scale heights interior to the
formal center of the pressure bump as gleaned from Figure 3.
Our expected isolation mass is ∼22.2M⊕, smaller than the
median measured mass of the B77 ring but within its 1σ
uncertainty. We expect the cores of pebble isolation mass
would perturb the surrounding gas (and therefore the dust ring

in which the core resides) potentially creating a secondary ring
in the outer orbit. Without a significant change in τs, however,
this secondary ring would also be susceptible to near-
immediate collapse into a planetary mass object.
The fact that we see these rings over ∼1 Myr suggests that

such rapid planet formation likely does not happen within the
rings. It may be that the dust particles that make up the rings
have particularly small τs whose relevant dynamical timescales
(e.g., the drift time to fill up the ring and the time of clump
formation) are longer (smaller particles have been shown to be
preferred solutions to explain low spectral indices; e.g.,
Liu 2019 or the chemical abundances of sulfur-bearing species;
e.g., Harada et al. 2017). We find however that when τs= 0.05,
planet-driven dust rings tend to be transient as particles are
coupled to the advective flow of gas onto the planet, although
such transience may be a feature of our local shearing-box
approximation. Alternatively, the measured dust rings may be
driven by nonplanetary mechanisms that can establish a
pressure bump and scatter particles to sufficiently high vrms

to reproduce the correct ring width.

Figure 14. Top: accretion radius under the settling condition (Rsettl; evaluated
by solving Equation (46)) and the width of the dust ring 2wd with respect to
Hsolid. Bottom: the relative contribution of shear, headwind (see the text below
Equation (44)), and turbulent random velocities (vrms; computed within the ring
as defined in Equation (25)) to the accretion velocity vacc, normalized by the
sound speed. In the calculation of the shear velocity, the accretion radius Racc is
set to the minimum between Rsettl and 2wd.

Figure 15. Top: time at which pebble accretion begins. Second from the top:
initial clump mass for pebble accretion (i.e., minimum mass required for
settling accretion). Third from the top: core mass doubling time in 3D accretion
(Racc < Hsolid; see Equation (49)). Bottom: time to ingest the entire dust ring in
2D accretion (Racc = 2wd > Hsolid; see Equation (50)). For all panels, the
horizontal line and the blue bar illustrates the age of Elias 24 and its 1σ
uncertainty, respectively.

13

The Astrophysical Journal, 937:95 (15pp), 2022 October 1 Lee, Fuentes, & Hopkins



As we mentioned previously, the nucleation of dust clumps
stable to tidal shear is easier at shorter orbital distances. If
typical protoplanetary disks are constantly creating dust rings
over a wide range of stellocentric distances and quickly
coagulate into planetary objects that create secondary rings, we
would expect to see older systems to harbor rings at wider
orbits. Such trend however is likely complicated by the
intrinsic variance in the size of the protoplanetary disks; in fact,
we see no obvious sign of such trend in the DSHARP survey.

We close this section with a comment on the possibility of
creating multiple clumps in a single ring. In 3D accretion, all
initial clumps would be subject to the same mass doubling time
(i.e., µM M Mcore core core

0 ) and so the distribution of relative
masses would stay the same. In 2D accretion, from
Equation (50), we infer that the mass doubling timescale of a
core would lengthen for massive cores. If multiple clumps form
in a given ring, the final masses would then approach similar
values (Kretke & Levison 2014). As multiple planetary objects
would be placed within a narrow range of orbital distances,
their orbits would likely become unstable causing either
mergers or ejecta (most likely ejecta at the large orbital
distances of DSHARP rings).

6. Summary and Conclusions

Using two-dimensional (radial–azimuthal plane) shearing-
box simulations, we studied the interaction between an inward
flux of dust particles and gas in a pressure bump established by
planet-driven perturbations. Unlike previous studies, we
constantly supplied dust particles from the right edge of the
simulation box to mimic the inward drift rather than starting
with a uniform distribution of particles across the whole box.
The main findings are the following:

1. Dust particles collect slightly interior to the center of the
pressure bump (see Figure 3). Within the trap, dust
particles distribute initially in nonaxisymmetric structures
and over time transform into more axisymmetric rings.
Larger τs particles collect more readily into thinner rings.

2. Vortices triggered by planet-disk interaction help to
collect particles, maintaining òtrap∼ 0.6–0.8 at all times
for τs= 0.25 and 0.5. For smaller τs, particles are
advected out of the dust ring following the gas flows that
are attracted to the planet, reducing significantly the
efficiency of the trap (down to 40% for particles of
τs= 0.1, and to ≈0% for τs= 0.05; see Figure 4).

3. With the high òtrap, our dust rings are able to collect
enough mass within 1Myr to explain the inferred
masses of typical rings analyzed in the DSHARP survey
(Andrews et al. 2018; Dullemond et al. 2018; see
Figure 6).

4. Dust rings start narrow and widen with time, in
accordance with drift-diffusion steady state as grains are
excited to larger velocity dispersion. The measured width
of dust rings in DSHARP data are similar to our
simulated rings (see Figure 7) at small τs= 0.1.

5. At their maximal size set by the particle disk scale height
(assuming α= 10−3

), all our simulated rings are expected
to nucleate dust clumps that are gravitationally bound
against turbulent diffusion but for the smallest τs, their
clumps are in danger of being sheared apart (see
Figure 10). Smaller planetesimals (e.g., smaller than
Ceres) may still form.

6. Dust rings made of large particles (τs� 0.1) can nucleate
bound and stable clumps massive enough to trigger
pebble accretion and such clumps are expected to
undergo rapid mass growth ingesting the entire dust
content within the ring over timescales 1Myr.

The fact that we see concentric dust rings in many of
protoplanetary disks imaged with ALMA suggests that the
formation of planetary bodies in these rings must be either a
rare or a slow process, at least at the wide orbits that are
accessible to current interferometric imaging technology. The
expected rarity of such wide-orbit planets is in agreement with
the statistical analyses from direct imaging (e.g., Nielsen et al.
2019) and long baseline radial velocity surveys (e.g., Fulton
et al. 2021) that suggest gas giant occurrence rate is peaked at
∼1–10 au beyond which it drops.11

From our findings, we infer that the real-life disk rings are
likely composed of particles of small τs< 0.1 so as to delay the
creation of dense dust rings, the nucleation of massive
planetesimals, and therefore the onset of core growth. One
issue with such a solution is that these small particles are not
expected to remain in dust rings for long when they are
perturbed by a planet. The transient nature of τs 0.05 rings
we found with GIZMO needs to be verified with global disk
simulations. We also ignored the planet’s gravity on dust
particles in order to isolate the dust-gas dynamics. However, as
verified in a subset of cases we simulated, turning on planet’s
gravity acting on dust could cause a stronger leak of particles,
reducing the efficiency of the trap and rendering dust rings as
transient substructures, in particular for particles of τs� 0.1,
which are already affected by gas inflows into the planet due to
the strong coupling with the gas.
Given the difficulty in maintaining the dust ring against

advection at low τs and against engulfment by a planetary
object embedded within the ring at high τs, the origin of dust
rings we see in protoplanetary disks may trace to nonplanetary
mechanisms. If these rings are the sites of planet formation,
then we expect the inner rings to rapidly collapse into a planet
or planets first, potentially creating another ring outside their
orbits. Under this hypothesis, dust rings would appear at
systematically wider orbits for older systems. A larger sample
than what we currently have that spans a wider range of ages to
search for a trend between the ring location and age may help
distinguish between the different origin channels of dust rings.
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than early.
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