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Abstract

Existing work on continual learning (CL) is primarily

devoted to developing algorithms for models trained from

scratch. Despite their encouraging performance on con-

trived benchmarks, these algorithms show dramatic perfor-

mance drop in real-world scenarios. Therefore, this pa-

per advocates the systematic introduction of pre-training to

CL, which is a general recipe for transferring knowledge

to downstream tasks but is substantially missing in the CL

community. Our investigation reveals the multifaceted com-

plexity of exploiting pre-trained models for CL, along three

different axes: pre-trained models, CL algorithms, and CL

scenarios. Perhaps most intriguingly, improvements in CL

algorithms from pre-training are very inconsistent – an

underperforming algorithm could become competitive and

even state of the art, when all algorithms start from a pre-

trained model. This indicates that the current paradigm,

where all CL methods are compared in from-scratch train-

ing, is not well reflective of the true CL objective and de-

sired progress. In addition, we make several other impor-

tant observations, including that 1) CL algorithms that exert

less regularization benefit more from a pre-trained model;

and 2) a stronger pre-trained model such as CLIP does

not guarantee a better improvement. Based on these find-

ings, we introduce a simple yet effective baseline that em-

ploys minimum regularization and leverages the more ben-

eficial pre-trained model, coupled with a two-stage train-

ing pipeline. We recommend including this strong base-

line in the future development of CL algorithms, due to

its demonstrated state-of-the-art performance. Our code

is available at https://github.com/eric11220/
pretrained-models-in-CL.

1. Introduction
Continual learning (CL) has gained increasing research

momentum recently, due to the ever-changing nature of
real-world data [1, 2, 12, 14, 21, 23, 32, 34, 41, 44]. De-
spite their encouraging performance, many notable CL al-

(a) (b)

Figure 1. (a) CL algorithms trained from scratch fail on Split
CUB200, a more complex dataset than Split CIFAR100, which
necessitates the use of pre-trained models (denoted as ‘+ RN18’)
that dramatically increase the accuracy of a wide spectrum of algo-
rithms. (b) Different CL algorithms receive vastly different ben-
efits from pre-trained models, and the superiority between algo-
rithms changes. These findings suggest that it is critical for the
community to develop CL algorithms with a pre-trained model and
understand their behaviors. [Best viewed in color.]

gorithms were developed to work with a model trained from
scratch. As one of the key objectives, this paper advocates
the systematic introduction of pre-training to CL. This is
rooted in the following two observed fundamental limita-
tions of building CL algorithm on top of a from-scratch
trained model, which fails to reflect the true progress in the
CL research for real-world scenarios as shown in Fig. 1.

First, training from scratch does not reflect the actual
performance, because if one were to apply a CL algorithm
to real-world scenarios, it would be counter-intuitive not to
build upon off-the-shelf pre-trained models given the large
performance gap (Fig. 1). One might argue that apply-
ing all algorithms to a from-scratch trained model simpli-
fies comparison between different algorithms. However,
intriguingly, our study shows that an underperforming al-

gorithm could become competitive and even achieve state-

of-the-art performance, when all algorithms start from a

pre-trained model. In particular, iCaRL [32], which shows
mediocre performance in online class incremental learn-
ing (CIL) when trained from scratch, is comparable to
or even outperforms SCR [26], when both are initialized
from a ResNet181 pre-trained on ImageNet (accuracy in-

1We refer to ResNet as RN throughout the paper.
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crease from 14.26% to 56.64% for iCaRL vs. increase from
25.80% to 51.93% for SCR on Split CIFAR100 in Fig. 1
and Table 2). This potentially indicates that the efforts fun-
neled into the development of CL algorithms could be in
a less effective direction and are not well reflective of the
actual progress in CL. Therefore, we should develop any
future CL algorithms in the context of how we are going to
use them in practice – starting from a pre-trained model.

Second, for many more realistic datasets with diverse vi-
sual concepts, data scarcity makes it impossible to train a
CL learner from scratch [9] (as also shown in the results
on Split CUB200 in Fig. 1. We believe that this is partially
the reason why CL classification literature still heavily eval-
uates on contrived benchmarks such as Split MNIST and
Split CIFAR [14, 23], as opposed to much more complex
datasets typically used in offline learning.

Through our investigation, this paper reveals the multi-

faceted complexity of exploiting pre-trained models for CL.
As summarized in Table 1, we conduct the investigation
along three different axes: different pre-trained models, dif-
ferent CL algorithms, and different CL scenarios. In partic-
ular, we analyze models pre-trained in either supervised or
self-supervised fashion and from three distinct sources of
supervision – curated labeled images, non-curated image-
text pairs, and unlabeled images. These models cover super-
vised RN18/50 [19] trained on ImageNet classification [15],
CLIP RN50 [31], and self-supervised RN50 trained with
SimCLR [10], SwAV [6], or Barlow Twins [43].

We make several important observations. 1) Benefits of
a pre-trained model on different CL algorithms vary widely,
as represented by the aforementioned comparison between
iCaRL and SCR. 2) As shown in Fig. 1, algorithms ap-
plying less regularization to the gradient (i.e., replay-based
methods like ER [33]) seem to benefit the most from pre-
trained models. 3) Intriguingly, despite its impressive zero-
shot capability, CLIP RN50 mostly underperforms Ima-
geNet RN50. 4) Self-supervised fine-tuning helps alleviate
catastrophic forgetting. For example, fine-tuning SimCLR
RN50 on the downstream dataset in a self-supervised fash-
ion with the SimCLR loss demonstrates a huge reduction in
forgetting, compared with supervised models (17.99% for-
getting of SimCLR RN50 vs. 91.12% forgetting of super-
vised RN50). 5) Iterating over data of a given task for mul-
tiple epochs as in class incremental learning (CIL) does not

necessarily improve the performance over online CIL.
Based on these observations, we further propose a strong

baseline by applying ER, which exerts minimum regulariza-
tion (the second observation), on an ImageNet pre-trained
model (the third observation). Coupled with a two-stage
training pipeline [18] (Sec. 3.3), we show that such a simple
baseline achieves state-of-the-art performance. We recom-
mend including this strong baseline in the future develop-
ment of CL algorithms.

Pre-trained Model

RN18
RN50

CLIP RN50

SimCLR RN50
SwAV RN50

Barlow Twins RN50

CL Algorithm

CL Scenario

CIL

Online CIL

ER MIR   … SCR

Label-Supervised
(ImageNet)

Image-Text Supervised

Self-supervised
(ImageNet)

Axis Configurations

Pre-trained Models (7) Reduced RN18, RN18, RN50, CLIP RN50,
SimCLR RN50, SwAV RN50, Barlow Twins RN50

CL Algorithms (11) ER, MIR, GSS, iCaRL, GDumb, SCR,
LwF, EWC++, AGEM, Co2L, DER++

CL Scenarios (2) CIL, Online CIL

Table 1. We conduct the analyses of pre-trained models in CL by
dissecting the space into three axes: 1) different pre-trained mod-
els, 2) different CL algorithms, and 3) different CL scenarios.

Our contributions are summarized as follows. 1) We
show the necessity of pre-trained models on more com-
plex CL datasets and the dramatic difference in their ben-
efits on different CL algorithms, which may overturn the
comparison results between algorithms. Therefore, we sug-
gest the community consider pre-trained models when de-
veloping and evaluating new CL algorithms. 2) We show
that replay-based CL algorithms seem to benefit more from
a pre-trained model, compared with regularization-based
counterparts. 3) We propose a simple yet strong baseline
based on ER and ImageNet RN50, which achieves state-of-
the-art performance for CL with pre-training.

2. Related Work
Continual Learning Scenarios. A large portion of CL lit-
erature focuses on incremental learning, which can be fur-
ther divided into three different scenarios – task, domain,
and class incremental learning [37]. Amongst, the most
challenging scenario is class incremental learning (CIL),
where the model has to predict all previously seen classes
with a single head in the absence of task information. Most
recent work [17, 20, 25] has investigated this setting.

However, being able to iterate over the entire data of a
specific task for multiple epochs is not realistic [9, 30]. To
this end, an online version of CIL is proposed [9,14], where
the model trains in an online fashion and thereby can only
have access to each example once. In this work, we also
mainly investigate pre-trained models in online CIL but also
report results in CIL for several representative algorithms.
Continual Learning Methods. According to [13], contin-
ual learning approaches can be divided into three classes:
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regularization, parameter isolation, and replay methods.
Regularization methods [1, 21, 44] prevent the learned pa-
rameters from deviating too much to prevent forgetting. Pa-
rameter isolation methods counter forgetting completely by
dedicating a non-overlapping set of parameters to each task
[34, 41]. Replay methods either store previous instances
[14, 17, 23, 32] or generate pseudo-instances [12, 35, 36] on
the fly for replay to alleviate forgetting.

While the aforementioned approaches all show promis-
ing results in different CL scenarios, we specifically explore
regularization and memory replay-based methods, given
their popularity in recent literature. And we study the be-
haviors of pre-trained models on these methods.
Continual Learning with Pre-trained Models. While
most of the CL work investigates training the learner from
scratch [4,14,21,23,25,32,44], there is also some work that
initializes the learner from a pre-trained model [3, 9, 11, 20,
28, 29]. They harness pre-trained models for reasons such
as coping with data scarcity of the downstream task [9] and
simulating prior knowledge of the continual learner [20].
However, they do not 1) systematically show the substan-
tial benefits of pre-trained models over from-scratch trained
models, 2) investigate different types of pre-trained models
or fine-tuning strategies, or 3) investigate pre-trained mod-
els on different CL scenarios (incremental and online learn-
ing). Note that we claim no contribution to be the first to
apply pre-trained models on CL, but rather study the afore-
mentioned aspects comprehensively.

3. Methodology
We mainly focus on online class incremental learning

(CIL), which is formally defined in Sec. 3.1. Next, we dis-
cuss various pre-trained models and how we leverage them
(Sec. 3.2). In Sec. 3.3, we introduce the two-stage training
pipeline that combines online training and offline training.

3.1. Problem Formulation
The most widely adopted continual learning scenarios

are 1) task incremental learning, 2) domain incremental
learning, and 3) class incremental learning (CIL). Amongst,
CIL is the most challenging and draws the most attention,
for its closer resemblance to real-world scenarios, where the
model is required to make predictions on all classes seen so
far with no task identifiers given (we refer interested readers
to [37] for more details). In this paper, we focus on a more
difficult scenario – online CIL, where the model can only
have access to the data once unless with a replay buffer. In
other words, the model can not iterate over the data of the
current task for multiple epochs, which is common in CIL.
The experiments of the remaining paper are based on online
CIL, unless noted otherwise (we also evaluate CIL).

Formally, we define the problem as follows. Ctotal

classes are split into N tasks, and each task t contains Ct

non-overlapping classes (e.g., CIFAR100 is divided into 20
tasks, with each task containing 5 unique classes). The
model is presented with N tasks sequentially. Each task is
a data stream {St|0 < t <= N} that presents a mini-batch
of samples to the model at a time. Each sample belongs to
one of the Ct unique classes, which are non-overlapping to
other tasks. We explore pre-trained models with N = 20
tasks and present the results in Sec. 5.2.

3.2. Fine-Tuning Strategy
When using a pre-trained model, we initialize the model

with the pre-trained weights. Then, we fine-tune the model
in either 1) supervised, or 2) self-supervised manner.

For the self-supervised fine-tuning, we experiment with
the SimCLR pre-trained RN50 and fine-tune it with the
SimCLR loss. Specifically, we leverage a replay buffer to
store images and labels, which are then used to train the
classifier on top of the fine-tuned feature representation at
the end of each CL task. Note that we train the SimCLR
feature with both images sampled from the memory and im-
ages from the data stream.

3.3. Two-Stage Pipeline
We combine the two-stage training pipeline proposed in

[18] with pre-trained models to build a strong baseline for
continual learning with pre-training.

The two-stage pipeline divides the learning process into
two phases – a streaming phase where the learner (sampler)
is exposed to the data stream, and an offline phase where
the learner learns from the memory. Similar to another
widely used method GDumb [30], the two-stage pipeline
trains offline on samples in the memory after all data have
been streamed. Specifically, we iterate over samples in the
memory for 30 epochs after the streaming phase. However,
GDumb performs no learning in the streaming phase and
discards most of the data without learning from them, mak-
ing it sub-optimal. By contrast, the two-stage pipeline im-
proves over GDumb, through training the model on the data
while storing them at the same time.

We found that this simple two-stage pipeline is particu-
larly effective when coupled with pre-trained models. With
the two-stage training, ER [33] could outperform the best-
performing models, when all leverage a pre-trained model.

4. Experimental Setting
4.1. Datasets

We experiment on five datasets. Classes in each dataset
are equally and randomly split into 20 tasks with no over-
laps. The orderings are random, but kept the same across
different experiments.
Split CIFAR100. We follow the suggested train and test
split, where each category has 500 training and 100 test
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data [22].
Split CUB200. CUB200 [40] contains 5594 training (⇠30
per category) and 6194 test images for 200 different bird
species.
Split Mini-ImageNet. Mini-ImageNet [38] contains 100
subcategories from the original 1000 categories in Ima-
geNet [15]. The 100 categories are divided into 64 training,
20 validation, and 16 test categories. We follow [26] and
re-purpose all 100 categories for training and set aside 100
images per category for testing. In total, it contains 50k and
10k images for training and testing, respectively. Note the
data overlap of Split Mini-ImageNet with ImageNet which
is used to pre-train ResNets – this experiment is purpose-

fully designed to evaluate the scenario where the dataset is
extremely similar to the data used for pre-training.
Split FGVC-Aircraft. FGVC-Aircraft [27] contains 100
aircraft model variants, each with 100 images. We combine
the suggested train and validation split for training, and the
test split for testing. In total, there are 6667 training images
(⇠66 images per category) and 3333 test images.
Split QuickDraw. QuickDraw [16] contains 50M drawings
across 345 categories. We randomly select 100 categories,
from which we randomly sample 100 images per category
(50 for training and 50 for testing) to create a dataset of
10000 images in total.

4.2. CL Algorithms
We explore 11 different CL algorithms, including both

regularization-based methods (in Italics) that require no
memory and replay-based methods.
ER. Experience Replay [33] stores samples from the data
stream with reservoir sampling and retrieves stored samples
randomly.
MIR. Maximally Interfered Retrieval [2] performs a
pseudo-update on the incoming data and retrieves samples
stored in the memory whose loss increases most.
GSS. Gradient-based Sample Selection [4] attempts to di-
versify the gradients of the samples in the memory.
LwF. Learning without Forgetting [24] applies a knowledge
distillation loss from the previous model when learning the
new task.
iCaRL. Incremental Classifier and Representation Learn-
ing [32] stores a small set of images for different classes
and learns features continually with distillation and classifi-
cation losses.
EWC++. Elastic Weight Consolidation++ [8] is an online
version of EWC [21] that constrains updates to important
parameters for the previous tasks.
GDumb. Termed Greedy Sampler and Dumb Learner [30]
randomly samples data to store during the streaming phase
and only performs training when queried.
AGEM. Averaged Gradient Episodic Memory [9] con-
strains gradients with samples in the memory.

SCR. Supervised Contrastive Replay [26] applies super-
vised contrastive loss in addition to the cross-entropy loss.
DER++. Dark Experience Replay++ [5] matches the logits
of the network throughout the past.
Co2L. Contrastive Continual Learning [7] learns and main-
tains features in a self-supervised fashion. Re-purposing
Co2L for online CIL, we train the feature encoder on each
task for one epoch. At the end of the streaming phase, we
train the classifier using the stored buffer data for one epoch.

4.3. Pre-trained Models
Reduced RN18 (R-RN18). ResNet18 whose number of
channels is reduced [25] compared with a standard one,
which is used in the experiment of training from scratch.
ImageNet Pre-trained RN18, RN50. ResNets pre-trained
on ImageNet [15].
CLIP Pre-trained RN50. ResNet50 pre-trained on the We-
bImageText dataset based on Contrastive Language–Image
Pre-training (CLIP) [31].
SimCLR RN50. ResNet50 pre-trained on ImageNet with
the SimCLR loss that brings closer features of different aug-
mentations from the same image, while pushing apart those
from different images [10].
SwAV RN50. ResNet50 pre-trained on ImageNet with the
SwAV mechanism that predicts the cluster assignment of a
view from the representation of another one [6].
Barlow Twins RN50. ResNet50 pre-trained on ImageNet
with the Barlow Twins loss that encourages the correlation
of two views from the same image to be one, while discour-
aging that of views from different images to be zero [43].

4.4. Implementation Details
Image Pre-processing and Architectures. We use the pre-
trained ResNets provided in PyTorch and the CLIP Github
repository2. For SimCLR, SwAV, and Barlow Twins, we
utilize pre-trained weights provided in Pytorch Lightning
Bolts3. For different CL algorithms evaluated, we adopt the
publicly available code from [26]4. The memory capacity
for all replay-based methods is set to 1000.

When training from scratch, we do not perform any re-
sizing and pre-processing for most of the datasets; for Split
CUB200, we resize the short side of the images to 224, with
a random crop for training and a center crop for testing.
When initializing the continual learner from a pre-trained
model, we resize the short side of the image to 224, fol-
lowed by a random crop and a center crop for training and
testing, respectively. Note that except random cropping,
we do not apply other data augmentation. We normalize
the images by the statistics computed during pre-training

2
https://github.com/openai/CLIP

3
https://pytorch-lightning-bolts.readthedocs.io/en/stable

4
https://github.com/RaptorMai/online-continual-learning
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Split CIFAR100
Model ER [33] MIR [2] GSS [4] LwF [24] iCaRL [32] EWC++ [8] GDumb [30] AGEM [9] SCR [26]

R-RN18 9.07±1.31 8.03±0.78 6.86±0.60 8.44±0.82 14.26±0.79 1.00±0.00 9.80±0.46 3.00±0.47 25.80±0.99
RN18 43.69±1.67 42.02±1.53 25.59±0.45 23.40±0.12 56.64±0.23 5.36±0.26 46.76±0.73 4.72±0.21 51.93±0.06

� +34.62 +33.99 +18.73 +14.96 +42.38 +4.36 +36.96 +1.72 +26.13

Split CUB200
Model ER MIR GSS LwF iCaRL EWC++ GDumb AGEM SCR

R-RN18 1.24±0.11 1.44±0.08 1.46±0.22 1.47±0.11 1.82±0.24 0.80±0.20 4.49±0.56 0.67±0.12 5.64±0.75
RN18 21.05±1.07 20.95±0.66 17.65±0.45 6.79±0.36 39.95±1.43 4.47±0.10 38.63±0.44 4.59±0.30 43.03±1.80

� +19.81 +19.51 +16.19 +5.32 +38.13 +3.67 +34.14 +3.92 +37.39

Split Mini-ImageNet
Model ER MIR GSS LwF iCaRL EWC++ GDumb AGEM SCR

R-RN18 8.56±0.24 8.00±0.82 6.74±0.15 7.58±0.65 11.61±0.78 1.00±0.00 7.01±0.40 3.04±0.21 33.87±1.84
RN18 56.91±0.54 54.96±0.46 25.74±4.53 20.41±0.99 72.40±0.52 4.79±0.14 40.00±0.37 5.23±0.41 67.94±0.11

� +48.35 +46.96 +19.00 +12.83 +60.79 +3.79 +29.99 +2.19 +34.07

Table 2. Accuracy in online CIL. Different CL algorithms benefit from a pre-trained model very differently, and the comparison results
between algorithms change when they are initialized from a pre-trained model. For instance, iCaRL outperforms SCR, the best-performing
model when trained from scratch, on Split CIFAR100 (56.64 vs. 51.93) and Split Mini-ImageNet (72.40 vs. 67.94). This indicates that
training from scratch does not serve as a fairground for comparison between different algorithms, in addition to its poor applicability to
complex datasets. R-RN18 and RN18 stand for Reduced ResNet18 trained from scratch and ImageNet pre-trained ResNet18, respectively.

Model ER [33] MIR [2] GSS [4] LwF [24] iCaRL [32] EWC++ [8] GDumb [30] AGEM [9] SCR [26] DER++ [5] Co2L [7]

R-RN18 9.07±1.31 8.03±0.78 6.86±0.60 8.44±0.82 14.26±0.79 1.00±0.00 9.80±0.46 3.00±0.47 25.80±0.99 15.72±1.33 2.31±0.64
RN18 43.69±1.67 42.02±1.53 25.59±0.45 23.40±0.12 56.64±0.23 5.36±0.26 46.76±0.73 4.72±0.21 51.93±0.06 44.42±1.29 5.68±3.19
RN50 50.88±0.84 50.20±2.80 31.53±3.37 26.68±0.97 59.20±0.33 3.47±1.42 57.37±0.21 4.49±0.27 56.22±0.42 49.37±1.36 8.57±0.57

CLIP 52.31±2.66 55.38±0.83 25.60±4.50 37.21±2.14 26.05±12.33 —* 55.10±0.22 17.22±2.52 30.93±5.44 53.01±0.18 1.12±0.16

SimCLR RN50 37.04±0.48 40.01±1.86 16.32±1.52 3.40±0.17 33.76±0.84 6.39±0.82 24.63±0.84 3.87±0.32 52.60±0.22 15.63±0.96 1.44±0.45
SwAV RN50 38.32±0.11 40.97±0.36 15.00±0.30 3.32±0.45 24.29±1.32 3.58±3.00 20.95±1.33 3.86±0.29 50.59±0.09 20.10±0.88 1.18±0.26
B.T. RN50 26.15±0.62 18.18±1.60 8.38±0.23 3.70±0.16 40.77±0.92 6.65±1.06 31.56±2.01 3.95±0.31 48.35±0.73 5.26±0.17 1.10±0.10

*EWC++ fails to train with losses of nan.
Table 3. Accuracy of different pre-trained models when fine-tuned in a supervised manner on Split CIFAR100 in online CIL. In most
cases, RN pre-trained on ImageNet (RN50 vs. CLIP RN50) in a supervised fashion (RN50 vs. SimCLR, SwAV, and Barlow Twins RN50)
brings the largest accuracy increase. Red numbers mark pre-trained accuracy that is within/below one std. of the from-scratch counterpart,
which indicates potential negative impacts. Bold numbers indicate the best accuracy amongst all methods with a specific model (e.g.,
25.80 of SCR is the best within R-RN18). R-RN18, RN18, RN50, and CLIP stand for Reduced ResNet18 trained from scratch, ImageNet
pre-trained ResNet18 and ResNet50, and CLIP pre-trained ResNet50, respectively. B.T. stands for Barlow Twins. [Best viewed in color.]

on either ImageNet (RN18, RN50, SimCLR RN50, SwAV
RN50, and Barlow Twins RN50) or CLIP data.

When training from scratch, we follow [26] and use a
reduced ResNet18 (R-RN18) with fewer channels and a
smaller first convolution kernel.
Classifier Initialization. For all models except CLIP
RN50, we randomly initialize the classifier and set its output
dimension to the number of classes in the target dataset. For
CLIP RN50, we utilize its text encoder and follow the zero-
shot classification guideline provided in the CLIP Github
repository to generate the classifier. Specifically, we use
the text encoder to encode text in the format of ‘A photo of
XX,’ with XX being one of the categories. The weights of

the classifier are then initialized from these N text features,
with N being the number of classes [31].
Hyper-parameter Selection. For the two-stage training,
we do not perform an extensive hyper-parameter search on
CL scenarios, but instead directly use hyper-parameters that
work reasonably in offline training. Specifically, for super-
vised fine-tuning, we set learning rate to 0.1, 0.01, and 1e-
6 for from-scratch trained Reduced ResNet18, pre-trained
ResNets (RN18, RN50, SimCLR RN50, SwAV RN50, and
Barlow Twins RN50), and CLIP RN50, respectively. For
self-supervised fine-tuning with the SimCLR pre-trained
RN50, we set the learning rate to 0.375. For CIL, we train
the model for 5 epochs on each task.
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For all methods, the batch size is set as 10. However,
when fine-tuning SimCLR in a self-supervised fashion, we
use a batch size of 64 (due to GPU memory constraints). All
models except SimCLR are optimized via stochastic gradi-
ent descent (SGD) with no momentum and weight decay.
For SimCLR, we follow [10] and apply layer-wise adaptive
rate scaling (LARS) [42] on top of the plain SGD. A mo-
mentum of 0.9 and a weight decay of 1e-6 are applied.

For all results, we take the mean and standard deviation
across three runs with different random seeds.

5. Experimental Result
We perform investigation on pre-trained models along

three axes: 1) different CL algorithms, 2) different pre-
trained models, and 3) different CL scenarios.

In Sec. 5.1, along the CL algorithm axis, we show var-
ied impact of pre-trained models on different algorithms.
In Sec. 5.2, along the pre-trained model axis, we examine
difference between pre-trained models. In Sec. 5.3, along
the CL scenario axis, we explore different CL scenarios.
Finally, in Sec. 5.4, we integrate several observations and
demonstrate the proposed strong baseline.

5.1. Comparison of Different CL Algorithms
Pre-trained models are essential for more complex CL
datasets. From Table 2, one can observe that while many
of the CL algorithms work fine on Split CIFAR100, they
witness a severe performance drop when applied to Split
CUB200, a more complex dataset. This clearly illustrates
the huge benefit and the necessity of pre-trained models,
if one were to deal with real-world CL problems that are
likely even more difficult than Split CUB200. In fact, we
would almost always consider initializing the learner from
a pre-trained model in practice, reasonably assuming that
the learner has some prior knowledge [20] to achieve better
performance.

Varied benefits of pre-trained models on distinct CL al-
gorithms. From Fig. 1, Table 2, and Table 3, clearly, the
benefits of pre-trained models are not homogeneous across
different CL algorithms. For example, while ER enjoys a
34.62% accuracy gain, LwF only has a 14.96% improve-
ment, despite the similar accuracy when applied on a from-
scratch trained model. Further if we sort the performance
gains brought by ImageNet RN18 on Split CIFAR100 to
different algorithms, one could observe that methods en-
joying the most gains are ones that do not apply too much
regularization (e.g., to gradients) during training. One such
comparison is between ER and EWC++: ER exerts no addi-
tional loss other than the cross-entropy loss, while EWC++
applies a regularization loss based on the importance of net-
work parameters, which is approximated by the diagonal of
the Fisher information matrix.

Figure 2. Forgetting of different models. Fine-tuning a pre-
trained model in a self-supervised manner (with the SimCLR
loss) largely decreases forgetting, compared with supervised fine-
tuning. [Best viewed in color.]

Superiority inconsistency between from-scratch train-
ing and pre-training. The unequal gains also affect com-
parisons between different algorithms. For instance in Ta-
ble 2, interestingly, while iCaRL only achieves 14.26% in
accuracy, the comparison result with SCR (25.80%) is over-
turned when both are applied on ImageNet RN18 (56.64%
of iCaRL vs. 51.93% of SCR).
Remark. Given the observations that pre-trained models
should be applied in a more complex dataset and that the
superiority of different algorithms does not hold when ap-
plied to a pre-trained model, future development and evalu-
ation of CL algorithms should take pre-trained models into
consideration.

5.2. Comparison of Different Pre-trained Models
Comparison on Forgetting. In Table 4, one could observe
that CLIP RN50 enjoys consistently lower forgetting, com-
pared with training from scratch (R-RN18). Yet, the other
pre-trained models (also fine-tuned in a supervised manner)
do not have the same advantage, regardless of being pre-
trained in a supervised or self-supervised manner.

Table 5 and Fig. 2 show that self-supervised fine-tuning
(SimCLR) has less forgetting than supervised fine-tuning.
We identify two differences between self-supervised and su-
pervised fine-tuning – 1) decoupled training of the feature
and classifier, and 2) self-supervision. Our in-depth exper-
iment in Sec. C of the Supplementary Material shows that
the decoupled training likely helps mitigate forgetting.
CLIP vs. ImageNet Pre-trained RN50. From Table 6, sur-
prisingly, despite its impressive zero-shot capability, CLIP
RN50 is still worse than ImageNet RN50 in most cases.
Based on Fig. 3, we conjecture that CLIP RN50 is better
in few-shot regimes, while ImageNet RN50 prevails with
plenty of data, which coincides with the CL scenarios con-
sidered in this work.
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Model ER [33] MIR [2] GSS [4] LwF [24] iCaRL [32] EWC++ [8] GDumb [30] AGEM [9] SCR [26]

R-RN18 52.10±2.22 50.51±2.34 50.69±0.23 8.83±1.31 12.27±0.34 2.19±0.28 13.59±0.14 59.23±1.47 21.00±0.79
RN18 50.22±1.82 51.52±1.77 66.85±0.98 -2.14±2.32 15.77±0.40 89.37±0.58 19.56±0.78 90.13±0.50 22.84±0.85
RN50 42.93±0.67 40.92±2.44 58.88±3.40 -3.42±1.18 14.65±0.65 87.36±2.76 17.02±0.48 90.26±0.40 27.52±0.20

CLIP 35.51±2.90 30.22±1.98 10.53±1.95 -1.81±0.93 9.73±0.17 —* 5.84±0.12 73.82±2.53 15.79±1.48

SimCLR RN50 46.88±0.90 40.12±1.80 59.12±2.47 -0.01±0.04 14.88±1.11 64.16±0.23 22.30±1.33 75.99±1.09 11.14±0.41
SwAV RN50 45.85±0.15 39.26±0.39 60.58±1.66 -0.22±0.13 13.39±0.72 48.83±14.62 24.55±1.26 74.66±1.59 12.20±0.48
B.T. RN50 60.57±0.55 56.80±2.05 63.71±1.38 0.25±0.24 16.15±0.42 74.19±0.40 18.13±2.20 78.31±1.40 14.50±0.63

*EWC++ fails to train with losses of nan.
Table 4. Forgetting of different pre-trained models when fine-tuned in a supervised manner on Split CIFAR100 in online CIL. Bold
numbers indicate the least forgetting amongst all the models (column-wise comparison). CLIP shows consistently less forgetting compared
with other ImageNet pre-trained ResNets. R-RN18, RN18, RN50, and CLIP stand for Reduced ResNet18 trained from scratch, ImageNet
pre-trained ResNet18 and ResNet50, and CLIP pre-trained ResNet50, respectively. B.T. stands for Barlow Twins.

(a) Experience Replay (ER)
Fine-Tuning From-scratch Supervised Self-supervised

R-RN18 RN18 RN50 CLIP SimCLR RN50

CIL 8.17±1.06 36.21±1.17 44.18±2.55 55.44±1.34 34.72±4.04
(63.88±1.07) (59.05±0.82) (50.96±2.29) (36.36±0.98) (20.26±1.87)

Online CIL 9.07±1.31 43.69±1.67 50.88±0.84 52.79±1.91 33.39±0.42
(52.10±2.22) (50.22±1.82) (42.93±0.67) (35.51±2.90) (20.28±0.75)

(b) Learning without Forgetting (LwF)
Fine-Tuning From-scratch Supervised

R-RN18 RN18 RN50 CLIP

CIL 13.05±0.65 19.18±0.86 17.82±1.83 35.52±1.90
(8.33±4.35) (-4.40±1.44) (-3.50±2.10) (-3.97±1.25)

Online CIL 8.44±0.82 23.40±0.12 25.98±1.34 37.73±1.19
(8.83±1.31) (-2.14±2.32) (-3.42±1.18) (-1.81±0.93)

Table 5. Accuracy (Forgetting) of different models on Split CIFAR100. (a) Self-supervised fine-tuning (SimCLR) demonstrates a lower
forgetting compared with supervised fine-tuning (20.26 vs. 50.96 of RN50 in CIL). (a)(b) CLIP, pre-trained with image-text pairs,
shows less forgetting compared with ResNets pre-trained with curated ImageNet labels. Numbers outside/inside parentheses are accu-
racy/forgetting, respectively. R-RN18 and RN18 stand for Reduced ResNet18 and ImageNet pre-trained ResNet18, respectively.

S-CIFAR100 S-CUB200 S-QuickDraw S-Aircraft

RN50 57.68±0.23 48.05±0.87 55.19±0.41 34.23±0.98
CLIP 59.22±0.33 44.98±0.31 34.88±0.49 19.17±0.14

Table 6. ImageNet RN50 vs. CLIP RN50 in online CIL. De-
spite the impressive zero-shot capability, CLIP underperforms Im-
ageNet pre-trained RN50 in three out of the four datasets, suggest-
ing that the better pre-trained model to consider is probably still
ImageNet RN. S- stands for Split. RN50 and CLIP are ImageNet
ResNet50 and CLIP ResNet50, respectively.

5.3. Comparison of Different CL Scenarios
From Table 5, one can observe that the performance of

CIL is lower than online CIL. While seemingly counter-
intuitive, this is likely because, in CIL, the model overfits
too much to the current task, which worsens the forgetting.
The same behavior is also observed in [39].

5.4. A Strong Baseline for CL with Pre-training
We have observed that 1) algorithms that apply less regu-

larization tend to benefit more from pre-trained models, and
2) ResNets trained on ImageNet provide a better improve-
ment on CL in general. Based on these insights, we propose
a strong baseline for CL with pre-training. We combine the
simplest ER that exerts no regularization during training,
ImageNet RN50, and the two-stage training pipeline dis-

Figure 3. Comparison between CLIP R50 and ImageNet
RN50. CLIP is better in the few-shot regime, while ImageNet
RN50 prevails with plenty of data, as is the case for the CL scenar-
ios considered in the paper. This explains the better performance
when a CL learner is initialized from an ImageNet RN50 (cf. Ta-
ble 6). S- stands for Split. [Best viewed in color.]

cussed in Sec. 3.3.
In Fig. 4 and Table 7, we compare this baseline with

best-performing methods, iCaRL and SCR. We observe that
with the additional offline training, the accuracy of ER in-
creases from 50.83% to 65.35%. This demonstrates that
a simple baseline ER, coupled with a pre-trained model,
could turn a relatively naı̈ve baseline into a strong base-
line that even achieves the state-of-the-art result. Results
of other methods with the two-stage pipeline are provided
in the Supplementary Material, showing the consistent ef-
fectiveness in most cases. We hence recommend including
this simple yet strong baseline for CL algorithm evaluation
and comparison.
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Figure 4. A simple second-staged offline training on memory data
coupled with an ImageNet pre-trained ResNet50 turns a simple
baseline into state of the art, suggesting the effectiveness of the
proposed baseline. Note that SCR and iCaRL are the two best-
performing methods when applied on the ImageNet pre-trained
ResNet50. [Best viewed in color.]

Also, we note that the observation we made here is dif-
ferent from the one in [30]. In [30], for the from-scratch
trained model, the authors found that simply fine-tuning in
the offline phase without learning online achieves the best
performance. However, we found that when initialized from
a pre-trained model, learning in both the online and offline
phases achieves the best performance. The discrepancy in-
dicates potentially different training behaviors for CL be-
tween training from scratch and from a pre-trained model.

6. Limitation and Discussion

Although we have shown that pre-trained models bring a
considerable amount of benefits to CL, they could limit the
architecture choices. Also, it is still unclear how one should
choose the optimal pre-trained model and fine-tuning strat-
egy given a CL task. While we have shown that the op-
timality could depend on the downstream dataset and that
ImageNet pre-trained ResNets are generally better, more re-
search is required to have a better conclusion on this.

While the two-stage training pipeline seems promising,
there are potential limitations which we have not addressed.
First of all, in many real-world scenarios, there will be no
ending to the data stream and the learner has to endlessly
learn new concepts. This again reflects why we consider
online CIL and not CIL, as in most real-world scenarios, it
is not applicable to iterate the training data multiple times.
Even if in a few scenarios where we do have the leisure to
further train the model, there might be too many classes to
fit into the memory. In such scenarios, it is questionable
whether performing the additional fine-tuning on the lim-
ited classes in the memory is beneficial.

ER ER+2-stage iCaRL SCR

S-CIFAR100
RN18 43.69±1.67 58.59±0.31 56.64±0.23 51.93±0.06
RN50 50.83±0.84 65.35±0.55 59.20±0.33 46.22±0.42
CLIP 52.31±2.66 59.42±0.80 26.05±12.33 30.93±5.44

S-CUB200
RN18 21.05±1.07 52.32±0.98 39.95±1.43 43.03±1.80
RN50 48.05±0.87 59.88±0.30 43.69±0.79 50.77±0.80
CLIP 42.08±0.36 43.91±0.88 3.55±0.86 4.60±0.00

Table 7. Two-stage training pipeline. Building on top of a pre-
trained model and the two-stage training pipeline, a simple ER
baseline becomes a state-of-the-art approach. This further sug-
gests that CL algorithms should be developed and evaluated with
pre-trained models taken into consideration. S- stands for Split.

7. Conclusion
While most of existing continual learning algorithms

have been developed in the context of from-scratch training,
we show that this is not the most effective way to develop
and evaluate continual learning algorithms. As supportive
observations, our extensive empirical study reveals that 1)
the pre-trained models are dramatically beneficial, making
them of great necessity for real-world scenarios; and 2) the
benefits of a pre-trained model on different CL algorithms
are vastly different. The best algorithm when trained from
scratch does not necessarily perform the best when cou-
pled with a pre-trained model. These findings indicate that
the current methodology of developing CL algorithms from
scratch could be potentially less effective.

We also notice different behaviors between different
pre-trained models. Somewhat surprisingly, despite being
a powerful pre-trained model for its zero-shot capability,
CLIP RN50 seems to underperform the supervised Ima-
geNet RN50 in most CL cases. Further investigation into
explaining different behaviors and developing model selec-
tion strategies is an interesting direction. Another obser-
vation is that fine-tuning a SimCLR pre-trained model in
a self-supervised manner has significantly lower forgetting.
The observation could be potentially leveraged to develop
a hybrid method that incorporates both the self-supervised
loss and the cross-entropy loss. By doing so, one could
potentially enjoy the best of both worlds, reducing forget-
ting of supervised fine-tuning and increasing the accuracy
of self-supervised fine-tuning.

Finally, based on the observations that algorithms exert-
ing less regularization during training benefit more from a
pre-trained model, and that ImageNet RN50 provides more
benefit than the other pre-trained models, we propose a sim-
ple yet effective baseline that achieves state-of-the-art per-
formance on multiple datasets.
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