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Abstract

Trefftz methods are high-order Galerkin schemes in which all discrete functions are elementwise
solution of the PDE to be approximated. They are viable only when the PDE is linear and its
coefficients are piecewise-constant. We introduce a “quasi-Trefftz” discontinuous Galerkin method
for the discretisation of the acoustic wave equation with piecewise-smooth material parameters: the
discrete functions are elementwise approximate PDE solutions. We show that the new discretisation
enjoys the same excellent approximation properties as the classical Trefftz one, and prove stability
and high-order convergence of the DG scheme. We introduce polynomial basis functions for the
new discrete spaces and describe a simple algorithm to compute them. The technique we propose is
inspired by the generalised plane waves previously developed for time-harmonic problems with variable
coefficients; it turns out that in the case of the time-domain wave equation under consideration the
quasi-Trefftz approach allows for polynomial basis functions.
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1 Introduction

The Trefftz methods are a class of Galerkin schemes for the approximation of linear partial differential
equations. Their distinctive property is that the restrictions to mesh elements of all test and trial functions
are particular solutions of the underlying PDE. The variational formulation weakly enforces interelement
continuity and initial/boundary conditions. They are named after the seminal work of Erich Trefftz [31].
The main advantage of Trefftz schemes over more classical ones is the higher accuracy for comparable
numbers of degrees of freedom.

Trefftz methods have proved particularly successful for wave propagation in time-harmonic regime; see
e.g. [11] for a survey of the scalar case. Trefftz methods are often formulated in a discontinuous Galerkin
(DG) framework. DG methods are a popular choice for time-domain wave propagation, due to their
flexibility, efficiency and simplicity; see e.g. [1, 8, 16,24,26].

Trefftz discretisations of time-dependent PDEs are intrinsically space–time methods (as opposed to
space semi-discretisations and time-stepping): for the test and trial functions to be solution of the PDE
they need to be functions of both space and time variables. Trefftz DG schemes developed for time-
domain (acoustic, electromagnetic and elastic) wave problems include interior penalty (IP-DG) [2], hybrid
DG (involving Lagrange multipliers on mesh interfaces) [29, 32], and versions related to the “ultra-weak
variational formulation” [4,7,18–20,23,28]. In all cases, a sensible choice of the DG numerical fluxes allows
to write space–time Trefftz DG schemes as simply as standard “DG-in-space+time-stepping” schemes.
In particular, there is no need to solve huge global space–time linear systems but implicit (and, on
suitable meshes, even explicit, [28]) time-stepping is possible. Numerical experiments on a wide range
of academic test cases have shown excellent properties in terms of approximation and convergence rates
[2,4,7,18–20,28,29,32], dissipation [2,7,18,28], dispersion [7,18], conditioning [19], and even parallelism [28].

Since a sufficiently rich family of local exact solutions of the PDE is needed, almost always, Trefftz
schemes require PDE coefficients to be elementwise constant. However, many relevant wave propagation
problems take place in a smoothly varying medium: classical examples are well-known in aeroacoustics,
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underwater acoustics, plasma physics, biomedical imaging, etc. Approximation of smooth coefficients by
piecewise-constant ones is not a viable strategy because it immediately spoils high-order convergence,
which is one of the strongest reasons to opt for a Trefftz approach. In the case of time-harmonic acoustic
wave propagation (Helmholtz equation) Trefftz methods were adapted to smoothly varying coefficients
with the introduction of generalised plane waves (GPWs) in [14]. GPWs are not exact PDE solutions but
rather “solutions up to a given order”, in the sense of Taylor polynomials. GPWs extend the accuracy
property of Trefftz schemes to a much wider setting (provably for h-convergence [13], so far only numerically
for p-convergence). The critical point to construct GPWs relies on the choice of an ansatz, mimicking the
oscillatory behaviour of plane waves, while allowing for more degrees of freedom. However this is, in a
sense, due more to the nature of the Helmholtz equation than to the GPW idea in itself.

In the present paper, inspired by the GPW idea, we propose an extension of the space–time Trefftz
DG scheme for the acoustic wave equation of [23] to the case of smoothly-varying material parameters.
Since the Galerkin basis functions are solution of the PDE up to a given order (with respect to the
mesh size), the scheme is referred to as quasi-Trefftz DG method. A surprising outcome is that test and
trial basis functions can be taken as polynomials, and their coefficients can be computed with a simple
iteration, which is initialised by assigning their values at a given time. Their computation uses the first
Taylor-expansion terms of the material coefficient functions ρ(x), G(x). Here, ρ and G are two piecewise-
smooth scalar coefficients are associated to the space and the time differential operators (or to the vector
and the scalar equations in the first-order system), respectively, see (1)–(2). The problem wavespeed is
c = (ρG)−1/2. The Trefftz-DG method for the slightly simpler case where ρ = 1 and the only variable
coefficient is G = c−2 is introduced and analysed in the first arXiv version of this manuscript.

The definition, the algorithm for the basis construction, and the analysis of the polynomial quasi-Trefftz
discrete space properties are the main novel contributions of the present paper, and will be detailed in the
next section.

1.1 Outline of the paper and main contributions

We give several preliminary definitions and notation concerning the initial boundary value problems to be
discretised in §2, the space–time meshes in §3.1, the numerical parameters needed for the definition of the
DG scheme in §3.2, the mesh-dependent norms used in the error analysis in §3.4, along with multi-index
notation, Taylor polynomials, wave operators and anisotropic weighted norms in §4.1.

The variational formulation of the quasi-Trefftz DG method is introduced in §3.3. Remark 3.1 compares
this formulation with some closely related ones appeared in [3, 23, 24, 28]. Well-posedness, stability and
quasi-optimality of the quasi-Trefftz DG scheme are described in §3.5, heavily relying on [23]. This section
also briefly lists several related results such as sharper bounds under more restrictive assumptions, energy
dissipation, as well as error bounds on interfaces and partial cylinders.

The polynomial, local, discrete, quasi-Trefftz space QUp(K) for the (smooth-wavenumber) second-order
wave equation is defined in §4.2, p standing for the polynomial degree of the basis functions on a mesh
element K. Proposition 4.2 shows that for an appropriate choice of p all wave equation solutions are
approximated by this space with high orders in the (space–time) element size. This is a fully-explicit,
high-order, h-convergence result; on the other hand p-convergence results (i.e. regarding convergence for
increasing polynomial degrees) on general elements are not available, neither for the Trefftz DG for the
constant-coefficients wave equation [23], nor for the GPW-based DG scheme for the Helmholtz equation
[13]. These best-approximation estimates lead to convergence bounds for the quasi-Trefftz DG scheme
in §4.3. In particular, for a suitable choice of the numerical parameters entering the DG formulation,
we obtain the same orders of convergence as in the constant-coefficient case [23, §6], even if we require
stronger solution regularity (see Remark 4.7).

For the method to be practical, of course one needs to be able to explicitly compute the basis functions:
we describe a family of bases in §4.4. Given any basis of the classical polynomial space in n real variables,
Algorithms 1 and 2 give a simple recipe for the computation of a corresponding quasi-Trefftz basis (in
n = 1 and n > 1 space dimensions, respectively).

Sections 4.2–4.4 focus on quasi-Trefftz schemes for solutions of the second-order wave equation. How-
ever the DG scheme (7) applies more generally to the first-order acoustic wave equation. Thus §4.5 briefly
describes another quasi-Trefftz discrete space, suited for the acoustic first-order system, together with the
recipe for the computation of its basis. In the constant-coefficient case the two classes of discrete spaces
were proposed and analysed in [23, §6.1–6.2].

In Section 5 we illustrate the results of several numerical experiments for the implementation of the
quasi-Trefftz DG method in NGSolve1. In particular, we briefly discuss the dependence on the penalty

1The code is available online at https://github.com/PaulSt/NGSTrefftz
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parameters and the orders of convergence, we compare the proposed method against standard polynomial
and Trefftz DG schemes, and consider both prismatic and “tent-pitched” meshes, corresponding to implicit
and semi-explicit time-stepping respectively.

1.2 Extensions and future work

We envisage that the quasi-Trefftz method proposed here can be extended to elastic and electromag-
netic wave propagation in heterogeneous materials, and more generally to a wider class of hyperbolic or
Friedrichs systems. (For constant-coefficient examples of space–time Trefftz DG schemes for elastodynam-
ics, electromagnetics and kinetic equations/transport models see [4], [7, 18] and [5], respectively.) The
proposed approach might be effective also for the approximation of PDEs whose nature changes in the
computational domain, exemplified by the Euler–Tricomi equation (∂2xu+x∂

2
yu = 0), used for applications

in transonic flows and plasma physics.
The numerical analysis performed here is only a first step towards the establishment of a more compre-

hensive theory of quasi-Trefftz polynomial schemes. More work is needed to address refined approximation
estimates in Sobolev norms (see Remark 4.7), the treatment of less regular solutions (e.g. with corner sin-
gularities), the proof of error bounds in mesh-independent norms, the analysis of dispersion and dissipation
properties. A very significant and challenging extension is the analysis of the approximation properties for
increasing polynomial degrees, i.e. the p-convergence. The construction of non-polynomial quasi-Trefftz
spaces could be relevant, for example, in order to efficiently approximate solutions that are localised in
frequency.

2 Model problem

We consider the following initial boundary value problem (IBVP) for the first-order acoustic wave equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇v + ρ∂tσ = 0 in Q,

∇ · σ +G∂tv = 0 in Q,

v(·, 0) = v0, σ(·, 0) = σ0 on Ω,

v = gD on ΓD × (0, T ),

σ · nx
Ω = gN on ΓN × (0, T ),

ϑv − σ · nx
Ω = gR on ΓR × (0, T ).

(1)

Here

n ∈ N is the physical space dimension,

Ω ⊂ Rn is an open, bounded, Lipschitz polytope,

T > 0 is the final time,

Q = Ω× (0, T ) is the space–time cylinder,

(v,σ) : Q→ R× Rn are the unknown fields (e.g. acoustic pressure and velocity),

nx
Ω ∈ Rn is the outward pointing normal unit vector on ∂Ω,

ΓD,ΓN,ΓR are a partition of ∂Ω, one or two of them may be empty,

v0 ∈ L2(Ω),σ0 ∈ L2(Ω)2 are the initial conditions,

gD, gN, gR are Dirichlet, Neumann and Robin boundary data, respectively,

0 < ϑ ∈ L∞(ΓR × [0, T ]) is a impedance parameter with the same physical units of (G/ρ)1/2,

∇,∇· are the gradient and divergence operators in the space variable x only,

∂t is the time derivative,

0 < ρ,G ∈ L∞(Ω) are the material coefficients, independent of time and piecewise-smooth,

c := (ρG)−1/2 is the wavespeed.
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When considering ρ,G, c over Q, we extend them constant in time. With the same notation and assump-
tions, the corresponding IBVP for the second-order (scalar) wave equations reads as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ ·
(1
ρ
∇u

)
+G∂2t u = 0 in Q,

u(·, 0) = u0, ∂tu(·, 0) = u1 on Ω,

∂tu = gD on ΓD × (0, T ),

− 1

ρ
nx
Ω · ∇u = gN on ΓN × (0, T ),

ϑ∂tu+
1

ρ
nx
Ω · ∇u = gR on ΓR × (0, T ).

(2)

If ρσ0 is a gradient, the two IBVPs are seen to be equivalent by relating the unknowns as v = ∂tu,
σ = − 1

ρ∇u, and the initial conditions as v0 = u1 and σ0 = − 1
ρ∇u0.

If the model under consideration is meant to describe acoustic waves in a fluid, then u, ρ, (ρG)−1

represent acoustic pressure, mass density and the partial derivative of the pressure with respect to the
density at constant entropy, respectively. If the model describes TE (or TM) modes in electromagnetics,
ρ and G represent electric permittivity ϵ and magnetic permeability µ (or viceversa), and u a component
of the magnetic (or electric) field.

The well-posedness of IBVP (1) with ρ = 1 in Bochner spaces is briefly discussed in [3, §2.2]. In two
space dimensions d = 2, the regularity of the solution in corner-weighted Sobolev space of Kondrat’ev type
is investigated in detail in [17,21] and used in the convergence analysis of DG schemes in, e.g., [3, 25,27].

3 Discontinuous Galerkin discretisation

In this section we closely follow [23, §3–5]; we extend assumptions, notation, definitions and results to the
case of piecewise-smooth ρ,G and non-Trefftz discretisations.

3.1 Mesh assumptions and notation

The space–time domain Q is subdivided in a non-overlapping mesh Th, where every element K ∈ Th is an
n+ 1-dimensional open Lipschitz polytope. We assume that ρ|K , G|K ∈ C∞(K) for all K ∈ Th, and that
each face (F = K1 ∩K2 or F = K1 ∩ ∂Q with positive n-dimensional measure for some K1,K2 ∈ Th) is
an n-dimensional polytope. We denote by (nx

F , n
t
F ) ∈ Rn+1 the unit normal vector orthogonal to a mesh

face F , with ntF ≥ 0 and |nx
F |2 + (ntF )

2 = 1. Recalling that c = (ρG)−1/2, we assume that each face F is
either

space-like, i.e. ntF > 0 and |nx
F | sup

(x,t)∈F

c(x) < ntF , (3)

or time-like, i.e. ntF = 0.

The traces of c from both sides of space-like faces coincide because c = c(x) is independent of time: all
discontinuities of c are captured by the time-like faces of the mesh. A space-like face F lies below (i.e. in
the past of) the cone of dependance of each of its points; its slope (when seen as the graph the function
x ↦→ t such that (x, t) ∈ F ) is bounded by 1/c(x). A time-like face is a union of segments parallel to
the time axis. The class of meshes includes both Cartesian-product meshes such as those of [3] (nx

F = 0,
ntF = 1 on all space-like faces) and tent-pitched meshes such as those of [24, 28] (all faces are space-like,
ntF ≈ c√

1+c2
); see two examples plotted in Figure 5.

We choose a “centre point” (xK , tK) ∈ K for each mesh element K ∈ Th, for example the barycentre,
which will be used in the proof of the approximation estimates and to define the basis functions. We
define a radius and a “weighted radius” of each element as

rK := sup
(x,t)∈K

|(x, t)− (xK , tK)| , rK,c := sup
(x,t)∈K

⏐⏐(x, c(x)t)− (
xK , c(xK)tK

)⏐⏐ , (4)

with |·| the Euclidean distance in Rn+1.
We use the following notation for the mesh skeleton and its parts:

Fh :=
⋃

K∈Th

∂K, F space
h :=

⋃
{F ⊂ Fh space-like face}, F time

h :=
⋃

{F ⊂ Fh time-like face},

4



F0
h := Ω× {0}, FT

h := Ω× {T},
FD

h := ΓD × [0, T ], FN
h := ΓN × [0, T ], FR

h := ΓR × [0, T ].

We use standard DG notation for averages {{·}}, space normal jumps [[·]]N and time (full) jumps [[·]]t of
piecewise-continuous scalar and vector fields on internal faces: on F = ∂K1 ∩ ∂K2, for K1,K2 ∈ Th,

{{w}} :=
w|K1

+ w|K2

2
, {{τ}} :=

τ |K1
+ τ |K2

2
,

[[w]]N := w|K1
nx
K1

+ w|K2
nx
K2
, [[τ ]]N := τ |K1

· nx
K1

+ τ |K2
· nx

K2
,

[[w]]t := w|K1
ntK1

+ w|K2
ntK2

= (w− − w+)ntF , [[τ ]]t := τ |K1
ntK1

+ τ |K2
ntK2

= (τ− − τ+)ntF .

The superscripts +/− denote the traces on a space-like face taken from the mesh elements placed “after”
(+) and “before” (−) the face itself, according to the time direction. We introduce a piecewise-constant
function γ defined on F space

h ∪ F0
h ∪ FT

h , measuring how close to characteristic cones the space-like mesh
faces are:

γ :=
∥c∥C0(F ) |nx

F |
ntF

on F ⊂ F space
h , γ := 0 on F0

h ∪ FT
h . (5)

We define a “space-like interface” as a connected union of space-like faces Σ ⊂ F space
h ∪ F0

h ∪ FT
h that

is the graph of a Lipschitz-continuous function fΣ : Ω → [0, T ]. By (3), the Lipschitz constant of fΣ in
x ∈ Ω will be at most c−1(x). The unit normal vector on Σ is denoted (nx

Σ, n
t
Σ).

3.2 DG flux and penalisation parameters

We fix three “numerical flux parameter” functions on portions of the mesh skeleton, and two “volume
penalisation coefficients”:

α ∈ L∞ (
F time

h ∪ FD
h

)
, β ∈ L∞ (

F time
h ∪ FN

h

)
, δ ∈ L∞ (

FR
h

)
, µ1, µ2 ∈ L∞(Q).

We assume that all these are uniformly positive and bounded:

α, β, δ, µ1, µ2 > 0, ∥δ∥L∞(FR
h ) < 1,α−1


L∞(Ftime

h ∪FD
h )
,
β−1


L∞(Ftime

h ∪FN
h )
,
δ−1


L∞(FR

h )
,
µ−1

1


L∞(Q)

,
µ−1

2


L∞(Q)

<∞.

We also define the values

µK+ := max
{
∥µ1∥L∞(K) , ∥µ2∥L∞(K)

}
, µK− := max

{µ−1
1


L∞(K)

,
µ−1

2


L∞(K)

}
, ∀K ∈ Th. (6)

To obtain optimal convergence rates, the volume penalty parameters µ1 and µ2 need to be scaled propor-
tionally to the local element size rK,c: we assume this in (28). For dimensional consistency, α and β−1

must have the same physical units as Gc and of the impedance parameter ϑ: we assume this in (25).

3.3 DG formulation

Let Vhp(Th) be a closed (e.g. finite-dimensional) subspace of the broken Sobolev space

H(Th) :=
∏

K∈Th

(
H1(K)×H1(K)n

)
.

We consider the following variational formulation:

Seek (vhp,σhp) ∈ Vhp(Th)
such that A(vhp,σhp;w, τ ) = ℓ(w, τ ) ∀(w, τ ) ∈ Vhp(Th), (7)

where

A(vhp,σhp;w, τ ) := −
∑

K∈Th

∫
K

(
vhp

(
∇ · τ +G∂tw

)
+ σhp ·

(
ρ∂tτ +∇w

))
dV

+

∫
Fspace

h

(
Gv−hp[[w]]t + ρσ−

hp · [[τ ]]t + v−hp[[τ ]]N + σ−
hp · [[w]]N

)
dS +

∫
FT

h

(Gvhpw + ρσhp · τ ) dx
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+

∫
Ftime

h

(
{{vhp}}[[τ ]]N + {{σhp}} · [[w]]N + α[[vhp]]N · [[w]]N + β[[σhp]]N[[τ ]]N

)
dS

+

∫
FD

h

(
σhp · nx

Ω w + αvhpw
)
dS +

∫
FN

h

(
vhp(τ · nx

Ω) + β(σhp · nx
Ω)(τ · nx

Ω)
)
dS

+

∫
FR

h

(
(1− δ)ϑvhpw + (1− δ)vhp(τ · nx

Ω) + δ(σhp · nx
Ω)w +

δ

ϑ
(σhp · nx

Ω)(τ · nx
Ω)

)
dS

+
∑

K∈Th

∫
K

(
µ1

1

G

(
∇ · σhp +G∂tvhp

)(
∇ · τ +G∂tw

)
+ µ2

1

ρ

(
∇vhp + ρ∂tσhp

)
·
(
∇w + ρ∂tτ

))
dV,

ℓ(w, τ ) :=

∫
F0

h

(Gv0w + ρσ0 · τ ) dx

+

∫
FD

h

gD
(
αw − τ · nx

Ω

)
dS +

∫
FN

h

gN
(
β τ · nx

Ω − w
)
dS +

∫
FR

h

gR

(
(1− δ)w − δ

ϑ
τ · nx

Ω

)
dS.

Noting that all terms involving ρ and G are integrated by parts with respect to the time variable only,
the derivation in [23, §4] shows that the formulation (7) is consistent:

let (v,σ) with v ∈ H1(Q), σ ∈ H1
(
0, T ;L2(Ω)

n) ∩ L2
(
0, T ;H(div,Ω)

)
, σ|K ∈ H1(K)n ∀K ∈ Th,

be solution of (1), then A(v,σ;w, τ ) = ℓ(w, τ ) ∀(w, τ ) ∈ H(Th). (8)

Remark 3.1. The differences between (7) and [23, equation (7)] are the following: (i) we allow position-
dependent and possibly discontinuous material parameters ρ and G ( [23, equation (7)] is written in terms
of c only); (ii) we allow fields that are not local solution of the PDE system (i.e. our method is not
Trefftz); (iii) as a consequence we have a volume term in A(·, ·), ensuring consistency; (iv) we have a
further stabilisation/penalisation volume term (the term involving µ1, µ2). This term can be understood
as a Galerkin–least squares (GLS) correction. The formulation (7) exactly corresponds to the numerical
fluxes v̂hp, σ̂hp in [23, pp. 396–397], except for those on FR

h where we have absorbed in ϑ the dependence
on the material parameters.

The formulation of [23] has been studied also in [28] and extended to the non-Trefftz case, with
piecewise-constant coefficient, in [3] (with tensor-product and sparse polynomial bases). With appropriate
choices of the numerical flux parameters the present formulation is a special case of that in [24] (see the
comparison in [23, Rem. 4]).

Although the variational problem (7) couples the discrete solution on all mesh elements in Q, the
structure of the terms on F space

h (the space-like part of the mesh skeleton) allows to compute the solution
(vhp,σhp) by solving a sequence of smaller linear systems; see [23, p. 398]. E.g., if the elements of a
quasi-uniform mesh can be grouped in N “time-slabs” Ω × (ti−1, ti), with 0 = t0 < t1 < · · · < tN = T ,
ti − ti−1 ≈ T/N , then the discrete solution on each time-slab can be computed from the solution on the
previous time-slab, solving N linear systems of size O(dimVhp(Th)/N) each. This is equivalent to an
implicit time-stepping.

As in classical Trefftz methods, we only consider homogeneous IBVPs (i.e. with zero volume source
term), which are frequently encountered in wave problems. To treat non-homogeneous problems (∇v +
ρ∂tσ = Φ, ∇·σ+G∂tv = ψ) one can proceed in two steps: (i) construct (possibly in parallel) elementwise

solutions (v#K ,σ
#
K) of the source problem with artificial local boundary conditions, and (ii) solve for the

difference (v − v#K ,σ − σ#
K) using the quasi-Trefftz DG scheme (7). This technique has been developed

and analysed for constant-coefficient time-harmonic problems in, e.g., [12].

3.4 Mesh-dependent norms

We define two mesh- and flux-dependent norms on H(Th):

|||(w, τ )|||2DG :=
1

2

(1− γ

ntF

)1/2

G1/2[[w]]t

2
L2(Fspace

h )

+
1

2

(1− γ

ntF

)1/2

ρ1/2[[τ ]]t

2
L2(Fspace

h )n
(9)

+
1

2

G1/2w
2
L2(F0

h∪FT
h )

+
1

2

ρ1/2τ2
L2(F0

h∪FT
h )n

+
α1/2[[w]]N

2
L2(Ftime

h )n
+
β1/2[[τ ]]N

2
L2(Ftime

h )

+
α1/2w

2
L2(FD

h )
+
β1/2τ · nx

Ω

2
L2(FN

h )

6



+
((1− δ)ϑ

)1/2
w
2
L2(FR

h )
+

( δϑ)1/2

τ · nx
Ω

2
L2(FR

h )

+
∑

K∈Th

(µ1/2
1 G−1/2(∇ · τ +G∂tw)

2
L2(K)

+
µ1/2

2 ρ−1/2(∇w + ρ∂tτ )
2
L2(K)n

)
;

|||(w, τ )|||2DG+ := |||(w, τ )|||2DG + 2

( ntF
1− γ

)1/2

G1/2w−
2
L2(Fspace

h )

+ 2

( ntF
1− γ

)1/2

ρ1/2τ−
2
L2(Fspace

h )n

+
β−1/2{{w}}

2
L2(Ftime

h )
+
α−1/2{{τ}}

2
L2(Ftime

h )n

+
α−1/2τ · nx

Ω

2
L2(FD

h )
+
β−1/2w

2
L2(FN

h )

+
∑

K∈Th

(µ−1/2
1 G1/2w

2
L2(K)

+
µ−1/2

2 ρ1/2τ
2
L2(K)

)
.

These are norms on the broken Sobolev space H(Th) defined on the mesh Th. Indeed, |||(w, τ )|||DG = 0
for (w, τ ) ∈ H(Th) implies that (w, τ ) is solution of the IBVP with zero initial and boundary conditions,
so (w, τ ) = (0,0) by the well-posedness of the IBVP itself; see [19, Lemma 4.1].

As in [23, §5.3], we define the energy of a field (w, τ ) ∈ H(Th) on a space-like interface Σ as

E(Σ;w, τ ) :=
∫
Σ

(
wτ · nx

Σ +
1

2
(Gw2 + ρ|τ |2)ntΣ

)
dS. (10)

3.5 Well-posedness, stability, quasi-optimality

Integration by part on a mesh element gives for any field (w, τ ) ∈ H(Th)∫
K

(
w
(
∇ · τ +G∂tw

)
+ τ ·

(
∇w + ρ∂tτ

))
dV −

∫
∂K

(
wτ · nx

K +
1

2

(
Gw2 + ρ|τ |2

)
ntK

)
dS = 0. (11)

The results of [23, §5.2] hold also in the current, slightly extended, setting and are summarised in the
following theorem.

Theorem 3.2. The bilinear form A is coercive in ||| · |||DG norm and continuous in ||| · |||DG+–||| · |||DG

norms, and the linear functional ℓ is continuous:

A(w, τ ;w, τ ) ≥ |||(w, τ )|||2DG, (12)

|A(v,σ;w, τ )| ≤ CA|||(v,σ)|||DG+ |||(w, τ )|||DG, where

CA :=

{
2, if FR

h = ∅,
2max

{ 1−δ
δ

1/2
L∞(FR

h )
,
 δ
1−δ

1/2
L∞(FR

h )

}
if FR

h ̸= ∅,
(13)

|ℓ(w, τ )| ≤
(
2
G1/2v0

2
L2(F0

h)
+ 2

ρ1/2σ0

2
L2(F0

h)
+ 2

α1/2gD

2
L2(FD

h )

+ 2
β1/2gN

2
L2(FN

h )
+
ϑ−1/2gR

2
L2(FR

h )

)1/2

|||(w, τ )|||DG+ , ∀(w, τ ), (v,σ) ∈ H(Th).

The variational problem (7) admits a unique solution (vhp,σhp) ∈ Vhp(Th), for any choice of Vhp(Th).
If the solution (v,σ) is as in (8), then the discrete solution satisfies the error bound

|||(v − vhp,σ − σhp)|||DG ≤ (1 + CA) inf
(w,τ )∈Vhp(Th)

|||(v − w,σ − τ )|||DG+ . (14)

Moreover, if gD = gN = 0 (or the corresponding parts FD
h ,FN

h of the boundary are empty) then

|||(vhp,σhp)|||DG ≤
(
2
G1/2v0

2
L2(F0

h)
+ 2

ρ1/2σ0

2
L2(F0

h)
+

ϑ−1/2gR

2
L2(FR

h )

)1/2

.

Of the differences between the methods in §3.3 and in [23] listed in Remark 3.1: (i) is unimportant for
the proof of Theorem 3.2 as the terms involving ρ and G are integrated by parts in time only; (ii) does
not affect the theorem as the Trefftz property is replaced by the presence of the first volume term in (7);
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the term described in (iii) is taken care by the identity (11); the term of (iv) coincides with the new term
in the ||| · |||DG norm.

The error bound (14) slightly differs from the quasi-optimality result (Céa lemma) in classical FEM
analysis in that the norm (|||·|||DG+) at the right-hand side is stronger than that (|||·|||DG) at the left-hand
side. This mismatch is typical of the DG formulation employed here, not only for hyperbolic equations
(as in [3, 19,23]) but also for the analogous discretisation of the Helmholtz equation, see [11, §2.2.1].

Under more restrictive assumptions, slightly stronger results are possible. On a mesh made of Carte-
sian-product elements, or more generally if nx

F = 0 on all faces F ⊂ F space
h , then the coercivity inequality

(12) is an equality: A(w, τ ;w, τ ) = |||(w, τ )|||2DG for all (w, τ ) ∈ H(Th). If gD = gN = 0 (or the
corresponding parts FD

h ,FN
h of the boundary are empty) then the |||(w, τ )|||DG+ norm at the right-hand

side of the bound on |ℓ(w, τ )| can be substituted by |||(w, τ )|||DG.
The bound (14) allows to control the DG error only in the ||| · |||DG norm, which involves jumps on

internal faces. However a simple adaptation of the proof allows to control the L2 norm of the traces
on space-like interfaces of the error. Let Σ be a space-like interface, as defined in §3.1. Assume that
Vhp(Th) = {(w, τ ) ∈ Vhp(Th), supp (w, τ ) ⊂ {(x, t), 0 ≤ t ≤ fΣ(x)}} ⊕ {(w, τ ) ∈ Vhp(Th), supp (w, τ ) ⊂
{(x, t), fΣ(x) ≤ t ≤ T}} (i.e. that the discrete functions are indeed discontinuous across Σ). Then [23,
Prop. 1] gives that

E(Σ; v − v−hp,σ − σ−
hp) ≤

5

2

(1− γ)−1

L∞(Σ)

(1 + CA)
2 inf
(w,τ )∈Vhp(Th)

|||(v − w,σ − τ )|||2DG+ .

If gD = gN = 0 and ΓR = ∅ the IBVP (1) preserves energy: E(FT
h ; v,σ) = E(F0

h; v,σ). The DG
scheme dissipates energy: E(FT

h ; vhp,σhp) ≤ E(F0
h; vhp,σhp); the dissipation can be quantified in terms

of the jumps on the faces and the residual in the mesh elements with the same technique of [23, §5.3]
and [3, Rem. 5.7].

For any space-like interface Σ, the results of Theorem 3.2 can be localised to the partial space–time
cylinder QΣ = {(x, t),x ∈ Ω, 0 < t < fΣ(x)}, by proceeding as in [3, §5.3].

In order to reduce the computational cost of the system assembly, one might consider the case without
volume penalisation term, i.e. with µ1 = µ2 = 0 (on the other hand, the first volume term in A(·, ·)
is needed for consistency). Indeed, we observe numerically that, at least in some examples (§5.1), this
choice does not spoil errors and convergence rates. Well-posedness for µ1 = µ2 = 0 is shown in [3]
for full polynomial spaces; however, this technique cannot be directly used to prove the well-posedness
of the quasi-Trefftz DG scheme because the crucial condition [3, (5.4)] is generally not satisfied by the
quasi-Trefftz discrete spaces defined in the next section.

4 Quasi-Trefftz space

In this section, we present the first extension of Generalized Plane Waves to a time-dependent problem,
focusing on two main aspects: properties of the resulting function spaces, and explicit construction of the
basis fucntions.

4.1 Definitions and notation

We use standard multi-index notation for partial derivatives and monomials, adapted for space–time fields:

for i = (ix, it) = (ix1 , . . . , ixn , it) ∈ Nn+1
0 , Dif := ∂

ix1
x1 · · · ∂ixn

xn ∂
it
t f and (x, t)i = xixtit = x

ix1
1 · · ·xixn

n tit .
We use the canonical basis of Rn, namely {ek ∈ Rn, 1 ≤ k ≤ n, (ek)l = δkl}. We recall the Leibniz product
rule for multi-indices:

Di(ff̃) =
∑

j∈Nn+1
0 , j≤i

(
i

j

)
DjfDi−j f̃, where

(
i

j

)
:=

i!

j!(i− j)!
=

(
ix1

jx1

)
· · ·

(
ixn

jxn

)(
it
jt

)
, (15)

i! := ix1 ! · · · ixn !it! and j ≤ i means that the inequality holds component-wise. The length of a multi-index
is |i| = |ix| + it := ix1

+ · · · + ixn
+ it. For any field f ∈ Cm(K), denote the Taylor polynomial of order

m+ 1 (and polynomial degree at most m) centered at (xK , tK) by

Tm+1
K [f ](x, t) :=

∑
|i|≤m

1

i!
(x− xK)ix(t− tK)itDif(xK , tK).

It follows that

DiTm+1
K [f ](xK , tK) =

{
Dif(xK , tK) if |i| ≤ m,
0 if |i| > m.

(16)
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Lagrange’s form of the Taylor remainder [6, Cor. 3.19] is the following: if f hasm+1 continuous derivatives
in a neighbourhood of the segment S with extremes (xK , tK) and (x, t), then

∃(x∗, t∗) ∈ S such that f(x, t)− Tm+1
K [f ](x, t) =

∑
|j|=m+1

1

j!
(x− xK)jx(t− tK)jtDjf(x∗, t∗). (17)

For elementwise-smooth, positive, spatial functions G, ρ : Ω → R, we denote the variable-coefficient
second-order wave operator

(□ρ,Gf)(x, t) := ∇ ·
( 1

ρ(x)
∇f

)
(x, t)−G(x)∂2t f(x, t).

We denote the partial derivatives of 1
ρ and G evaluated at an element centre as

ζix :=
1

ix!
D(ix,0)

( 1

ρ(xK)

)
, gix :=

1

ix!
D(ix,0)G(xK), so that (18)

1

ρ(x)
=

∑
ix∈Nn

0

(x− xK)ixζix , G(x) =
∑

ix∈Nn
0

(x− xK)ixgix .

We underline the value of a particular partial derivative that will come into play in the definition of
the quasi-Trefftz space: for f ∈ C |i|+2(K),

Di(□ρ,Gf) =

n∑
k=1

Di+(ek,0)

(
1

ρ
D(ek,0)f

)
+D(ix,it+2)

(
Gf

)
,

⇒ (Di□ρ,Gf)(xK , tK) =

n∑
k=1

∑
jx≤ix+ek

(ix + ek)!

jx!
ζix+ek−jx

D(jx+ek,it)f(xK , tK)

−
∑

jx≤ix

ix!

jx!
gix−jx

D(jx,it+2)f(xK , tK).

(19)

This is obtained using Leibniz formula (15) and noting that only terms with jt = it contribute since G
and ρ are independent of time.

We use standard notation for local Cm norms and seminorms, introduce wavespeed-weighted seminorms
Cm

c , and extend local spaces to global spaces in the piecewise-smooth case: for m ∈ N0

∥f∥C0(K) := sup
(x,t)∈K

|f(x, t)|, |f |Cm(K) := max
|i|=m

Dif

C0(K)

, |f |Cm
c (K) := max

|i|=m

c−itDif

C0(K)

,

Cm(Th) :=
∏

K∈Th

Cm(K), |f |Cm(Th)
:= max

K∈Th

|f |K |Cm(K) , |f |Cm
c (Th)

:= max
K∈Th

|f |K |Cm
c (K) . (20)

The Cm
c seminorms are scaled with the wavespeed c to ensure that all terms compared by the max have

the same physical units (the unit of f times [space]−m), similarly to the anisotropic Sobolev norms in [23,
eq. (37)]. In particular, for a time-independent f , these seminorms are independent of the wavespeed.

4.2 Local quasi-Trefftz space and approximation properties

We define the “quasi-Trefftz” space for the second-order wave equation on a mesh element K ∈ Th as

QUp(K) :=
{
f ∈ Pp(K) | Di□ρ,Gf(xK , tK) = 0, ∀i ∈ Nn+1

0 , |i| ≤ p− 2
}
, p ∈ N. (21)

This is the space of degree-p space–time polynomials f , such that the Taylor polynomial of their image by
the wave operator □ρ,Gf vanishes at the element centre (xK , tK) up to order p− 2. From (19), the space
QUp(K) is well-defined if ρ ∈ Cmax{p−1,1} and G ∈ Cmax{p−2,0} in a neighbourhood of xK . For p = 1, we
simply have QU1(K) = P1(K).

Remark 4.1. Compare the above definition to the ’standard’ Trefftz space. We define the polynomial
Trefftz space for the second-order wave equation with constant parameters inside the mesh element K as

Up(K) :=
{
u ∈ Pp(K) : □ρ,Gu = 0 in K

}
.

For constant ρ,G, the quasi-Trefftz space QUp(K) is equal to this space, see Remark 4.11.
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The next proposition shows that smooth solutions of the wave equation are approximated in QUp(K)
with optimal convergence rate with respect to the element radius rK (recall rK ≤ diamK from the
definition (4)). By “optimal” we mean that the rate is equal to the rate offered by the full polynomial
space Pp(K). We give two approximation estimates: one in classical Cm seminorms and one in their
weighted version Cm

c defined in (20), with rK,c in place of rK . We will use the latter bound in the
convergence analysis of the DG scheme in §4.3.

Proposition 4.2. Let u ∈ Cp+1(K) be solution of □ρ,Gu = 0, with ρ ∈ Cmax{p−1,1}(K) and G ∈
Cmax{p−2,0}(K).

Then the Taylor polynomial T p+1
K [u] ∈ QUp(K).

Moreover, if K is star-shaped with respect to (xK , tK), with rK and rK,c as defined in (4) while q ∈ N0

satisfies q ≤ p, then

inf
P∈QUp(K)

|u− P |Cq(K) ≤
(n+ 1)p+1−q

(p+ 1− q)!
rp+1−q
K |u|Cp+1(K) ,

inf
P∈QUp(K)

|u− P |Cq
c (K) ≤

(n+ 1)p+1−q

(p+ 1− q)!
rp+1−q
K,c |u|Cp+1

c (K) .

(22)

Proof. Since T p+1
K [u] is polynomial of degree p, in order to show that it belongs to QUp(K) we only need

to verify that Di□ρ,GT
p+1
K [u](xK , tK) = 0, for all |i| ≤ p − 2. From the identity (19), this quantity is a

linear combination of the partial derivatives of order at most equal to |i|+2 ≤ p of the Taylor polynomial
at (xK , tK), which according to (16) coincide with the corresponding partial derivatives of u:

Di□ρ,GT
p+1
K [u](xK , tK) = Di□ρ,Gu(xK , tK).

Since □ρ,Gu = 0 in K, these partial derivatives vanish, hence T p+1
K [u] ∈ QUp(K).

We prove the inequality in (22) involving the weighted norms Cm
c (K) using the norm definition (20),

the identity DiT p+1
K [u] = T

p+1−|i|
K [Diu] for |i| ≤ p from [22, eq. (3.5)], and Taylor’s theorem (17):

inf
P∈QUp(K)

|u− P |Cq
c (K) ≤

⏐⏐⏐u− T p+1
K [u]

⏐⏐⏐
Cq

c (K)

= max
i∈Nn+1

0 , |i|=q

c−itDi(u− T p+1
K [u])


C0(K)

= max
i∈Nn+1

0 , |i|=q

c−it(Diu− T p+1−q
K [Diu])


C0(K)

(17)

≤ max
i∈Nn+1

0 , |i|=q

∑
|j|=p+1−q

1

j!

((x, ct)− (xK , ctK)
)j
c−it−jtDi+ju(x, t)


C0(K)

≤ (n+ 1)p+1−q

(p+ 1− q)!
rp+1−q
K,c |u|Cp+1

c (K) .

In the last step we used
∑

|j|=p+1−q
1
j! =

(n+1)p+1−q

(p+1−q)! , [22, p. 198]. The first bound in (22) follows from the

same chain of inequalities, after dropping all powers of c.

Bound (22) gives approximation rates with respect to the mesh size (h-convergence) but is unsuitable
for proving convergence for increasing polynomial degrees (p-convergence): while the coefficient in the
bound is infinitesimal for p→ ∞, in general, the seminorm |u|Cp+1(K) is not bounded in the same limit.

Remark 4.3. In general, unlike full polynomial spaces, quasi-Trefftz spaces with increasing p are not
nested, i.e. QUp(K) ̸⊂ QUp+1(K). To see this: consider f(x, t) = x21+t

2 ∈ P2, ρ = 1 and G(x) = 1+x1 in a
neighbourhood K of (xK , tK) = (0, 0), then f satisfies □ρ,Gf = 2−2(1+x1) = −2x1, so □ρ,Gf(xK , tK) = 0
and ∂x□ρ,Gf(xK , tK) = −2, therefore f ∈ QU2(K) \QU3(K).

On the other hand, QUp(K) ∩ Pp−1(K) ⊂ QUp−1(K). Moreover, if ρ is constant, QU1(K) = P1(K) ⊂
QU2(K) = {f ∈ P2(K) : ∆f −G(xK , tK)∂2t f = 0}.

Removing the polynomials that conflict with nestedness reduces the convergence order. Indeed, for the
example above we have

QU2 = span
{
1, x, t, xt, x2 + t2

}
and QU3 = span

{
1, x, t, xt, x2 − xt2 + t2, 3xt2 + x3, t3 + 3x2t

}
.

If we take QU2
∗ = span{1, x, t, xt}, removing from QU2 the only element that is not in QU3, then we cannot

have |f − P |C0 ∼ r3 and |f − P |C2 ∼ r in a neighbourhood of (0, 0) for any P ∈ QU2
∗, because fxx, ftt ̸= 0

and Pxx = Ptt = 0.
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Remark 4.4. One could define a more general version of the space QUp by imposing the vanishing of the
derivatives up to an arbitrary order:

QUp,q(K) :=
{
f ∈ Pp(K) | Di□ρ,Gf(xK , tK) = 0, ∀|i| ≤ q − 2

}
, p, q ∈ N.

For these spaces we have the inclusions QUp,q+1(K) ⊂ QUp,q(K) ⊂ QUp+1,q(K) and QUp,p(K) = QUp(K).
However, let us now motivate why the choice q = p is preferable.

• For q < p the space QUp,q(K) is larger than QUp(K), but since QUp,q(K) ⊂ Pp(K) it does not offer
better h-convergence rates than those showed in Proposition 4.2 for QUp(K). Moreover, it does not
serve as a generalisation of a Trefftz space any more. Indeed, in the case of constant ρ and G the
inclusion Up(K) := {f ∈ Pp(K) : □ρ,Gf = 0 in K} ⊂ QUp,q(K) is always true, nevertheless the
identity Up(K) = QUp,q(K) holds if and only if q ≥ p.

• For q > p the space QUp,q(K) is too small and loses his favorable approximation properties. Indeed,
take n = 1, ix = p− 1, it = 0 and ρ = 1. Then, for a solution f of □1,Gf = 0 we have that

∂ixx ∂
it
t □1,GT

p+1
K [f ](xK , tK)

(19)
=

⎛⎝∂p+1
x T p+1

K [f ]−
ix∑

jx=0

ix!

jx!
gix−jx∂

jx
x ∂

2
t T

p+1
K [f ]

⎞⎠ (xK , tK)

= −
p−2∑
jx=0

ix!

jx!
gix−jx∂

jx
x ∂

2
t T

p+1
K [f ](xK , tK)

(
T p+1
K [f ] ∈ Pp(K)

)
(16)
= −

p−2∑
jx=0

ix!

jx!
gix−jx∂

jx
x ∂

2
t f(xK , tK)

(19)
=

(
∂ixx ∂

it
t □1,Gf  
=0

−∂p+1
x f + g0∂

p−1
x ∂2t f

)
(xK , tK)

= ∂p−1
x

(
(g0 −G)∂2t f

)
(xK , tK) (∂2xf = G∂2t f)

̸= 0, in general.

Therefore, T p+1
K [f ] /∈ QUp,p+1(K), which contradicts the essential property used in the proof of Propo-

sition 4.2 to prove the approximation properties of the space.

Moreover, for q > p the dimension of QUp,q(K) depends on the functions ρ and G (is equal to dimUp(K)
for constant ρ, G and smaller in general), while we see in the following that dimQUp(K) is independent
of G.

Hence, the choice q = p yields the smallest subspace of Pp(K) in this class that offers the same h-
convergence rates of Pp(K) itself, when approximating solutions of □ρ,Gu = 0.

4.3 Global quasi-Trefftz space and DG convergence bounds

We use the local spaces QUp(K) to define a discrete space for the DG scheme of §3.3. Recall that QUp(K)
was constructed for the second-order scalar wave equation, while the DG scheme addresses the first-order
system. A global quasi-Trefftz discrete space can be defined as

QWp(Th) :=
{
(w, τ ) ∈ H(Th) : w|K = ∂tu, τ |K = −1

ρ
∇u, u ∈ QUp+1(K)

}
, p ∈ N0. (23)

The elements of QWp(Th) are products of vector polynomials of degree at most p and the datum function 1
ρ .

For general ρ they are non-polynomial fields, however, as we explain in §4.4, a quasi-Trefftz implementation
only requires the definition and the manipulation of a basis of QUp+1(K), for each K, which is a space of
polynomials.

Following again [23], for each element K ∈ Th we introduce a notation for the space-like and the
time-like parts of its boundary and three related coefficients:

ρK := inf
K
ρ,

∂spaceK :=∂K ∩ (F space
h ∪ F0

h ∪ FT
h ), ∂timeK := ∂K ∩ (F time

h ∪ FD
h ∪ FN

h ∪ FR
h ),
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ξtime
K :=max

{
∥2cρα∥L∞(∂K∩(Ftime

h ∪FD
h )) + ∥cρ/β∥L∞(∂K∩(Ftime

h ∪FN
h )) ,

∥2β/(cρ)∥L∞(∂K∩(Ftime
h ∪FN

h )) + ∥1/(cρα)∥L∞(∂K∩(Ftime
h ∪FD

h )) , (24)

∥(1− δ)cϑ∥L∞(∂K∩(FR
h )) , ∥δ/(cϑ)∥L∞(∂K∩(FR

h ))

}
,

ξspaceK :=
ntK(

2(1− γ)−1 + 1
)

L∞(∂spaceK)
,

ξK :=max{ξtime
K , ξspaceK },

with γ as defined in (5). The dimensionless coefficients ξ•K measure the impact of the choices made in a
concrete implementation of the DG scheme – in terms of the numerical flux parameters and the element
shapes – on the convergence bounds of Theorem 4.5. If ρ,G ∈ C0(Ω) and

α = β−1 = (ρc)−1 = Gc=

√
G

ρ
, δ =

c2ϑ2

1 + c2ϑ2
, (25)

then ξtime
K = 3 while ξspaceK only depends on the maximal slope of the space-like faces of K and on c. If

all faces of K are either aligned with or perpendicular to the time axis, i.e. nt ∈ {0, 1}, then ξspaceK = 3 as
well.

We measure mesh regularity by fixing a dimensionless parameter η > 0 such that

rK,c

(
|∂Kspace| ∥c∥−1

C0(K) + |∂Ktime|
)
≤ η|K| ∀K ∈ Th. (26)

Remark 4.9 gives more details about η in the case of cuboidal elements.
The next theorem gives error bounds for the quasi-Trefftz space–time DG scheme (7). In particular,

the ||| · |||DG norm of the Galerkin error converges in the mesh size (measured by rK,c as in (4)) with rate
p+ 1/2.

Theorem 4.5. Let u ∈ C1(Q) ∩ Cp+2(Th), for some p ∈ N0, be solution of the IBVP (2) with ρ ∈
C0(Ω)∩Cmax{p−1,1}(Th) and G ∈ C0(Ω)∩Cmax{p−2,0}(Th) and (v,σ) = (∂tu,− 1

ρ∇u) be the corresponding

solution to the IBVP (1). Let (vhp,σhp) be the solution of the DG formulation (7) with the discrete space
Vhp(Th) = QWp(Th). Assume that each mesh element K is star-shaped with respect to its centre point
(xK , tK). Then,

1

2

c−1(v − vhp)

L2(FT

h )
+

1

2
∥σ − σhp∥L2(FT

h )n (27)

≤ |||(v,σ)− (vhp,σhp)|||DG

≤ (1 + CA)
(n+ 1)p

p!

( ∑
K∈Th

|K|
[(
η ∥c∥C0(K) ξK + µK−rK,c

) (n+ 1)3rK,c

ρK(p+ 1)2

+ µK+

c2ρ−1

C0(K)

(
2(n+ 1) +

(n+ 1)2

(p+ 1)2
|ρ|2C1(K) ρ

−2
K r2K,c

)]
r2pK,c |u|

2
Cp+2

c (K)

)1/2

.

The values of CA, µK±, ρK , ξK and η are defined in equations (13), (6), (24) and (26), respectively. If
the numerical flux parameters are set according to (25) and all space-like faces are perpendicular to the
time axis, then ξK = 3.

If moreover the volume penalty parameters are chosen as

µ1|K = µ2|K = rK,c ∥c∥−1
C0(K) ∀K ∈ Th, (28)

then the right-hand side of the estimate (27) can be bounded by

(1 + CA)
|Q|1/2(n+ 1)p+3/2

p!
sup
K∈Th

(∥c∥1/2C0(K)

ρ
1/2
K

[
η ξK

(p+ 1)2
+ 2 +

|ρ|2C1(K) r
2
K,c

(p+ 1)2ρ2K

]1/2
r
p+1/2
K,c |u|Cp+2

c (K)

)
. (29)

Proof. We first recall that the ||| · |||DG+ norm in (9) differs from the analogous one in [23] only by the
presence of the volume terms, the coefficients ρ,G and the incorporation of c in ϑ on FR

h . Then, the first
step in the proof of [23, Thm. 2] allows to control the ||| · |||DG+ norm of any (possibly discontinuous)
(w, τ ) ∈ C1(Th) by local norms:

|||(w, τ )|||2DG+
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≤
∑

K∈Th

[
ξspaceK

(G1/2w
2
L2(∂spaceK)

+
ρ1/2τ2

L2(∂spaceK)n

)
+ ξtime

K

(c1/2G1/2w
2
L2(∂timeK)

+
c1/2ρ1/2τ2

L2(∂timeK)n

)
+
µ−1/2

1 G1/2w
2
L2(K)

+
µ−1/2

2 ρ1/2τ
2
L2(K)n

+
µ1/2

1 G−1/2(∇ · τ +G∂tw)
2
L2(K)

+
µ1/2

2 ρ−1/2(∇w + ρ∂tτ )
2
L2(K)n

]
≤

∑
K∈Th

[(
ξspaceK |∂spaceK|+ ξtime

K ∥c∥C0(K) |∂
timeK|+ µK−|K|

)(G1/2w
2
C0(K)

+ n
ρ1/2τ2

C0(K)n

)
+ |K|µK+

(G1/2∂tw
2
C0(K)

+ n
ρ−1/2∇w

2
C0(K)n

+ n
ρ1/2∂tτ2

C0(K)n
+
G−1/2∇ · τ

2
C0(K)

)]
,

recalling that ρG = c−2. For (w, τ ) = (∂tz,− 1
ρ∇z) we control the norms at the right-hand side with the

weighted Cm
c (K) norms of z defined in (20):G1/2w
2
C0(K)

+ n
ρ1/2τ2

C0(K)n
≤ ρ−1

K

(c−1∂tz
2
C0(K)

+ n ∥∇z∥2C0(K)n

)
≤ ρ−1

K (n+ 1) |z|2C1
c (K) ,G1/2∂tw

2
C0(K)

+ n
ρ−1/2∇w

2
C0(K)n

+ n
ρ1/2∂tτ2

C0(K)n
+
G−1/2∇ · τ

2
C0(K)

≤
G1/2∂2t z

2
C0(K)

+ 2n
ρ−1/2∇∂tz

2
C0(K)n

+

G−1/2 1

ρ
∆z

2
C0(K)

+

G−1/2 1

ρ2
∇ρ · ∇z

2
C0(K)

≤
c2ρ−1


C0(K)

(c−2∂2t z
2
C0(K)

+ 2n
c−1∇∂tz

2
C0(K)n

+ ∥∆z∥2C0(K) + |ρ|2C1(K) ρ
−2
K |z|2C1

c (K)

)
≤

c2ρ−1

C0(K)

(
2(n+ 1) |z|2C2

c (K) + |ρ|2C1(K) ρ
−2
K |z|2C1

c (K)

)
.

Now we use the quasi-optimality (14), the relation between the discrete spaces QUp+1(K) and QWp(Th),
the assumption (v,σ) = (∂tu,− 1

ρ∇u), the local best-approximation bound (22), the definition of η (26):

1

(1 + CA)2
|||(v,σ)− (vhp,σhp)|||2DG

(14)

≤ inf
(whp,τhp)∈QWp(Th)

|||(v,σ)− (whp, τhp)|||2DG+

(23)
= inf

uhp∈
∏

K∈Th
QUp+1(K)

|||
(
∂t(u− uhp),−

1

ρ
∇(u− uhp)

)
|||2DG+

≤ inf
uhp∈

∏
K∈Th

QUp+1(K)

∑
K∈Th

[(
ξspaceK |∂spaceK|+ ξtime

K ∥c∥C0(K) |∂
timeK|+ µK−|K|

)n+ 1

ρK
|u− uhp|2C1

c (K)

+ |K|µK+

c2ρ−1

C0(K)

(
2(n+ 1) |u− uhp|2C2

c (K) + |ρ|2C1(K) ρ
−2
K |u− uhp|2C1

c (K)

)]
(22)

≤ (n+ 1)2p

(p!)2

∑
K∈Th

[(
ξspaceK |∂spaceK|+ ξtime

K ∥c∥C0(K) |∂
timeK|+ µK−|K|

) (n+ 1)3r2K,c

ρK(p+ 1)2

+ |K|µK+

c2ρ−1

C0(K)

(
2(n+ 1) +

(n+ 1)2

(p+ 1)2
|ρ|2C1(K) ρ

−2
K r2K,c

)]
r2pK,c |u|

2
Cp+2

c (K)

(26)

≤ (n+ 1)2p

(p!)2

∑
K∈Th

|K|
[(
η ∥c∥C0(K) ξK + µK−rK,c

) (n+ 1)3rK,c

ρK(p+ 1)2

+ µK+

c2ρ−1

C0(K)

(
2(n+ 1) +

(n+ 1)2

(p+ 1)2
|ρ|2C1(K) ρ

−2
K r2K,c

)]
r2pK,c |u|

2
Cp+2

c (K) .

Under assumption (28) the last expression is bounded by

(n+ 1)2p

(p!)2

∑
K∈Th

|K|
∥c∥C0(K)

ρK

[
(η ξK + 1)

(n+ 1)3

(p+ 1)2
+ 2(n+ 1) +

(n+ 1)2

(p+ 1)2

|ρ|2C1(K) r
2
K,c

ρ2K

]
r2p+1
K,c |u|2Cp+2

c (K)
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≤ |Q|(n+ 1)2p+3

(p!)2
sup
K∈Th

(∥c∥C0(K)

ρK

[
η ξK

(p+ 1)2
+ 2 +

|ρ|2C1(K) r
2
K,c

(p+ 1)2ρ2K

]
r2p+1
K,c |u|2Cp+2

c (K)

)
,

where we used that
∑

K∈Th
|K| = |Q|. Estimates (27) and (29) follow taking square roots.

Theorem 4.5 immediately extends to quasi-Trefftz discrete spaces Vhp(Th) with different polynomial
degrees in each mesh elements.

Remark 4.6 (Relevance of µ2). When the discrete space is taken as Vhp(Th) = QWp(Th), the choice of
the parameter µ2 is immaterial because of the vanishing of the term in A(·; ·) it multiplies. On the other
hand, the assertion of Theorem 4.5 holds also for the space Vhp(Th) = QTp(Th) (defined below in §4.5),
and in this case µ2 needs to be chosen as in (28).

Remark 4.7 (Error analysis in Cm and Sobolev spaces). In Proposition 4.2 and Theorem 4.5 we study
approximation properties of quasi-Trefftz functions and convergence rates of the corresponding DG scheme
using Cm(K)-type spaces. To allow the treatment of less regular solutions, a study using classical Sobolev
norms Hm(K) (possibly weighted with the wavespeed similarly to (20) above and [23, eq. (37)]) is needed.
While the bulk of the proof of Theorem 4.5 immediately extends to this case, the best-approximation bound
of Proposition 4.2, which is the key ingredient, does not. Indeed, the discrete spaces QUp(K) and QWp(Th)
are defined from pointwise expansions of the solutions, while typical approximation estimates in Sobolev
norms (such as Bramble–Hilbert theorem) require some integral averaging over a subset of the element K.
This technique is not helpful in our setting: “averaged Taylor polynomials” [23, p. 421] of solutions of
variable-coefficient PDEs are not quasi-Trefftz polynomials.

Moreover, the technique used in [23, §6] to prove Trefftz best-approximation estimates in Sobolev spaces
for piecewise-constant coefficients relies on an affine transformation of K whose pull-back transforms the
wave equation into its copy with unit speed (see the proof of [23, Corollary 3]). The element K is assumed
to be star-shaped with respect to the ellipsoid that is the counterimage of a ball under this transformation;
the parameters defining this ellipsoid have an important role in the approximation bounds. In the setting
considered here, instead, the corresponding transformation of K is not affine, the set obtained is not an
ellipsoid but a more complicated shape, and the pull-back would not preserve polynomials. All these reasons
prevent a straightforward extension of the theory of [23, §6.1.2, 6.2.3] to the smooth wavespeed case.

On the other hand, the regularity theory for the wave equation shows that point singularities generated
by domain corners and by discontinuities in the derivatives of the material coefficients do not propagate in
space, [21,25,27]. Thus we expect that smooth initial and boundary data give piecewise-smooth solutions, to
which the error analysis of this section applies. A complete regularity theory for piecewise-smooth domains
and coefficients is still missing, to our knowledge.

In §5.6 we study numerically an IBVP with initial datum u0 ∈ H2(Ω) \ C2(Ω), approximated with
Vhp(Th) = QW0(Th). We observe linear convergence in the final-time error (see also Remark 4.8) sug-
gesting that the result of Theorem 4.5 holds also with u ∈ Cp(Th) replaced by u ∈ Hp(Th).

Remark 4.8 (Rate optimality in DG and final-time norms). Despite the use of Cm spaces in the analysis,

the convergence rates in ||| · |||DG norm for a given polynomial degree are optimal: compare the term r
p+1/2
K,c

in (29) and the term h
mK+1/2
K in [23, eq. (46)] (with hK ≈ 2rK,c, mK = p). On the other hand, the solution

regularity required is stronger.
On the contrary, the convergence rates at final time (i.e. in ∥·∥L2(FT

h ) norm) proved in Theorem 4.5 are

suboptimal by half power of the mesh size. In Figures 6 (left) and 7 (left) we observe numerically that this
is only a shortcoming of the proof: on quasi-uniform meshes (either Cartesian-product or tent-pitched),c−1(v − vhp)


L2(FT

h )
+∥σ − σhp∥L2(FT

h )n = O(rp+1
K,c ) as opposed to the rate O(r

p+1/2
K,c ) expected from (27)

and (29). In order to prove optimal-rate bounds, a suitable duality argument needs to be devised; in the
setting of space–time Trefftz-DG schemes, a special duality argument for error bounds on mesh-independent
norms has been devised in [23, §5.4] but it does not immediately allow for ∥·∥L2(FT

h ) norms.

A more sophisticated treatment of corner singularity in polygonal domains using weighted Sobolev spaces
is done in [3].

Remark 4.9 (Value of η for a cuboid). Condition (26) is a condition on the “chunkiness” of the mesh
elements. For instance, if all elements are translated copies of the Cartesian product (0, Lx)

n × (0, Lt)
between a space segment/square/cube and a time interval, the centres (xK , tK) are their barycentres, and
c is constant in K, then

|K| = Ln
xLt, |∂Kspace| = 2Ln

x, |∂Ktime| = 2nLn−1
x Lt, rK,c =

1

2

√
nL2

x + c2L2
t
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and η can be taken as ηcuboid := 2n
3
2 ( Lx

cLt
+ cLt

Lx
) since

2n
3
2

(
Lx

cLt
+
cLt

Lx

)
≥ n

3
2 (Lx + cLt)

2

cLxLt
≥

1
2

√
nL2

x + c2L2
t (2L

n
x + 2ncLn−1

x Lt)

cLn
xLt

=
rK,c(|∂Kspace|+ c|∂Ktime|)

c|K|
.

Thus η is minimal for “isotropic” cuboids with Lx = cLt.

4.4 Basis functions

Here, we describe the construction of basis functions for QUp(K); those for QWp(Th) can then obtained
simply by taking their appropriate partial derivatives.

To construct a basis of the quasi-Trefftz space QUp(K) space, we first choose two polynomial bases in
the space variable only:{

b̂J

}
J=1,...,(p+n

n )
basis for Pp(Rn), and

{
b̃J

}
J=1,...,(p−1+n

n )
basis for Pp−1(Rn).

Their total cardinality is

N(n, p) :=

(
p+ n

n

)
+

(
p− 1 + n

n

)
=

(p− 1 + n)! (2p+ n)

n! p!
.

We define the following N(n, p) elements of QUp(K):{
bJ ∈ QUp(K) |

bJ(·, tK) = b̂J and ∂tbJ(·, tK) = 0 for J ≤
(
p+n
n

)
,

bJ(·, tK) = 0 and ∂tbJ(·, tK) = b̃J−(p+n
n ) for

(
p+n
n

)
< J

}
J=1,...,N(n,p).

(30)

In the rest of this section we show that the elements bJ are well-defined, that they can be computed with
a simple algorithm, and that they constitute a basis of QUp(K).

Constructing the J-th basis function of (30) is equivalent to finding the set of coefficients (ak =
akx,kt

)k∈Nn+1
0 ,|k|≤p such that the polynomial

bJ(x, t) :=
∑

k∈Nn+1
0 ,|k|≤p

ak(x− xK)kx(t− tK)kt , ak =
1

k!
DkbJ(xK , tK),

fulfills the following system of equations⎧⎪⎨⎪⎩
Di□ρ,GbJ(xK , tK) = 0 J = 1, . . . , N(n, p), i ∈ Nn+1

0 , |i| ≤ p− 2,

bJ(·, tK) = b̂J and ∂tbJ(·, tK) = 0 J = 1, . . . ,
(
p+n
n

)
,

bJ(·, tK) = 0 and ∂tbJ(·, tK) = b̃J J =
(
p+n
n

)
+ 1, . . . , N(n, p).

(31)

The second and the third sets of equations assign the values of all akx,0 and akx,1. From (19) and since
Di((x− xK)kx(t− tK)kt) ̸= 0 at (xK , tK) if and only if i = k, the first equation in (31) – corresponding
to the

(
∂ixx ∂

it
t □ρ,GbJ

)
(xK , tK) term – reads

n∑
l=1

∑
jx≤ix+el

(jxl
+ 1)(ix + el)!it!ζix+el−jx

ajx+el,it −
∑

jx≤ix

ix!(it + 2)!gix−jx
ajx,it+2 = 0. (32)

This equation is used to compute the element with jx = ix in the last sum, since g0 = G(xK) > 0 its
coefficient is non-zero:

aix,it+2 = −
∑

jx<ix

gix−jx

g0
ajx,it+2 +

n∑
l=1

∑
jx≤ix+el

(ixl
+ 1)(jxl

+ 1) ζix+el−jx

(it + 2)(it + 1) g0
ajx+el,it , (33)

where the strict inequality j < i in the summation means that j ≤ i and j ̸= i. We compute these values
iteratively. We need to make sure that at every step of the iterations we use values already computed.

We note that the parameter functions ρ and G enters the computation of bJ only through their Taylor
coefficients at (xK , tK), i.e. the ζi and gi defined in (18).

One could also write the equations (32) as a linear system, where the right-hand side vector is given
by the known values of akx,0, akx,1, and solve it. However the recursive implementation appears simpler.

The next two sections describe in detail the iterative algorithm to compute the coefficients in the cases

n = 1 and n > 1, respectively. Possible choices of the space-only bases
{
b̂J

}
,
{
b̃J

}
are described in the

numerical results section 5.
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Proposition 4.10. The polynomials {bJ}J=1,...,N(n,p) defined by (31) (and computable with the algorithms
of §4.4.1–4.4.2) constitute a basis for the space QUp(K).

Proof. The algorithms described in §4.4.1–4.4.2 show that (31) uniquely defines the N(n, p) polynomials
bJ . The first set of conditions in (31) ensures that bJ ∈ QUp(K). The traces on {t = tK} of these

polynomials ensure that they are linearly independent: if
∑N(n,p)

J=1 cJbJ = 0 then, by (31)
∑(p+n

n )
J=1 cJ b̂J = 0

and
∑N(n,p)

J=(p+n
n )+1

cJ b̃J = 0, so cJ = 0 for all J because
{
b̂J

}
and

{
b̃J

}
are assumed to be linearly

independent.
Relation (33) holds not only for the elements of the basis, but for the monomial expansion of any

element of QUp(K). Then Algorithms 1 and 2 (which simply apply (33) following a precise ordering of the
multi-indices i) show that the Taylor coefficients in (xK , tK) of any f ∈ QUp(K) are uniquely determined
by the coefficients aix,0 and aix,1, and hence by f(·, tK) and ∂tf(·, tK). Since f(·, tK) ∈ Pp(Rn) and
∂tf(·, tK) ∈ Pp−1(Rn), f is linear combination of the {bJ}. Thus this set spans QUp(K) and we conclude
the proof.

From the proposition it follows that the conditions in the definition (21) of QUp(K) are linearly
independent:

dim
(
Pp(K)

)
−#{i ∈ Nn+1

0 | |i| ≤ p− 2} =

(
p+ n+ 1
n+ 1

)
−

(
p+ n− 1
n+ 1

)
= N(n, p) = dim

(
QUp(K)

)
.

Remark 4.11. Proposition 4.10 implies that

dim
(
QUp(K)

)
= N(n, p) =

⎧⎪⎨⎪⎩
2p+ 1 n = 1

(p+ 1)2 n = 2
1
6 (p+ 2)(p+ 1)(2p+ 3) n = 3

= Op→∞(pn).

For large polynomial degrees p, the dimension of the quasi-Trefftz space is much smaller than the dimension
of the full space–time polynomial space of the same degree: dim(Pp(K)) =

(
p+n+1
n+1

)
= Op→∞(pn+1) (recall

that K ⊂ Rn+1).
Proposition 4.2 shows that both spaces QUp(K) and Pp(K) have comparable h-approximation properties

when the function to be approximated is solution of the (variable-coefficient) wave equation. This is the
main advantage offered by Trefftz and quasi-Trefftz schemes: same approximation power for much fewer
degrees of freedom.

The dimension of QUp(K) is equal to the dimension of the Trefftz space of the same degree for the
constant-coefficient wave equation [23, §6.2.1], for the Laplace equation (i.e. the space of harmonic poly-
nomials in Rn+1 of degree ≤ p) and for the Helmholtz equation [11, §3] (the space of circular/spherical
and plane waves in Rn+1 with the same approximation order).

Similarly, dim(QWp(K)) = dim(QUp+1(K))− 1 = Op→∞(pn).

4.4.1 The construction of the basis functions: the case n = 1

We first describe the one-dimensional case for the sake of clarity.
For each basis function bJ we need to compute the coefficients akx,kt , kx, kt ∈ N0, kx+kt ≤ p; they are

represented by the dots constituting a triangular shape in the plan of indices (kx, kt) ∈ N2
0, as represented

on Figure 1. We recall that the coefficients {aix,0, 0 ≤ ix ≤ p}, and {aix,1, 0 ≤ ix ≤ p− 1}, represented by

the shaded area in the figure, are known from the choice of the “Cauchy data” bases
{
b̂J

}
,
{
b̃J

}
. Formula

(33) allows to compute aix,it+2 from similar coefficients ajx,it+2 with jx < ix and from coefficients ajx+1,it

for jx ≤ ix + 1. This suggests to proceed “diagonally”: i.e. to compute the values akx,kt
for kx + kt = ℓ

increasingly from ℓ = 2 to ℓ = p. On each of these diagonals (in gray in the figure) we compute the
values of akx,ℓ−kx

for decreasing kx. This means that we perform a double loop: in terms of the graphical
representation, the external loop moves away from the origin (↗) and the inner loop moves from the kx
axis to the kt axis (↖). This procedure is described in Algorithm 1.
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p

aix+2,it

aix,it+2

kx

kt

Cauchy

data

ix

it

Figure 1: Graphical representation of the algorithm used to compute a quasi-Trefftz basis function in the
case n = 1 (and p = 6), see §4.4.1. The function bJ is defined by the coefficients akx,kt corresponding
to the small circles ◦. The coefficients corresponding to the dots in the shaded area (kt ∈ {0, 1}) are
given by the “Cauchy data”, the second and third set of equations in (31). The first equation in (31)
for (ix, it) = (2, 2) relates the seven nodes depicted with a black dot • and is used to compute aix,it+2

(explicitly with (33)), corresponding to the node surrounded by a red circle ○. All these coefficients (in
the non-shaded region) are computed with formula (34) in a double loop: first across diagonals ↗, and
then along diagonals ↖.

Algorithm
Data: (gm)m∈N0

, (ζm)m∈N0
, xK , tK , p.

Choose polynomial bases
{
b̂J

}
,
{
b̃J

}
, fixing coefficients akx,0, akx,1.

For each J = 1, . . . , N(n, p) (i.e. for each basis function), we construct bJ as follows:
for ℓ = 2 to p (loop across diagonals ↗) do

for it = 0 to ℓ− 2 (loop along diagonals ↖) do
set ix = ℓ− it − 2 and compute

aix,it+2 = −
∑
jx<ix

gix−jx

g0
ajx,it+2 +

∑
jx≤ix+1

(ix + 1)(jx + 1) ζix+1−jx

(it + 2)(it + 1) g0
ajx+1,it (34)

end

end

bJ(x, t) =
∑

0<kx+kt≤p

akx,kt(x− xK)kx(t− tK)kt

Algorithm 1: The algorithm for the construction of bJ in the case n = 1, §4.4.1.

4.4.2 The construction of the basis functions: the case n > 1

Algorithm 2 extends Algorithm 1 to the general case n > 1. The main novelty is that for each value of
ℓ = |ix|+ it +2 and of it there are several coefficients aix,it to be computed, exactly one for each ix ∈ Nn

0

with |ix| = ℓ− 2− it, thus a further inner loop over ix is needed. Each coefficient of the innermost loop
can be computed independently of the others.

Figure 2 depicts the dependence between these coefficients, represented as integer-coordinate points in
the (ix, it) space for n = 2. The general coefficient, indicated by the red diamond, is computed with (35)
as linear combination of the coefficients corresponding to the black dots. The structure of the algorithm
ensures that, when a coefficient aix,it is computed, all the coefficients needed for the right-hand side of
(35) have already been computed.

17



kx1

kx2

kt

0

ix1

ix1 + 2
ℓ

it

it + 2

ℓ

Figure 2: Representation of Algorithm 2 to compute the coefficient aix,it of a quasi-Trefftz basis function
bJ for n = 2, p ≥ 5, ℓ = 7 and (ix, it) = (3, 1, 1). The coefficient a3,1,3, represented by the large red
diamond ♦, is computed with formula (35) from the twenty-six coefficients indicated by the black dots •.
The two yellow triangles in the planes kt = 0 and kt = 1 indicate the coefficients whose values are given by
the “initial conditions” b̂J and b̃J in the second and third equation of (31). To ensure that the right-end
side of (35) is well-defined for every (ix, it), Algorithm 2 computes the coefficients first looping through
triangles parallel to the one depicted in blue (which corresponds to stage ℓ = 7 of the loop), then through
horizontal planes, and finally along the horizontal segments determined by the intersection between the
two planes.

Algorithm
Data: (gm)m∈N0

, xK , tK , p.

Choose polynomial bases
{
b̂J

}
,
{
b̃J

}
, fixing coefficients akx,0, akx,1.

For each J = 1, . . . , N(n, p) (i.e. for each basis function), we construct bJ as follows:
for ℓ = 2 to p (loop across {|ix|+ it = ℓ− 2} hyperplanes, ↗) do

for it = 0 to ℓ− 2 (loop across constant-time hyperplanes ↑) do
for ix with |ix| = ℓ− it − 2 do

aix,it+2 = −
∑

jx<ix

gix−jx

g0
ajx,it+2 +

n∑
l=1

∑
jx≤ix+el

(ixl
+ 1)(jxl

+ 1) ζix+el−jx

(it + 2)(it + 1) g0
ajx+el,it ,

(35)
end

end

end

bJ(x, t) =
∑

|kx|+kt≤p

akx,kt
(x− xK)kx(t− tK)kt

Algorithm 2: The algorithm for the construction of bJ in the general case.

4.5 Quasi-Trefftz discrete spaces for the first-order problem

The quasi-Trefftz space QWp(Th) was defined in (23) from derivatives of solutions to the second-order
wave equation. Thus it offers high-order approximation properties only for solutions (v,σ) to IBVPs (1)
related to a solution u of the second-order IBVPs (2) by the relation (v,σ) = (∂tu,−∇u). We briefly
describe a larger discrete space suitable to approximate the general first-order IBVP (1).
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For p ∈ N0 and any mesh element K ∈ Th, we set

QTp(K) :=

{
(w, τ ) ∈ Pp(K)n+1

⏐⏐⏐ Di(∇w + ρ∂tτ )(xK , tK) = 0
Di(∇ · τ +G∂tw)(xK , tK) = 0

∀i ∈ Nn+1
0 , |i| ≤ p− 1

}
,

QTp(Th) :=
∏

K∈Th

QTp(K).
(36)

It is easy to check that if ρ is constant then QWp(Th) ⊂ QTp(Th). This implies that the convergence results
of Theorem 4.5 hold also with QTp(Th) in place of QWp(Th).

In the case of variable ρ, the proof of Proposition 4.2 immediately extends to the space QTp(K), leading
to the following result.

Proposition 4.12. For ρ,G ∈ Cmax{p−1,0}, (v,σ) ∈ Cp+1(K)n+1 with ∇v+ρ∂tσ = 0 and ∇·σ+G∂tv = 0
in K, star-shaped with respect to (xK , tK), the (vector) Taylor polynomial (w, τ ) = T p+1

K [(v,σ)] belongs
to QTp(K) and

max

{ |v − w|Cq
c (K)

|v|Cp+1
c (K)

,
|σ1 − τ1|Cq

c (K)

|σ1|Cp+1
c (K)

, . . . ,
|σn − τn|Cq

c (K)

|σn|Cp+1
c (K)

}
≤ (n+ 1)p+1−q

(p+ 1− q)!
rp+1−q
K,c 0 ≤ q ≤ p.

The same holds for the unweighted |·|Cq seminorms (with rK in place of rK,c).

Adapting the proof of Theorem 4.5 we obtain the following statement.

Proposition 4.13. Let (v,σ) ∈ C0(Q) ∩ Cp+1(Th), for some p ∈ N0, be solution of the IBVP (1) with
ρ,G ∈ C0(Ω)∩Cmax{p−1,1}(Th). Let (vhp,σhp) be the solution of the DG formulation (7) with the discrete
space Vhp(Th) = QTp(Th). Assume that each mesh element K is star-shaped with respect to its centre
point (xK , tK). Then,

|||(v,σ)− (vhp,σhp)|||DG

≤ (1 + CA)
(n+ 1)p

p!

( ∑
K∈Th

|K|
[
n
(n+ 1)2

(p+ 1)2

(
η ∥c∥C0(K) ξK + µK−rK,c

)
rK,c + 2nµK+ ∥c∥2C0(K)

]

·
(
∥G∥C0(K) ∥v∥

2
Cp+1

c (K) + ∥ρ∥C0(K) ∥σ∥
2
Cp+1

c (K)n

)
r2pK,c

)1/2

.

If moreover the volume penalty parameters are chosen as in (28), then the right-hand side of this estimate
can be bounded by

(1 + CA)
|Q|(n+ 1)p+3/2

p!

· sup
K∈Th

(
∥c∥C0(K)

( ηξK
(p+ 1)2

+ 2
)(

∥G∥C0(K) ∥v∥
2
Cp+1

c (K) + ∥ρ∥C0(K) ∥σ∥
2
Cp+1

c (K)n

))1/2

r
p+1/2
K,c .

Given any basis
{
b̃J(x)

}
J=1,...,(p+n

n )
of Pp(Rn), we can define a basis for QTp(K) as

{
bJ,l(x, t) ∈ QTp(K) such that

bJ,0(x, tK) =
(
b̃J(x),0

)
,

bJ,l(x, tK) =
(
0, b̃J(x)el

)
, l = 1, . . . , n

}
J=1,...,(p+n

n ); l=0,...,n

.

To compute explicitly a basis element bJ,l from b̃J , we expand it in monomials:

bJ,l(x, t) =
∑

k∈Nn+1
0 , |k|≤p

ak(x− xK)kx(t− tK)kt , l = 0, . . . , n, for
{
ak = ak(J, l)

}
|k|≤p

∈ Rn+1.

We index the components of the field b(x, t) = bJ,l(x, t) from b0(x, t) to bn(x, t), and write similarly
ak = (a0k, . . . , a

n
k). Space–time multi-indices are split as previously in space and time parts k = (kx, kt).

Then the conditions corresponding respectively to Di
(
∂xλ

b0 + ρ∂tb
λ
)
(xK , tK) for λ from 1 to n, namely
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the components of the vector-valued constraint, andDi
(∑n

λ=1 ∂xλ
bλ+G∂tb

0
)
(xK , tK), namely the scalar-

valued constraint, in the definition (36) of QTp(K) can be written in terms of coefficients as

0 =(ix + eλ)!it!a
0
(ix+eλ,it)

+
∑

jx≤ix

ix!(it + 1)!ζix−jx
aλ(jx,it+1), λ = 1, . . . , n,

0 =

n∑
λ=1

(ix + eλ)!it!a
λ
(ix+eλ,it)

+
∑

jx≤ix

ix!(it + 1)!gix−jx
a0(jx,it+1).

Then b = bJ,l ∈ QTp(K) if and only if its coefficients satisfy the recurrence relations

a0(ix,it+1) = −
n∑

λ=1

ixλ
+ 1

g0(it + 1)
aλ(ix+eλ,it)

−
∑

jx<ix

gix−jx

g0
a0(jx,it+1),

aλ(ix,it+1) = − ixλ
+ 1

(it + 1)ζ0
a0(ix+eλ,it)

−
∑

jx<ix

ζix−jx

ζ0
aλ(jx,it+1), λ = 1, . . . , n.

The coefficients aλ(kx,0)
, λ = 0, . . . , n, |kx| ≤ p, are known from the comparison with the space-only basis

element b̃J . All the other coefficients aλk can be computed with a double loop: first over |k| = 1, . . . , p,
and then over kt = 1, . . . , |k|, similarly to Algorithms 1–2. The procedure is described in Algorithm 3.

It is possible to verify that the bJ,l constitute a basis of QTp(K) following the lines of the proof of
Proposition 4.10. It follows that

dim
(
QTp(K)

)
= (n+ 1)

(
p+ n

n

)
=

(n+ 1)(p+ 1)

2p+ 2 + n

(
dim

(
QWp(K)

)
+ 1

)
= Op→∞(pn).

Algorithm
Data: (gm)m∈N0

, xK , tK , p.

Choose polynomial basis {b̃J}, fixing coefficients aλkx,0
.

For each J = 1, . . . , N(n, p) and l = 0, . . . , n, we construct bJ,l as follows:
for ℓ = 1 to p (loop across {|ix|+ it = ℓ− 1} hyperplanes, ↗) do

for it = 0 to ℓ− 1 (loop across constant-time hyperplanes ↑) do
for ix with |ix| = ℓ− it − 1 do

a0(ix,it+1) = −
n∑

λ=1

ixλ
+ 1

g0(it + 1)
aλ(ix+eλ,it)

−
∑

jx<ix

gix−jx

g0
a0(jx,it+1),

aλ(ix,it+1) = − ixλ
+ 1

(it + 1)ζ0
a0(ix+eλ,it)

−
∑

jx<ix

ζix−jx

ζ0
aλ(jx,it+1), λ = 1, . . . , n.

end

end

end

bJ,l(x, t) =
∑

k∈Nn+1
0 , |k|≤p

ak(x− xK)kx(t− tK)kt

Algorithm 3: The algorithm for the construction of bJ,l in the general case.

5 Numerical experiments

We present some numerical test results in one and two space dimensions. The quasi-Trefftz DG scheme
has been implemented in NGSolve, see [30]. Except for the last example, we consider the initial boundary
value problem (2) with Dirichlet boundary conditions only, i.e. ΓN = ΓR = ∅. In Sections 5.1 to 5.4 we
will assume ρ ≡ 1 and test our method with the following wavespeed parameters G, exact solutions u,
and space–time domain Q:

n = 1, G(x) = x+ 1, u(x, t) = Ai(−x− 1) cos(t), Q = (0, 5)2, (37a)

n = 2, G(x1, x2) = x1 + x2 + 1, u(x1, x2, t) = Ai(−x1 − x2 − 1) cos(
√
2t), Q = (0, 1)3, (37b)
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n = 2, G(x1, x2) = (x1 + x2 + 1)−2, u(x1, x2, t) = (x1 + x2 + 1)ae−
√
2
√

a(a−1)t, Q = (0, 1)3. (37c)

Here Ai is the Airy function, which fulfills Ai′′(x) = xAi(x), and we choose a = 2.5 in (37c). The
corresponding wavespeeds c(x) range respectively in the intervals [

√
1/6, 1] ≈ [0.41, 1], [

√
1/3, 1] ≈ [0.58, 1]

and [1, 3] for the three problems (37). Then, the solution of the first-order wave equation is given by
(v,σ) = (∂tu,−∇u). In §5.5 we consider ρ to be non-constant, testing with the exact solution given by

n = 1, G(x) = x2 − 2, ρ(x) = x−2 u(x, t) =
sin(x)− x cos(x)

x2
cos(t), Q = (2, 3)× (0, 1), (37d)

with the first-order system solution given by (v,σ) = (∂tu,− 1
ρ∇u).

To construct the quasi-Trefftz basis we pre-compute coefficients of 1
ρ and G’s Taylor expansion (18)

at the centre of each mesh element. We choose a monomial basis (scaled according to the element

size) for
{
b̂J

}
, and

{
b̃J

}
, as input of Algorithms 1–2. This is motivated by experiments described

in [28, §6.3], where monomials, chosen as initial basis for the construction of the standard Trefftz space,
outperformed Legendre and Chebyshev basis. Remarkably, if space–time mesh elements share the same
centre in space, namely xK , then the coefficients of the quasi-Trefftz basis functions are identical on both
elements, therefore they can be computed once and used on both elements.

The section continues as follows. In §5.1 we compare different choices for the penalisation coefficients.
The quasi-Trefftz discretisation is compared against a full polynomial space and a standard Trefftz space
in §5.2. In §5.3 we use a special type of space–time meshes allowing for semi-explicit time-stepping:
tent-pitched meshes. We show snapshots of the numerical approximation of a Gaussian pulse traveling
through a heterogeneous medium in §5.4. Finally, we study the behaviour of the quasi-Trefftz scheme for
a problem with variable mass density ρ in §5.5 and for a problem with a coarse solution (v0,σ0 /∈ C1(Ω))
in §5.6.

5.1 Volume penalisation and numerical flux parameters

In this experiment we consider different combinations of the numerical flux parameters α, β and the volume
penalisation coefficient µ1. We recall that for QWp(Th) the choice of the parameter µ2 is irrelevant (see
Remark 4.6). Furthermore, we use Dirichlet boundary conditions, thus δ does not appear. We compare
the choices for the parameters given in (25) and (28) against setting them to zero. (The case α = β = 0
was investigated in [7,18,20] for the Maxwell equations with constant coefficients, even though in this case
the DG scheme is not guaranteed to be well-posed.) We fix p = 4 and a sequence of Cartesian meshes in
1+1 dimensions with square space–time mesh elements K = (xK − h

2 ,xK + h
2 ) × (tK − h

2 , tK + h
2 ), and

compare against the exact solution (37a) (which can be seen in Figure 5).

µ1 = 0, p = 4, problem (37a)

α = 0, β = 0 α = c−1, β = 0 α = 0, β = c α = c−1, β = c

h DG-error rate DG-error rate DG-error rate DG-error rate

2−3 2.0× 10−6 0. 2.5× 10−6 0. 2.7× 10−6 0. 3.1× 10−6 0.
2−4 8.9× 10−8 4.50 1.1× 10−7 4.49 1.2× 10−7 4.49 1.4× 10−7 4.49
2−5 3.9× 10−9 4.50 4.8× 10−9 4.50 5.4× 10−9 4.49 6.1× 10−9 4.49
2−6 1.7× 10−10 4.50 2.1× 10−10 4.50 2.4× 10−10 4.50 2.7× 10−10 4.50

Table 1: Errors committed by the quasi-Trefftz DG method for different combinations of the numerical
flux parameters and vanishing volume penalisation coefficient.

The results are shown in Tables 1 and 2. The errors are measured in the ||| · |||DG norm (9). We observe
optimal convergence in all cases, despite vanishing jump- or volume-penalisation term. Even though the
volume penalisation term is needed for the well-posedness proof in Theorem 3.2, in this example it is not
necessary for the discrete problem to be well-posed and for the numerics to converge with optimal rate.
In this example, the choices suggested by the analysis (shown in the last column of Table 2) result in
a slightly larger error: this is because some of the terms on time-like faces in the ||| · |||DG norm vanish
when α or β are set to zero. Similar behaviours were observed for the wave equation in [19, Fig. 6], for
the Helmholtz equation in [9, Fig. 7–8] (concerning the flux parameters) and in [15, §5.1] (concerning the
volume penalisation parameter).
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µ1|K = rK,c ∥c∥−1
L∞(K), p = 4, problem (37a)

α = 0, β = 0 α = c−1, β = 0 α = 0, β = c α = c−1, β = c

h DG-error rate DG-error rate DG-error rate DG-error rate

2−3 2.1× 10−6 0. 2.5× 10−6 0. 2.8× 10−6 0. 3.1× 10−6 0.
2−4 9.0× 10−8 4.53 1.1× 10−7 4.51 1.2× 10−7 4.50 1.4× 10−7 4.50
2−5 4.0× 10−9 4.51 4.8× 10−9 4.50 5.4× 10−9 4.50 6.1× 10−9 4.50
2−6 1.7× 10−10 4.50 2.1× 10−10 4.50 2.4× 10−10 4.50 2.7× 10−10 4.50

Table 2: Errors committed by the quasi-Trefftz DG method for different combinations of the numerical
flux parameters and positive volume penalisation coefficient.

The O(hp+1/2) convergence rates observed coincide with those proved in the bound (29). If, instead
of using the ||| · |||DG norm, we measure the error at final time only, specifically in the L2(Ω × {T})
norm for both the v and the σ components, we obtain O(hp+1) convergence rates (we do not report
the values here), i.e. they are half a power higher than those in the ||| · |||DG norm. The same half-
order difference has been observed for the non-Trefftz version of the same method and c = 1 in Table 1
of [3]; see also the considerations after Proposition 6.5 therein. Moreover, being the L2(Ω × {T}) norm
parameter-independent, the errors are slightly smaller for the flux parameter values suggested in (25).

5.2 Approximation properties of quasi-Trefftz spaces

We compare the numerical error for different choices of the discretisation spaces: the quasi-Trefftz space
QWp(Th) of (23), the first-order derivatives Yp(Th) of the full polynomial space, and the Trefftz space
Wp(Th), respectively defined by

Yp(Th) :=
{
(w, τ ) ∈ H(Th) : w|K = ∂tu, τ |K = − 1

ρ(xK)
∇u, u ∈ Pp+1(K), ∀K ∈ (Th)

}
, p ∈ N0,

Wp(Th) :=
{
(w, τ ) ∈ H(Th) : w|K = ∂tu, τ |K = − 1

ρ(xK)
∇u, u ∈ Pp+1(K),

−∇ ·
( 1

ρ(xK)
∇u

)
+G(xK) ∂2t u = 0 in K,∀K ∈ (Th)

}
.

The spaceWp(Th) is the Trefftz space (as in [23, §6.2]) for the approximated IBVP in which the parameters
ρ and G are substituted by elementwise-constant approximants. We have dimWp(Th) = dimQWp(Th),
Wp(Th) ⊂ Yp(Th), and, if ρ is constant, QWp(Th) ⊂ Yp(Th).

We consider the problems (37b) and (37c) in 2+1 dimensions and set initial and boundary conditions
accordingly. We use meshes that are Cartesian product between a spatial, quasi-uniform, unstructured,
triangular mesh in (0, 1)2 with spatial meshwidth h, and a uniform mesh in time with time-step ht ≈ h.
Therefore all elements are right triangular prisms and all their sides have comparable lengths. We set the
volume penalisation and numerical flux parameters to the values in (28) and (25), respectively. The errors
are measured in ||| · |||DG norm. The results are displayed in Figures 3 and 4.

Figure 3 focuses on (37c). The left panel plots the error against the mesh size for different values
of p: the quasi-Trefftz space and the full polynomial space show the same, optimal, rate of convergence
O(hp+1/2). The full polynomial space has a slightly smaller error throughout. The standard Trefftz space,
however, does not achieve convergence with the same rate, but the rate is instead limited by roughly
O(h2); this is due to the low-order (piecewise-constant) approximation of c in the construction of the
basis functions. The right panel of Figure 3 shows the error against the polynomial degree p for mesh
sizes h = 2−2, 2−3, 2−4. We observe exponential convergence for both the quasi-Trefftz space and the full
polynomial space. As expected, the standard Trefftz space does not lead to convergence in p because the
approximation of c does not improve with p-refinement.

In Figure 4 we switch to problem (37b) and plot (in the left panel) the error against the global
number of degrees of freedom, on a fixed mesh, for increasing polynomial degrees p. The continuous and
dashed lines correspond to two different mesh sizes, h = 2−3 and h = 2−4 respectively. The right panel
plots the same error against the computational time. These plots illustrate the power of the quasi-Trefftz
approach compared to the full polynomial approach, as discussed in Remark 4.11: for comparable numbers
of degrees of freedom the quasi-Trefftz method can achieve much higher accuracy. In this example the
accuracy improvement is up to about one and a half orders of magnitude, as observed when comparing
the errors and the number of degrees of freedom for QW4(Th) and Y3(Th).
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Figure 3: Comparison of different approximation spaces for problem (37c) as described in Section 5.2. Left
panel: h-convergence. Right panel: p-convergence; the three sets of curves correspond to h = 2−2, 2−3, 2−4.
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Figure 4: Left panel: comparison of different approximation spaces in terms of numbers of degrees of
freedom for problem (37b), as described in §5.2. The continuous lines correspond to a mesh with h = 2−3

and the dashed ones to h = 2−4. The nodes in each line correspond to polynomial degrees p = 1, 2, 3, 4.
Right panel: the same errors (for h = 2−4) plotted against the computational time, including calculating
the basis functions, assembly and solve. Both plots show that the quasi Trefftz space QWp(Th) allows
more efficient computations than the full polynomial space Yp(Th).

5.3 Tent-pitched meshes

The meshes used in all numerical examples in §5.1–5.2 are Cartesian products between a mesh in space
and one in time. Thus the numerical solution has to be computed simultaneously for all the elements
corresponding to the same time interval; this is analogous to an implicit time-stepping scheme.

We now discuss an alternative space–time meshing strategy: tent pitching. We call a mesh “tent-
pitched” if all interior faces are space-like according to the definition in (3). This implies that the numerical
solution in a given element K can be computed only from the numerical solutions on the elements that are
adjacent to K and lying “before” K, thanks to the causality constraint (represented in the DG formulation
(7) by the use of the v−hp and σ−

hp traces on F space
h ). The solution can be computed independently, and in

parallel, in several mesh elements and the solution procedure resembles an explicit time-stepping.
An example of a 1+1-dimensional tent-pitched mesh on Q = (0, 5) × (0, 5) can be seen in Figure 5.

This mesh is constructed for the wavespeed c(x) = (1 + x)−1/2 of problem (37a), thus the tents in the
right part of the domain are allowed to be “taller” than those on the left, i.e. to have longer extension in
the time direction, without violating the causality constraint of having slope bounded by c−1(x).

The algorithm used to produce the tent-pitched mesh used here can be found in [10]. A closer look
into the implementation of Trefftz functions on tent-pitched meshes is given in [28].

To optimize storage during the computations on a tent-pitched mesh we only need to store the solution
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Figure 5: A Cartesian-product mesh (left) and a tent-pitched mesh (right) on the domain Q = (0, 5)2.
Both show the solution u of problem (37a).

furthest in time. Therefore, in this section we measure the error at the final-time term in the definition
of the DG norm (9):

error(T ) =

(√G(·)
(
v(·, T )− vhp(·, T )

)2
L2(Ω)

+
√ρ(·)

(
σ(·, T )− σhp(·, T )

)2
L2(Ω)

)1/2

, (39)

with final time T = 1. We use tent-pitched meshes in 2+1 dimensions to approximate problem (37b).
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Figure 6: The final-time error against the number of degrees of freedom (left) and against the compu-
tational time (right) for the sequential solution of Problem (37b) on tent-pitched (continuous lines) and
Cartesian meshes (dashed lines).

We first compare the error committed on tent-pitched meshes against that on Cartesian-product meshes
(of the same kind of those in §5.2). For a fair comparison we plot the error in terms of the number of
degrees of freedom, for varying mesh sizes. On the left panel of Figure 6 we observe optimal convergence
rates of O(#dof−(p+1)/3) for both meshing strategies, which corresponds to O(hp+1). The Cartesian-
product mesh outperforms the tent-pitched mesh in terms of efficiency per degrees of freedom, due to
the fact that we need more tent elements to cover the same space–time volume. However, in terms of
computational time, shown in the right panel of Figure 6, the tents perform better since they do not
require the solution of any large linear system, even though in this comparison the solution is only solved
sequentially without any parallelisation.

Next we study the effect of parallelisation. We measure the speedup obtained by increasing the number
of threads, i.e. the maximum number of elements on which the solution is computed independently in
parallel. Now we consider problem (37c); the final-time error in terms of the mesh size is shown in the left
panel of Figure 7. The speedup in the computational time for 2, 4, 8 and 16 threads is shown in the right
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Figure 7: Left panel: the error on tent-pitched meshes for problem (37c). Right panel: the speedup in the
computational time for 2 to 16 threads.

panel of Figure 7. We observe that the speedup factor is quite close to the number of threads. The figure
shows that increasing the number of threads is beneficial only for moderate mesh sizes, as otherwise there
are not enough independent tents. All timings were performed on a server with two Intel(R) Xeon(R)
CPU E5-2687W v4, with 12 cores each.

5.4 Gaussian pulse in a non-homogenous medium

We illustrate the propagation of a vertical Gaussian pulse traveling through a medium with wavespeed
varying along the x2-direction, G(x1, x2) = 1 + x2. The initial conditions are given by

σ0(x1, x2) =
(
− 2x1

δ2
e−

x2
1

δ2 , 0
)
, v0(x) = 0 on Ω = (0, 1)2,

setting δ = 2−5. We choose homogeneous Neumann boundary conditions, a tent-pitched mesh as discussed
in the previous section, spatial mesh size h = 2−7 and polynomial degree p = 3. Snapshots of the solution
are shown in Figure 8. At T = 0 the initial condition is constant in x2-direction. In the next snapshot, at
T = 0.25, we can see the expected effects of the variable wavespeed: at the top of the domain, the wave
travels faster than at the bottom. At T = 0.5 the wavefront on the top side reaches the right border.
In the last image, at T = 0.75, we can see the wave being reflected from the right boundary. Boundary
effects due to the homogeneous Neumann boundary conditions at the top and bottom of the domain can
also be observed.

In Figure 9 we plot the energy (10) for different spatial mesh sizes h = 2−5, 2−6, 2−7. The energy is
computed at constant times t multiple of 0.0025 as E(t;w, τ ) := 1

2

∫
Ω
(Gw2+ρ|τ |2) dx, by forcing the tent

pitched mesh into slabs. As observed in §3.5, the method is dissipative. For h = δ = 2−5 there are not
enough elements to resolve the wave front with sufficient accuracy, and the energy dissipates very quickly.
For the two finer meshes the energy loss behaves much better; in particular for h = 2−7 only 0.076% of
the initial energy is lost at the final time T = 1.

Figure 8: Snapshots of the solution of the problem described in Section 5.4 at times 0, 0.25, 0.5, 0.75.
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Figure 9: The energy (10) of the numerical solution shown in Figure 8.

5.5 Variable mass density

We consider the setting given in Equation (37d). The exact solution is a first-order spherical Bessel
function in space, corresponding to smoothly varying G and ρ. We solve in 1+1 dimensions over the space
domain Ω = (2, 3) using uniform Cartesian-product meshes. The wavespeed c(x) = (ρG)−1/2 has range
[
√
8/7,

√
2].
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Figure 10: Numerical results for the approximation of the exact solution given in Equation (37d). Left
panel: h-convergence rates. Right panel: condition number.

µ1|K = 0, µ1|K = rK,c ∥c∥−1
L∞(K),

α = 0, β = 0 α = (ρc)−1, β = ρc

p DG-error L2-error condition DG-error L2-error condition

5 8.6× 10−11 1.8× 10−12 2.29× 107 4.0× 10−10 1.9× 10−12 4.24× 107

10 1.5× 10−13 2.6× 10−15 1.97× 1014 1.3× 10−13 5.4× 10−16 1.23× 1014

15 3.4× 10−12 4.4× 10−14 1.53× 1020 5.0× 10−12 5.9× 10−15 1.15× 1020

20 2.1× 10−10 8.8× 10−13 1.21× 1027 2.5× 10−10 2.2× 10−13 1.47× 1027

Table 3: Errors committed by the quasi-Trefftz DG method for different combinations of the numerical
flux parameters and volume penalisation coefficient.

In Figure 10 we present results for p = 2, 3, 4, and compare the quasi-Trefftz space and the full
polynomial space Yp. Penalisation and flux parameters are set to zero. We observe optimal convergence
rates in terms of h. Despite the fact that, comparing the condition numbers, the quasi-Trefftz space for
larger p performs worse than the full polynomial space, the performance of the two methods are very
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similar in terms of both convergence rate and error level, with a lower number of degrees of freedom
required for the quasi-Trefftz method.

We consider very large polynomial degrees p = 5, 10, 15, 20 on a uniform mesh with h = 2−3 and
ht ≈ h, for two choices of the penalisation and flux parameters: (i) all set to zero, and (ii) the choices in
(25) and (28). The results are given in Table 3, where we show the error in the ||| · |||DG norm and in
the L2(Q) norm, as well as the condition number of the system. Both cases show a similar behaviour: for
large p the condition number exceeds the inverse of machine precision and the error slightly deteriorates.
The choice α = β = µ1 = 0 shows better ||| · |||DG-error as several terms in the norm vanish, while in the
L2-norm choosing non-zero parameters gives a smaller error.

5.6 Non-smooth solution

We consider the IBVP (1) with a hat function as initial condition:

σ0(x) = v0(x) = max(0.25− |x|, 0), G(x) = (1 + x)−2, ρ = 1, on Ω = (−0.5, 0.5), (40)

such that u0(x) =
∫ x

σ0(y) dy ∈ H2(Ω) \ C2(Ω). We choose a Cartesian-product mesh, such as the one
on the left in Figure 5, with ht ≈ h. We use homogeneous Neumann boundary conditions and stop the
computations at T = 0.1, before the wave interacts with the boundary. We measure the error, as defined
in (39), at T = 0.1, against a reference solution computed on a very fine mesh with h = 2−12. Due to the
poor regularity of the initial condition, the order of convergence we can expect is limited to O(h) regardless
of the polynomial degree used. Therefore, we choose polynomial order p = 0, so that the quasi-Trefftz
space contains only piecewise-constant functions. Results are shown in Table 4, where we observe that
the rate of convergence tends to 1. This suggests that the convergence rates of Theorem 4.5 hold also for
solutions u ∈ Hp+2(Th) (as opposed to Cp+2(Th), recall Remark 4.7).

h error rate

2−6 2.0× 10−2 0
2−7 1.2× 10−2 7.3× 10−1

2−8 6.8× 10−3 8.2× 10−1

2−9 3.7× 10−3 8.8× 10−1

2−10 1.8× 10−3 1.0

Table 4: Errors committed by the quasi-Trefftz DG method for a non-regular solution with parameters as
in (40).

Figure 11: Solution of the first-order wave equation with initial conditions as in (40) on a mesh with
h = 2−10, with v shown on top and σ on the bottom.
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