N. T. Achenjang and J. S. Morrow (2023) “Integral Points on Varieties With Infinite Etale Fundamental Group,”
International Mathematics Research Notices, Vol. 00, No. 0, pp. 1-15
https://doi.org/10.1093/imrn/rnad147

Integral Points on Varieties With Infinite Etale Fundamental
Group

Niven T. Achenjang! and Jackson S. Morrow?*

'Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA and *Department of Mathematics, University
of California, Berkeley, Berkeley, CA 94720, USA

*Correspondence to be sent to: e-mail: jacksonmorrow@berkeley.edu

We study integral points on varieties with infinite étale fundamental groups. More
precisely, for a number field F and X/F a smooth projective variety, we prove that for
any geometrically Galois cover ¢: ¥ — X of degree at least 2 dim(X)?, there exists an
ample line bundle .Z on Y such that for a general member D of the complete linear
system |.Z|, D is geometrically irreducible and any set of ¢(D)-integral points on X is
finite. We apply this result to varieties with infinite étale fundamental group to give
new examples of irreducible, ample divisors on varieties for which finiteness of integral

points is provable.

1 Introduction

The main goal of this work is to provide new examples of irreducible divisors D on
varieties X over a number field F for which any set of D-integral points on X is finite.
We begin our discussion of integral points on varieties with the work of Siegel
[20]. To state his results, let F be a number field, let S be a finite set of places of F
containing the Archimedean places, let C be an affine curve over F embedded in affine
space A7, and let C be the projective closure of C. Siegel proved that if #(C \ C) > 2 over
F, then C has finitely many points in A™ (0 s). More generally, this result states that for
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a smooth projective curve C of genus g(E) over F, effective divisors Dy, ... D4 on C, and
D= Z?zl D;, any set of D-integral points on C is finite if 2 — 2g(C) — q is negative.

In [8], Corvaja and Zannier provided a new proof of Siegel’s theorem using
the Schmidt subspace theorem. Soon after, the same authors [6] extended their proof
technique to show that for X a smooth projective surface over F and D = Z?zl D; where
g > 4 and D, are distinct irreducible divisors such that no three share a common point
and pairs of them are subject to certain intersection product constraints, any set of D-
integral points on X is not Zariski dense. In the higher dimensional setting, the works
of Autissier [1, 2], Corvaja—Levin-Zannier [7], and Levin [16] proved that for X a smooth
projective variety of dimension n over F, if D,,...,D, are ample divisors such that at
most n of them contain a given point and D = 2?21 D;, then any set of D-integral points
on X is not Zariski dense once g is large enough relative to n. Morally, these results assert
that once a divisor D has enough irreducible components, which are in general position,
any set of D-integral points on X is not Zariski dense.

A natural follow-up question to these results is as follows:

Question 1. For which smooth projective F-varieties X, do there exist (geometrically)
irreducible divisors D on X for which one can prove non-density or finiteness of D-

integral points on X?

As mentioned above, Siegel’s theorem asserts that for a smooth projective curve
C of genus > 1 and any irreducible effective divisor D on C, any set of D-integral points
on C is finite. The most famous answer to Question 1 is supplied by Faltings [9, Corollary
6.2] where he proves that for A an abelian variety over F and D an ample divisor on A4,
any set of D-integral points on A is finite. Vojta [23, 24] extended these results to the
semi-abelian setting.

In [10], Faltings constructed a class of irreducible divisors D on P2 for which P?
has finitely many D-integral points. These divisors D are realized as the branch locus
of a suitably generic projection X — P? from a smooth surface X to P? and when
D is sufficiently singular, Faltings showed that D decomposes into many irreducible
components in the Galois closure of X — P2, The interest in these divisors stems from the
fact that finiteness of the D-integral points on P? cannot be deduced by embedding the
relevant varieties into semi-abelian varieties, even after a finite extension of P2, which is
unramified outside of D. Therefore, these examples provide genuinely new instances of
finiteness of integral points. In [16, Section 13], Levin removed an ampleness condition

from Faltings construction, which provided some improvements on Faltings result.
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Additionally, Zannier [25] continued the study of integral points on the complement in P"
of the branch locus of a generic projection and proved results concerning the dimension

of the Zariski closure of these integral points.

Main contributions

Our main contribution is an answer to Question ?? when the variety X has a geometrically
Galois cover of sufficiently large degree. We refer the reader to Section 2.1.2 for our con-
ventions regarding (geometrically) Galois covers and to Definition 2.1 for the definition

of arithmetically hyperbolic.

Theorem A. Let X be a smooth projective F-variety of dimension n > 2. Suppose that
¢: Y — X is a geometrically Galois cover of degree at least 2n?. Then, there exists an
ample line bundle .Z on Y such that for a general member D of the complete linear
system |.Z|, D is geometrically irreducible, ¢ (D) is ample, and X \ ¢(D) is arithmetically

hyperbolic; in particular, any set of ¢(D)-integral points on X is finite.

Abelian varieties of dimension > 2 have geometrically Galois covers of such
degree, and more generally varieties with infinite or large étale fundamental group
(Definition 2.3) possess such covers. We provide more examples of such varieties in

Example 2.6 and Example 2.8. As a corollary to Theorem A, we have the following.

Corollary 1. Let X be a smooth projective F-variety of dimension n > 2 with infinite
étale fundamental group. Then, there exist infinitely many irreducible, ample divisors
D on X such that X \ D is arithmetically hyperbolic; in particular, such that any set of
D-integral points is finite. If moreover X(F) # , then there are infinitely many such D

which are geometrically irreducible.

Our methods are founded in Diophantine approximation, and hence Vojta's

dictionary [22] allows us to deduce Nevanlinnan analogues of our arithmetic results.

Theorem B. Let X be a complex smooth projective variety of dimension n > 2. Suppose
that ¢: ¥ — X is a Galois cover of degree at least 2n?. Then, there exists an ample line
bundle .Z on Y such that for a general member D of the complete linear system |.Z|, D is

irreducible, ¢(D) is ample, and any holomorphic morphism C — X \ ¢ (D) is constant.

Corollary 2. Let X be a complex smooth projective variety of dimension n > 2 with
infinite fundamental group. Then, there exist infinitely many irreducible, ample divisors

D on X such that any holomorphic morphism C — X \ D is constant.
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4 N.T. Achenjang and J. S. Morrow

The proofs of Theorem A, Theorem B, and our subsequent corollaries reduce to
showing a purely algebro-geometric statement. To state this, let F denote an algebraic
closure of F, and for X a smooth projective F-variety of dimension n, let Xz denote
the base change of X to Spec(F). Our main results will follow if we can show that for
A C Aut(Xy), a finite set of automorphisms of X that acts freely on X (F), there exists
an effective, ample divisor D on X such that any point of X(F) is contained in at most
n of the divisors o(D), as o varies over A. We refer the reader to Corollary 3.5 for the
precise statement. Once we have proved this, our results follow from work of Levin [16]

and Heier-Levin [13] and properties of varieties with infinite étale fundamental group.

Organization

In Section 2, we establish conventions and recall relevant background on integral points
and varieties with infinite and large étale fundamental group. We prove our main results,

Theorem A and Theorem B, in Section 3.

2 Conventions and Preliminaries

In this section, we establish conventions we use throughout the work and recall some
definitions and concepts from algebraic geometry, integral points, and varieties with

infinite and large étale fundamental group.

2.1 Fields and algebraic geometry

We will use F to denote a number field and F'/F to denote a finite extension of F. Let My
denote the set of places of F. We also let K denote an arbitrary field of characteristic zero.
As usual, the notation F or K will refer to an algebraic closure of F or K, respectively.
A K-variety is a geometrically integral separated scheme of finite type over Spec(XK). For
K’/K, we will let X, denote the base change of X to Spec(K’).

2.1.1 Fundamental groups
Fix an embedding K < C. In this work, we will need two kinds of fundamental groups,
namely the topological fundamental group associated to the complex analytification of
X and the étale fundamental group of X.

For K a field of characteristic zero, X a smooth projective K-variety, and a geomet-
ric base point X: Spec(K) — Xz, we will write nfit(Xf, X) to denote the étale fundamental
group of Xz. We will largely ignore the base change and the base point notation and

simply denote this as nft(X). When X is a smooth projective complex variety with
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Varieties With Infinite Etale Fundamental Group 5

x: Spec(C) — X(C) a base point, we can consider the topological fundamental group
of the complex analytification, and we denote this fundamental group as nfc’p (X(C), x).

As before, we will normally ignore the base point from considerations.

2.1.2  Galois covers

Let X be a normal projective K-variety. We say that a K-variety Y is a finite étale cover of X
if there exists a finite étale morphism Y — X. For our purposes, a Galois cover of X refers
to the data of a projective normal variety Y defined over a finite extension K'/K and a
finite étale cover Y — Xj, such that there exists a finite group G and an actiono: GXY —
Y where the induced morphism o x pry: G XY — Y Xx., Y is an isomorphism. These
conditions imply that the action morphism « on Y(K) is free. Similarly, a geometrically
Galois cover of X is the data of a projective normal variety Y defined over K and a finite
étale cover Y — X such that Yz — Xz is a Galois cover. Note that, in contrast with our
notion of Galois covers, we require the morphism Y — X to be defined over K, but allow

for automorphisms defined over an extension of K.

2.2 Integral points and arithmetic hyperbolicity

Since our results are primarily concerned with integral points on varieties, we briefly
recall the construction of (D, S)-integral points on a normal projective F-variety X where
D is an effective Cartier divisor and S C My is a finite set of places of F containing
the Archimedean ones. Roughly speaking, (D, S)-integral points correspond to scheme-
theoretic O g-integral points on X'\ D. More precisely, a subset R C X(F)\ D is defined to
be a collection of (D, S)-integral points if there exist a global Weil function (Ap ;) ycpy, fOr
D such that for all v € M\ S, Ap ,(P) < O for all P € R. We will normally ignore the finite
set of places S from the notation and simply refer to (D, S)-integral points as D-integral
points. We refer the reader to [22, Section 1.4] for the definition of global Weil functions
and further discussion on integral points.

We will also use the notion of arithmetically hyperbolic from [13], which we recall

below.

Definition 2.1. Let X be a normal projective F-variety and D be an effective Cartier
divisor. We say that X \ D is arithmetically hyperbolic if for every number field F//F and
every finite set of places S of F’ containing the Archimedean ones, the sets of F'-rational

(D, S)-integral points on X are always finite.

€202 AINP G1 U0 10NB AQ 9GYEZZ /.| PEUIUIYEEOL 01/10P/3[0IJE-80UBADE/UILY WO dNO™dlWapese)/:Sdjjy Wolj papeojumoq



6 N.T. Achenjang and J. S. Morrow
2.3 Varieties with infinite and large étale fundamental group

To begin this section, we prove a lemma about the existence of Galois covers with
arbitrarily large degree for a normal projective K-variety such that Xz has infinite étale

fundamental group.

Lemma 2.2. Let X be a smooth projective K-variety such that Xz has infinite étale
fundamental group and X(K) # @. For any d > 1, there exists a geometrically Galois
cover Y — X (defined over K) of degree > d.

Proof. Since Xz has infinite étale fundamental group, there exists a finite étale cover
X' — Xy, of degree > d defined over some finite extension K’/K, which corresponds to a
quotient of nft(X) of cardinality > d. By taking Galois closures (see e.g., [21, Tag 0BN2)),
we may assume that X’ — X, is Galois. Then, [11, Proof of Lemma 5.2(1)] (see also [5])
shows how to construct a finite étale cover Z — X, defined over K, which is a K-form of

X;? — Xz, and so is a geometrically Galois of degree > d. [ |

A natural class of varieties with infinite étale fundamental group are provided
by varieties with large étale fundamental group in the sense of Kollar [15]. We recall the

definition below.

Definition 2.3. Let X be a normal projective K-variety. The étale fundamental group
of X is large if for any closed positive-dimensional integral subvariety ¥ of X with

normalization f: ¥ — Y, the image of the induced map 7¥(¥) — 7¥(X) is infinite.

Clearly, a variety with large étale fundamental group has an infinite étale

fundamental group, and hence we have an immediate corollary of Lemma 2.2.

Corollary 2.4. Let X be a smooth projective K-variety such that Xz has large étale
fundamental group and X(K) # @. For any d > 1, there exists a geometrically Galois
cover Y — X (defined over K) of degree > d.

Below, we describe examples of varieties with large étale fundamental group.

Relation to topological fundamental group of complex analytification
After fixing base points x € X(C), we have the group homomorphism

iy 1P (X(C), %) — 72X, %),
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which identifies the étale fundamental group with the profinite completion of the

topological one. Let X denote the topological cover of X(C) corresponding to ker(iy).

Proposition 2.5 ([15, Proposition 2.12.3], [4, Proposition 1.3]). Suppose that X is a proper
K-variety. Then the étale fundamental group of X is large if and only if the complex
analytic space X does not contain positive-dimensional compact complex analytic

subspaces.

Proposition 2.5 gives us a useful criterion for determining when a proper variety
has large étale fundamental group, and one particularly useful situation to consider is
when X is the universal cover of X(C), that is, when (4 is injective. We note that this holds
when nfc’p (X(0©), x) is linear, and this result allows us to identify two classes of proper

varieties with large étale fundamental group.

Example 2.6. The étale fundamental group of X is large when X is an abelian variety
and when X is the quotient of a bounded symmetric domain in C" by a torsion-free co-

compact lattice of its biholomorphism group.

Example 2.7. Any variety that admits a finite morphism to a variety with large étale

fundamental group will also have large étale fundamental group.

Example 2.8. Another source of varieties with large étale fundamental groups comes
from those which possess a large local system. Recall from [3], a local system £ on X(C)
with coefficients in some field is /arge if given any non-constant morphism f: ¥ — X with
Y a normal irreducible complex variety, the local system f*£ has infinite monodromy.
Moreover, the étale fundamental group of a complex variety carrying a large local system
is large.

It is well-known (see e.g., [3, Proposition 4.3]) that complex algebraic varieties
admitting a (graded-polarizable) variation of Z-mixed Hodge structure with finite

period map have a large local system, and hence have large étale fundamental

group.

3 Proof of Theorem A and Theorem B

In this section, we prove our Theorem A and Theorem B. First, we prove several lemmas
concerning the behavior of divisors under the action of a finite collection of automor-

phisms.
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8 N.T. Achenjang and J. S. Morrow

Lemma3.1. LetX be aprojective K-variety, and fix some d € Z,. There exists an ample
line bundle .Z on X such that H! (X, £" ® fs/x) = 0 for any finite subscheme S C X of
degree at most d (i.e., for which dimj HO(S, Og) <d)and anyn > 1.

Proof. This is essentially [18, Lemma 2.1]. Let X — PV be a closed embedding. For any

m > 1, there is a commutative diagram

HO(PY, 6(m)) —s HO(S, O)

| H

HOX, Oy(m)) —21s HO(S, 05) —— HY(X, Ig/5(m)) —— HL(X, Ox(m))

with bottom row exact. Form > d—1 > dimg HO(S, 0Us)—1,[18, Lemma 2.1] tells us that (1)
above is surjective, and so (2) must be surjective as well. By Serre vanishing, there exists
a constant C (depending only on the embedding X < PV) such that H! (X, Ox(m)) = 0 if
m > C. Combining this with surjectivity of (2) shows that

H'(X, J5,x(m)) = 0 for all m > max(C,d — 1) =: M.

In particular, if we take £ = 0% (M), then H' (X, £" ® I /%) = H' (X, Ig,x(nM)) = 0 for
alln > 1. [ |

Lemma 3.2. Let (R,m) be a noetherian regular local ring, and consider elements

fir---.fix € m.Then, S := R/(f},....f;) is a regular local ring of dimension dimR — k
if and only if

fi§Zmz+(fl,...,fi71)

foralli > 1.

Proof. This is essentially [19, Proposition 22 in Section IV.D.2]. ]

Lemma 3.3. Let V be an n-dimensional K-vector space. Implicitly identify ¥V with the

affine scheme A(V) = Spec Sym(V"). For any k > 1, consider the Zariski closed subset
Zy = {(Vl, S V) € vk vy, ...,V are K-linearly dependent} .

If k < n, then codimyx(Z;) = (n + 1) — k. Otherwise, Z; = vk,
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Varieties With Infinite Etale Fundamental Group 9

Proof. The claim is obvious when k > n, so assume k < n. For any nonempty I C
{1,...,k}, let p;: v* — V* denote the projection onto the coordinates contained in I. To
each such I, with #I =: i, we attach the subset

Y, = {a = (V1,...,v) € VF: py(¥) ¢ Z;, but pp;, (@) € Z;,, for all j ¢I} .

The image of Y; PL yi is zariski open in Vi, and the fibers of this map are all vector
spaces of dimension i(k —i). Thus, dim ¥; = dim Vi+i(k—1i) =i(n+k—1i).Onecan easily
check that this expression is increasing in i while i < (n+k)/2. Because we require i < k

in the formation of ¥; (and because k < (n + k)/2), we thus in fact conclude that

,,,,,

That is, each Y; is of codimension > (n + 1) — k in vk, Unwinding definitions, one sees
that

Z, ={0,...,0}U U wl.
PCIC(L,....k)

from which the claim follows. | |

Proposition 3.4. LetX be a smooth projective K-variety, and let A C Aut(X) be a finite set
of automorphisms of X, which acts freely on X(K). Write k := #4 and n := dim X. Then,
there exists an ample line bundle .# and a dense open locus U C |.Z] of its complete
o(D) CcXis

regular of dimension n — k, where if k > n, then we mean that the intersection is empty.

linear system such that for any effective divisor D € U the intersection () .4

Proof. Letd = k(n + 1) = #A - (dim(X) + 1), and choose some ample .Z on X as in
Lemma 3.1. Let |.Z| denote its complete linear system, so D € |.Z| denotes an effective
divisor on X such that .¥ = ¢'(D). Given D € |.Z|, we let I(D) := o (D) C X denote the
intersection of its translates. For any (closed) p € X, we let B, C |.Z| be the locus of “bad

og€eA

divisors” D, that is, those for which p € I(D), but ﬁI(D)'p is not regular local of dimension
n—k.
We claim that Bp is of codimension > n + 1 in |.Z|. For this, we will first set up

some notation. Each ¢ € A induces an isomorphism
* , ~
0" Oxp = Oxo1(p)

of local rings. Let S’ be J,.40 '(p) endowed with its reduced closed subscheme

structure; the points o ~!(p) are distinct as ¢ € A varies (for fixed p) by assumption.
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10 N.T. Achenjang and J. S. Morrow

Let .#y denote the ideal sheaf of S’, and define S to be the closed subscheme with ideal
sheaf Jsz,. Note that S and S’ have the same underlying set.

We claim that h%(S, 05) = k(n+1) = d.Indeed, 0 is a skyscraper sheaf supported
at 0! (p) as o varies over A with stalks 5, = Oy ,/mZ, where ¢ = o' (p) and m,, is the

maximal ideal of Oy ,. The K-dimension of the local ring Og,q 18
dimg O , = dimg(Ox 4/my) + dimg(m,/m?) = dimg(K) + dim Ox ; =1+ n,

where n = dimX = dim 0y, = dimf(mq/mé) since q is a closed point on the smooth
K-scheme X. Since A acts freely on X(K) and k = #A, we have that h%(S, O5) = k(n + 1).

By our choice of ., the natural map

k
FHOX, 2) — HOS, 00 = (0 2% '@~ y Oxp o (e
HX,Z) > HS,09) = (P —; =P =

2
m
o€A mafl(p) oeA P p

is surjective, where the second-to-last isomorphism is induced by the 6*!s. By Lemma

3.2, a nonzero section s € H(X,.#) cuts out a divisor belonging to B, if and only if
k
% . .
Fs)= (fi,---.fo) € ( ﬁgp) satisfies f; € mp/mlz, for all i, and f; € mlz, + (fis....fi_y) for

some j. This is the case if and only if f}, ..., f; liein

k

m _

Z=101.- o€ (m—g) :f1r....fi are K-linearly dependent
P

By Lemma 3.3 applied to V = mp/mlz,, Z is of codimension max{(n + 1) — k, 0} in
(m,/m2)¥. Since m),/m2 is of codimension 1 in Oy ,/mZ, we see that Z is of codimension
max{n+1,k} >n+1in (ﬁx,p/mﬁ)k >~ HO(S, Us). Now, because F is a linear surjection, its
corresponding map on affine schemes is faithfully flat (e.g., by [17, Proposition 1.70]), so
F~1(Z) is of codimension > n + 1 in H2(X,.%) as well. Hence, B, C |-Z] is of codimension
>n+1 as claimed.

To conclude, let B € X x |.Z| be (the closure of) the locus of pairs (p, D) with

D € B, and consider the projections
x B2 g P29
Note that p, is surjective with fibers of dimension < dim|[Z| — (n + 1), so dimB <

dim |.#| — 1. Thus, p, is not surjective, so the locus U = |.Z| \ p,(B) consisting of divisors

D such that I(D) is regular of dimension n — k is both dense and open. |
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Varieties With Infinite Etale Fundamental Group 11

Corollary 3.5. Let X be a smooth projective K-variety, and let A C Aut(X%) be a finite
set of geometric automorphisms of X, which acts freely on X(K). Write k := #A and
n = dimX > 2. There exists an ample line bundle .Z on X and a dense open locus
U C |.Z| of its complete linear system such that any effective divisor D € U is ample,

geometrically irreducible, and the intersection (.4 0 (Dg) C Xz is regular of dimension

oeA
n — k, where if k > n, then we mean that the intersection is empty.

Proof. Choose an ample line bundle ¥ on X as in Lemma 3.1 with d = k(n+1). Applying
the argument from Proposition 3.4 to Xz, we have that the locus V C || = IF’%O X.2)-1
of divisors D for which I(D) := (.4 0(D) C X5 is regular of dimension n — k is open
and dense. By definition, the locus V is Gal(K/K)-invariant, and so it descends to an
open dense locus V C |.Z| = ]P’I}éo(x'g)*1 over K. We note that [12, Corollary II1.7.9] tells
us that any D € V is geometrically connected, and Bertini’'s theorem [14, Cor.I.6.11(2)]
implies that there is a dense open locus U in V whose corresponding divisors are smooth.
Divisors in U are smooth and geometrically connected; hence, they are geometrically

irreducible and U C V is the dense open locus sought after. |

We now prove our main theorems, restated below for the reader’s convenience.

Theorem 3.6 (= Theorem A). Let X be a smooth projective F-variety of dimension n > 2.
Suppose that ¢: Y — X is a geometrically Galois cover of degree at least 2n?. Then,
there exists an ample line bundle .2 on Y such that for a general member D of the
complete linear system |.Z|, D is geometrically irreducible, ¢(D) is ample, and X \ ¢(D) is

arithmetically hyperbolic; in particular, any set of ¢(D)-integral points on X is finite.

Proof. Let G C Aut(Yy) denote the Galois group of ¢. By Corollary 3.5, we can find an
ample line bundle . on Y such that a general member D of the complete linear system
|Z| is ample, geometrically irreducible, and the intersection (in Y%) of any dim(Y) 4 1 of
the divisors {o (Dy) : 0 € G}is empty. Let F'/F be a finite extension over which allo € G are
defined, and let ¢z : Yz — X be the base change of ¢. Since D is ample, o (D) is as well
for all o € G. Since ¢}, (9 (D)) = X, g0 (Dp) and #G > 2n? = 2dim(Yy)?, [13, Theorem
1.4] asserts Yy \ ¢ (¢p(Dp)) is arithmetically hyperbolic. Since ¢y is finite étale, the
integral Chevalley-Weil theorem [22, §5.1] implies that X \ ¢ (D) is arithmetically
hyperbolic. To finish, note that the natural projection f: X — X is finite étale and
that ¢(D) = f(¢w(Dp)), so a second application of integral Chevalley—Weil, this time
to f: X — X, shows that X \ ¢(D) is arithmetically hyperbolic. Finally, ampleness of
¢(D) follows from [12, Exercise II1.5.7(d)], as (f o ¢p)*(¢(D)) = ¢*(¢(D))p is ample. |
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Corollary 3.7 (= Corollary 1). Let X be a smooth projective F-variety of dimension n >
2 with infinite étale fundamental group. Then, there exist infinitely many irreducible,
ample divisors D on X such that X \ D is arithmetically hyperbolic; in particular, such
that any set of D-integral points is finite. If moreover X(F) # ¢, then there are infinitely

many such D, which are geometrically irreducible.

Proof. Since X has infinite étale fundamental group, there exists a Galois cover ¢: ¥ —
Xp of degree at least 2n?, defined over some finite extension F'/F. Theorem 3.6 guarantees
the existence of infinitely many geometrically irreducible, ample divisors D’ C Y such
that ¢(D') C Xp is geometrically irreducible and ample, and such that Xz \ ¢(D’)
is arithmetically hyperbolic. Letting f : Xz — X denote the natural projection, the
integral Chevalley-Weil theorem [22, § 5.1] tells us that, for any such D', X \ f(¢(D")) is
arithmetically hyperbolic as well. As in the proof of Theorem 3.6, each f(¢(D’)) is ample
as a consequence of [12, Exercise I11.5.7(d)]. Because f o ¢: Y — X is finite, the infinitely
many (geometrically) irreducible, ample D’ on Y give rise to infinitely many irreducible,
ample divisors f(¢(D’)) on X whose complements are arithmetically hyperbolic. Finally,
if X(F) # ¢, Lemma 2.2 says we can take ¢ to be defined over F (at the expense of
making it geometrically Galois, but not necessarily Galois), and so we directly get geo-
metrically irreducible divisors, namely ¢(D’), defined over F in the above application of
Theorem 3.6. |

Theorem 3.8 (= Theorem B). Let X be a complex smooth projective variety of dimension
n > 2. Suppose that ¢: ¥ — X is a Galois cover of degree at least 2n?. Then, there exists
an ample line bundle . on Y such that for a general member D of the complete linear
system |.Z|, D is irreducible, ¢(D) is ample, and any holomorphic morphism C — X\ ¢(D)

is constant.

Proof. The proof of this statement follows identically from the proof of Theorem A
except one needs to replace [13, Theorem 1.4] with its Nevanlinnan analogue (cf. [16,
Theorem 9.11B.(a)]), and note that any holomorphic morphism C — Y \ ¢*(¢(D)) is
constant if and only if any holomorphic morphism C — X \ ¢(D) is constant since ¢

is finite étale. n

Corollary 3.9 (= Corollary 2). Let X be a complex smooth projective variety of dimension
n > 2 with infinite fundamental group. Then, there exist infinitely many irreducible,

ample divisors D on X such that any holomorphic morphism C — X \ D is constant.
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Proof. The proof follows that of corollary 3.7 except that Theorem 3.6 is replaced with
Theorem 3.8. |

Remark 3.10. While Theorem B and Corollary 2 contain the assumption that X has
dimension n > 2, the conclusions of these statements hold when X has dimension 1 by
Picard’s theorem.

On the other hand, most but not all of the conclusions of Theorem A and
Corollary 1 hold when X has dimension 1. When X has dimension 1 and infinite étale
fundamental group, Siegel’'s theorem tells us that there exist infinitely many irreducible,
ample divisors D on X such that X\ D is arithmetically hyperbolic. The divisors D will be
geometrically irreducible when they correspond to a F-rational point of X. If X(F) # 0,
there does exist a geometrically irreducible, ample divisor D on X such that X \ D is
arithmetically hyperbolic. However, the Mordell-Weil theorem and Faltings’ theorem tell
us that we will have infinitely many F-rational points (hence geometrically irreducible

divisors) only when X is an elliptic curve of positive Mordell-Weil rank over F.

Remark 3.11. The irreducible divisors ¢(D) we have constructed in the proof of
Theorem A cannot be normal when dim(X) > 2. Suppose that ¢(D) is normal. Since ¢ is
finite étale, p*(¢(D)) is normal and ample, and hence connected by [12, Corollary I11.7.9].
Since ¢*(¢(D)) is normal and connected, it is irreducible, contradicting its construction

from a union of many distinct effective divisors.
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