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We study integral points on varieties with in!nite étale fundamental groups. More

precisely, for a number !eld F and X/F a smooth projective variety, we prove that for

any geometrically Galois cover ϕ : Y → X of degree at least 2 dim(X)2, there exists an

ample line bundle L on Y such that for a general member D of the complete linear

system |L |, D is geometrically irreducible and any set of ϕ(D)-integral points on X is

!nite. We apply this result to varieties with in!nite étale fundamental group to give

new examples of irreducible, ample divisors on varieties for which !niteness of integral

points is provable.

1 Introduction

The main goal of this work is to provide new examples of irreducible divisors D on

varieties X over a number !eld F for which any set of D-integral points on X is !nite.

We begin our discussion of integral points on varieties with the work of Siegel

[20]. To state his results, let F be a number !eld, let S be a !nite set of places of F

containing the Archimedean places, let C be an af!ne curve over F embedded in af!ne

space Am
F , and let C̃ be the projective closure of C. Siegel proved that if #(C̃ \ C) > 2 over

F, then C has !nitely many points in Am(OF,S). More generally, this result states that for
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2 N. T. Achenjang and J. S. Morrow

a smooth projective curve C̃ of genus g(C̃) over F, effective divisors D1, . . . , Dq on C̃, and

D = ∑q
i=1 Di, any set of D-integral points on C̃ is !nite if 2 − 2g(C̃) − q is negative.

In [8], Corvaja and Zannier provided a new proof of Siegel’s theorem using

the Schmidt subspace theorem. Soon after, the same authors [6] extended their proof

technique to show that for X a smooth projective surface over F and D = ∑q
i=1 Di where

q ! 4 and Di are distinct irreducible divisors such that no three share a common point

and pairs of them are subject to certain intersection product constraints, any set of D-

integral points on X is not Zariski dense. In the higher dimensional setting, the works

of Autissier [1, 2], Corvaja–Levin–Zannier [7], and Levin [16] proved that for X a smooth

projective variety of dimension n over F, if D1, . . . , Dq are ample divisors such that at

most n of them contain a given point and D = ∑q
i=1 Di, then any set of D-integral points

on X is not Zariski dense once q is large enough relative to n. Morally, these results assert

that once a divisor D has enough irreducible components, which are in general position,

any set of D-integral points on X is not Zariski dense.

A natural follow-up question to these results is as follows:

Question 1. For which smooth projective F-varieties X, do there exist (geometrically)

irreducible divisors D on X for which one can prove non-density or !niteness of D-

integral points on X?

As mentioned above, Siegel’s theorem asserts that for a smooth projective curve

C of genus ! 1 and any irreducible effective divisor D on C, any set of D-integral points

on C is !nite. The most famous answer to Question 1 is supplied by Faltings [9, Corollary

6.2] where he proves that for A an abelian variety over F and D an ample divisor on A,

any set of D-integral points on A is !nite. Vojta [23, 24] extended these results to the

semi-abelian setting.

In [10], Faltings constructed a class of irreducible divisors D on P2 for which P2

has !nitely many D-integral points. These divisors D are realized as the branch locus

of a suitably generic projection X → P2 from a smooth surface X to P2 and when

D is suf!ciently singular, Faltings showed that D decomposes into many irreducible

components in the Galois closure of X → P2. The interest in these divisors stems from the

fact that !niteness of the D-integral points on P2 cannot be deduced by embedding the

relevant varieties into semi-abelian varieties, even after a !nite extension of P2, which is

unrami!ed outside of D. Therefore, these examples provide genuinely new instances of

!niteness of integral points. In [16, Section 13], Levin removed an ampleness condition

from Faltings construction, which provided some improvements on Faltings result.
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Varieties With In!nite Étale Fundamental Group 3

Additionally, Zannier [25] continued the study of integral points on the complement in Pn

of the branch locus of a generic projection and proved results concerning the dimension

of the Zariski closure of these integral points.

Main contributions

Our main contribution is an answer to Question ?? when the variety X has a geometrically

Galois cover of suf!ciently large degree. We refer the reader to Section 2.1.2 for our con-

ventions regarding (geometrically) Galois covers and to De!nition 2.1 for the de!nition

of arithmetically hyperbolic.

Theorem A. Let X be a smooth projective F-variety of dimension n ! 2. Suppose that

ϕ : Y → X is a geometrically Galois cover of degree at least 2n2. Then, there exists an

ample line bundle L on Y such that for a general member D of the complete linear

system |L |, D is geometrically irreducible, ϕ(D) is ample, and X \ ϕ(D) is arithmetically

hyperbolic; in particular, any set of ϕ(D)-integral points on X is !nite.

Abelian varieties of dimension ! 2 have geometrically Galois covers of such

degree, and more generally varieties with in!nite or large étale fundamental group

(De!nition 2.3) possess such covers. We provide more examples of such varieties in

Example 2.6 and Example 2.8. As a corollary to Theorem A, we have the following.

Corollary 1. Let X be a smooth projective F-variety of dimension n ! 2 with in!nite

étale fundamental group. Then, there exist in!nitely many irreducible, ample divisors

D on X such that X \ D is arithmetically hyperbolic; in particular, such that any set of

D-integral points is !nite. If moreover X(F) $= ∅, then there are in!nitely many such D

which are geometrically irreducible.

Our methods are founded in Diophantine approximation, and hence Vojta’s

dictionary [22] allows us to deduce Nevanlinnan analogues of our arithmetic results.

Theorem B. Let X be a complex smooth projective variety of dimension n ! 2. Suppose

that ϕ : Y → X is a Galois cover of degree at least 2n2. Then, there exists an ample line

bundle L on Y such that for a general member D of the complete linear system |L |, D is

irreducible, ϕ(D) is ample, and any holomorphic morphism C → X \ ϕ(D) is constant.

Corollary 2. Let X be a complex smooth projective variety of dimension n ! 2 with

in!nite fundamental group. Then, there exist in!nitely many irreducible, ample divisors

D on X such that any holomorphic morphism C → X \ D is constant.
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4 N. T. Achenjang and J. S. Morrow

The proofs of Theorem A, Theorem B, and our subsequent corollaries reduce to

showing a purely algebro-geometric statement. To state this, let F denote an algebraic

closure of F, and for X a smooth projective F-variety of dimension n, let XF denote

the base change of X to Spec(F). Our main results will follow if we can show that for

A ⊂ Aut(XF), a !nite set of automorphisms of X that acts freely on X(F), there exists

an effective, ample divisor D on X such that any point of X(F) is contained in at most

n of the divisors σ (D), as σ varies over A. We refer the reader to Corollary 3.5 for the

precise statement. Once we have proved this, our results follow from work of Levin [16]

and Heier–Levin [13] and properties of varieties with in!nite étale fundamental group.

Organization

In Section 2, we establish conventions and recall relevant background on integral points

and varieties with in!nite and large étale fundamental group. We prove our main results,

Theorem A and Theorem B, in Section 3.

2 Conventions and Preliminaries

In this section, we establish conventions we use throughout the work and recall some

de!nitions and concepts from algebraic geometry, integral points, and varieties with

in!nite and large étale fundamental group.

2.1 Fields and algebraic geometry

We will use F to denote a number !eld and F ′/F to denote a !nite extension of F. Let MF

denote the set of places of F. We also let K denote an arbitrary !eld of characteristic zero.

As usual, the notation F or K will refer to an algebraic closure of F or K, respectively.

A K-variety is a geometrically integral separated scheme of !nite type over Spec(K). For

K′/K, we will let XK′ denote the base change of X to Spec(K′).

2.1.1 Fundamental groups

Fix an embedding K ↪→ C. In this work, we will need two kinds of fundamental groups,

namely the topological fundamental group associated to the complex analyti!cation of

X and the étale fundamental group of X.

For K a !eld of characteristic zero, X a smooth projective K-variety, and a geomet-

ric base point x : Spec(K) → XK , we will write πKet
1 (XK , x) to denote the étale fundamental

group of XK . We will largely ignore the base change and the base point notation and

simply denote this as πKet
1 (X). When X is a smooth projective complex variety with
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Varieties With In!nite Étale Fundamental Group 5

x : Spec(C) → X(C) a base point, we can consider the topological fundamental group

of the complex analyti!cation, and we denote this fundamental group as π
top
1 (X(C), x).

As before, we will normally ignore the base point from considerations.

2.1.2 Galois covers

Let X be a normal projective K-variety. We say that a K-variety Y is a finite étale cover of X

if there exists a !nite étale morphism Y → X. For our purposes, a Galois cover of X refers

to the data of a projective normal variety Y de!ned over a !nite extension K′/K and a

!nite étale cover Y → XK′ such that there exists a !nite group G and an action α : G×Y →
Y where the induced morphism α × pr2 : G × Y → Y ×XK′ Y is an isomorphism. These

conditions imply that the action morphism α on Y(K) is free. Similarly, a geometrically

Galois cover of X is the data of a projective normal variety Y de!ned over K and a !nite

étale cover Y → X such that YK → XK is a Galois cover. Note that, in contrast with our

notion of Galois covers, we require the morphism Y → X to be de!ned over K, but allow

for automorphisms de!ned over an extension of K.

2.2 Integral points and arithmetic hyperbolicity

Since our results are primarily concerned with integral points on varieties, we brie"y

recall the construction of (D, S)-integral points on a normal projective F-variety X where

D is an effective Cartier divisor and S ⊂ MF is a !nite set of places of F containing

the Archimedean ones. Roughly speaking, (D, S)-integral points correspond to scheme-

theoretic OF,S-integral points on X \D. More precisely, a subset R ⊂ X(F)\D is de!ned to

be a collection of (D, S)-integral points if there exist a global Weil function (λD,v)v∈MF
for

D such that for all v ∈ MF \ S, λD,v(P) " 0 for all P ∈ R. We will normally ignore the !nite

set of places S from the notation and simply refer to (D, S)-integral points as D-integral

points. We refer the reader to [22, Section 1.4] for the de!nition of global Weil functions

and further discussion on integral points.

We will also use the notion of arithmetically hyperbolic from [13], which we recall

below.

De!nition 2.1. Let X be a normal projective F-variety and D be an effective Cartier

divisor. We say that X \ D is arithmetically hyperbolic if for every number !eld F ′/F and

every !nite set of places S of F ′ containing the Archimedean ones, the sets of F ′-rational

(D, S)-integral points on X are always !nite.
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6 N. T. Achenjang and J. S. Morrow

2.3 Varieties with in!nite and large étale fundamental group

To begin this section, we prove a lemma about the existence of Galois covers with

arbitrarily large degree for a normal projective K-variety such that XK has in!nite étale

fundamental group.

Lemma 2.2. Let X be a smooth projective K-variety such that XK has in!nite étale

fundamental group and X(K) $= ∅. For any d ! 1, there exists a geometrically Galois

cover Y → X (de!ned over K) of degree ! d.

Proof. Since XK has in!nite étale fundamental group, there exists a !nite étale cover

X ′ → XK′ of degree ! d de!ned over some !nite extension K′/K, which corresponds to a

quotient of πKet
1 (X) of cardinality ! d. By taking Galois closures (see e.g., [21, Tag 0BN2]),

we may assume that X ′ → XK′ is Galois. Then, [11, Proof of Lemma 5.2(1)] (see also [5])

shows how to construct a !nite étale cover Z → X, de!ned over K, which is a K-form of

X ′
K

→ XK , and so is a geometrically Galois of degree ! d. #

A natural class of varieties with in!nite étale fundamental group are provided

by varieties with large étale fundamental group in the sense of Kollar [15]. We recall the

de!nition below.

De!nition 2.3. Let X be a normal projective K-variety. The étale fundamental group

of X is large if for any closed positive-dimensional integral subvariety Y of X with

normalization f : Ỹ → Y, the image of the induced map πKet
1 (Ỹ) → πKet

1 (X) is in!nite.

Clearly, a variety with large étale fundamental group has an in!nite étale

fundamental group, and hence we have an immediate corollary of Lemma 2.2.

Corollary 2.4. Let X be a smooth projective K-variety such that XK has large étale

fundamental group and X(K) $= ∅. For any d ! 1, there exists a geometrically Galois

cover Y → X (de!ned over K) of degree ! d.

Below, we describe examples of varieties with large étale fundamental group.

Relation to topological fundamental group of complex analyti!cation

After !xing base points x ∈ X(C), we have the group homomorphism

ιX : π
top
1 (X(C), x) → πKet

1 (X, x),
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Varieties With In!nite Étale Fundamental Group 7

which identi!es the étale fundamental group with the pro!nite completion of the

topological one. Let X̃ denote the topological cover of X(C) corresponding to ker(ιX).

Proposition 2.5 ([15, Proposition 2.12.3], [4, Proposition 1.3]). Suppose that X is a proper

K-variety. Then the étale fundamental group of X is large if and only if the complex

analytic space X̃ does not contain positive-dimensional compact complex analytic

subspaces.

Proposition 2.5 gives us a useful criterion for determining when a proper variety

has large étale fundamental group, and one particularly useful situation to consider is

when X̃ is the universal cover of X(C), that is, when ιX is injective. We note that this holds

when π
top
1 (X(C), x) is linear, and this result allows us to identify two classes of proper

varieties with large étale fundamental group.

Example 2.6. The étale fundamental group of X is large when X is an abelian variety

and when X is the quotient of a bounded symmetric domain in Cn by a torsion-free co-

compact lattice of its biholomorphism group.

Example 2.7. Any variety that admits a !nite morphism to a variety with large étale

fundamental group will also have large étale fundamental group.

Example 2.8. Another source of varieties with large étale fundamental groups comes

from those which possess a large local system. Recall from [3], a local system L on X(C)

with coef!cients in some !eld is large if given any non-constant morphism f : Y → X with

Y a normal irreducible complex variety, the local system f ∗L has in!nite monodromy.

Moreover, the étale fundamental group of a complex variety carrying a large local system

is large.

It is well-known (see e.g., [3, Proposition 4.3]) that complex algebraic varieties

admitting a (graded-polarizable) variation of Z-mixed Hodge structure with !nite

period map have a large local system, and hence have large étale fundamental

group.

3 Proof of Theorem A and Theorem B

In this section, we prove our Theorem A and Theorem B. First, we prove several lemmas

concerning the behavior of divisors under the action of a !nite collection of automor-

phisms.
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8 N. T. Achenjang and J. S. Morrow

Lemma 3.1. Let X be a projective K-variety, and !x some d ∈ Z!0. There exists an ample

line bundle L on X such that H1(X, L n ⊗ IS/X) = 0 for any !nite subscheme S ⊂ X of

degree at most d (i.e., for which dimK H0(S, OS) " d) and any n ! 1.

Proof. This is essentially [18, Lemma 2.1]. Let X ↪→ PN be a closed embedding. For any

m ! 1, there is a commutative diagram

with bottom row exact. For m ! d−1 ! dimK H0(S, OS)−1, [18, Lemma 2.1] tells us that (1)

above is surjective, and so (2) must be surjective as well. By Serre vanishing, there exists

a constant C (depending only on the embedding X ↪→ PN ) such that H1(X, OX(m)) = 0 if

m ! C. Combining this with surjectivity of (2) shows that

H1(X, IS/X(m)) = 0 for all m ! max(C, d − 1) =: M.

In particular, if we take L = OX(M), then H1(X, L n ⊗ IS/X) = H1(X, IS/X(nM)) = 0 for

all n ! 1. #

Lemma 3.2. Let (R, m) be a noetherian regular local ring, and consider elements

f1, . . . , fk ∈ m. Then, S := R/(f1, . . . , fk) is a regular local ring of dimension dim R − k

if and only if

fi $∈ m2 + (f1, . . . , fi−1)

for all i ! 1.

Proof. This is essentially [19, Proposition 22 in Section IV.D.2]. #

Lemma 3.3. Let V be an n-dimensional K-vector space. Implicitly identify V with the

af!ne scheme A(V) = Spec Sym(V∨). For any k ! 1, consider the Zariski closed subset

Zk :=
{
(v1, . . . , vk) ∈ Vk : v1, . . . , vk are K-linearly dependent

}
.

If k " n, then codimVk(Zk) = (n + 1) − k. Otherwise, Zk = Vk.
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Varieties With In!nite Étale Fundamental Group 9

Proof. The claim is obvious when k > n, so assume k " n. For any nonempty I !
{1, . . . , k}, let pI : Vk → V#I denote the projection onto the coordinates contained in I. To

each such I, with #I =: i, we attach the subset

YI :=
{
,v = (v1, . . . , vk) ∈ Vk : pI(,v) $∈ Zi, but pI∪{j}(,v) ∈ Zi+1 for all j $∈ I

}
.

The image of YI
pI−→ Vi is Zariski open in Vi, and the !bers of this map are all vector

spaces of dimension i(k − i). Thus, dim YI = dim Vi + i(k − i) = i(n + k − i). One can easily

check that this expression is increasing in i while i " (n + k)/2. Because we require i < k

in the formation of YI (and because k " (n + k)/2), we thus in fact conclude that

dim YI " dim Y{1,...,k−1} = (k − 1)(n + k − (k − 1)) = (k − 1)(n + 1).

That is, each YI is of codimension ! (n + 1) − k in Vk. Unwinding de!nitions, one sees

that

Zk = {(0, . . . , 0)} ∪




⋃

∅!I!{1,...,k}
YI



 ,

from which the claim follows. #

Proposition 3.4. Let X be a smooth projective K-variety, and let A ⊂ Aut(X) be a !nite set

of automorphisms of X, which acts freely on X(K). Write k := #A and n := dim X. Then,

there exists an ample line bundle L and a dense open locus U ⊂ |L | of its complete

linear system such that for any effective divisor D ∈ U the intersection
⋂

σ∈A σ (D) ⊂ X is

regular of dimension n − k, where if k > n, then we mean that the intersection is empty.

Proof. Let d = k(n + 1) = #A · (dim(X) + 1), and choose some ample L on X as in

Lemma 3.1. Let |L | denote its complete linear system, so D ∈ |L | denotes an effective

divisor on X such that L ∼= O(D). Given D ∈ |L |, we let I(D) := ⋂
σ∈A σ (D) ⊂ X denote the

intersection of its translates. For any (closed) p ∈ X, we let Bp ⊂ |L | be the locus of “bad

divisors” D, that is, those for which p ∈ I(D), but OI(D),p is not regular local of dimension

n − k.

We claim that Bp is of codimension ! n + 1 in |L |. For this, we will !rst set up

some notation. Each σ ∈ A induces an isomorphism

σ ∗ : OX,p
∼= OX,σ−1(p)

of local rings. Let S′ be
⋃

σ∈A σ−1(p) endowed with its reduced closed subscheme

structure; the points σ−1(p) are distinct as σ ∈ A varies (for !xed p) by assumption.
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10 N. T. Achenjang and J. S. Morrow

Let IS′ denote the ideal sheaf of S′, and de!ne S to be the closed subscheme with ideal

sheaf I 2
S′ . Note that S and S′ have the same underlying set.

We claim that h0(S, OS) = k(n+1) = d. Indeed, OS is a skyscraper sheaf supported

at σ−1(p) as σ varies over A with stalks OS,q = OX,q/m2
q, where q = σ−1(p) and mq is the

maximal ideal of OX,q. The K-dimension of the local ring OS,q is

dimK OS,q = dimK(OX,q/mq) + dimK(mq/m2
q) = dimK(K) + dim OX,q = 1 + n,

where n = dim X = dim OX,q = dimK(mq/m2
q) since q is a closed point on the smooth

K-scheme X. Since A acts freely on X(K) and k = #A, we have that h0(S, OS) = k(n + 1).

By our choice of L , the natural map

F : H0(X, L ) → H0(S, OS) =
⊕

σ∈A

OX,σ−1(p)

m2
σ−1(p)

∼=
⊕

σ∈A

OX,p

m2
p

∼=
(

OX,p

m2
p

)k

is surjective, where the second-to-last isomorphism is induced by the σ ∗−1s. By Lemma

3.2, a nonzero section s ∈ H0(X, L ) cuts out a divisor belonging to Bp if and only if

F(s) = (f1, . . . , fk) ∈
(

OX,p

m2
p

)k

satis!es fi ∈ mp/m2
p for all i, and fj ∈ m2

p + (f1, . . . , fj−1) for

some j. This is the case if and only if f1, . . . , fk lie in

Z :=




(f1, . . . , fk) ∈
(

mp

m2
p

)k

: f1, . . . , fk are K-linearly dependent




 .

By Lemma 3.3 applied to V = mp/m2
p, Z is of codimension max{(n + 1) − k, 0} in

(mp/m2
p)k. Since mp/m2

p is of codimension 1 in OX,p/m2
p, we see that Z is of codimension

max{n + 1, k} ! n + 1 in (OX,p/m2
p)k ∼= H0(S, OS). Now, because F is a linear surjection, its

corresponding map on af!ne schemes is faithfully "at (e.g., by [17, Proposition 1.70]), so

F−1(Z) is of codimension ! n + 1 in H0(X, L ) as well. Hence, Bp ⊂ |L | is of codimension

! n + 1 as claimed.

To conclude, let B ⊂ X × |L | be (the closure of) the locus of pairs (p, D) with

D ∈ Bp, and consider the projections

Note that p1 is surjective with !bers of dimension " dim |L | − (n + 1), so dim B "
dim |L | − 1. Thus, p2 is not surjective, so the locus U = |L | \ p2(B) consisting of divisors

D such that I(D) is regular of dimension n − k is both dense and open. #

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad147/7223456 by guest on 15 July 2023



Varieties With In!nite Étale Fundamental Group 11

Corollary 3.5. Let X be a smooth projective K-variety, and let A ⊂ Aut(XK) be a !nite

set of geometric automorphisms of X, which acts freely on X(K). Write k := #A and

n := dim X ! 2. There exists an ample line bundle L on X and a dense open locus

U ⊂ |L | of its complete linear system such that any effective divisor D ∈ U is ample,

geometrically irreducible, and the intersection
⋂

σ∈A σ (DK) ⊂ XK is regular of dimension

n − k, where if k > n, then we mean that the intersection is empty.

Proof. Choose an ample line bundle L on X as in Lemma 3.1 with d = k(n+1). Applying

the argument from Proposition 3.4 to XK , we have that the locus V ⊂ |LK | ∼= Ph0(X,L )−1
K

of divisors D for which I(D) := ⋂
σ∈A σ (D) ⊂ XK is regular of dimension n − k is open

and dense. By de!nition, the locus V is Gal(K/K)-invariant, and so it descends to an

open dense locus V ⊂ |L | ∼= Ph0(X,L )−1
K over K. We note that [12, Corollary III.7.9] tells

us that any D ∈ V is geometrically connected, and Bertini’s theorem [14, Cor.I.6.11(2)]

implies that there is a dense open locus U in V whose corresponding divisors are smooth.

Divisors in U are smooth and geometrically connected; hence, they are geometrically

irreducible and U ⊂ V is the dense open locus sought after. #

We now prove our main theorems, restated below for the reader’s convenience.

Theorem 3.6 (= Theorem A). Let X be a smooth projective F-variety of dimension n ! 2.

Suppose that ϕ : Y → X is a geometrically Galois cover of degree at least 2n2. Then,

there exists an ample line bundle L on Y such that for a general member D of the

complete linear system |L |, D is geometrically irreducible, ϕ(D) is ample, and X \ϕ(D) is

arithmetically hyperbolic; in particular, any set of ϕ(D)-integral points on X is !nite.

Proof. Let G ⊂ Aut(YF) denote the Galois group of ϕ. By Corollary 3.5, we can !nd an

ample line bundle L on Y such that a general member D of the complete linear system

|L | is ample, geometrically irreducible, and the intersection (in YF ) of any dim(Y) + 1 of

the divisors {σ (DF) : σ ∈ G} is empty. Let F ′/F be a !nite extension over which all σ ∈ G are

de!ned, and let ϕF ′ : YF ′ → XF ′ be the base change of ϕ. Since D is ample, σ (DF ′) is as well

for all σ ∈ G. Since ϕ∗
F ′(ϕF ′(DF ′)) = ∑

σ∈G σ (DF ′) and #G ! 2n2 = 2 dim(YF ′)2, [13, Theorem

1.4] asserts YF ′ \ ϕ∗
F ′(ϕF ′(DF ′)) is arithmetically hyperbolic. Since ϕF ′ is !nite étale, the

integral Chevalley–Weil theorem [22, § 5.1] implies that XF ′ \ ϕF ′(DF ′) is arithmetically

hyperbolic. To !nish, note that the natural projection f : XF ′ → X is !nite étale and

that ϕ(D) = f (ϕF ′(DF ′)), so a second application of integral Chevalley–Weil, this time

to f : XF ′ → X, shows that X \ ϕ(D) is arithmetically hyperbolic. Finally, ampleness of

ϕ(D) follows from [12, Exercise III.5.7(d)], as (f ◦ ϕF ′)∗(ϕ(D)) = ϕ∗(ϕ(D))F ′ is ample. #
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Corollary 3.7 (= Corollary 1). Let X be a smooth projective F-variety of dimension n !
2 with in!nite étale fundamental group. Then, there exist in!nitely many irreducible,

ample divisors D on X such that X \ D is arithmetically hyperbolic; in particular, such

that any set of D-integral points is !nite. If moreover X(F) $= ∅, then there are in!nitely

many such D, which are geometrically irreducible.

Proof. Since X has in!nite étale fundamental group, there exists a Galois cover ϕ : Y →
XF ′ of degree at least 2n2, de!ned over some !nite extension F ′/F. Theorem 3.6 guarantees

the existence of in!nitely many geometrically irreducible, ample divisors D′ ⊂ Y such

that ϕ(D′) ⊂ XF ′ is geometrically irreducible and ample, and such that XF ′ \ ϕ(D′)

is arithmetically hyperbolic. Letting f : XF ′ → X denote the natural projection, the

integral Chevalley–Weil theorem [22, § 5.1] tells us that, for any such D′, X \ f (ϕ(D′)) is

arithmetically hyperbolic as well. As in the proof of Theorem 3.6, each f (ϕ(D′)) is ample

as a consequence of [12, Exercise III.5.7(d)]. Because f ◦ ϕ : Y → X is !nite, the in!nitely

many (geometrically) irreducible, ample D′ on Y give rise to in!nitely many irreducible,

ample divisors f (ϕ(D′)) on X whose complements are arithmetically hyperbolic. Finally,

if X(F) $= ∅, Lemma 2.2 says we can take ϕ to be de!ned over F (at the expense of

making it geometrically Galois, but not necessarily Galois), and so we directly get geo-

metrically irreducible divisors, namely ϕ(D′), de!ned over F in the above application of

Theorem 3.6. #

Theorem 3.8 (= Theorem B). Let X be a complex smooth projective variety of dimension

n ! 2. Suppose that ϕ : Y → X is a Galois cover of degree at least 2n2. Then, there exists

an ample line bundle L on Y such that for a general member D of the complete linear

system |L |, D is irreducible, ϕ(D) is ample, and any holomorphic morphism C → X \ϕ(D)

is constant.

Proof. The proof of this statement follows identically from the proof of Theorem A

except one needs to replace [13, Theorem 1.4] with its Nevanlinnan analogue (cf. [16,

Theorem 9.11B.(a)]), and note that any holomorphic morphism C → Y \ ϕ∗(ϕ(D)) is

constant if and only if any holomorphic morphism C → X \ ϕ(D) is constant since ϕ

is !nite étale. #

Corollary 3.9 (= Corollary 2). Let X be a complex smooth projective variety of dimension

n ! 2 with in!nite fundamental group. Then, there exist in!nitely many irreducible,

ample divisors D on X such that any holomorphic morphism C → X \ D is constant.
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Proof. The proof follows that of corollary 3.7 except that Theorem 3.6 is replaced with

Theorem 3.8. #

Remark 3.10. While Theorem B and Corollary 2 contain the assumption that X has

dimension n ! 2, the conclusions of these statements hold when X has dimension 1 by

Picard’s theorem.

On the other hand, most but not all of the conclusions of Theorem A and

Corollary 1 hold when X has dimension 1. When X has dimension 1 and in!nite étale

fundamental group, Siegel’s theorem tells us that there exist in!nitely many irreducible,

ample divisors D on X such that X \D is arithmetically hyperbolic. The divisors D will be

geometrically irreducible when they correspond to a F-rational point of X. If X(F) $= ∅,

there does exist a geometrically irreducible, ample divisor D on X such that X \ D is

arithmetically hyperbolic. However, the Mordell–Weil theorem and Faltings’ theorem tell

us that we will have in!nitely many F-rational points (hence geometrically irreducible

divisors) only when X is an elliptic curve of positive Mordell–Weil rank over F.

Remark 3.11. The irreducible divisors ϕ(D) we have constructed in the proof of

Theorem A cannot be normal when dim(X) ! 2. Suppose that ϕ(D) is normal. Since ϕ is

!nite étale, ϕ∗(ϕ(D)) is normal and ample, and hence connected by [12, Corollary III.7.9].

Since ϕ∗(ϕ(D)) is normal and connected, it is irreducible, contradicting its construction

from a union of many distinct effective divisors.
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