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Introduction

ABSTRACT

This study conducts a thorough examination of the properties of four transition-
metal dichalcogenides (TMDCs): WTe,, WSe;, ZrTe,, and NiTe,, using first-
principles density functional theory calculations. The results reveal that WSe, and
WTe; exhibit semiconducting behavior in both bulk and monolayer forms, while
ZrTe, and NiTe, exhibit metallic behavior in their bulk forms. However, a devi-
ation from metallic behavior is observed in the monolayer form of NiTe,. The
study also delves into the optical characteristics of both bulk and monolayer
forms, including dielectric function, reflectivity, absorption coefficient, refraction
coefficient, and electron energy loss function. These findings provide a compre-
hensive understanding of the properties of these TMDCs, which can be utilized in
the design of advanced optoelectronic devices. Moreover, the observed decrease
in absorption coefficient in the monolayer forms of these TMDCs can be leveraged
for transparent conductor technology. Overall, this study presents a detailed
analysis of the properties of TMDCs, highlighting their potential for technological
exploitation in a wide range of optoelectronic applications.

batteries and fuel cells and exhibit high thermoelec-
tric performance in materials like bismuth telluride,
lead telluride, and manganese telluride [8-18]. Their

Transition-metal chalcogenides (TMDs) are a class of
materials composed of transition metals and chalco-
gens (elements of group VIA) and have a wide range
of essential applications [1-7]. TMDs are employed in
electrochemical energy storage devices such as
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applications extend to thermal switches, sensors, and
topological lasers [19-21] and as catalysts in chemical
reactions, including hydrogenation and hydrodesul-
furization [22-26]. They are also utilized in producing
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thin-film transistors and other electronic devices.
Some TMDs, such as niobium selenide and niobium
sulfide, act as superconductors at low temperatures,
making them suitable for various applications,
including electrical power transmission and magnetic
resonance imaging [27-29]. Recently, TMDs in IVB,
VB, and VIB groups have gained significant attention
due to their broad physical properties [21, 30, 31].

TMDs with the formula MX, consist of metal atoms
M (e.g., Zr, W, Ni) and a chalcogen X (e.g., S, Se, Te).
The metal atom M is sandwiched between the two
anion surfaces of the X atom, forming a strong
covalent metal anion bond between the metal atom M
and the chalcogen atom X [32]. Owing to the d-or-
bitals involved in their electronic structure, TMDs
have attracted heightened interest due to their
remarkable range of electronic, optical, mechanical,
and thermal properties [33-36]. These properties
have led to advances in practical devices, such as
field-effect  transistors [37-42], photodetectors
[43, 44], chemical [45] and biosensors [46, 47], and
nanoelectromechanical systems (NEMS) [48-50].
Moreover, TMDs can exhibit metallic and semicon-
ducting behavior, depending on their electronic
properties, and can also be applied as dry lubricants
due to their layered structures [51-53].

Recently, the scientific community has widely
explored a vast number of 2D and layered materials,
leading to numerous applications in nanoelectronics
[54, 55], energy storage [56, 57], detection [58], gas
separation [59], and solar energy conversion [60].
TMD semiconducting single crystals and transparent
thin films have been used to fabricate high-efficiency
solar cells, rechargeable batteries, and high-temper-
ature solid lubricants [61]. Monolayer TMDs are
uniquely suited for optoelectronic applications [62],
field-effect transistors [37, 63, 64], and photovoltaic
cells [65] due to their large direct bandgap. Addi-
tionally, monolayer TMDs have two degenerate val-
leys at the corners of the first Brillouin zone for both
conduction and valence bands, crucial for optically
controlling charge carriers in these valleys [66]. These
properties enable the integration of new classes of
spintronic and valleytronic devices [67, 68]. Detailed
information about the optical and electronic proper-
ties of monolayer TMDs is highly desired for various
applications and can be obtained by measuring or
calculating the refractive index and extinction coef-
ficient spectra of monolayer TMDs versus the fre-
quency range.
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Layered transition-metal dichalcogenides (TMDs),
represented by the formula MX, (M=Zr, W, Ni, Mo,
etc., X=Te, Se, S, etc.), have garnered significant
attention from researchers in the field of 2D materials
due to their remarkable properties [69-73]. Among
these materials, ZrTe,, WTe,, WSe,, and NiTe, stand
out as fascinating members of the TMDs family. Each
MX; layer is held together by strong covalent bonds,
while interlayer bonds are maintained by weak van
der Waals forces [74, 75]. This unique bonding
structure results in various intriguing physical
properties, rich intercalation chemistry, and numer-
ous potential applications [76, 77]. TMDs typically
crystallize with hexagonal symmetry and space
groups (SG) P-3m1 and P63/mmc, which enable the
intercalation of other atomic species and complexes
in the region between adjacent chalcogen planes (van
der Waals gap) [78-83]. Researchers have investi-
gated other applications of TMDs, such as photo-
catalysis, optoelectronics, and photovoltaics [84-88].
However, many aspects of these materials remain
unknown, limiting their potential applications.

ZrTe, and NiTe, crystallize in a trigonal structure
(CdI2-type, SG P-3m1, number 164). A first-principles
study has investigated the structural stabilities and
electronic properties of ZrX, (X=S5, Se, or Te) thin
films of various thicknesses [89]. Angle-resolved
photoemission spectroscopy (ARPES) confirmed the
semimetallic character of ZrTe, [58], consistent with
our calculations. Nonlinear optical properties of this
compound have been investigated using the Z-scan
method at a wavelength of 800 nm [90, 91]. NiTe,,
which also possesses a CdI2-type crystal structure,
belongs to the SG P-3ml (number 164). While
researchers have studied the structural and electronic
properties of NiTe, in nanostructures [92], the bulk
and monolayer of NiTe, remain relatively unex-
plored. NiTe, exhibits a planar Hall effect [93] and an
impressive breakdown current density value (up to
4.7x10” A/cm?) [62]. Other studies have highlighted
the potential applications of this material as an elec-
trochemical sensor for glucose detection [94] and
urea transformation [95]. Coleman et al. [96]
demonstrated that layered materials like NiTe, could
be efficiently exfoliated into individual layers, lead-
ing to their use in lubrication applications [97].

Over the past 40 years, numerous studies have
focused on the semiconductor applications of TMDs,
with MoS,, MoSe,, WSe,, and WTe, drawing signif-
icant interest from the industry due to their
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remarkable electronic and optical properties for var-
ious applications [98-101]. WTe, and WSe, are
hexagonal layered crystal structures with the space
group P63/mmc (DZ,) (No. 194) [102]. These com-
pounds exhibit an indirect band gap, while their
monolayers have a direct band gap within the range
of visible to infrared light [103-105]. 2H-WSe, has
been a fascinating material in photoemission studies
[86, 106-108]. WSe; also shows promise as a semi-
conductor material for photoelectrochemical cells,
solar cells, p—n junctions, and field-effect transistors
[109]. Researchers have successfully fabricated field-
effect transistors (FETs) from both monolayer and
bulk WSe, [110]. Moreover, the study of WSe, bulk
crystals primarily focuses on photovoltaic applica-
tions and photoelectrochemical hydrogen production
[87, 109].

WTe;,, on the other hand, has unique features as a
2D material with two distinct structural phases: H
and T phases [111]. The unit cells of the H and T
phases are hexagonal and rectangular, respectively.
Calculations have shown that the T phase is more
stable than the H phase [78], thus garnering more
attention. The T phase is a semimetal, while the H
phase is a semiconductor, similar to several other
TMDs [112-115].

This work investigates the structural, electronic, and
optical properties of ZrTe,, NiTep, WTe,, and WSe; in
both bulk and monolayer forms. We calculate struc-
tural properties, such as lattice parameters, using the
GGA approach, taking into account spin—orbit cou-
pling (SOC), and our results are consistent with pre-
vious experimental and computational findings.
Furthermore, we examine electronic properties by
analyzing band structures and densities of states for
these compounds. We focus on optical parameters,
including real and imaginary parts of the dielectric
function, energy loss function, reflectivity spectra,
refraction, absorption, and more. We compare the bulk
and monolayer values to introduce and elaborate on
the characteristics of these four compounds in two
dimensions, aiming to predict their potential applica-
tions in electronic and optoelectronic devices.

Computational methods

The density functional theory (DFI) was imple-
mented in the WIEN2k package to investigate the
structural and optical properties of ZrTe,, NiTe,,
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WTe,, and WSe; bulks and monolayers [116]. The
generalized gradient approximation (GGA) of Per-
dew-Burke Ernzerhof (PBE) formalism [117] was
adopted for the exchange—correlation potential. The
atomic positions of bulks and monolayers are
relaxed. Meshes of 20 x 20 x 10 and 20 x 20 x 1 k-
points in the Brillouin zone were adopted for bulks
and monolayers to achieve an adequate degree of
convergence. For the case of the monolayer, it was
assumed that a 10 A vacuum separates the layers to
prevent interactions between periodic layers. A series
of tests were performed to reach an optimal value for
the cutoff parameters Ry Kpmax=10.0 (a.u.)”! and
magnitude of G vector in reciprocal lattice Gpmax=16
(Ry)'?. Moreover, values of the muffin-tin sphere
radii (Rysr) of Zr, W, N, Te, and Se are 2.20, 2.18, 2.20,
2.35, and 2.37 (a.u.), respectively. The same values of
Rprr Kimax and Gpax were used for monolayer calcu-
lations. The self-consistent calculations convergence
was met when the total energy of two consecutive
iterations were smaller than 10 °Ry.

Results and discussions
Structural properties

ZrTe, and NiTe, were crystallized in a Cdl,.type
trigonal structure (space group P-3m1, number 164).
WTe, and WSe, were crystallized in the hexagonal
structure (space group P6s/mmc, number 194). The
crystal structures of these compounds are shown in
Fig. 1, constructed by combining transition metals Zr,
Ni, and W and chalcogen Te, Se. The optimized val-
ues of the lattice constants of ZrTe,, NiTe,, WTe,, and
WSe, compounds using the PBE-GGA approach were
calculated and presented in Table 1, which are in
good agreement with the experimental results
[118-121].

Dangling bonds and free electrons were created by
cutting bulk in different directions to create a
monolayer. Also, the internal forces in the absence of
neighboring atoms on the monolayer surface could
vary from those of the unit cell in bulk and may upset
the balance of the structure. Therefore, the new
equilibrium condition caused the location of the
atoms to increase slightly compared to the bulk state,
leading to different interatomic distances, as listed in
Table 2.

@ Springer
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Figure 1 The bulk and monolayer crystal structures of a ZrTe,, b NiTe,, ¢ WTe,, and d WSe,.

Electronic properties

The density of states and band structures were cal-
culated for ZrTe,, NiTe,, WTe,, and WSe, com-
pounds to find the band gap and study the electronic
properties of these compounds. According to the
calculated band structure (Fig. 2) and density of
states (Fig. 3), ZrTe, and NiTe, bulks have metallic
behavior, while WTe, and WSe, are semimetals. The
energy band gaps of these compounds are listed in
Table 3 and compared with available data. The band
gap of NiTe, and ZrTe, bulks is zero, which confirms

@ Springer

the metallic behavior of these compounds. WSe; and
WTe, bulks are semiconductors with estimated band
gaps of 0.875 and 0.654 eV. It was found that the band
gaps of monolayers are larger than their bulks, and
remarkably, the NiTe, monolayer shows nonmetallic
behavior. Since the GGA functionals are known to
underestimate the band gaps, the NiTe, Monolayer is
expected to be nonmetallic in real [122].

As can be seen in Fig. 3a the density of states of the
NiTe, bulk around the Fermi energy is larger than the
corresponding values of ZrTe, and has shifted
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Table 1 Optimized lattice parameters (a=b in A and ¢ in A) of
ZrTe,, NiTe,, WTe,, and WSe, compared to available experi-
mental data

Compound a c c/a Refs.

ZrTe, 3.97 7.03 1.77 This work
3.94 6.62 1.68 [118]

NiTe, 3.89 5.31 1.36 This work
3.85 5.26 1.37 [119]

WTe, 3.56 14.40 4.04 This work
3.60 14.18 3.93 [120]

WSe, 3.31 13.03 3.93 This work
3.29 12.97 3.94 [121]

Table 2 The interatomic distance a(A), between transition metals
(Zr, Ni, W) and chalcogen atoms (Se, Te) in ZrTe,, NiTe,, WTe,,
and WSe, bulks and monolayers

Compound Bulk Monolayer
ZrTe, 3.97 3.98
NiTe, 3.89 3.98
WTe, 3.56 3.57
WSe, 3.31 3.33

inward toward Fermi energy, indicating that the
electrons in the NiTe, are more homogeneous and
more substituted than the electrons in the ZrTe, [128].

Moreover, as previously mentioned and Fig. 3b
indicates, since the electron density of states of both
WSe;, and WTe, do not cross the Fermi energy, these
compounds are semiconductors with small energy
gaps. The energy gap of WTe; is smaller than the
energy band gap of WSe,, as expected for most
selenides compared to tellurides [129].

Optical properties

The optical properties of TMDs have been of great
interest for industrial applications [97]. However, the
studies of monolayer TMDs are still primarily at the
basic research level, pending their fundamental
properties and potentially new functionalities. In this
regard, the behavior of different optical quantities as
a function of radiation energy must be studied to
define the optical properties of these structures.
Among various properties, the dielectric function,
e(w), is the quantity with a central role in shaping the
optical response [130]. All the other optical
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parameters, such as reflectivity, absorption coeffi-
cient, and energy loss function, can be extracted from
the real and imaginary part of e(w), defining the
intraband and interband transitions. The former is pri-
marily used for metals [131], whereas the latter can
exist for all materials containing direct and indirect
transitions. At zero temperature, the indirect inter-
band transition has a negligible contribution to e(w);
hence it was ignored in our calculations. The imagi-
nary part of the dielectric function disregarding the
local field effects and utilizing the arbitrary phase
approximation is determined by the following equa-
tion [132]:

e (0) = 27:;;2 / d3kZ <Em’ﬁ]12m/> ¢ (Fm)
X [1 - f(z?m')}a(gkm — Epp — hoo), (1)

where the integration is on all the transitions from
occupied valence states to vacant conduction states.
Furthermore, p and 7w are the momentum operators
and photon energy, respectively. The real part of the
dielectric function is obtained [133] by the following
relation:

e1(w) =

1+%/ &(oo'dow 2)
0

T w?2 — w2’

The dielectric function is a second-order symmetric
tensor with independent elements based on crystal
symmetry. Since the ZrTe,, NiTe,, WTe,, and WSe,
bulks and monolayers have hexagonal symmetry, the
dielectric tensors have two independent elements.
Subsequently, the optical properties of these com-
pounds and monolayers were calculated in two
electromagnetic wave polarizations, namely, parallel
(exx(w)) and perpendicular (e,,(w)) to the monolayer
surface [134]. While the real part of the dielectric
constant provides information regarding polarization
and anomalous dispersion effects, its imaginary
component explains the primary absorption energy
in the crystal structure, originating from neutral
charge excitations [135].

The calculated real and imaginary parts of the
dielectric function of ZrTe,, NiTe,, WTe,, and WSe,
bulks within the PBE-GGA approach in both xx and
zz directions are presented in Fig. 4. The real part of
the static dielectric function, £,(0), of WTe, bulk is
larger than WSe; bulk. In both compounds, the Penn
model [136] is fulfilled. The real part of the static
dielectric function (at zero frequency) is higher than

@ Springer
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Figure 2 The band structures of a ZrTe,, b NiTe,, ¢ WTe,, and d WSe, bulks. ZrTe, and NiTe, bulks are metal, whereas WTe, and WSe,

are semimetals.
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Figure 3 The density of states of a ZrTe, and NiTe,, b WTe, and WSe, bulks. ZrTe, and NiTe, compounds have metallic behavior, and
WTe, and WSe, compounds are semiconductors with a small energy gap.

the imaginary part of the static dielectric function for

all cases.
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The peaks in the imaginary part of the dielectric
function indicate interband transitions. It can be seen
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Table 3 The calculated energy band gap values of ZrTe,, NiTe,,
WTe,, and WSe, bulks and monolayers and compared to available
data

Compound Bulk Refs. Monolayer Refs.
V) V)
ZrTe, 0 This work 0 This work
0 [118] 0 [123]
NiTe, 0 This work 0.199 This work
0 [124] 0 [125]
WTe, 0.654 This work 0.741 This work
0.706 [120] 0.974 [126]
WSe, 0.875 This work 1.243 This work
1.210 [127] 1.420 [121]
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that the imaginary part of the dielectric function for
ZrTe, and NiTe; in the zz direction has a decreasing
trend above the energy of approximately 4 eV. This
value for WSe; and WTe;, is larger, approximately at
6 eV. The reducing trend also happens at a higher
energy for WSe, and WTe, than ZrTe, and NiTe; for
the xx direction. The decreasing trend is due to the
absorption of high-energy photons leading to inter-
band transitions. The sudden inclination change in
either the real or imaginary part of a dielectric func-
tion creates a peak in the other. The peaks observed
in the imaginary part of the dielectric function indi-
cate the maximum transition in that energy, called
resonant frequencies [137]. The highest peaks of
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Figure 4 Calculated plots of the real and imaginary parts of the dielectric function of NiTe,, ZrTe,, WTe,, and WSe, within the PBE-

GGA approximation in the xx (top) and zz (bottom) directions.
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Table 4 Calculated values of interband transition (IBT) peaks and
;" (0) and e, (@) of ZrTe,, NiTes, WTe,, and WSe, bulks

Compound IBT Peaks (eV) €1(0)

NiTe, 0.50 e,” (0)=74
0.55, 1.34, 2.89 e (0)=60

WSe, 2.81, 3.68, 4.04, 5.42 e (0)=16
2.65, 4.69, 5.31, 7.44 et (0)=11

WTe, 2.24, 2.70, 3.25, 6.62 el (0)=19
2.19, 4.06, 6.57, 8.25 et (0)=12

ZrTe, 1.12, 2.89, 3.71 e," (0)=28
0.88, 2.21, 3.79, 4.39 e (0)=15

The prominent peaks are given in bold

NiTe,, WSe, WTe,, and ZrTe, are at 0.50, 2.81, 3.25,
and 1.12 eV, respectively, for bulks in the xx elec-
tromagnetic wave direction. In the zz direction, the
highest peaks are at 0.55, 5.31, 4.06, and 0.88 eV,
respectively, as shown in Fig. 4. At the resonant fre-
quencies, abnormal scattering occurs, which is why
the real part of a dielectric function decreases with
increasing energy at the resonant frequency.

According to Table 4, the calculated values of the
real part of the static dielectric function (e1" (0), elJ_
(0)) for NiTe,, WSe,, WTe,, and ZrTe, bulks are (74,
60), (16, 11), (19, 12), and (28, 15), respectively. WSe,
has the smallest value of £,(0), which agrees with its
relatively larger band gap than the others.

The calculated real and imaginary parts of the
dielectric function of both bulks and monolayers of
ZrTe,, NiTe,, WTe,, and WSe, compounds within the
PBE-GGA approach are illustrated in Fig. 5. The real
parts of the static dielectric function of ZrTe,, NiTe,,
WTe,, and WSe, monolayers are smaller than the
corresponding values of bulks. This trend continues
from zero up to 4-5 eV energies. Also, the imaginary
parts of the dielectric function of the monolayers in
both directions are generally smaller than the bulk
values due to the larger energy gap of the monolay-
ers. The imaginary parts of the bulk and monolayer
dielectric functions at high energies approach zero,
indicating that these compounds are transparent at
high energies. In some energy ranges, the real part of
the dielectric function is for both directions. Corre-
spondingly, the imaginary part is low at the same
energy ranges, which indicates that ZrTe,, NiTe,,
WTe,, and WSe, compounds are promising for many
plasmonic applications, such as optical devices,
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biosensors, and photovoltaic devices [138]. This
energy range (2—4 eV) is more expansive in WTe, and
WSe, than in the others. Also, it is wider in the bulks
of the compounds than in their monolayers.

The imaginary parts of NiTe, bulk and monolayer
dielectric functions in xx direction are maximum at
0.5 eV (2481 nm). Then, they have a decreasing trend
up to~ 10 eV. For the zz direction, the imaginary
part for NiTe, bulk decreases above 2.9 eV (427 nm).
For the monolayer, the imaginary part is significantly
smaller, increasing slightly in the energy range of 0-
6 eV, and dropping at higher energies.

The imaginary parts of the dielectric functions for
WSe, bulk and monolayer for xx direction have
increasing trends in the energy range of 0-2.9 eV and
0-2.6 eV, respectively, and decrease at higher ener-
gies. Also, in the case of zz direction, a similar trend
is observed in the energy range of 0-4.6 eV for the
bulk and 0-5.4 eV for the monolayer. The imaginary
parts of the dielectric function of WTe, bulk and
monolayer for xx direction increase up to ~ 3.2 eV
and decrease at higher energies. Whereas in zz
direction, the peak happens at ~4 and ~ 4.3 eV for
the bulk and monolayer, respectively.

Moreover, from the real part of the dielectric
function, the response of WSe, and WTe; to incident
light shows a high degree of anisotropic in the
infrared (IR) region up to the onset of ultraviolet
radiation (E<10 eV) and is isotropic at higher ener-
gies. In addition, the negative sign of the real part of
the dielectric function (e;(w)) is observed in different
upper UV regions for all cases, indicating no light
transmission. Entirely anisotropic behaviors occur at
the edge of the IR, visible, and UV regions for the
light angle shown in the &; (w) diagram. e;(w) chan-
ges sign multiple times for WSe, and WTe, mono-
layers in the energy range of 4 to 15 eV, so in this
energy range, significant alterations were expected in
the optical response.

For ZrTe; bulk in xx and zz directions, the peaks of
the imaginary parts of the dielectric functions happen
at~ 3.8 and 4.4 eV, respectively. However, for the
monolayer in xx and zz directions, the peaks happen
at ~1 eV (1240 nm) and ~ 7.4 eV, respectively, indi-
cating interband transitions at these energy ranges.
As it can be seen in the graphs (Fig. 5), the largest
response to incident light for all compounds occurs in
parallel radiation, suggesting that these compounds
may be suitable for the optical industry or solar cell
applications [139].
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«Figure 5 Calculated plots of the dielectric function of NiTe,,
WSe,, WTe,, and ZrTe, bulks and monolayers within PBE-GGA
approximation in xx and zz directions. The real parts of the static
dielectric function of ZrTe,, NiTe,, WTe,, and WSe, monolayers
are smaller than the comparative values of their bulks.

Optical constants such as energy loss function L
(w), reflectivity R (w), and absorption coefficient a (w),
can be calculated using the real and imaginary parts
of the dielectric function by the following relations
[1401]:

)
L) = gy ©)
Ve (o) +ig(w) — 1 @)
V(o) +ig(w)+1
a(w) = ( B (@) + &(w) — &1 (). (5)

c

The most substantial peaks of the energy loss in
both directions for WSe, and WTe, bulks are in the
energy range of 20.5-21 eV and 19-19.5 eV, respec-
tively (Fig. 6a), which is due to plasma resonances
associated with mass oscillations of the valance band
electrons [141]. In comparison, the energy loss func-
tions of NiTe, and ZrTe; are significantly lower.

Comparing the reflectivity spectra shown in
Fig. 6b, it can be seen that NiTe, and ZrTe, bulk in xx
direction have the highest reflectivity in the energy
range of 0-5 eV. In the zz direction, NiTe, bulk
behaves the same, while ZrTe, bulk has the highest
value in the range of 5-10 eV. The reflectivity of WSe,
and WTe, bulks in both directions are maximized in
the energy ranges of 17-21 eV and 16-20 eV,
respectively, and decrease monotonically at higher
energies. The high reflectivities indicate that the
valance electrons behave like free electrons in these
energy ranges. It is also seen that WTe, and WSe,
have similar shaped spectra of loss, reflectivity, and
absorption in both directions, with shifts toward
lower energies when Te is replaced Se in the struc-
ture. The absorption of NiTe; and ZrTe, starts at zero
energy as they are both metals. The highest absorp-
tion occurs at 6-15 eV for both directions.

The calculated energy loss function, reflectivity,
absorption, and refraction of WSe, and WTe, bulks
and monolayers as a function of energy are shown in
Fig. 7. As it can be seen in Fig. 7a, the most important
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peaks of the energy loss function in the xx direction
of the two WSe, and WTe, monolayers are in the
energy ranges of 13.1-14.7 eV and 12.8-13.1 eV,
respectively. Also, in the zz direction, the most sig-
nificant peaks of the two WSe, and WTe, monolayers
are in the energy range of 13.9-14.4 eV, and for the
WTe; monolayer, are between 12.2 and 13.7 eV. The
peaks are located at lower energies in both mono-
layers than their bulks. The energy loss function
decreases in the monolayers compared to their bulks
due to the broken bonds. The coefficient values of
static reflection in both monolayers and in both
directions are smaller than their bulks.

According to Fig. 7b, for the WSe, compound, Ry
for bulk is 0.91, the monolayer is 0.25, and R, is 0.92
and 0.22, respectively. Also, Ry« for WTe, bulk is 0.84,
and for monolayer is 0.35, and R,, for bulk and
monolayer are 0.86 and 0.32, respectively. The max-
imum reflection coefficients of the bulks in both
compounds and directions occur at 16-21 eV. The
corresponding values of the monolayers occur in the
energy range of 5-11 eV. The maximum absorption
coefficients of WSe, and WTe, monolayers in both
directions are in the energy range of 6-12 eV and 5-
11 eV, respectively (see Fig. 7c). Also, the absorption
coefficient values of these monolayers are signifi-
cantly smaller than their bulks. The monolayers and
bulks are transparent in the energy range where the
absorption and reflectance coefficients are small and
close to zero, i.e., at energies above 20 eV for WSe,
and WTe, monolayers.

As shown in Fig. 7d, the refractive index of WSe,
and WTe; bulks and monolayers have their largest
values at energies under 6 eV (206 nm) in both
directions. Also, the refractive indexes of bulks are
considerably larger than the monolayers, which can
be associated with the broken bonds in the mono-
layer [142]. Therefore, the bulks have very high
transparency and low absorption in this energy
range.

The investigated energy loss function, reflectivity,
absorption, and refraction of ZrTe, and NiTe; bulks
and monolayers as a function of energy are illus-
trated in Fig. 8. The energy loss function provides a
complete description of the material response to an
external electromagnetic perturbation [143]. The
electronic excitation is encoded in the energy loss
function such that the peaks represent different fea-
tures. The first fundamental peak of the energy loss
function indicates the plasma resonance of electron
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<«Figure 7 a Energy loss function, b reflectivity, ¢ absorption, and
d refraction of WSe, and WTe, bulks and monolayers in xx and zz
directions. The energy loss peaks for both monolayers are
significantly smaller than the bulk and occur at lower energies
(a). The static reflection coefficients in both directions are smaller
for the monolayers than the bulks (b). The absorption coefficients
of these monolayers are significantly smaller than their bulks.
Monolayers and bulks become transparent at high energies (>
20 eV) when the absorption and reflection coefficients approach
zero (c). All plots show considerably smaller values for the
monolayers than the bulks unless at high energies.

collective oscillations within the valence band. The
other peaks are related to the interband transitions
and extinctions. As clearly observed in Fig. 8a, the
highest value of plasma resonance for ZrTe, Mono-
layer is in the energy range of 12.6-14.6 eV for both
polarizations. While for NiTe, Monolayer in xx and
zz directions, the maximum value occurs at an
energy value within the range of 12.4-154 eV.
The most noteworthy value of plasma resonance for
Z1Te; and NiTe, compounds belongs to the x and z
directions, respectively. In addition, the bulks have a
higher energy loss function in both polarizations than
monolayers. Subsequently, the highest plasma reso-
nance in both polarizations occurs for bulks. The
energy of the incident electromagnetic waves affects
the reflectivity spectrum.

As indicated in Fig. 8b, the static reflection coeffi-
cient values in both monolayers, corresponding to xx
and zz polarizations, are lower than their values of
bulks. Still, the ZrTe, monolayer has two prominent
peaks, the first peak, which is the highest, occurs at
1.0 eV in xx direction, and the next one at 7.8 eV in zz
direction. Also, ZrTe, and NiTe, monolayers show
little reflection in the energy range of 20-25 eV for
both polarizations. Generally, the peaks indicate the
maximum reflectivity, and valleys show the highest
absorption [144]. The absorption spectrum of ZrTe,
and NiTe, bulks and monolayers are plotted in
Fig. 8c. The absorption spectrum can show the
intraband transition from the valence to conduction
bands. As expected, the absorption of NiTe, bulk is
entirely different from its monolayer. The bulk of this
compound has metallic behavior, while the mono-
layer is nonmetallic, with absorption starting from
the band gap energy. The maximum absorption of
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NiTe; in xx direction occurs at 9.15 eV, while in the zz
direction is around 8.17 eV. The highest absorption
value for ZrTe, in xx and zz directions are located at
8.72 eV and 7.49 eV, respectively.

The refractive indexes of the bulks and monolayers
are shown in Fig. 8d. The maximum optical transition
happens in the energy ranges where the refractive
index has an upward trend. It can be seen that all
refractive indexes decrease with energy except for the
NiTe, monolayer, which is approximately constant
over the entire range of energy.

The static refractive index of ZrTe,, NiTe,, WTe,,
and WSe, bulks and monolayers are listed in Table 5.
The static refractive index of bulk and Monolayer of
NiTe, in xx direction have the largest values, while
those of WSe, bulk and monolayer in zz direction are
the smallest.

Conclusion

In conclusion, this study presents a comprehensive
analysis of the structural, electronic, and optical
properties of four transition-metal dichalcogenides
(TMDCs): WTe,, WSe,, ZrTe,, and NiTe,, using
density functional theory (DFT) calculations. Our
results show that WSe, and WTe, exhibit semicon-
ducting behavior in both bulk and monolayer forms,
while ZrTe; and NiTe, display metallic behavior in
their bulk forms. However, the monolayer form of
NiTe, deviates from this metallic behavior. Further-
more, we analyzed the optical characteristics,
including dielectric function, reflectivity, absorption
coefficient, refraction coefficient, and electron energy
loss function, for both bulk and monolayer forms.

These findings offer valuable insights into the
properties of these TMDCs, which can be utilized to
design innovative optoelectronic devices. Notably,
the monolayers of these TMDCs could be used to
create transparent conductors, thanks to the
decreased absorption coefficient. This work thor-
oughly examines the characteristics of TMDCs and
their potential in various optoelectronic applications.
In summary, this research highlights the importance
of understanding the properties of TMDCs for the
design and development of advanced optoelectronic
devices.
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<«Figure 8 a Energy loss function, b reflectivity, ¢ absorption
coefficient, and d refraction coefficient of NiTe, and ZrTe, bulks
and monolayers in xx and zz directions. a The peaks in xx and zz
directions are almost the same for both materials. The static
reflectivities are in the range of 0.4-0.6 for bulks and significantly
smaller for the monolayers except for the ZeTe, Monolayer in xx
direction, which is ~ 0.38 b. The absorption coefficient of NiTe,
bulk is very different from that of the monolayer at low energies.
The bulk shows a metallic behavior, but the monolayer shows a
nonmetallic trend, with zero absorption up to the bandgap energy
(c). The refractive indexes for all cases have a reducing trend with
energy, except for the NiTe, Monolayer, which is almost constant
over the entire range of energy (d). All plots show considerably
smaller values for the monolayers than the bulks unless at high
energies..

Table 5 The static refractive index (n(w=0)) of ZrTe,, NiTe,,
WTe,, and WSe, bulks and monolayers in both directions

Compounds My (@ = 0) 1z (0w = 0)
NiTe, (Bulk) 0.85 0.77
NiTe, (ML) 0.62 0.19

WSe, (Bulk) 0.40 0.33

WSe, (ML) 0.22 0.17

WTe, (Bulk) 0.44 0.35

WTe, (ML) 0.26 0.19

ZiTe, (Bulk) 0.53 0.39

ZrTe, (ML) 0.40 0.22
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