




# Unlocking the potential of hexagonal boron sheets: Giant improvements in thermal conductivity and mechanics through molybdenum intercalation

Mohammad Alidoosti <sup>a</sup>, Davoud Nasr Esfahani <sup>a,b,\*</sup>, Shahram Yalameha <sup>c</sup>, Daryoosh Vashaee <sup>d, \*\*</sup>

<sup>a</sup> Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, 19916-33361, Iran

<sup>b</sup> Department of Converging Technologies, Khatam University, Tehran, 19916-33357, Iran

<sup>c</sup> Faculty of Physics, University of Isfahan, Isfahan, 81746-73441, Iran

<sup>d</sup> Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA



## ARTICLE INFO

### Keywords:

Lattice thermal conductivity  
Mechanical properties  
Molybdenum tetra-borides

## ABSTRACT

A new two-dimensional (2D) material,  $\text{MoB}_4$ , known as a Dirac material, has been found to possess exceptional electronic properties and promising thermal and mechanical characteristics. Our calculations reveal that  $\text{MoB}_4$  has a remarkable Young's modulus of 384 N/m, surpassing that of graphene. Additionally, we predict that  $\text{MoB}_4$  exhibits a thermal conductivity of 461 W/mK at room temperature. This is a significant improvement when compared to a single boron sheet in a honeycomb structure and  $\text{MoB}_2$ , showing 32 and 8 times higher thermal conductivity, respectively. This enhancement in thermal conductivity is attributed to the suppression of anharmonicity and scattering phase space, along with an increased group velocity in  $\text{MoB}_4$ .

## 1. Introduction

Transition metal borides (TMBs) have attracted much attention in various fields, where a few examples are  $\text{MgB}_2$  for superconductivity,  $\text{TiB}_2$  for mechanical toughness, or  $\text{WB}_4$  as a superhard material [1–5] for which hardness of  $\sim 46$  GPa has been reported in a bulk configuration [6]. Heavy TMs can emerge with such stiffness when bonded with light atoms like B and C [7–9], via a charge transfer mechanism from the TM to the light atom that can lead to three types of bonds, namely, covalent, ionic, and metallic [10].

Borophene has been successfully synthesized through micro-mechanical exfoliation [11] with remarkable electronic and mechanical properties [11,12]. Although boron cannot form a graphene-like monolayer due to electron deficiency [13,14], it could be stabilized with strain and induction of extra electrons [14]. In this regard, hexagonal boron monolayer could be realized by sandwiching TMs such as Mo and W within two hexagonal boron monolayers which could compensate for the electron deficiency through charge transfer into boron sheets and eventually gives rise to dynamically and thermodynamically stable phases of 2D TMB<sub>x</sub> [15–19]. In this line, tungsten and molybdenum tetra-borides are initial promising candidates to scrutinize as superhard materials. Compared to B–W, more boron concentration

alongside B–B covalent bonds and short, strong, B–Mo bonds could lead to a more rigid structure like  $\text{MoB}_4$ . Moreover, beyond typical Dirac-like electronic band structures (e.g., graphene), the band structure of molybdenum tetra-borides contains twelve Dirac cones in the 1<sup>st</sup> Brillouin zone, including the six cones at the high symmetry point K and others at the middle of  $\Gamma$ -K path [20,21]. The Dirac cones in these materials make them promising candidates for high-performance electronic applications due to their very high Fermi velocity [20].

The work of Xie et al. in Ref. [15] focused on the electronic structure properties of 2D  $\text{MoB}_4$ , however, the mechanical and phononic properties were not investigated. This present study aims to fill this gap by addressing the mechanical and phononic properties of  $\text{MoB}_4$ . As mentioned earlier,  $\text{MoB}_4$  passes the initial checks for promising 2D superhard materials; consequently, a high lattice thermal conductivity ( $\kappa_{ph}$ ) is expected. Nowadays, materials with high enough  $\kappa_{ph}$  could be invoked as fillers in electronic nano-devices for thermal dissipation [22].

$\text{MoB}_4$  is composed of two boron sheets and one Mo sheet; therefore, it is a good practice to compare the thermal conductivity of  $\text{MoB}_4$  to that of its constituents. In this context, there are several other efforts to improve the thermal conductivity of boron sheets; for instance, it was shown that the intercalation of Al atoms into bilayer  $\delta_4$  borophene results in a three-fold enhancement of thermal conductivity ( $\kappa_{ph} \sim 160$  W/mK;

\* Corresponding author. Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, 19916-33361, Iran.

\*\* Corresponding author.

E-mail addresses: [dd.nasr@gmail.com](mailto:dd.nasr@gmail.com) (D.N. Esfahani), [dvashaee@ncsu.edu](mailto:dvashaee@ncsu.edu) (D. Vashaee).

considering 3.60 Å as an effective thickness) in armchair direction at room temperature (RT) [23]. Additionally, previous studies have reported that hydrogenated bilayer honeycomb boron arsenide exhibits in-plane thermal conductivity of approximately 313 W/mK (when considering an effective thickness of 8.11 Å) at RT [24]. However, this value is reduced by approximately ~30% when four-phonon scattering is taken into account [25].

Comparing the latter with a single hexagonal boron sheet (stabilized through electron doping or strain,  $\kappa_{ph} = 14.2$  W/mK), we observe a 22-fold enhancement of the in-plane thermal conductivity in boron arsenide [14]. It is worth noting that while a single-layer honeycomb boron sheet maintains  $\sigma_h$  symmetry, its thermal conductivity is relatively low when compared to some carbon-based materials [26–28], and, on the other hand, is close to what was reported in Ref. [29]. Recently, single layer MoB<sub>2</sub> was shown to be dynamically stable, with an estimated thermal conductivity of  $\kappa_{ph} = 36$  W/mK (rescaled to our effective thickness of 6.33 Å) by accepting minor artificial negative frequencies of ZA mode close to the zone center [30], while our results, without any sign of negative frequencies, show  $\kappa_{ph} = 60$  W/mK. MoB<sub>4</sub> is the result of adding another honeycomb boron sheet to the Mo sheet such that the resulting structure preserves  $\sigma_h$  symmetry. Based on first-principles calculations, we show that such a modification gives rise to a significant thermal conductivity enhancement compared to MoB<sub>2</sub> and a single graphene-like boron sheet. To this end, our calculations show approximately 32 and 8 times thermal conductivity enhancement compared to a single honeycomb boron sheet and MoB<sub>2</sub>, respectively. MoB<sub>4</sub> shows comparable thermal and better mechanical properties than graphene. Our results indicate that the thermal conductivity of MoB<sub>4</sub> has a smaller contribution from the ZA modes, when compared to that of graphene.

## 2. Theory and computational details

First-principles calculations are performed within the density functional theory (DFT) framework implemented in QUANTUM ESPRESSO distribution [31]. Our calculations were carried out using the PAW/PBE pseudopotential [32]. Both in-plane atomic positions and lattice constants were relaxed until all forces and the pressure were less than

$10^{-5}$  eV/A and 0.5 kbar, respectively. A kinetic cut-off of 50 Ry is used for the Kohn-Sham wave functions, while 400 Ry is considered for the density cut-off. A  $24 \times 24 \times 1$  k-point grid was applied for electronic integration with Monkhorst-Pack mesh [33]. To eliminate spurious interaction between adjacent layers, a vacuum space of 20 Å along the z-direction was adopted. To compute the phonon frequencies and electron-phonon matrix elements of the system, the density functional perturbation theory (DFPT) with the self-consistency threshold of  $1 \times 10^{-16}$  Ry was applied [34].

To calculate the lattice thermal conductivity,  $\kappa_{ph}$ , of 2D MoB<sub>4</sub>, anharmonic third-order interatomic force constants (IFCs) are needed, accompanied by second-order IFCs extracted from DFPT [34]. In our calculations, we have considered 3<sup>rd</sup>IFCs up to the fourth shell of neighbors [35] in a  $5 \times 5 \times 1$  supercell and  $3 \times 3 \times 1$  k-mesh, while a fine mesh  $160 \times 160 \times 1$  is adopted in Fourier transformation in  $\mathbf{q}$ -space accompanied with scalbroad 1.0. We calculate the thermal conductivity of 2D MoB<sub>4</sub> by solving the phonon BTE with an iterative self-consistent algorithm as implemented in the ShengBTE package [36–38]. Intrinsic three phonon scattering processes have been considered in the calculation of phonon relaxation times ( $\tau_\lambda$ ):

$$\frac{1}{\tau_\lambda} = \frac{1}{N} \left( \sum_{\lambda' \lambda''}^+ \Gamma_{\lambda \lambda' \lambda''}^+ + \frac{1}{2} \sum_{\lambda' \lambda''}^- \Gamma_{\lambda \lambda' \lambda''}^- + \sum_{\lambda} \Gamma_{\lambda \lambda}^{\text{ext}} \right), \quad (1)$$

where  $N$  is the number of  $\mathbf{q}$  points in the Brillouin zone,  $\Gamma_{\lambda \lambda' \lambda''}^+$  and  $\Gamma_{\lambda \lambda' \lambda''}^-$  represent the scattering rates due to absorbing and emitting three-phonon processes, respectively. The extrinsic scattering term  $\Gamma_{\lambda \lambda}^{\text{ext}}$

comprises isotopic disorder. Next, the lattice thermal conductivity tensor is expressed as:

$$\kappa^{\alpha\beta} = \frac{1}{V} \sum_{\lambda} \hbar \omega_{\lambda} \frac{\partial n}{\partial T} v_{\lambda}^{\alpha} v_{\lambda}^{\beta} \tau_{\lambda}, \quad (2)$$

where  $V$  is the volume of the unit cell,  $n$  is the Bose-Einstein distribution function,  $v_{\lambda}^{\alpha}$  is the group velocity, and  $\omega_{\lambda}$  is phonon frequency.  $\lambda$  index embraces both phonon  $\mathbf{q}$  vectors and branch numbers.

Following Ref. [39], the lattice thermal expansion,  $\alpha$ , can be calculated using,

$$\alpha = \frac{1}{d_0^2 \frac{\partial E^2}{\partial a^2}} \sum_{q,\nu} c_v(q, \nu) \tilde{\gamma}_{q,\nu}, \quad (3)$$

where  $c_v(q, \nu) = k_B \frac{x^2}{\sinh^2 x}$ ,  $x = \frac{\hbar \omega}{2k_B T}$  and  $\tilde{\gamma}_{q,\nu} = -\frac{a_0}{\omega_{q,\nu}} \frac{d\omega_{q,\nu}}{da}|_{a=a_0}$ . Assuming that the variation of phonon frequencies is insignificant compared to the variation of volume in the z-direction (perpendicular to the direction of the 2D plane, which includes a large enough vacuum to prevent interaction between repeated images), we have  $\gamma_{q,\nu} = -\frac{V_0}{\omega_{q,\nu}} \frac{d\omega_{q,\nu}}{dV}|_{V=V_0} = -\frac{S_0}{\omega_{q,\nu}} \frac{d\omega_{q,\nu}}{ds}|_{s=S_0}$ . Considering  $S_0 = \frac{\sqrt{3}}{2} a_0^2$  for our case, the relation between  $\gamma_{q,\nu}$  and  $\tilde{\gamma}_{q,\nu}$  becomes  $\tilde{\gamma}_{q,\nu} = 2\gamma_{q,\nu}$ . Inserting back this result into Eq. (3), we have,

$$\alpha = \frac{2}{d_0^2 \frac{\partial E^2}{\partial a^2}} \sum_{q,\nu} c_v(q, \nu) \gamma_{q,\nu}. \quad (4)$$

$\frac{\partial E^2}{\partial a^2}$  is calculated by fitting a quadratic polynomial into the total energy data. The total energy is evaluated for 11 points of bi-axial strain from -2.5% to +2.5% of  $a_0$  (equilibrium lattice constant) and with a step length of 0.5%.

To calculate elastic constants in 2D materials, we employ Hooke's law under plane-stress condition [40] as follows:

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & 0 \\ C_{21} & C_{22} & 0 \\ 0 & 0 & C_{66} \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ 2\epsilon_{12} \end{bmatrix}. \quad (5)$$

In the energy approach, similar to 3D materials, the elastic stiffness constants of 2D materials can be calculated using the equation [41],

$$C_{ij} = \frac{1}{S_0} \frac{\partial^2 E}{\partial \epsilon_i \partial \epsilon_j}, \quad (6)$$

where  $E$  and  $S_0$  are the energy and area of the simulation cell in the x-y plane (usually the equilibrium one), respectively. In addition,  $\frac{\partial^2 E}{\partial \epsilon_i \partial \epsilon_j}$  is the second derivative of the strain energy with respect to the uniaxial strain. In this work, the uniaxial strains in the range of  $\epsilon = -6\%$  to  $\epsilon = 6\%$  with a step of 2% are applied to two in-plane directions. The negative and positive values of this range indicate the compressive strain and tensile strain, respectively. Under each strain, the ionic positions of the 2D MoB<sub>4</sub> structures are fully relaxed. Finally, we obtain the in-plane elastic constant by the polynomial fitting of the strain-dependent energy values [42]. The elastic constants were calculated using the IRELAST2D code [41] based on the energy approach. These calculations were carried out within the full-potential augmented plane-wave + local orbitals method, encoded in the WIEN2k package [43]. In addition, mechanical properties were analyzed using the ELATOOLS code as well [44].

## 3. Numerical results and discussions

### 3.1. General properties

The relaxed geometry of the MoB<sub>4</sub> monolayer showed an optimized hexagonal unit cell with  $D_{6h}$  symmetry consisting of two boron layers embracing a triangle lattice of Mo atoms in their interval space, as

depicted in Fig. 1(a). Such a structure is dynamically stable and preserves  $\sigma_h$  symmetry. Our results show that the optimal lattice parameter  $a = 2.96 \text{ \AA}$  and covalently bonded B–B and ionic-covalent bonded B–Mo lengths are 1.71 and 2.37  $\text{\AA}$ , respectively. In comparison, the two boron layers are separated by distance  $d_{\text{B–B}} = 3.28 \text{ \AA}$ , which has good agreement with Ref. [15]. Bader charge analysis implemented in CRITIC2 [45, 46] indicates such a strong bond arises from the transfer of slightly more than 1  $e/\text{cell}$  from Mo atom to the adjacent B atoms.

In 2D structures, an effective thickness is required to determine the thermal conductivity and mechanical properties, which is often considered a Van der Waals (VdW) diameter between the two isolated layers of the material. In this work, the effective thickness of about 6.33  $\text{\AA}$  is estimated when grimme-d2 as a VdW correction was employed. The electronic band structure of monolayer MoB<sub>4</sub> is shown in Fig. 1(b), consisting of two Dirac points at K and between K and  $\Gamma$  illustrated in the inset of this figure as well. Our calculations disclose that the ground state of this structure is nonmagnetic metal with weak spin-orbit effects neglected in this work due to having no effects on the crystal structure and mechanical or thermal properties. Spin-orbit effects can open a gap of about 40 meV at Dirac cones; however, the system remains metallic, as demonstrated in Fig. 1(b).

### 3.2. Mechanical properties

We calculated the in-plane elastic constants to evaluate the mechanical stability of the MoB<sub>4</sub> monolayer. The hexagonal structure of this monolayer possesses two independent second-order elastic constants,  $C_{11}$  and  $C_{12}$  ( $C_{66} = (C_{11} - C_{12})/2$ ). The mechanical stability is evaluated by Born's stability criteria [47,48] as  $C_{11} - C_{12} > 0$  and  $C_{11} + C_{12} > 0$ . The obtained elastic constants in Table 1 meet the elastic stability criteria for MoB<sub>4</sub>. To further examine the mechanical behavior of this monolayer, we investigate its mechanical properties, including Young's modulus ( $E$ ) and Poisson's ratio ( $\nu$ ) listed in Table 1. This table shows Young's modulus is 383.8 N/m, which is interestingly larger than graphene (348 N/m) [49],  $\alpha$ -borophene (210 N/m),  $\beta_{12}$ -borophene (203 N/m) and borophane (172 N/m) [50,51]. It is also 31.9% and 46.6% larger than penta-graphene (268 N/m) [52] and Me-graphene (210 N/m) [53], respectively. The Poisson's ratio can be defined as a  $C_{12}/C_{11}$ , which is 0.159 for this structure (see Table 1), slightly different from MoB<sub>2</sub> (0.196), graphene (0.169),  $\alpha$ -borophene (0.196),  $\beta_{12}$ -borophene (0.199) and borophane (0.177) [50,51]. We calculate the direction-dependent Young's modulus and Poisson's ratio to check for

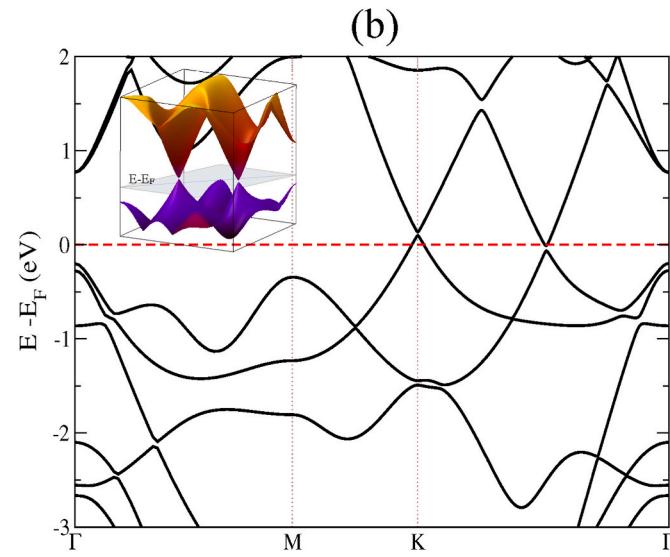
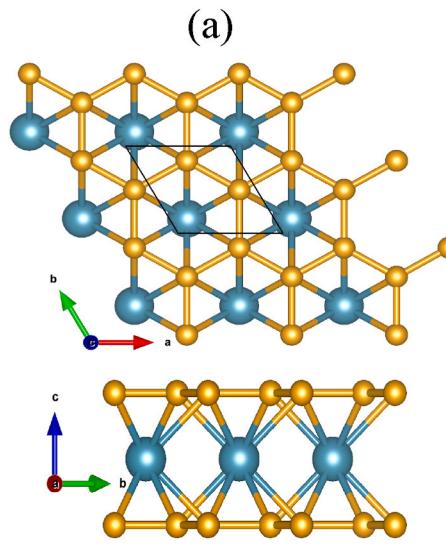
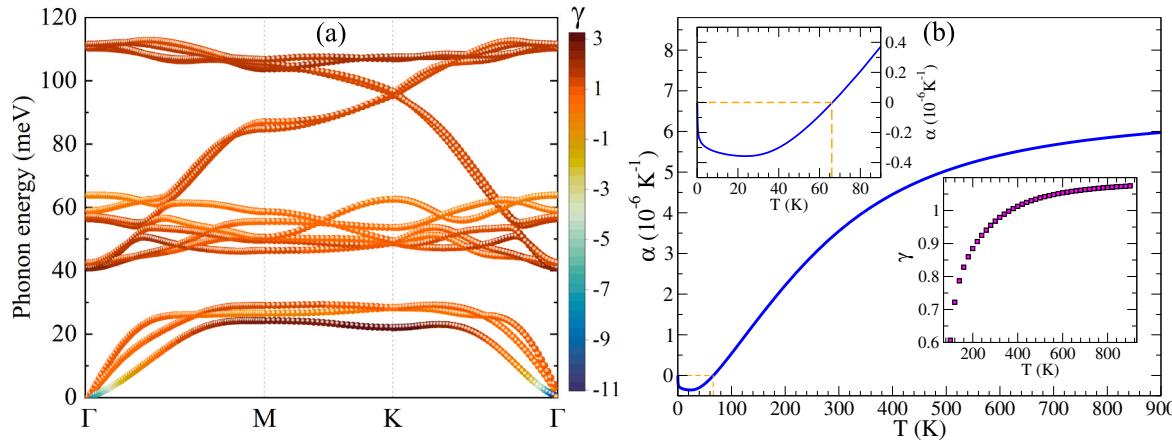
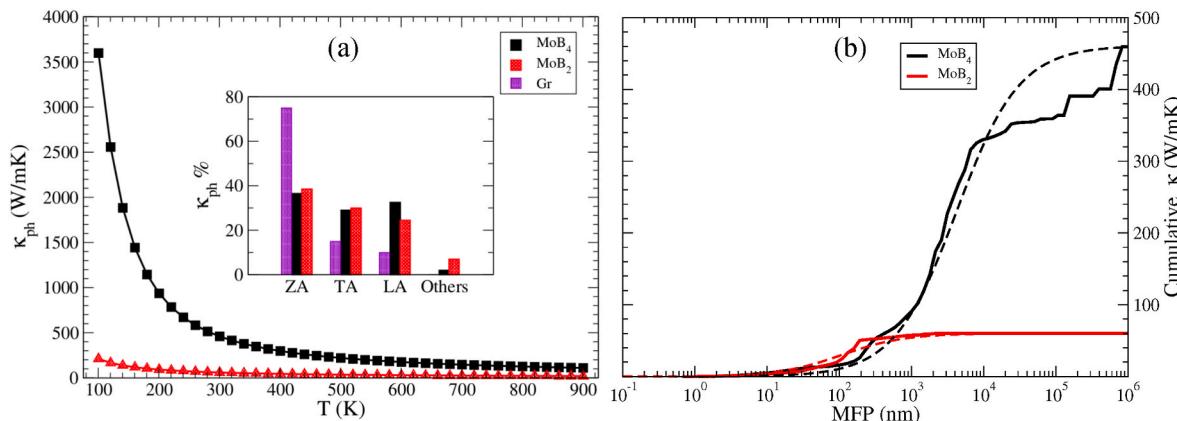





Fig. 1. (a) Top and side views of MoB<sub>4</sub> monolayer. (b) The electronic band structure of MoB<sub>4</sub> monolayer along the high symmetry path by considering the spin-orbit effect. The inset shows a 3D representation of the two Dirac cones. The blue and orange refer to Mo and B atoms, respectively.

**Table 1**

Elastic constants  $C_{ij}$  (N/m), Young's modulus ( $E$ ), and Poisson's ratio ( $\nu$ ) alongside group velocity,  $V$  (km/s), of  $\text{MoB}_4$  compared to  $\text{MoB}_2$  along the high symmetry path. The amounts in the parentheses have been taken from Ref. [30].

|                | Elastic constants |             |             |               |              | $V^{\Gamma-M}$ | $V^{\Gamma-K}$ |     |      |
|----------------|-------------------|-------------|-------------|---------------|--------------|----------------|----------------|-----|------|
|                | $C_{11}$          | $C_{12}$    | $C_{66}$    | $E$           | $\nu$        |                |                | TA  | LA   |
| $\text{MoB}_4$ | 393.7             | 62.6        | 165.6       | 383.8         | 0.159        | 8.8            | 12.3           | 8.3 | 11.7 |
| $\text{MoB}_2$ | 235.2 (225.8)     | 46.2 (51.3) | 94.5 (87.2) | 226.1 (214.1) | 0.196 (0.23) | 5.9            | 9.1            | 5.9 | 9.2  |




**Fig. 2.** (a) The momentum-resolved Grüneisen parameter ( $\gamma$ ) mapped on the phonon dispersion along the high symmetry path. (b) The lattice thermal expansion ( $\alpha$ ) of a  $\text{MoB}_4$  monolayer as a function of temperature. The upper left inset shows a zoomed-in view of thermal expansion in the range of 1–90 K. The lower right inset displays the Grüneisen parameter versus temperature.

larger thermal conductivity is expected for  $\text{MoB}_4$  in comparison with  $\text{MoB}_2$ .

**Fig. 3** (a) shows the thermal conductivity of  $\text{MoB}_2$  and  $\text{MoB}_4$  as a function of temperature.  $\text{MoB}_4$  shows larger thermal conductivity in the whole range of temperatures than  $\text{MoB}_2$ . The results show that  $\kappa_{ph}$  yields 461 (60) W/mK for  $\text{MoB}_4$  ( $\text{MoB}_2$ ) comparable with what was reported for  $\alpha$ -borophene ( $\sim 14$  W/mK) [55], monolayer  $\beta_{12}$ -borophene ( $\sim 90$  W/mK) and bilayer  $\beta_{12}$ -borophene (140.5 W/mK) [56,57] at RT. The contributions of the most important modes to the  $\kappa_{ph}$  are also shown in the inset of **Fig. 3(a)**, indicating almost the same pattern for both systems. Compared to graphene as a single atomic layer with  $\sigma_h$  symmetry,  $\text{MoB}_4$  preserves  $\sigma_h$  symmetry as well, and the share of ZA mode in the  $\kappa_{ph}$  of  $\text{MoB}_4$  (35%) is interestingly much smaller than that of graphene (75%) [26] as illustrated in the inset of **Fig. 3**. The main reason for this

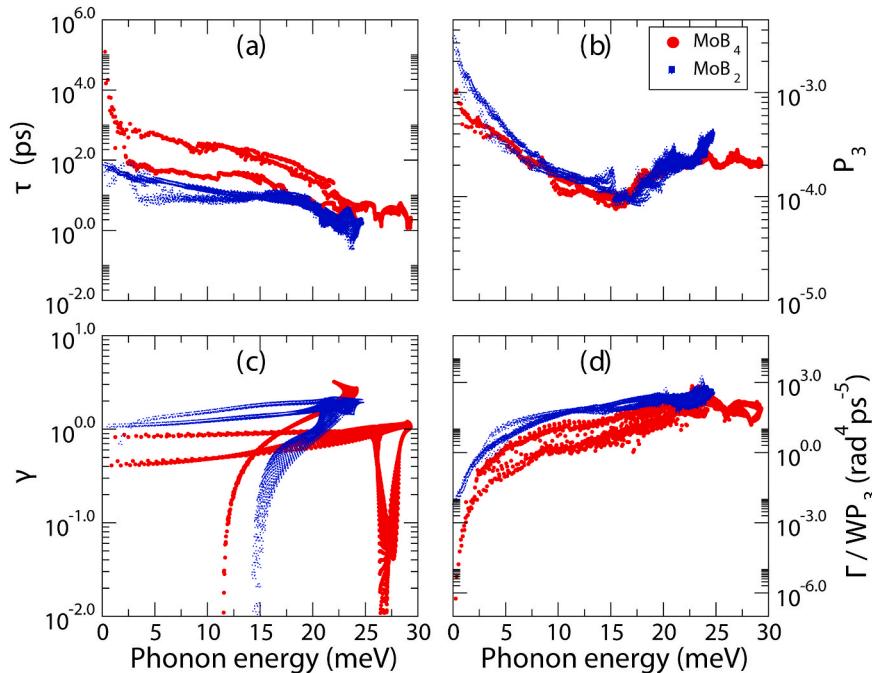
reduction is that the scattering channels with odd ZA deformations are forbidden for graphene. However, due to the type  $\sigma_h$  symmetry in  $\text{MoB}_4$ , where there are atoms away from the  $\sigma_h$  symmetry plane, such a condition does not hold; hence, the scattering channels with an odd number of ZA mode deformations are active [58] for these types of structures. Besides, such a discrepancy between graphene and  $\text{MoB}_4$  symmetries arising from their configurations (purely-2D vs. quasi-2D) manifests itself in the electron-phonon interactions [59]. In addition, more details express that increasing the temperature reduces (increases) the ZA (LA) mode contribution of  $\kappa_{ph}$  to 32% (34%). In contrast, the dominant contribution of ZA phonons for graphene remains even at high temperatures [60]. Notice that optical contributions appear only at  $T > 500$  K for graphene [26]. In comparison with materials with broken  $\sigma_h$  symmetry, the presence of  $\sigma_h$  in materials like  $\text{MoB}_4$  still imposes a



**Fig. 3.** (a) The calculated lattice thermal conductivity,  $\kappa_{ph}$ , of  $\text{MoB}_4$  and  $\text{MoB}_2$  monolayer as a function of temperature. The inset displays the percent contribution of the various acoustic and optical branches in forming  $\kappa_{ph}$ . At RT,  $\kappa_{ph}$  is 461 and 60 (W/mK) for  $\text{MoB}_4$  and  $\text{MoB}_2$ , respectively. The results related to graphene are taken from Ref. [26] (b) Cumulative lattice thermal conductivity of  $\text{MoB}_4$  and  $\text{MoB}_2$  as a function of the maximum mean free path (MFP) at 300 K. An effective layer thickness tantamount to 6.33 Å has been considered.

constraint on the selection rule of scattering matrix elements  $\Gamma_{\lambda\lambda'\lambda''}$ . That is, all of the scattering channels with pure Mo deformations with an odd number of ZA deformations are forbidden in MoB<sub>4</sub>, while such scattering channels are active in MoB<sub>2</sub>. Such a constraint could also suppress anharmonic effects in MoB<sub>4</sub> compared to MoB<sub>2</sub>, resulting in a larger  $\kappa_{ph}$  for the former. Furthermore, since the  $\sigma_h$  symmetry is less efficient in MoB<sub>4</sub> (due to the presence of atoms away from the horizontal symmetry plane) in comparison to graphene, it is expected that the thermal conductivity of MoB<sub>4</sub> is less sensitive to the breaking of  $\sigma_h$  symmetry caused by the substrate. However, the actual reduction of  $\kappa_{ph}$  is also the result of the damping of ZA mode. This has a significant contribution to the suppression of thermal conductivity, which is the result of the interaction of 2D material with substrates [61,62] and must be evaluated on a case-by-case basis. Up to this point, we have discussed  $\kappa_{ph}$  for, in principle, infinite sample sizes [63]. To better understand the effects of sample size, the cumulative  $\kappa_{ph}$  as a function of the mean free path (MFP) at RT is plotted in Fig. 3 (b). The plot reveals that for both MoB<sub>2</sub> and MoB<sub>4</sub> the thermal conductivity is similar for sample sizes up to around 100 nm. From 100 nm to 200 nm, MoB<sub>2</sub> exhibits a small gain compared to MoB<sub>4</sub>. Beyond 200 nm sample sizes, while  $\kappa_{ph}$  saturates for MoB<sub>2</sub>, it dramatically increases for MoB<sub>4</sub>. Moreover, the dashed lines in Fig. 3 (b) is corresponding to a fit extracted from  $\kappa_{ph}(\Lambda \leq \Lambda_{\max}) = \frac{\kappa_{ph}}{1 + \frac{\Lambda_0}{\Lambda_{\max}}}$  [36]. Our results manifest  $\Lambda_0 = 4223$  (108) nm for MoB<sub>4</sub> (MoB<sub>2</sub>), which can help follow decreasing of  $\kappa_{ph}$  with respect to the size of the nanocrystals. In addition, our calculations indicate that the scattering rate corresponding to isotopic impurities,  $\Gamma^{\text{ext}}$ , only possesses sensitive amounts in high phonon frequencies and, consequentially, show that neglecting isotopic effects can enhance  $\kappa_{ph}$  only about 9% at RT.

To better understand the underlying reason for the enhancement of  $\kappa_{ph}$  for MoB<sub>4</sub> versus MoB<sub>2</sub>, in Fig. 4, we compare different quantities affecting  $\kappa_{ph}$ . A comparison between the relaxation times is shown in Fig. 4(a). We can see an overall relaxation time enhancement of MoB<sub>4</sub> compared to MoB<sub>2</sub> in the whole range of energies, particularly approximately two orders of magnitude enhancement for small phonon energies. Such stark differences between both cases mentioned above could be traced to the two other features, namely, a pure phononic band structure property, i.e.,  $P_3$  [36], and the level of anharmonicity. Fig. 4(b)


indicates a larger  $P_3$  for MoB<sub>2</sub> than MoB<sub>4</sub>, which shows a larger scattering phase-space for MoB<sub>2</sub>, resulting in a smaller  $\tau$ .

To compare the amount of non-linearity, in Fig. 4(c), we plot the Grüneisen parameter corresponding to MoB<sub>2</sub> and MoB<sub>4</sub> as a function of phonon energies. Comparing  $\gamma$  for the two materials, we can see that  $\gamma$  of MoB<sub>2</sub> is overall larger than MoB<sub>4</sub>. Another analogy for the amount of anharmonicity could be achieved by  $\frac{\Gamma(\omega)}{WP_3(\omega)}$  (for the definition of  $WP_3$  see Ref. [36]), as outlined in Fig. 4(d). The latter plot indicates a clear amplification of  $\frac{\Gamma(\omega)}{WP_3(\omega)}$  for MoB<sub>2</sub> in contrast to that of MoB<sub>4</sub>, which results in  $\kappa_{ph}$  improvement for the latter. Thus, in terms of the juxtaposition of MoB<sub>4</sub> and MoB<sub>2</sub>, besides the larger sound velocities of MoB<sub>4</sub>, the suppressed scattering space and the restrained anharmonic effects in MoB<sub>4</sub> result in an 8-fold improvement of the  $\kappa_{ph}$  of MoB<sub>4</sub> at RT.


Additionally, various studies have highlighted the significance of fourth-order phonon scatterings in a wide range of materials [25, 64–67]. Therefore, to examine the role of four-phonon scattering, following the approach of Ref. [65], we compared the weighted phase spaces  $WP_4$  and  $WP_3$  of MoB<sub>4</sub> as shown in Fig. 5 (for computational details see Ref. [68]). Our results reveal that the weighed phase space for  $WP_4$  is at least two orders of magnitude smaller than that of  $WP_3$ , indicating a weak effect of fourth-order phonons on the scattering rate and lattice thermal transport.

#### 4. Conclusion

In summary, we have studied the mechanical and thermal conductivity of a monolayer of MoB<sub>4</sub>. Our calculations indicate that MoB<sub>4</sub> has a remarkable tensile strength with a Young's modulus of approximately 384 N/m, which is comparable to graphene and significantly larger than that of a single boron sheet and MoB<sub>2</sub>. Our results also reveal a negative Grüneisen parameter for the ZA mode close to the zone center. However, unlike other well-known 2D materials such as graphene, germanene, and blue phosphorene, the total Grüneisen parameter is positive for MoB<sub>4</sub> above 66 K, resulting in a positive thermal expansion. Additionally, we calculated the thermal conductivity of MoB<sub>4</sub> and found it to be high, with a value of  $\kappa_{ph} \simeq 461$  W/mK. Our findings also indicate that the contribution of the ZA mode to thermal conductivity is relatively small



**Fig. 4.** (a) Relaxation time ( $\tau$ ), (b) allowed three-phonon phase space ( $P_3$ ), (c) Grüneisen parameter ( $\gamma$ ), and (d) anharmonic scattering rate divided by weighted phase space ( $WP_3$ ) versus phonon energy for monolayer MoB<sub>4</sub> and MoB<sub>2</sub>.



**Fig. 5.** Comparison of the weighted phase spaces WP<sub>3</sub> and WP<sub>4</sub> for a monolayer of MoB<sub>4</sub> at 300 K. The value of the scalebroad in ShengBTE is set to 1.0.

(35%) compared to that of graphene (75%). To analyze our results, we compared our findings for MoB<sub>4</sub> with those for MoB<sub>2</sub>. For MoB<sub>4</sub>, an enhanced group velocity of TA and LA modes in combination with a reduced scattering phase space and suppressed anharmonicity led to an 8X and 32X enhancement of thermal conductivity compared to MoB<sub>2</sub> and the single honeycomb boron sheet. This study motivates further research into the use of other transition metals with different boron allotropes to engineer materials with superior mechanical and thermal properties.

#### CRediT author statement

**Mohammad Alidoosti:** Investigation, Methodology, Software, Data curation, Formal analysis, Writing- Original draft preparation, **Shahram Yalameha:** Data curation, Software, Formal analysis, Validation, Writing- Reviewing and Editing, **Davoud Nasr Esfahani:** Supervision, Conceptualization, Validation, Formal analysis, Resources, Writing- Reviewing and Editing, **Daryoosh Vashaee:** Supervision, Resources, Validation, Formal analysis, Funding acquisition, Writing- Reviewing and Editing.

#### Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Daryoosh Vashaee reports financial support was provided by National Science Foundation.

#### Data availability

Data will be made available on request.

#### Acknowledgements

DV acknowledges the funding support by NSF under grant numbers ECCS-1711253 and CBET-2110603.

#### References

- [1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride, *Nature* 410 (6824) (2001) 63–64, <https://doi.org/10.1038/35065039>.
- [2] G. Akopov, M. T. Yeung, R. B. Kaner, Rediscovering the crystal chemistry of borides, *Adv. Mater.* 29 (21) 1604506. doi:<https://doi.org/10.1002/adma.201604506>.
- [3] S.-J. Gong, C. Gong, Y.-Y. Sun, W.-Y. Tong, C.-G. Duan, J.-H. Chu, X. Zhang, Electrically induced 2d half-metallic antiferromagnets and spin field effect transistors, *Proc. Natl. Acad. Sci.* 115 (34) (2018) 8511–8516, <https://doi.org/10.1073/pnas.1715465115>.
- [4] C. Gu, Y. Liang, X. Zhou, J. Chen, D. Ma, J. Qin, W. Zhang, Q. Zhang, L.L. Daemen, Y. Zhao, S. Wang, Crystal structures and formation mechanisms of boron-rich tungsten borides, *Phys. Rev. B* 104 (2021) 014110, <https://doi.org/10.1103/PhysRevB.104.014110>.
- [5] B. Albert, H. Hillebrecht, Boron: Elementary challenge for experimenters and theoreticians, *Angew. Chem. Int. Ed.* 48 (46) 8640–8668. doi:<https://doi.org/10.1002/anie.200903246>.
- [6] Q. Gu, G. Krauss, W. Steurer, Transition metal borides: Superhard versus ultra-incompressible, *Adv. Mater.* 20 (19) 3620–3626. doi:<https://doi.org/10.1002/adma.200703025>.
- [7] M. Wang, Y. Li, T. Cui, Y. Ma, G. Zou, Origin of hardness in WB<sub>4</sub> and its implications for ReB<sub>4</sub>, TaB<sub>4</sub>, MoB<sub>4</sub>, TcB<sub>4</sub>, and OsB<sub>4</sub>, *Appl. Phys. Lett.* 93 (10) (2008) 101905, <https://doi.org/10.1063/1.2977760>.
- [8] H. Tang, X. Gao, J. Zhang, B. Gao, W. Zhou, B. Yan, X. Li, Q. Zhang, S. Peng, D. Huang, L. Zhang, X. Yuan, B. Wan, C. Peng, L. Wu, D. Zhang, H. Liu, L. Gu, F. Gao, T. Irfune, R. Ahuja, H.-K. Mao, H. Gou, Boron-rich molybdenum boride with unusual short-range vacancy ordering, anisotropic hardness, and superconductivity, *Chem. Mater.* 32 (1) (2020) 459–467, <https://doi.org/10.1021/acs.chemmater.9b04052>.
- [9] M. Zhang, H. Yan, Q. Wei, B. Zheng, Reinvestigation of mechanical properties and shear-induced atomic deformation of tetragonal superhard semiconducting OsB<sub>4</sub>, *J. Phys. Chem. C* 121 (11) (2017) 6290–6299, <https://doi.org/10.1021/acs.jpcc.6b12992>.
- [10] M. Zhang, H. Wang, H. Wang, T. Cui, Y. Ma, Structural modifications and mechanical properties of molybdenum borides from first principles, *J. Phys. Chem. C* 114 (14) (2010) 6722–6725, <https://doi.org/10.1021/jp100225c>.
- [11] S. Chahal, P. Ranjan, M. Motlag, S. S. R. K. C. Yamijala, D. J. Late, E. H. S. Sadki, G. J. Cheng, P. Kumar, Borophene via micromechanical exfoliation, *Adv. Mater.* 33 (34) 2102039. doi:<https://doi.org/10.1002/adma.202102039>.
- [12] A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B. L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M. C. Hersam, N.P. Guisinger, Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs, *Science* 350 (6267) (2015) 1513–1516, <https://doi.org/10.1126/science.aad1080>.
- [13] Z. Zhang, E.S. Penev, B.I. Yakobson, Two-dimensional materials: polyphony in b flat, *Nat. Chem.* 8 (6) (2016) 525–527, <https://doi.org/10.1038/nchem.2521>.
- [14] Y. Yin, D. Li, Y. Hu, G. Ding, H. Zhou, G. Zhang, Phonon stability and phonon transport of graphene-like borophene, *Nanotechnology* 31 (31) (2020) 315709, <https://doi.org/10.1088/1361-6528/ab824c>.
- [15] S.-Y. Xie, X.-B. Li, W.-Q. Tian, N.-K. Chen, X.-L. Zhang, Y. Wang, S. Zhang, H.-B. Sun, First-principles calculations of a robust two-dimensional boron honeycomb sandwiching a triangular molybdenum layer, *Phys. Rev. B* 90 (2014) 035447, <https://doi.org/10.1103/PhysRevB.90.035447>.
- [16] C. Zhang, Y. Jiao, F. Ma, S. Bottle, M. Zhao, Z. Chen, A. Du, Predicting a graphene-like WB<sub>4</sub> nanosheet with a double Dirac cone, an ultra-high Fermi velocity and significant gap opening by spin-orbit coupling, *Phys. Chem. Chem. Phys.* 19 (2017) 5449–5453, <https://doi.org/10.1039/C7CP00157F>.
- [17] T. Kondo, Recent progress in boron nanomaterials, *Sci. Technol. Adv. Mater.* 18 (1) (2017) 780–804, <https://doi.org/10.1080/14686996.2017.1379856>, pMID: 29152014.
- [18] F. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, A. Du, Graphene-like two-dimensional ionic boron with double Dirac cones at ambient condition, *Nano Lett.* 16 (5) (2016) 3022–3028, <https://doi.org/10.1021/acs.nanolett.5b05292>, pMID: 27050491.
- [19] H. Gunda, L.E. Klebanoff, P.A. Sharma, A.K. Varma, V. Dolia, K. Jasuja, V. Stavila, Progress, challenges, and opportunities in the synthesis, characterization, and application of metal-boride-derived two-dimensional nanostructures, *ACS Mater. Lett.* 3 (5) (2021) 535–556, <https://doi.org/10.1021/acsmaterialslett.1c00086>.
- [20] A. Lopez-Bezanilla, Interplay between p- and d- orbitals yields multiple Dirac states in one- and two-dimensional CrB<sub>4</sub>, 2D Mater. 5 (3) (2018) 035041, <https://doi.org/10.1088/2053-1583/aac9f9>.
- [21] A. Lopez-Bezanilla, Twelve inequivalent Dirac cones in two-dimensional ZrB<sub>2</sub>, *Phys. Rev. Mater.* 2 (2018) 011002, <https://doi.org/10.1103/PhysRevMaterials.2.011002>.
- [22] Q. Cai, E. Janzen, J.H. Edgar, W. Gan, S. Zhang, E.J.G. Santos, L.H. Li, Isotope effect on the thermal expansion coefficient of atomically thin boron nitride, 2D Mater. 8 (3) (2021) 034006, <https://doi.org/10.1088/2053-1583/ac0730>.
- [23] Y. Hu, Y. Yin, S. Li, H. Zhou, D. Li, G. Zhang, Three-fold enhancement of in-plane thermal conductivity of borophene through metallic atom intercalation, *Nano Lett.* 20 (10) (2020) 7619–7626, <https://doi.org/10.1021/acs.nanolett.0c03135>, pMID: 32852213.
- [24] Y. Hu, Y. Yin, G. Ding, J. Liu, H. Zhou, W. Feng, G. Zhang, D. Li, High thermal conductivity in covalently bonded bi-layer honeycomb boron arsenide, *Mater. Today Phys.* 17 (2021) 100346, <https://doi.org/10.1016/j.mtphys.2021.100346>.
- [25] C. Yu, Y. Hu, J. He, S. Lu, D. Li, J. Chen, Strong four-phonon scattering in monolayer and hydrogenated bilayer BAs with horizontal mirror symmetry, *Appl. Phys. Lett.* 120 (13) (2022) 132201, <https://doi.org/10.1063/5.0086608>.
- [26] L. Lindsay, D.A. Broido, N. Mingo, Flexural phonons and thermal transport in graphene, *Phys. Rev. B* 82 (2010) 115427, <https://doi.org/10.1103/PhysRevB.82.115427>.
- [27] G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari, F. Mauri, Thermal conductivity of graphene and graphite: collective excitations and mean free paths, *Nano Lett.* 14 (11) (2014) 6109–6114, <https://doi.org/10.1021/nl502059f>, pMID: 25343716.

[28] S. Lu, Y. Ouyang, C. Yu, P. Jiang, J. He, J. Chen, Tunable phononic thermal transport in two-dimensional  $\text{C}_6\text{CaC}_6$  via guest atom intercalation, *J. Appl. Phys.* 129 (22) (2021): 225106, <https://doi.org/10.1063/5.0051259> doi:10.1063/5.0051259 10.1063/5.0051259.

[29] S. Lu, W. Ren, J. He, C. Yu, P. Jiang, J. Chen, Enhancement of the lattice thermal conductivity of two-dimensional functionalized mxenes by inversion symmetry breaking, *Phys. Rev. B* 105 (2022): 165301, <https://doi.org/10.1103/PhysRevB.105.165301>, 10.1103/PhysRevB.105.165301.

[30] Y. An, S. Gong, Y. Hou, J. Li, R. Wu, Z. Jiao, T. Wang, J. Jiao,  $\text{MoB}_2$ : a new multifunctional transition metal diboride monolayer, *J. Phys. Condens. Matter* 32 (5) (2019): 055503, <https://doi.org/10.1088/1361-648X/ab4e6e>.

[31] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougaudis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Scaluzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, Quantum espresso: a modular and open-source software project for quantum simulations of materials, *J. Phys. Condens. Matter* 21 (39) (2009) 395502, <https://doi.org/10.1088/0953-8984/21/39/395502>.

[32] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, *Phys. Rev. Lett.* 77 (1996) 3865–3868, <https://doi.org/10.1103/PhysRevLett.77.3865>.

[33] H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations, *Phys. Rev. B* 13 (1976) 5188–5192, <https://doi.org/10.1103/PhysRevB.13.5188>.

[34] S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, *Rev. Mod. Phys.* 73 (2001) 515–562, <https://doi.org/10.1103/RevModPhys.73.515>.

[35] More details reveal that considering 3<sup>rd</sup>IFCs up to the seventh shell of neighbors can alter  $\kappa_{ph}$  less than 3% at room temperature.

[36] Shengbte, A solver of the Boltzmann transport equation for phonons, *Comput. Phys. Commun.* 185 (6) (2014) 1747–1758, <https://doi.org/10.1016/j.cpc.2014.02.015>.

[37] W. Li, N. Mingo, L. Lindsay, D.A. Broido, D.A. Stewart, N.A. Katcho, Thermal conductivity of diamond nanowires from first principles, *Phys. Rev. B* 85 (2012): 195436, <https://doi.org/10.1103/PhysRevB.85.195436>.

[38] W. Li, L. Lindsay, D.A. Broido, D.A. Stewart, N. Mingo, Thermal conductivity of bulk and nanowire  $\text{Mg}_2\text{Si}_x\text{Sn}_{1-x}$  alloys from first principles, *Phys. Rev. B* 86 (2012): 174307, <https://doi.org/10.1103/PhysRevB.86.174307>.

[39] N. Mounet, N. Marzari, First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives, *Phys. Rev. B* 71 (20) (2005) 205214, <https://doi.org/10.1103/PhysRevB.71.205214>.

[40] J. Zhou, R. Huang, Internal lattice relaxation of single-layer graphene under in-plane deformation, *J. Mech. Phys. Solid.* 56 (4) (2008) 1609–1623, <https://doi.org/10.1016/j.jmps.2007.07.013>.

[41] M. Jamal, M. Bilal, I. Ahmad, S. Jalali-Asadabadi, Irelast package, *J. Alloys Compd.* 735 (2018) 569–579, <https://doi.org/10.1016/j.jallcom.2017.10.139>.

[42] K.-A.N. Duerloo, M.T. Ong, E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials, *J. Phys. Chem. Lett.* 3 (19) (2012) 2871–2876, <https://doi.org/10.1021/jz3012436>.

[43] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, Wien2k: an apw+lo program for calculating the properties of solids, *J. Chem. Phys.* 152 (7) (2020): 074101, <https://doi.org/10.1063/1.5143061>.

[44] S. Yalameha, Z. Nourbakhsh, D. Vashaei, Elatools: a tool for analyzing anisotropic elastic properties of the 2d and 3d materials, *Comput. Phys. Commun.* 271 (2022) 108195, <https://doi.org/10.1016/j.cpc.2021.108195>.

[45] A.O. de-la Roza, M. Blanco, A.M. Pendás, V. Luan, Critic: a new program for the topological analysis of solid-state electron densities, *Comput. Phys. Commun.* 180 (1) (2009) 157–166, <https://doi.org/10.1016/j.cpc.2008.07.018>.

[46] A. Otero-de-la Roza, Finding critical points and reconstruction of electron densities on grids, *J. Chem. Phys.* 156 (22) (2022): 224116, <https://doi.org/10.1063/5.0090232>.

[47] J. Wang, S. Yip, S.R. Phillipot, D. Wolf, Crystal instabilities at finite strain, *Phys. Rev. Lett.* 71 (1993) 4182–4185, <https://doi.org/10.1103/PhysRevLett.71.4182>.

[48] H. Wang, X. Li, P. Li, J. Yang, phosphorene: a two dimensional material with a highly negative Poisson's ratio, *Nanoscale* 9 (2017) 850–855, <https://doi.org/10.1039/C6NR08550D>.

[49] X. Wei, B. Fragneaud, C.A. Marianetti, J.W. Kysar, Nonlinear elastic behavior of graphene: ab initio calculations to continuum description, *Phys. Rev. B* 80 (2009): 205407, <https://doi.org/10.1103/PhysRevB.80.205407>.

[50] Z. Wang, T.-Y. Li, H.-Q. Wang, Y.P. Feng, J.-C. Zheng, High anisotropy of fully hydrogenated borophene, *Phys. Chem. Chem. Phys.* 18 (2016) 31424–31430, <https://doi.org/10.1039/C6CP06164H>.

[51] Z.-Q. Wang, T.-Y. Li, H.-Q. Wang, Y.P. Feng, J.-C. Zheng, Band gap opening in 8-pmmn borophene by hydrogenation, *ACS Appl. Electron. Mater.* 1 (5) (2019) 667–674, <https://doi.org/10.1021/acsaelm.9b00017>.

[52] S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, P. Jena, Penta-graphene: A new carbon allotrope, *Radioelectron. Nanosyst. Info. Technol.* 112 (8) (2015) 2372–2377, <https://doi.org/10.1073/pnas.1416591112>.

[53] Z. Zhuo, X. Wu, J. Yang, Me-graphene: a graphene allotrope with near zero Poisson's ratio, sizeable band gap, and high carrier mobility, *Nanoscale* 12 (2020) 19359–19366, <https://doi.org/10.1039/DONR038869E>.

[54] X.-J. Ge, K.-L. Yao, J.-T. Lü, Comparative study of phonon spectrum and thermal expansion of graphene, silicene, germanene, and blue phosphorene, *Phys. Rev. B* 94 (2016): 165433, <https://doi.org/10.1103/PhysRevB.94.165433>.

[55] H. Xiao, W. Cao, T. Ouyang, S. Guo, C. He, J. Zhong, Lattice thermal conductivity of borophene from first principle calculation, *Sci. Rep.* 7 (1) (2017) 1–8, <https://doi.org/10.1038/srep45986>.

[56] Y. Yin, Y. Hu, S. Li, G. Ding, S. Wang, D. Li, G. Zhang, Abnormal thermal conductivity enhancement in covalently bonded bilayer borophene allotrope, *Nano Res.* 15 (4) (2022) 3818–3824, <https://doi.org/10.1007/s12274-021-3921-y>.

[57] J. He, Y. Ouyang, C. Yu, P. Jiang, W. Ren, J. Chen, Lattice thermal conductivity of  $\beta_{12}$  and  $\chi_3$  borophene, *Chin. Phys. B* 29 (12) (2020): 126503, <https://doi.org/10.1088/1674-1056/abbe6>.

[58] L. Lindsay, D.A. Broido, N. Mingo, Flexural phonons and thermal transport in multilayer graphene and graphite, *Phys. Rev. B* 83 (2011): 235428, <https://doi.org/10.1103/PhysRevB.83.235428>.

[59] M. Alidoosti, D.N. Esfahani, R. Asgari,  $\sigma_h$  symmetry and electron-phonon interaction in two-dimensional crystalline systems, *Phys. Rev. B* 106 (2022): 045301, <https://doi.org/10.1103/PhysRevB.106.045301>.

[60] Y. Kuang, L. Lindsay, S. Shi, X. Wang, B. Huang, Thermal conductivity of graphene mediated by strain and size, *International Journal of Heat and Mass Transfer* 101 (2016) 772–778, <https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.072>.

[61] Z. Zhang, S. Hu, J. Chen, B. Li, Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation, *Nanotechnology* 28 (22) (2017): 225704, <https://doi.org/10.1088/1361-6528/aa6e49>, 10.1088/1361-6528/aa6e49.

[62] J. Chen, G. Zhang, B. Li, Substrate coupling suppresses size dependence of thermal conductivity in supported graphene, *Nanoscale* 5 (2013) 532–536, <https://doi.org/10.1039/C2NR32949B>, 10.1039/C2NR32949B.

[63] A.J. Minnich, J.A. Johnson, A.J. Schmidt, K. Esfarjani, M.S. Dresselhaus, K. A. Nelson, G. Chen, Thermal conductivity spectroscopy technique to measure phonon mean free paths, *Phys. Rev. Lett.* 107 (2011): 095901, <https://doi.org/10.1103/PhysRevLett.107.095901>.

[64] J. Chen, J. He, D. Pan, X. Wang, N. Yang, J. Zhu, S.A. Yang, G. Zhang, Emerging theory and phenomena in thermal conduction: a selective review, *Sci. China Phys. Mech. Astron.* 65 (11) (2022), <https://doi.org/10.1007/s11433-022-1952-3>.

[65] Z. Han, X. Yang, W. Li, T. Feng, X. Ruan, Fourphonon: an extension module to shengbte for computing four-phonon scattering rates and thermal conductivity, *Comput. Phys. Commun.* 270 (2022): 108179, 10.1016/j.cpc.2021.108179, <https://www.sciencedirect.com/science/article/pii/S0010465521002915>.

[66] T. Feng, X. Ruan, Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids, *Phys. Rev. B* 93 (2016): 045202, <https://doi.org/10.1103/PhysRevB.93.045202>.

[67] T. Feng, L. Lindsay, X. Ruan, Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids, *Phys. Rev. B* 96 (2017) 161201, <https://doi.org/10.1103/PhysRevB.96.161201>.

[68] To calculate fourth-order IFCs up to second nearest neighbors, 1256 distorted supercells ( $5 \times 5 \times 1$  including 125 atoms) were used. Then, we calculated the four-phonon scattering phase space and compared it with that of the three-phonon phase space. Although, the main calculation in the manuscript has been calculated by  $\mathbf{q}$ -mesh ( $160 \times 160 \times 1$ ), almost converged results (For WP<sub>4</sub>) were achieved by adopting  $\mathbf{q}$ -mesh ( $50 \times 50 \times 1$ ).