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Abstract—Sound event detection is an important facet of audio
tagging that aims to identify sounds of interest and define both
the sound category and time boundaries for each sound event in
a continuous recording. With advances in deep neural networks,
there has been tremendous improvement in the performance of
sound event detection systems, although at the expense of costly
data collection and labeling efforts. In fact, current state-of-the-
art methods employ supervised training methods that leverage
large amounts of data samples and corresponding labels in
order to facilitate identification of sound category and time
stamps of events. As an alternative, the current study proposes
a semi-supervised method for generating pseudo-labels from
unsupervised data using a student-teacher scheme that balances
self-training and cross-training. Additionally, this paper explores
post-processing which extracts sound intervals from network
prediction, for further improvement in sound event detection
performance. The proposed approach is evaluated on sound event
detection task for the DCASE2020 challenge. The results of these
methods on both ”validation” and ”public evaluation” sets of
DESED database show significant improvement compared to the
state-of-the art systems in semi-supervised learning.

Index Terms—Sound event detection, semi-supervised learning,
self-training, pseudo label.

I. INTRODUCTION

AUDIO tagging summarizes an audio stream with descrip-
tive information pertaining to the sound in terms of the

location where the sound may be coming from, emotional
content present, causal relationships among the sound sources,
or other descriptive information. Aside from the informative
nature, they can also be quite helpful in expediently retrieving
or categorizing audio as the size of a typical audio database
is quite large. Sound Event Detection (SED), which aims to
identify sounds of interest in terms of sound category and its
temporal boundaries, has been a critical technique for audio
tagging. Since sounds are quite informative to understand
the auditory scene such as a presence of human, animal,
or any entities, and its behavior, the technique has been
adopted for many applications including video analytics, baby
or pets monitoring, and other surveillance systems [1]–[3]. For
performing audio tagging in an environment, an SED method
should be able to identify multiple sounds even when these
sounds overlap with each other temporally.

With recent advances in deep learning, deep neural networks
have shown outstanding improvements in SED [4]–[7]. To
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train a deep network for a SED task, each training sample
needs to be annotated with the sound class and time boundaries
of every target sound interval therein. The annotation allows
the network to learn spectro-temporal characteristics of the
target sound in a supervised fashion. Accurate labels and
the markings of temporal boundaries are critical to train the
model; however, generating them is often quite expensive and
time consuming. Semi-supervised learning, which leverages
extensive unlabeled data in combination with small amounts
of labeled data, has been explored to resolve the issue in
data collection [6], [8], [9]. In the recent challenge of the
Detection and Classification of Acoustic Scenes and Events
(DCASE) 2020, task 4 involves building an SED model in a
semi-supervised fashion. The task provides an extensive set of
unlabeled data as well as a smaller set of weakly labeled data
with labels describing the sound class only [10].

Among semi-supervised techniques, self-training is an intu-
itive approach that is easy to understand and whose theoretical
feasibility has been studied in several works [11], [12]. Self-
training effectively uses the prediction of a network for a
given input as a pseudo-label to further train the network.
As such, the accuracy of this pseudo label has important
implications on the network’s performance. In an earlier work,
a method of pseudo label estimation for unlabeled data and
a reliability of the pseudo label were proposed [13]. The
pseudo label was estimated by a probabilistic expectation of
all potential labels as these probabilities were calculated based
on the Bernoulli process with posterior probabilities of each
class. With labeled data, reliability of the pseudo label at each
training step was measured based on a binary cross entropy
between true label and the estimate for the labeled data. The
objective function was composed of a supervised loss for the
labeled data computed from a cross-entropy between the true
label and the model prediction, and an expectation loss for the
unlabeled data, which was defined as a mean-squared error
between the pseudo label and the prediction. The expectation
loss was weighted by the reliability. Then, the model is self-
trained by performing the estimation and optimization in every
training step.

As an extension to the previous work, the current paper
proposes a Cross-Referencing Self-Training (CRST) model. A
critical issue with self-training is the self-referencing frame-
work that has a risk of self-biasing due to the pseudo label es-
timated by itself. To resolve this issue, dual models composed
of Model I trained with original data and Model II trained
with perturbed data, are incorporated in the self-training. Each
of these models is trained separately using the pseudo-label
estimate of the other network. Additionally, this paper explores
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a post-processing step to extract target sound intervals from
the network prediction with a classwise thresholding and
smoothing. For thresholding, the Extreme Value Theory (EVT)
based threshold estimation is performed for each target class.
A smoothing filter length is determined based on statistics
of each target sound duration. To demonstrate effectiveness of
the proposed method, experiments are performed following the
protocol for the multi-target SED task in the recent DCASE
challenge (DCASE2020). The result shows further improve-
ment in the performance compared to the previous model as
well as other state of the art in semi-supervised learning. The
main contribution of this paper can be summarized as: 1) a
novel self-training method which avoids the self-biasing issue;
2) an effective approach of selectively combining synthetic
data with unlabeled or weakly labeled real world data to
enable a semi-supervised training; 3) introducing a classwise
post-processing involving effective estimates of threshold and
duration for further improvement in SED performance.

The rest of this paper is organized as follows. Related works
for semi-supervised learning are explored in the following
section. The motivation of the self-training model is described
in Section III, and Section IV describes the proposed methods
for the cross referencing self-training model and the classwise
post-processing. In Section V, experiment results performed
on the DCASE challenge framework are summarized. Com-
parison to the challenge submission is discussed in Section VI
and the conclusion is followed.

II. RELATED WORKS

A. Semi-supervised learning

Semi-supervised learning aims to leverage unlabeled data to
improve the performance of supervised learning with a small
labeled data set. There has been a growing body of work
exploring use of unlabeled data in supervised learning [14].
Usually, unlabeled data is used to learn a preliminary model
about the input distribution, and the model is used for either
feature extraction [15]–[17], clustering of data to assign la-
bel [18], or initialization of parameters [19]. These methods
are then leveraged in a main model for classification which is
trained with labeled data in supervised fashion.

Particularly, the clustering based approach assumes that
two samples belonging to same cluster in observation space
are likely to belong to the same class. This is known as
the cluster assumption (or low-density separation assumption)
and has inspired a consistency-regularization approach like
PI-model [20], [21], temporal ensemble model [21], Mean
Teacher (MT) model [22], and Interpolation Consistency
Training (ICT) model [23]. Among these approaches, the MT
model has been instrumental in pushing forth the state of the
art. The MT model consists of two networks, student and
teacher, and its objective function is denoted as

LMT = BCE(y, fθ(x)) + δMSE(fθ(x; η), fθ′(x; η′)), (1)

where BCE(y, fθ(x)) is a classification loss implemented
by a Binary Cross Entropy (BCE) between true label y
and student prediction fθ(x). MSE(fθ(x; η), fθ′(x; η′)) is a
consistency loss implemented by a Mean Squared Error (MSE)

between two predictions fθ(x; η) by student and fθ′(x; η′) by
teacher under a random perturbation η on each network such
a rotating, shifting, or adding noise. Network parameters are
represented as θ and θ′ for student and teacher, respectively.
This consistency loss is controlled by the δ which is usually
designed with ramp-up value during the training. Both net-
works are constructed with the same architecture. The student
parameters are updated by using a gradient descent method.
On the other hand, parameters in the teacher model are
updated by exponential moving average of student parameters
over the training step. Since the averaging network tends to
produce more accurate prediction than a network obtained by
the gradient descent method in each training step [22], the stu-
dent network is guided by the teacher network. Additionally,
the consistency loss enables that the student network produces
the same predictions even in presence of various perturbations.
Once the MT model converges in training, the student network
projects any samples belonging to the manifold constructed by
the perturbations onto the same prediction.

In contrast, the ICT model differs from the MT model in
that an interpolation between two inputs is considered instead
of random perturbations. The objective function is denoted as

LICT = BCE(y, fθ(x))+

δMSE(fθ(Mixλ(x1, x2)),Mixλ(fθ′(x1), fθ′(x2))),

where Mixλ(a, b) = λa+ (1− λ)b,
(2)

where λ is a random value as 0 ≤ λ ≤ 1. The second term
enables that the student network projects a convex set of the
inputs onto another convex set of predictions for the inputs
by itself. Once an ICT model converges during training, the
student network produces similar predictions for any samples
in the convex set of the inputs. This is more efficient compared
to random perturbations since interpolation always generates
a sample belonging to the convex set of the inputs while not
all samples generated by random perturbations belong to the
manifold for the actual inputs.

As an alternative approach, the present study explores a self-
training method which estimates a pseudo label for unlabeled
data, then updates itself for both labeled data and pseudo
labeled data (unlabeled data). As a simple way to estimate
pseudo label, Lee assigned a pseudo label for unlabeled data
by picking up the class which shows a maximum posterior
probability in the prediction by itself [11]. This method is
equivalent to Entropy Regularization, which is to separate
probabilistic distributions for each class by minimizing con-
ditional entropy of the class probabilities [24], [25]. The En-
tropy Regularization favors a low-density separation between
classes which is a principal assumption of semi-supervised
learning [26]. With this background, the self-training with
pseudo label for the best class was applied to object detection
and hyperspectral image classification [27], [28]. Instead of
picking up the best class, a pseudo label was estimated based
on probabilistic expectation of potential labels due to the
multiple target scenario for SED task [13]. Recently, Wei, et
al studied a theoretical background of the empirical successes
in self-training with deep learning [12].
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Fig. 1. An SED model projects inputs in feature space onto label space where
x and x′ are input features. y is a true label while ŷ is the prediction (a)
Strategy of consistency-regularization method, (b) Limitation of consistency-
regularization.

B. Semi-supervised learning in sound event detection

The DCASE challenge provides a framework of semi-
supervised learning for sound event detection: Both the base-
line implementation and the training database including un-
labeled data. In the recent DCASE2020 challenge, the base-
line was implemented with a Convolutional Recurrent Neural
Network (CRNN) and MT model for network architecture
and semi-supervised learning respectively [10]. The training
database was composed of three subsets: a strong labeled
dataset S, a weakly labeled dataset W , and an unlabeled
dataset U . The strong label describes target sound class as
well as time boundaries for each target sound interval. For the
weakly labeled data, its label describes a list of target sound
classes without time boundaries. Unlabeled data has neither the
sound class nor the time boundary. With these three types of
training data, the objective function (1) is modified as follows:

LMT =
∑
x∈S

BCE(fθ(x), y
s) +

∑
x∈W

BCE(E[fθ(x)], y
w)

+δ
∑

x∈S,W,U

MSE(fθ(x), fθ′(x′)).

(3)
where ys and yw are label for strong labeled data and weakly
labeled data, respectively. E[.] is expectation over the time.
Note that x′ is generated by adding Gaussian noise to x with
30 dB Signal to Noise Ratio (SNR) condition.

Miyazaki et al. won in the DCASE2020 challenge with
an integration of strategies including a new architecture,
data augmentation, classwise post-processing, and fusion [29]
while they employed the MT approach for semi-supervised
learning. Koh, et al. suggested a Shift Consistency Training
(SCT), which makes the network to produce consistent pre-
dictions for time-shifted inputs, and feature pyramid network
to predict temporal label for weakly data [30]. Additionally,
they explored ICT approach for SED task. With an integration
system of MT, ICT, SCT, and feature pyramid, they have
achieved best performance on their own. Kim, et al. proposed
a modified CRNN network, which is using more filters and
skip-connections with attention module, as well as modified
loss function, which is a cross entropy between network
prediction and pseudo label estimated by an weighted sum
of predictions by the modified network and output of the
challenge baseline [31], [32]. With data augmentation based
on time-frequency masking and interpolation, their system
outperformed the challenge baseline.

Fig. 2. Diagram for self-training framework where y, ŷ, and ỹ is a true label,
student network’s prediction, and pseudo label, respectively. x′ represents
manipulated data from the original x by a transformation function T (.). (a)
Self-Referencing Self-Training (SRST) model, (b) Cross-Referencing Self-
Training (CRST) model.

III. MOTIVATION OF PROPOSED SEMI-SUPERVISED
TRAINING METHOD

Fig. 1(a) shows a concept of consistency-regularization
approach. The approach allows the model producing a con-
sistent prediction for all neighbors of one input in training
set. Based on the cluster assumption, it is able to improve the
performance in the classification task. In addition, it allows
unlabeled data to be incorporated in supervised learning for
the consistent prediction as calculated by the consistency loss.
From the perspective of semi-supervised learning however, the
consistency loss can be thought of as an estimation of the
difference between two predictions; which in of itself could
result in convergence on the wrong label as shown in Fig. 1(b).
These errors may have a great effect on the model performance
since unlabeled data is generally far bigger in size than labeled
data [33].

In a previous work, a probabilistic expectation of potential
labels was proposed as a pseudo label for unlabeled data [13].
In order to mitigate the issue of erroneous label mapping
shown in Fig. 1(b), we defined ϵ as the mean squared error
between the pseudo label and network prediction, and the
expectation error is then minimized. This method was shown
to outperform the MT model on a SED task. However, this
approach is not limitation-free, and has a risk of self-biasing
because the pseudo label is estimated by itself.

As an extension of the previous work, this paper proposes
a Cross-Referencing Self-Training (CRST) model to mitigate
the self-biasing issue. Fig. 2 contrasts the two approaches.
Fig. 2a depicts the previous model, named Self-Referencing
Self-Training (SRST). Fig. 2b depicts the proposed approach,
the CRST model, which consists of two self-training models,
where each model is trained on either original or manipulated
data with the pseudo label estimated by the other model. The
cross-referencing of a pseudo label estimated by the other
model is a key point of this dual structure. It is able to avoid the
self-biasing issue based on the assumption that those networks
are independently trained on a different version of data.
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IV. PROPOSED METHOD

The implementation of proposed model can be found in
http://github.com/JHU-LCAP/CRSTmodel.

A. Pre-processing

An audio clip is processed to a 16kHz mono-channel audio
waveform by resampling and averaging left and right channels
for multi-channel audios. The audio waveform is converted to
a spectrogram by performing Short Time Fourier Transform
(STFT) with 2048-points frame length and 255-points hop
size. Then, a log-Mel spectrogram is obtained by performing
frequency integration with 128 Mel-filters spanned 0 to 8kHz
frequency domain and logarithm function.

P [n,m] =
∑
k

S[k,m]× fn
mel[k],

x[n,m] = log(max(P [n,m]2, ϵ2)),

(4)

where x is a log-Mel spectrogram while S is a spectrogram
based on STFT. fn

mel is Mel filter for the nth channel. n,m,
and k are indices to represent Mel filter channel, frame, and
frequency bin, respectively. Note that the ϵ is set to 1.0E − 5
in order to prevent negative infinite value by the logarithm
function. The different version of data, x′ in Fig. 2 is generated
by adding the Gaussian noise to the log-Mel spectrogram with
a given Signal to Noise Ratio (SNR) condition. Note that audio
length was considered up to 10 second so that zero-padding
or cutting is performed for shorter or longer audios than 10
second. The SNR condition to generate manipulated data was
set to 30 dB from the challenge baseline [10].

B. Network architecture

From the challenge baseline for SED task, CRNN is applied
to both networks in Model I and Model II. The CRNN is com-
posed of two stages: Convolutional Neural Network (CNN)
to compress the log-Mel spectrogram into acoustic features
and Bidirectional Gating Recurrent Units (BGRUs) to capture
temporal relations among the compressed features by the
CNN. The first stage is composed of seven convolution layers
and seven averaging pooling layers. Each convolution layer
uses a Gated Linear Unit (GLU) for a nonlinear activation.
The GLU controls the selection of critical features in order
to capture informative characteristics among the target sounds
by using a self-gating function described by

c′ = GLU(c) = Linear(c)× σ(c), (5)

where c and c′ represents a result of convolution and GLU,
respectively. Linear(.) and σ(.) is a linear transformation and
a sigmoid function for the gating, respectively. In training
phase, batch normalization and dropout techniques are applied
to before and after performing the GLU, respectively.

The following stage consists of a Double-layered Bidirec-
tional Gated Recurrent Unit (BGRU). The output of the CNN
represents compressed features along to output channels across
the time. These features are fed into the BGRU to learn the
temporal characteristics of target sounds in onset and offset
edges. During the training phase, dropout is applied to the

end of each unit. Additionally, a linear layer with a sigmoid
activation is added on the top of the BGRU to represent a
presence probability of target sounds. As a result, a set of
likelihood probability across the target sounds over the time
is outputted by the second stage. More detailed setup for this
architecture can be found in Appendix A or implementation
of the DCASE2020 challenge baseline for task 4 [10].

C. Objective function

With the idea of cross-referencing, objective function is
designed to resolve self-bias issue. To train the student net-
work in each model with the three types of data, strong
labeled, weakly labeled, and unlabeled, in supervised fashion,
the objective function consists of a classification error and
an expectation error with a reliability of pseudo label. The
classification error is defined by a BCE between the network
prediction and strong label ys or weak label yw while a MSE
between the prediction and pseudo label ỹ is used for the
expectation error (6).

LI =
∑
x∈S

BCE(fI(x), y
s) +

∑
x∈W

BCE(E[fI(x)], y
w)

+γs
II

∑
x∈U

(MSE(fI(x), ỹII) + γw
II

∑
x∈W

(MSE(fI(x), ỹII),

LII =
∑
x′∈S

BCE(fII(x
′), ys) +

∑
x′∈W

BCE(E[fII(x
′)], yw)

+γs
I

∑
x′∈U

(MSE(fII(x
′), ỹI) + γw

I

∑
x′∈W

(MSE(fII(x
′), ỹI),

(6)
where Li is the objective function for training Model i whose
prediction is denoted as fi(.). x′ is generated by adding
Gaussian noise to original data x with 30 dB Signal to Noise
Ratio (SNR) condition. E[.] is an averaging operator over the
frames. Note that the weak label yw is a vector indicating
target sound class which happened in the audio clip while
the strong label ys is a matrix stacking the vectors for every
frame. γs

i and γw
i are the reliability of pseudo label estimated

in Model i with strong labeled data and weakly labeled data,
respectively. During the training phase, the parameters for both
models, Model I and Model II, are separately optimized with
each objective function (6).

1) Pseudo label estimation: Considering a scenario for
multiple sound detection, a label indicating the presence of
target sounds in a frame is represented to a zero vector for non-
target, one-hot vector for single target, or a many-hot vector
for multiple targets at least two. A pseudo label for a frame
is estimated to a probabilistic expectation of those potential
labels. By performing this estimation for every frame, the
pseudo label of unlabeled audio clip is represented to a matrix
like the strong label. Since the pseudo label has a expectation
value not a binary value, the MSE criterion is more appropriate
for the expectation loss in (6) than the BCE. With this concept,
the pseudo label can be estimated as

ỹ = ΣK
k ΣNk

n pkn lkn, (7)

where k is the number of concurrent events in each frame and
n is an index for the case of choosing k-sounds of total target
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sounds. lkn is a label vector expressed by a summation of delta
functions like l2n:{i,j} = δi + δj for events i and j ((k = 2).
pkn is a probability of the label lkn, K is maximum number
of concurrent events, and Nk = C!/(k! × (C − k)!) is the
number of potential labels under the k and total number of
target sound classes C. Note that this estimation is performed
for every frame even though the frame index is omitted for
brevity.

Based on the fact that the teacher network produces more
accurate predictions [22], the probability of a label vector is
calculated with the teacher prediction in each model. Based
on the Bernoulli process for activation of each target sound,
the probabilities pkn are calculated depending on the number
of concurrent events k as

k = 0, p0n:{} =
1

N
Πq (1− ŷ′q),

k = 1, p1n:{i} =
1

N
ŷ′iΠq ̸=i (1− ŷ′q),

k = 2, p2n:{i,j} =
1

N
ŷ′iŷ

′
jΠq ̸=i,j (1− ŷ′q),

k = 3, p3n:{i,j,h} =
1

N
ŷ′iŷ

′
j ŷ

′
hΠq ̸=i,j,h (1− ŷ′q),

...,

(8)

where N is a normalization factor as N = ΣK
k ΣNk

n pkn. Note
that the prediction by teacher network of Model I (Model II)
is applied to the pseudo label estimation for training Model II
(Model I).

The estimation of a pseudo label in every frame for all
unlabeled data introduces a heavy computational load in the
calculation for all potential labels. To reduce this computation,
the number of concurrent events k is considered up to 2 based
on previous work [13]. The probabilities for multi-sound labels
are calculated using a dynamic programming technique (9).

k = 0, P 0 = log(p0n:{}),

k = 1, P 1
i = P 0 + log(ŷ′i)− log(1− ŷ′i),

k = 2, P 2
{i,j} = P 1

i + P 1
j − P 0,

(9)

2) Reliability of pseudo label: The prediction by the
teacher network is obviously unreliable at the beginning of
training. Even at later stages of training, the pseudo label
is still an estimate based on the prediction. Therefore, the
expectation error is weighted by the reliability of pseudo label
to adjust the contribution of the error on training. In this study,
the Jensen Shannon Divergence (JSD), which is bounded in
[0,1], is considered to calculate the reliability γs and γw of
the pseudo label with strong labeled and weakly labeled data,
respectively (10).

γs = ω × 1

Ns

∑
x∈S

(1− JSD(ỹ||ys)),

γw = ω × 1

Nw

∑
x∈W

(1− JSD(E[ỹ]||yw)),

where ω = 3.0exp(−5(1− t/T )2),

JSD(a||b) = KLD(a||m)/2 +KLD(b||m)/2,

m = (a+ b)/2,

(10)

where ω is a ramp-up parameter with an index of training
step t and maximum number of the steps T , Ns and Nw is
the number of strong labeled data and weakly labeled data,
respectively. KLD is a Kullback Leibler Divergence. At the
beginning of training, the expectation error (6) remains small
due to the ω. In later stage of training, the reliability relies on
the similarity between pseudo label for labeled data and true
label.

D. Post-processing
Class imbalance in training dataset is another issue often

encountered in semi-supervised learning. The sparsity of the
minority classes in the training set minimizes their contribution
to the objective function resulting in a bias toward the majority
class [34]. Dynamic sampling [35] or data augmentation [36]
for minority class data is an effective way to resolve this issue.
In the scenario of semi-supervised learning, however, it is
hard to use either one because those methods need class label
for all training dataset. Instead, this paper explores classwise
post-processing to extract target sound intervals from class
posterior probabilities over time (i.e. student output). Once the
student model converges after training, the network’s output
exhibits different distribution of posteriors to each target class
(Fig. 3). Thus, post-processing composed of thresholding and
smoothing is performed with optimized classwise parameters,
threshold and smoothing length.

1) Threshold estimation: In each target class, a threshold
is estimated based on the Extreme Value Theory (EVT) [37].
Once a network’s training converges, samples used in thresh-
old estimation are collected by applying logit function,
logit(x) = log( x

1−x ), to the network prediction responding to
weakly labeled data. In a threshold estimation for ”Speech”
class, for example, audio clips which have the ”Speech”
sounds in weakly labeled dataset are used to collect network
predictions for the ”Speech” class. Since a target sound dura-
tion is typically shorter than 10 second, the samples can be
categorized into two clusters for target and non-target (Fig. 3).
These clusters are separated based on the Expectation and
Maximization (EM) clustering [38]. Threshold estimation is
performed with samples belonging to the target cluster, which
has a greater mean value than the other since the network
has been trained. To apply the EVT to the samples, the target
samples are reversed by multiplying -1. Motivated in [39], Cu-
mulative Distribution Function (CDF) of the reversed samples,
F (x), is defined as

F (x) = (1− Pr(x ≤ u))Fu(x− u) + Pr(x ≤ u),

P r(x ≤ u) =
N − n

N
,

(11)

where u is a predefined threshold to extract extreme samples
which are greater than the predefined threshold, Pr(x ≤ u)
is a probability of a set of samples x, which are less than
u. N is the total number of samples and n is the number of
extreme samples. In this study, u was defined to the value that
satisfies Pr(x ≤ u) = 0.9. Tail distribution, i.e. CDF of the
extreme samples Fu(x − u), is modelled with a Generalized
Pareto Distribution (GPD) [40] as

G(z) = 1− (1 + c
z

a
)−1/c, (12)
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Fig. 3. Histograms for posterior distribution in two targets, Dishes and Speech.
Once a model is converged in training, posteriors were calculated on weakly
labeled data. Red dotted lines show optimal thresholds (−tα) for each class
while black dotted line (at 0.0 in logit domain) represents a global threshold
for all targets.

where G(z) is a CDF of the extreme samples with z = x−u.
a and c are tuning parameters optimized to maximize log-
likelihood for all extreme samples

n∑
i=1

log(g(zi)) = − nlog(a)− 1 + c

c

n∑
i=1

log(1 + c
zi
a
), (13)

where g(z) is a probability density function of G(z). Note that
Nelder-Mead Simplex method [41] is applied to find optimal
a and c. With the parameters in (11) and (12), a threshold with
a given parameter α is estimated as

tα = u+
a

c
((
Nα

n
)−c − 1), (14)

where α means a theoretical probability of false negative.
Because the tα in (14) is derived for reversed samples in
logit domain, the threshold applied to post-processing is finally
obtained by σ(−tα).

For instance, Fig. 3 shows histograms of posterior probabil-
ities calculated on weakly labeled data and optimal thresholds
in two classes. Dishes sounds have an issue of imbalance be-
tween target and non-target frames because events are too short
compared to whole duration. Thus, the distributions are biased
towards negative values which increases likelihood to belong
to a non-target frame. In this case, the threshold (marked with
a black line) needs to be moved to left-side in order to enhance
detection rate. On the other hand, Speech seems to be free from
this issue as shown in its distribution which is nearly zero-
centered. The threshold estimation method produces a small
positive shift of the global threshold, which enables to reduce
false positive.

2) Smoothing with median filter: Since thresholding based
detection is performed on each of frames, a low-pass filtering
is needed to determine sound intervals which are slowly
changed in nature. So, a smoothing is performed by applying
median filter to the frames detected in the previous step. It is
needed to optimize the filter length for a precise time interval
since the filter length directly affects on the times at rising
and falling edges. In this work, the filter length is determined
by β % of average of sound duration. The average of sound
duration is estimated with the number of frames resulted in
thresholding with respect to weakly labeled data.

V. EXPERIMENT

A. Database
In order to evaluate the proposed system, the DESED

database was used [42]. This database contained 10-

TABLE I
DATABASE

DESED set label type # of audio clips
Synthetic:training strong labeled 2,595

Real:weakly labeled weakly labeled 1,578
Real:unlabeled unlabeled 14,412
Real:validation strong labeled 1,168

Real:public evaluation strong labeled 692

target sounds for SED task: Alarm bell ringing, Blender,
Cat, Dishes, Dog, Electric shaver toothbrush, Frying, Run-
ning water, Speech, and Vacuum cleaner. The database
included a training set composed of Synthetic:training,
Real:weakly labeled, and Real:unlabeled as shown in TA-
BLE I. To synthesize strong labeled data, background sounds
were extracted from SINS [43], MUSAN [44], or Youtube;
and target sounds were obtained from freesound [45]. In this
training set, two points are worth highlighting: 1) Synthetic
data is considered as strong labeled data instead of marking
ground truth on real recordings. 2) The number of unlabeled
data is much larger than the number of labeled data. For
the post-processing technique proposed in this study, statistics
were collected with weakly labeled data. And, two subsets,
Real: validation and Real: public evaluation were used for
performance assessment.

B. Evaluation criterion

The assessment was performed with a f-score, which is a
harmonic mean of precision and recall. The precision was
calculated as the ratio of true-positive intervals to total detected
intervals. The recall was equal to a detection rate, the ratio of
true-positive intervals to target intervals. Those measures were
calculated for each class. Based on the evaluation protocol for
a SED task in the DCASE2020 challenge [46], in this work, a
detected interval was considered as true-positive if the interval
satisfies three conditions: 1) onset time of the interval precedes
earlier than the truth as less than a 200 ms. 2) offset time of the
interval delays the truth as less than 200 ms. And 3) a sound
class of the interval should be matched to the true class. Note
that the 200 ms margin in both time boundaries was considered
to prevent slicing the sound in the middle.

C. Models for SED task

To demonstrate the effectiveness of the proposed method,
CRNN network (See, Section IV-B) was trained in different
ways using a 5 times cross-validation method.

1) Supervised learning: This approach was considered sep-
arately for strong-labeled data only, or both strong and weakly
labeled data. In the first model, only strong labeled data
(synthetic data) was used for training. The loss function was
defined as L = Σx∈SBCE(fθ(x), y

s). In the second model,
both strong and weakly labeled data were used for training.
The loss function was defined as L = Σx∈SBCE(fθ(x), y

s)+
Σx∈WBCE(E[fθ(x)], y

w).
2) Consistency regularization: As a state of the art in semi-

supervised learning, MT and ICT models were considered
in this category. For training a MT model, the DCASE2020
challenge baseline whose objective function is denoted in (3)
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TABLE II
PERFORMANCE ASSESSMENT WITH CLASS AVERAGING F-SCORE

Validation Public evaluation
Global threshold Classwise threshold Global threshold Classwise threshold

Supervised learning Strong labeled only 17.65 ± 0.70 25.15 ± 1.07
Strong & Weakly labeled 28.67 ± 2.82 31.32 ± 3.51

Consistency Regularization MT (DCASE baseline) 34.04 ± 1.47 36.37 ± 1.18 38.77 ± 1.59 41.09 ± 2.37
ICT (our implementation) 35.34 ± 1.94 38.60 ± 1.99 37.19 ± 3.06 39.17 ± 1.90

Self-training SRST [13] 36.36 ± 0.76 37.65 ± 0.91 37.96 ± 1.58 39.55 ± 1.58
SRST + aug. 35.28 ± 1.93 36.21 ± 1.08

CRST 37.89 ± 1.01 39.76 ± 1.90 40.19 ± 1.59 42.81 ± 2.03

was used. With this implementation, ICT model was trained
with modified objective function as

LICT =
∑
x∈S

BCE(fθ(x), y
s) +

∑
x∈W

BCE(E[fθ(x)], y
w)

+δMSE(fθ(Mixλ(x1, x2)),Mixλ(fθ′(x1), fθ′(x2))).
(15)

3) Self-referencing self-training: The previous version of
self-training, SRST model, was evaluated as well. The loss
function was set to

LSRST =
∑
x∈S

BCE(fθ(x), y
s) +

∑
x∈W

BCE(E[fθ(x)], y
w)

+γ
∑

x∈W,U

(MSE(fθ(x), ỹ),

where γ = min(ω/BCE(ys, ỹ), 5.0),
(16)

where ỹ is pseudo label estimated by itself and ω is defined
in (10). And another model (SRST+aug.) was trained with
data augmentation based on adding Gaussian noise with 30
dB SNR condition. Finally, the cross-referencing self-training
approach, CRST model, was evaluated.

D. Performance in class-averaging f-score

TABLE II shows class averaging f-scores for each model
which are the mean and standard deviation over the 5 times
repetition. To investigate the effect of post-processing, f-scores
obtained using the global threshold (0.5) and median filter
(445ms) for all targets are summarized in the column of
”Global”. Note that the global parameters were determined
based on the challenge baseline. Results in ”Classwise” on
”validation” were obtained by performing the proposed post-
processing with the best parameters that were heuristically
determined in searching within the intervals from 0.0002 to
0.1 with 10 steps in log-scale for α in (14) and from 5% to
100% with 20 steps in linear scale for β in the estimation of
filter length. Then, these best parameters were applied to the
test on ”public evaluation” set for each model.

Since the strong labeled dataset is composed of synthetic
data produced by mixing target sounds and a background
sound, it could contain artifacts such as unnatural transition
in target sound boundaries and unnatural causality among
target sounds. In training the synthetic data, a model could
rely on these artifacts to detect target sounds. The results
for two supervised models in Table II suggest that this issue
could be alleviated by including real data (weakly labeled
data) in training. The table also demonstrates that using

unlabeled data in network training is effective to enhance the
SED performance. In the evaluation on ”validation” set, self-
training methods except ”SRST+aug.” outperform the methods
of consistency regularization if global post-processing is used.
With 5% significant in Welch’s t-test [47], particularly, the
CRST model improves the f-score significantly compared to
MT model (p-value=0.0013), ICT model (p-value=0.0313),
and the SRST model (p-value=0.0265). If the classwise post-
processing is performed, all of the f-scores are improved
about 2.0-3.0% compared to the results in the column of
”Global”. The Welch’s t-test on these results confirms that the
CRST model shows a significant improvement compared to
MT model (p-value=0.0096) while the CRST model averagely
outperforms other two models as shown in the table (in t-
test with SRST model: p-value=0.0566, with ICT model: p-
value=0.3788).

In the second evaluation on the ”public evaluation” set,
the CRST model outperforms other models as well. In this
evaluation, the MT model shows the second best in the average
of f-scores over the repetition. In T-test with the results of
global post-processing, the p-values are 0.1931, 0.0869, and
0.0560 in comparison to the MT model, the ICT model,
and the SRST model, respectively. If the classwise post-
processing is performed, the CRST model shows a significant
improvement compared to the ICT model (p-value=0.0192)
and the SRST model (p-value=0.0221). On the other hand,
the CRST model averagely outperforms than the MT model
(p-value=0.2536).

From these evaluations, the CRST model results in more
accurate detection of sound intervals with stable performance
on both datasets. Additionally, the proposed post-processing
enables to improve the performance about 2.0-3.0% in class-
averaging f-score.

E. Investigation of classwise performance

To explore f-scores in individual class, classwise f-scores
for semi-supervised models are represented in Fig. 4. In the
classwise comparison on ”validation” set (Fig. 4(a), results
of classwise post-processing), the CRST model has reached
the best performance for five classes and the second best
for two classes in the mean of 5 times repetition. With 5%
significant in the T-test, particularly, the model shows a signif-
icant improvement in Electric shaver toothbrush and Speech
compared to the MT model. Compared to the ICT model, sig-
nificant improvement could be found in Dog and Speech. And
Dishes, Dog, and Speech are significantly improved compared
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Fig. 4. Classwise performance on ”validation” set. (a) Classwise fscores of two post-processing methods in four semi-supervised models. The results of
classwise post-processing are marked as red solid line while blue dotted line is for the results of global post-processing. The error bar means the standard
deviation over the 5 times repetition. (b) The most left table shows the number of sound intervals on ”validation” set for each class. Then, four matrices show
a confusion in classification for detected intervals which are matched to the truth in time boundaries. The numbers are the mean over the 5 times repetition
and the standard deviation is represented to background light in black and white.

to the SRST model. In a classwise performance, the SRST
model shows the biggest variation across the target classes
among the four models. The f-scores of the SRST model
are averagely better than other models in Alarm bell ringing
and Electric shaver toothbrush. Among the four models, the
worst f-score for Dishes and Dog could be found in the
SRST model as well. It is difficult to investigate what happen
exactly in these classes during the training due to the lack
of labels in the training data. One of potential reasons is
that the SRST model was biased by a pseudo label that was
estimated incorrectly due to some reasons such as a noise or
an overlapping effect. Once the model miss Dishes sounds, the
model never detect the Dishes sounds because the pseudo label
is unable to give any information for the Dishes. Therefore, the
Dishes class would be getting worse and worse, on the other
hand, the Electric shaver toothbrush class would be getting
better and better because it is able to reflect more samples for
the Electric shaver toothbrush class in training. This issue
has been resolved with the cross-referencing framework as
shown in the result of the CRST model. To investigate the
detection results of each model, each confusion matrix for the
results based on classwise post-processing is represented on
Fig. 4(b). With detected intervals that have matched to the
truth in time boundaries, the confusion matrix was built by
counting the number of the intervals in classification. To give
the information about missing intervals in time boundaries, the
most right column in each confusion matrix shows the number
of the missing intervals by the model. Note that the numbers on
each confusion matrix are the mean value over the repetition

and the standard deviation is represented to background light.
In both the ICT and SRST model, the f-score in Dog is the
worst among the targets. In case of the ICT model, the worst
result is owing to a confusion among the classes. On the other
hand, inaccurate detection in time is the reason of the SRST
model as in that only 65 intervals were detected with correct
time boundaries.

The results performed on ”public evaluation” set are sum-
marized in Fig. 5. As shown in Fig. 5(a), the CRST model
reached the best performance in six classes and the second
best in two classes. In this assessment, the MT model out-
performs the ICT and SRST model as shown in Table II.
In a classwise comparison, the ICT and SRST model outper-
forms the MT and CRST models in Alarm bell ringing while
these models still have in trouble to detect Dishes and Dog
compared to other two models. And the CRST model shows
a significant improvement in Speech compared to all other
models. Similarly, the confusion matrices in this assessment
are represented in Fig. 5(b). The trend is mostly consistent
with the results on ”validation” set except in Cat, Dog and
Electric shaver toothbrush. The sounds of ”Cat” and ”Dog”
have a big variation depending on species, size, or age, which
could explain the different performance between the ”valida-
tion” and ”public evaluation” sets. It can also be noted that the
number of Cat and Dog intervals is less than the number of
the sounds in ”validation set”. On the other hand, more sounds
for Electric shaver toothbrush are included in the ”public
evaluation” set, and the performance in this category shows
worse than the f-score in ”public evaluation” set. Note that
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Fig. 5. Classwise performance on ”public evaluation” set. (a) Classwise fscores of two post-processing methods in four semi-supervised models. The results
of classwise post-processing are marked as red solid line while blue dotted line is for the results of global post-processing. The error bar means the standard
deviation over the 5 times repetition. (b) The most left table shows the number of sound intervals on ”validation” set for each class. Then, four matrices show
a confusion in classification for detected intervals which are matched to the truth in time boundaries. The numbers are the mean over the 5 times repetition
and the standard deviation is represented to background light in black and white.

the total number of target intervals in this evaluation can be
found by a summation of each row of the confusion matrix.

TABLE III
PERCENTAGE OF THE NUMBER OF CONCURRENT SOUND

INTERVALS IN BOTH TEST DATASETS

Validation Public evaluation
k = 1 k = 2 k > 2 k = 1 k = 2 k > 2

A 82.14 17.38 0.48 67.35 30.10 2.55
B 61.46 38.54 0 72.62 26.19 1.19
C 89.44 10.56 0 87.08 11.67 1.25
Di 41.09 48.15 10.76 37.91 56.56 5.53
Do 81.23 18.6 0.17 77.33 21.54 1.13
E 46.15 53.85 0 44.44 54.63 0.93
F 11.7 61.7 26.6 24.44 58.89 16.67
R 65.4 31.65 2.95 67.89 30.28 1.83
S 55.25 42.13 2.62 41.62 54.66 3.72
V 69.57 30.43 0 82.29 17.71 0

Total 62.18 34.47 3.35 55.37 41.27 3.36

F. Exploration of maximum number of concurrent events

In order to reduce a computational load in pseudo label
estimation, in this study, the number of concurrent events, k,
was considered up to 2 (K = 2) so that total 56 potential
labels (= 1 + 10 + 45 for k = 0, k = 1, and k = 2,
respectively) were used to estimate pseudo label. According
to the previous study in SRST model [13], the class averaging
f-score was saturated at K = 2 because the case, which three
or more target sounds happen at a time, is unusual in practical
environments. With both test datasets, sound intervals that are
overlaid with other target sound were counted and the results
are summarized in TABLE III. In total, the ratio of cases of

three or more concurrent sounds, is less than 5 % in both
datasets. Thus, the preset parameter for the maximum number
of concurrent sounds is acceptable assumption in the pseudo
label estimation.

G. Effect of preset parameters in post-processing

As shown in the results (Fig. 4(a) and 5(a)), the performance
is mostly improved by applying the classwise post-processing
compared to the results of the global post-processing. For
performing the classwise post-processing, preset parameters,
a theoretical false negative rate α and a ratio to the average
of sound duration β, are heuristically decided in searching
within the intervals from 0.02% to 10% with 10 steps in log-
scale for α in (14) and from 5% to 100% with 20 steps in
linear scale for β in the estimation of filter length. For the
CRST and ICT (the second best model on ”validation” set
as in TABLE II), class averaging f-scores depending on the
parameters are represented in Fig. 6. Fig. 6(a) shows class
averaging f-score depending on theoretical false negative rate
α in (14). In both panels, the red line represents the result
based on the global post-processing. The gray region and the
error-bar represent a 95 % confidence interval for the mean.
Note that the β was set to 45% and 25% for ICT and CRST
model, respectively. According to the results, the f-score has
been improved significantly on 0.32 and 0.64 % for both
models. If the α is too big or small, it is unable to improve the
performance due to the false results such as FPs or FNs. The
f-scores depending on β are represented in Fig. 6(b). Note that
the α was set to 0.32% and 0.64% for ICT and CRST model.
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Fig. 6. Class averaging f-score based on classwise post-processing with
different preset parameters. The red line on each panel represents the fscores
based on global post-processing and the gray region and error bar represent
a 95 % confidence intervals for the mean value. (a) depending on parameter
α in ICT and CRST model with β = 45% and β = 25%. (b) depending on
parameter β in ICT and CRST model with α = 0.32% and α = 0.64%.

As shown in results, the length of smoothing filter is a critical
parameter effecting on the performance since the smoothing
makes an early or a delay on time boundaries of detected
intervals. If a short length filter is used in the smoothing,
it is unable to remove very short intervals resulted in the
thresholding. Thus, the smoothing remains the FPs, short-time
intervals due to a noise, and makes small precision in the
evaluation. On the other hand, it could merge two intervals
which are close to each other in time when a long length filter
is used. In this case, the smoothing could reduce TPs and make
FPs more because the merging interval would be decided to
FPs due to the mismatching in time boundaries.

H. Effect of data perturbation

For evaluation of the proposed method, perturbation was
produced by adding Gaussian noise to original data. To
explore an effect of perturbation, additional evaluations were
performed with other perturbation methods such as mixup [48]
and frame-shift. For data mixup, Mixλ(a, b) defined in (2)
was used to generate manipulated data for two original data
a and b. A delay factor (i.e. the number of frame) for
frame shifting was generated by Gaussian random process
with zero-mean and 40-standard deviation. Then, a new data
point was generated by truncating 10 second from the delay
factor and padding with the rest of original data. The results
are summarized in TABLE IV with the mean and standard
deviation in 5 cross-validation repetitions.

As noted in the results, frame-shifting is the most effective
technique tested. Adding Gaussian noise is also comparable
to the frame-shifting (p-value=0.0799 and p-value=0.7215 in
validation and public evaluation for classwise post-processing,
respectively). On the other hand, the mixup method appears
to yield worst results. One explanation is that this technique
generates more overlapping events which may bias Model II to

TABLE IV
CLASS AVERAGING F-SCORE IN DIFFERENT PERTURBATIONS

perturbation Validation
Global Classwise

Adding noise 37.89 ± 1.01 39.76 ± 1.90
Mixup 34.35 ± 1.40 37.21 ± 0.79

Shifting 39.26 ± 1.77 41.61 ± 0.79
perturbation Public evaluation

Global Classwise
Adding noise 40.19 ± 1.59 42.81 ± 2.03

Mixup 36.15 ± 1.10 40.35 ± 0.90
Shifting 40.48 ± 1.53 43.26 ± 1.79

learn mapping of target sound features from these overlapping
sounds. Naturally, another limitation is that the pseudo label
estimation assumes a cap of 2 on the number of concurrent
events, informed by the statistics of real test audios as shown
in TABLE III.

VI. DISCUSSION

Current state-of-the-art systems for sound event detection
have been leveraging a combination of approach such as data
augmentation, network architecture, semi-supervised learning,
post-processing, and fusion in order to yield the best per-
formance on the DCASE challenge. One of the best per-
forming systems proposed by Miyazaki et al. explores all
these aspects [29]. A self-attention model based on either
transformer [7] or conformer [49] was used instead of the
CRNN. And the self-attention model was trained based on
MT approach. Although the system finally reached to 50.6%
for class averaging f-score, it seems that the new model is
comparable to the challenge baseline. When the self-attention
model is trained without data augmentation and tested without
both post-processing and fusion, the performance was reported
to 28.6 % and 34.4 % for transformer and conformer, re-
spectively. Although the f-scores were respectively improved
to 41.0% and 41.7% by performing their classwise post-
processing, it has an issue for a generalization of the param-
eters such threshold and filter length because both parameters
were manually optimized on the ”validation” set.

Koh, et al. proposed a SCT loss and a deeper network
based on modified CRNN, where a pooling is only performed
on frequency domain for a high time-resolution, and feature-
pyramid (FP) that leverages to discard unreliable predictions is
incorporated with the CRNN [30]. In post-processing, the tar-
get sounds were grouped into two groups, background sounds
and impulsive sounds, depending on the sound duration, then
two different filters, whose length was heuristically decided,
were applied for the sounds. According to the technical report,
their implementation for ICT shows better performance than
the ICT result in TABLE II. A possible reason is the use of
ICT loss in combination with the MT loss. Also interpolation
and time-frequency shifting were considered as a part of
data augmentation from the loss function for SCT. The data
augmentation in this manner seems be effective in improving
the performance as shown in other submissions [29], [31],
[50]–[52]. Since this study focuses on a method for semi-
supervised learning, a simple way like adding noise is only
considered to make manipulated data samples x′ in Fig. 2.
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Kim, et al. proposed another modified CRNN which is using
more channels and skip-connected convolution layers with
attention modules [31]. Instead of MT approach, the network
was trained with a cross-entropy between model prediction
and pseudo label to resolve the issue of MT approach in
Fig. 1(b). The pseudo label was estimated on an weighted
sum of model prediction and truth label with a preset weight.
According to the technical report, it seems that this approach
outperformed the results in TABLE II. However, it is unfair
to directly compare to the numbers in the TABLE II because
Kim’s method used a different architecture in the number of
channels and skip connection as well as data augmentation
based on interpolation and time-frequency masking.

In this study, all other configurations such as perturbation
(i.e. data augmentation) and network architecture were fixed
because this study tackles to develop an advanced method for
semi-supervised learning. The effect of other configuration on
the SED performance will be investigated as a future work.

VII. CONCLUSION

Sound event detection aims to identify sounds of interest as
sound category and time boundaries for each sound interval.
Deep neural networks are powerful models for the sound
event detection; however, they are faced with the challenge
of data acquisition and curation in order to provide accurate
estimate of events that can guide supervised training of these
networks. The current paper explores self-training using cross-
referencing as well as classwise post-processing in order to
leverage the unlabeled training data. The cross-referencing
self-training is composed of two separate models. In training,
one model estimates a pseudo label for unlabeled data with
the prediction by itself, then the other model refers the pseudo
label to train itself vice versa. In this way, these two models are
separately trained so that a self-biasing risk in self-referencing
model could be resolved. Additionally, a post-processing com-
posed of thresholding and smoothing is explored to find sound
intervals from the model prediction. This paper introduces a
threshold estimation based on Extreme Value Theory and filter
length estimation with the statistics of model prediction. These
proposed approaches are tested on sound event detection task
described by the recent DCASE challenge and shown to result
in improved performance compared to the state-of-the art in
semi-supervised learning.

APPENDIX A
NETWORK ARCHITECTURE OF CRNN AND TRAINING

PARAMETERS

The basic network, Convolutional Recurrent Neural Net-
work (CRNN), consists of 7-convolutional blocks for CNN and
2-Bidirectional Gate Recurrent Unit (BGRU) for RNN. Each
convolutional block was composed of 2D-convolution layer
with [3× 3] kernel and [1× 1] stride, 2D batch normalization
layer, activation layer, dropout layer, and average pooling
layer. The number of kernels was set to [16, 32, 64, 128,
128, 128 ,128] per block. The 2D batch normalization was
performed along to the output channels. Gated Linear Unit
(GLU) in (5) was applied to the activation layer. The dropout

parameter was set to 0.5. In the average pooing layer, the stride
size was defined as [[2, 2], [2, 2], [1, 2], [1, 2], [1, 2], [1, 2],
[1, 2]] per block. Note that the pooling was performed twice
along to time axis while the pooling was performed in 7-times
along to frequency axis. The number of nodes in BGRU was
set to 128 as the number of kernels at the top of the previous
CNN.

Each model on this structure was trained for 300 epochs
with Adam optimizer. And the best model on a cross-validation
set with global post-processing is kept. The remaining param-
eters defined for training are following: 24 batch size (6 strong
labeled data, 12 unlabeled data, and 6 weakly labeled data),
adaptive learning rate limited to 0.001 for maximum.
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