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A B S T R A C T   

Background: The brain tracks sound sources as they evolve in time, collecting contextual information to predict 
future sensory inputs. Previous work in predictive coding typically focuses on the perception of predictable 
stimuli, leaving the implementation of these same neural processes in more complex, real-world environments 
containing randomness and uncertainty up for debate. 
New Method: To facilitate investigation into the perception of less tightly-controlled listening scenarios, we 
present a computational model as a tool to ask targeted questions about the underlying predictive processes that 
connect complex sensory inputs to listener behavior and neural responses. In the modeling framework, observed 
sound features (e.g. pitch) are tracked sequentially using Bayesian inference. Sufficient statistics are inferred 
from past observations at multiple time scales and used to make predictions about future observation while 
tracking the statistical structure of the sensory input. 
Results: Facets of the model are discussed in terms of their application to perceptual research, and examples taken 
from real-world audio demonstrate the model’s flexibility to capture a variety of statistical structures along 
various perceptual dimensions. 
Comparison with Existing Methods: Previous models are often targeted toward interpreting a particular experi
mental paradigm (e.g., oddball paradigm), perceptual dimension (e.g., pitch processing), or task (e.g., speech 
segregation), thus limiting their ability to generalize to other domains. The presented model is designed as a 
flexible and practical tool for broad application. 
Conclusion: The model is presented as a general framework for generating new hypotheses and guiding inves
tigation into the neural processes underlying predictive coding of complex scenes.   

1. Introduction 

Sound is by nature a temporal signal, unfolding as a series of acoustic 
events: the patter of footsteps on a city street, the sequence of phonemes 
in speech, the progression of individual notes or chords in music. Pre
dictive coding theory offers an explanation for how the brain processes 
such sequential inputs. Broadly, the theory proposes the brain uses the 
recent context to build an internal model of the external world, and this 
internal representation is used to make predictions of future events (Karl 
and Friston, 2005; Seriès and Seitz, 2013; Heilbron and Chait, 2018). 
Despite its widespread adoption, there remain many long-standing open 
questions about how predictive coding is implemented, such as the na
ture of the brain’s internal representation and how it balances stability 
with flexibility in the face of change and uncertainty (Denham and 
Winkler, 2020; Clark, 2013; Grossberg, 1980). These questions become 

particularly salient when considering how predictive coding operates in 
complex, real-world environments. Here, we propose a computational 
model that can serve as a tool to guide future investigation into how 
predictive coding theory manifests in the perception of everyday scenes. 

Computational modeling has been used previously to expand the 
realm of investigation in predictive coding in the brain. It has facilitated 
the interpretation of trial-by-trial variability in listener responses (Lie
der et al., 2013), the link between individual spiking neurons and neural 
responses to deviance measured at the scalp (Wacongne et al., 2012), 
and the recasting of various listening phenomena, such as streaming and 
object perception, in terms of predictive coding (Denham et al., 2014; 
Winkler and Schröger, 2015). While some models focus on the percep
tion of deterministic sensory inputs (McDermott et al., 2011; Mill et al., 
2013), computational modeling is particularly useful for studying sta
tistical processing in the brain, where stimulus-driven analyses are often 
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constrained by the uncertainty in stochastic stimuli and their elicited 
responses (Garrido et al., 2013; Herrmann et al., 2015; Boubenec et al., 
2017). However, a common limitation of these models is that they are 
often designed for a particular experimental paradigm (e.g., the oddball 
paradigm) (Lieder et al., 2013; Mill et al., 2013; Barniv and Nelken, 
2015), a particular perceptual dimension (e.g., pitch) (Balaguer-Bal
lester et al., 2009; Tabas et al., 2019), or a particular perceptual task (e. 
g., speech segregation) (Nix and Hohmann, 2007), thus limiting their 
ability to generalize to other domains. Some notable exceptions are the 
IDyOM model, initially formulated for musical expectation (Pearce, 
2005), which has been used to decode neural responses to music stimuli 
(Hansen and Pearce, 2014; Di Liberto et al., 2020) as well as describe 
statistical learning of sound sequences in general (Agres et al., 2018; 
Barascud et al., 2016). Additionally, the ARTSTREAM model, based on 
Gestalt principles of perception, incorporates predictive coding into a 
broader framework for auditory scene analysis (Grossberg et al., 2004). 
These models, however, place various limitations on the domain of 
sensory inputs: the IDyOM model operates on a discrete set of inputs (i. 
e., an alphabet), ignoring any ordering or distance between elements, 
and the ARTSTREAM model assumes smoothness and harmonicity. 
These provisions hinder the ability of these models to apply broadly 
across different listening scenarios or explore the internal representa
tions used in predictive processing in general. 

In this work, the computational model put forth provides a potential 
algorithmic solution for the predictive processes employed in everyday 
listening. It makes minimal assumptions on the sensory input, instead 
offering a framework to compare different internal representations in 
the brain. This model is grounded in theoretical accounts of predictive 
coding based in Bayesian inference (Knill and Pouget, 2004; Tenenbaum 
et al., 2006; Daunizeau et al., 2010), and it incorporates key principles of 
statistical tracking (e.g. predict, observe, update) within a compact 
formulation. The same mathematical underpinnings have previously 
been explored in predictive-inference tasks using sequences of numbers 
(Nassar et al., 2010; Wilson et al., 2013). In lieu of modeling neural 
mechanisms directly (such as in Wacongne et al., 2012; Balaguer-Bal
lester et al., 2009; Tabas et al., 2019), we use neurally plausible com
putations to model the cognitive processes that map sensory inputs to 
decision and action. This approach favors simplicity in relating model 
inputs, outputs, and parameters to perceptual processes, facilitating the 
exploration of underlying predictive mechanisms and their connection 
to neural and behavioral responses in a broad range of experimental 
studies and realistic listening environments. 

We present this modeling framework in its general form for practical 
application in the study of statistical inference in predictive processing 
in audition. Previously, we have shown how a specific implementation 
of this model can replicate various results from controlled psycho
acoustic experiments in predictive processing of pitch under a single 
statistical assumption (Skerritt-Davis and Elhilali, 2019). Here, we 
demonstrate the flexibility of the model for predictive processing of 
natural sounds using different statistics along a variety of input di
mensions. In contrast to existing models with limited application to 
real-world sounds, this model can provide a deeper understanding of the 
computational mechanisms behind predictive tracking of rich, dynamic 
sounds by guiding interpretation of experimental results under a unified 
framework, generating new hypotheses and predictions for future 
investigation, and pushing the boundary of what is considered feasible 
for study in the laboratory towards the complexity that we encounter in 
everyday listening. 

2. D-REX Model 

The Dynamic Regularity Extraction (D-REX) model is a computa
tional model for predictive processing of sequential sounds. Source code 
is available at: http://www.github.com/jhu-lcap/DREX-model. 

2.1. Model assumptions 

The D-REX Model builds a predictive distribution, Ψt, for the next 
input xt+1 given all previously observed inputs up to time t: 

Ψt = ℙ(xt+1|x1:t) (1)  

where the input observations {xt}t∈ℤ+ are continuous-valued and 
sampled discretely in time, and the notation x1:t refers to the observed 
sequence of observations from time 1 to time t: x1:t = {x1, x2, …, xt}. The 
observed inputs {xt} can be any acoustic or perceptual feature extracted 
from the acoustic waveform (e.g., pitch, RMS energy, spectral spread, 
loudness, spatial location). For example, the input to the model could be 
the sequence of pitches extracted from a melody. To maintain generality 
in this section, input observations xt are presented with arbitary units at 
discrete times equivalent to their sequential indices (i.e., t = 1, 2, 3, …). 
In Section 3, we will present specific examples of xt from real-world 
sounds sampled in continuous time along various acoustic and percep
tual dimensions. 

The input sequence is assumed to be stochastic, drawn from a 
parametric probability distribution f with unknown parameters θ, i.e., at 
each time t, xt ~ fθ. For example, if f is a univariate Gaussian distribution, 
θ would be the unknown mean and variance. While the form of the 
distribution f is constant, the model does not assume stationarity in this 
distribution, i.e., the parameters θ can change at unknown times. Fig. 1a 
shows an example input sequence generated from a Gaussian distribu
tion with two changes in the parameters θ (changes indicated by ar
rows). The D-REX model currently includes built-in support for the 
following distributions: Gaussian, Log-normal, Gaussian mixture, and 
Poisson. This list is not exhaustive, and additional distributions can be 
easily incorporated into the model code. 

With Gaussian and Log-normal distributions, the distribution is 
additionally specified by D, the number of successive observations 
assumed to be statistically dependent in the input sequence. When the 
input observations have a constant sampling rate, D can equivalently be 
described as the temporal extent of dependence between observations. 
For D > 1, the model assumes successive observations are drawn from a 
joint distribution with dimensionality D, and the form of the unknown 
parameters θ reflect this dependence. For example, a multivariate 
Gaussian distribution with D = 2 is sensitive to dependence (i.e., non- 
zero covariance) between adjacent observations, while with D = 1, ob
servations are assumed to be statistically independent. As D increases, 
the model can capture temporal dependence across wider spans of the 
input observations if it exists. 

The choice of distribution f (and temporal dependence D) is crucial, 
as they determine what statistical structures are captured by the model. 
When modeling perceptual processes, the choice of distribution repre
sents an implicit hypothesis that the brain is sensitive to these same 
statistical structures or regularities, therefore it can be used to compare 
different internal representations in the brain. 

2.2. Robust prediction of dynamic observations 

Under these assumptions, the challenge for the model is to make 
predictions that are robust both to the unknown dynamics in the un
derlying generating distribution and to the uncertainty stemming from 
stochastic inputs. 

2.2.1. Sufficient statistics θ̂ 
The model represents past information via sufficient statistics θ̂ 

collected from the observed inputs. These sufficient statistics are esti
mates of the unknown parameters θ and depend on the distribution 
choice f: for example, for a Gaussian distribution with D = 1, the sta
tistical estimates θ̂ are the sample mean and sample variance of the 
observed inputs. The model prediction then depends on these statistical 
estimates in lieu of the past observations themselves: 
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ℙ(xt+1|x1:t) = ℙ(xt+1|θ̂t) (2)  

where sufficient statistics θ̂t are estimated from the context x1:t. 

2.2.2. Multiple hypotheses for the unknown context 
The choice of context window impacts the quality of the prediction. 

For example, if θ changed at any point in the observed sequence, a 
context that includes all past observations will result in poor statistical 
estimates of the current parameters. Without a priori knowledge of when 
these changes occur, the model must infer the appropriate context 
window from the data. To do this, the model makes predictions using 
multiple contexts, each referred to as a context hypothesis for parsing the 
past into observations that are relevant for the current prediction and 
those that are not. 

Let the set of context hypotheses be C→ = {ci}, i ∈ {1,…,M}, where ci 
is the beginning of the ith context window and M is the total number of 
hypotheses. At each time t, the model maintains a corresponding set of 
sufficient statistics collected over each context, Θ→t = {θi,t}, and pro
duces a set of predictive probabilities for the next observation given each 
context, P→t = {pi,t}. For the ith context hypothesis: 

pi,t = ℙ(xt+1|ci, xci :t) = ℙ(xt+1|θ̂i,t) (3)  

Note that this context-specific predictive probability only depends on 
observations after the context boundary ci, because observations before 
ci are inferred to have been drawn from a different distribution (i.e., with 
different unknown parameters θ). In this section, time is simplified to be 

equivalent to the observation index, therefore ci is unitless (i.e., ci = i). 
However, in general the ci’s can occur at any point in time—in the ex
amples in the next section, ci has units in seconds. 

The model also maintains a set of context beliefs B→t = {bi,t}, each 
representing the evidence for the ith context given all previously 
observed inputs up to time t: 

bi,t = ℙ(ci|x1:t) (4)  

These beliefs form a discrete posterior distribution over context 
hypotheses. 

By default, the model produces a new context hypothesis at each 
time-step, entertaining the possibility of a change at any time. Depending 
on the application, this can be adjusted using the input parameters of the 
model to represent prior knowledge about when changes occur. In 
addition, a smaller set of context hypotheses decreases the computa
tional cost of the model. Oftentimes, the beliefs are concentrated on a 
few context hypotheses (see Fig. 2a-i, middle panels), so reducing the set 
of context hypotheses by pruning or applying a threshold to the beliefs 
would not affect performance, and it would result in a sparser and more 
efficient tracking of the statistical past. 

2.2.3. “Integrating out” the unknown context 
To build the full predictive distribution Ψt, the context-specific pre

dictive probabilities pi,t are combined across context hypotheses, 
weighted by their corresponding beliefs bi,t (see Fig. 1a-right): 

Fig. 1. Model description. a) The model uses multiple context hypotheses to account for unknown changes in the observed sequence. Context-specific predictions P→t 

based on sufficient statistics Θ→t are combined, weighted by corresponding beliefs B→t , to yield the predictive distribution Ψt for the next input xt+1. b) Upon observing 
xt+1, the predictions and new input are used to update the statistics and beliefs, which are used in turn to predict the next input, and so on. There are three principal 
outputs from the model at each time: the surprisal of the newly observed input based on its prediction, the predictive distribution for the next input, and the beliefs 
(or posterior distribution over contexts). c) Outputs from the model for the example sequence in a). The top panel shows the predictive distribution at each time (in 
blue) with the input sequence overlaid, the middle panel shows the context beliefs, with each row corresponding to a particular context hypothesis ci, and the bottom 
panel shows the surprisal for each input observation. Note the predictive distribution and context beliefs reflect the underlying change in statistics inferred by 
the model. 
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Ψt = ℙ(xt+1|x1:t) =
∑M

i=1
ℙ(xt+1, ci|x1:t)

=
∑M

i=1
ℙ(xt+1|ci, xci :t)ℙ(ci|x1:t)

=
∑M

i=1
pi,tbi,t

(5)  

This weighted summation “integrates out” the unknown context in a 
Bayesian fashion, building a probabilistic prediction for xt+1 that adapts 
to changes in the underlying statistics of the observed sequence. 

Fig. 1a shows an illustration of how the model builds the predictive 
distribution for xt+1 given an example input sequence x1:t using three 
context hypotheses (with context windows starting at c1, c2, c3 and 
statistics θ̂1,t, θ̂2,t, θ̂3,t). For simplicity, time is equivalent to the 
sequential observation index. Context-specific predictions (p1,t, p2,t, p3,t) 
show how the distributions differ by context, and the beliefs (b1,t, b2,t, b3, 

t) show the relative evidence for the three context hypotheses at time t. 
In this example, the model uses a Gaussian with D = 1 (i.e., no temporal 
dependence). Note that c1 is the only context that does not span an 
unknown change in distribution parameters θ: its prediction p1,t more 
closely matches the statistics of the recently observed inputs, and it has 
the highest belief b1,t. The final predictive distribution Ψt is a weighted 
summation of the context-specific predictions. 

2.2.4. Iterative processing 
Fig. 1b shows the main processing stages that the model undertakes 

in each time-step:  

Observe The new input xt+1 is observed.  
Predict The probability of xt+1 under each context hypothesis is 

computed using the context-specific predictive distributions 
P→t (see Eq (3)).  

Update Sufficient statistics θ
→

t are updated sequentially with the newly 
observed input (e.g., for Gaussian distributions, see Murphy 
(2007)). Beliefs B→t are are also updated sequentially using the 
predictive probabilities, where the new beliefs reflect how well 
each context hypothesis predicted the newly observed input 
(see Adams and MacKay, 2007 for details). 

The updated statistics and beliefs, Θ→t+1 and B→t+1, are used in turn to 
process the subsequent input xt+2, and so on. For more details on a 
particular application of this model using Gaussian statistics, see Sker
ritt-Davis and Elhilali (2018). 

2.3. Model outputs 

There are three main outputs from the model, as shown in Fig. 1b, 
which can each be used to relate the model to behavioral and neural 
responses in various experimental paradigms. Importantly, the model is 
causal, so all outputs depend only on previously observed inputs.  

(i) St+1 is the surprisal of the input xt+1. After xt+1 has been observed, 
the surprisal St+1 indicates the mismatch between this observa
tion and its predictive probability in bits:  

St+1 = −logℙ(xt+1|x1:t) (6)   

where the probability is the likelihood of the observed input at time 
t + 1 given all previous observations (see Eq (5)). Observations with 
a low probability of occurring have high surprisal, whereas those 
with a high probability have low surprisal, and observations with 
probability 1 (i.e., completely predictable) have zero surprisal. The 
term surprisal used here is related to information content, or the 

information gained when a random variable is observed (Samson, 
1953). 
Surprisal is analogous to a probabilistic deviance response. In 
particular, surprisal can be related to the Mismatch Negativity 
(MMN) in electrophysiology responses (for comparisons of D-REX 
surprisal to MMN results in the literature, see Skerritt-Davis and 
Elhilali, 2019). Surprisal can also be related to discrimination para
digms where the contrastive property in the stimulus relates to 
predictability. For example, average surprisal can be used to 
discriminate between sequences with different entropy (Overath 
et al., 2007; Barascud et al., 2016).  

(ii) Ψt+1 is the predictive distribution of the next observation xt+2, or 
the weighted sum of context-specific predictions (see Eq (5)). As a 
probability distribution, quantities such as the expected value (i. 
e., the predicted value of the next input), the entropy, or the 
precision can be derived from Ψt+1 and used to connect neural 
event-related or oscillatory responses to specific aspects of pre
diction (Sedley et al., 2016; Kumar et al., 2013; Arnal and Giraud, 
2012). For example, the predictive distribution can be used to 
examine the evolution of precision-weighted EEG responses in 
the brain (Barascud et al., 2016).  

(iii) B→t+1, the context beliefs, form the discrete posterior probability 
distribution over context hypotheses (see Eq (4)). The beliefs 
represent the relative evidence across context hypotheses. Similar 
to the predictive distribution, measures can be derived from the 
beliefs to relate it to behavioral and neural respones, e.g., the 
expected context at time t: E[ci] =

∑M
i=1cibi,t. 

Beliefs can be particularly useful in change detection paradigms. For 
example, the beliefs in Fig. 1c can be used to compute the probability 
at least one change has occurred in the observed sequence:  

ℙ(Change) = ℙ(ci > 1|x1:t+1) =
∑

i: ci>c1

bi,t+1 (7)   

where the summation of beliefs after the initial context hypothesis c1 
represents the probability that the context begins after the beginning 
of the observed sequence (i.e., a change has occurred). Alternatively, 
the beliefs can be used to define a moment-by-moment measure of 
shift in the beliefs at each time as they adapt to changing statistics:  

δt = DJS( B→t∣∣ B→t+1) (8)    

where DJS(⋅ || ⋅) is the Jensen-Shannon divergence, or the dis
tance, between beliefs before and after observing xt+1. 
To relate model outputs to behavioral responses, a threshold can 
be applied to any of these measures of change to acquire a binary 
change-detection decision from the model. This decision response 
can then be used to fit the model to listener behavior (for 
example, see Skerritt-Davis and Elhilali, 2018). In this case, the 
threshold represents an additional parameter of the model, where 
decreasing the threshold results in increased sensitivity in the 
model to change, and vice-versa. 

Fig. 1c displays model outputs for an example sequence as it evolves 
over time (in black, same as in Fig. 1a). For this illustration, the time-axis 
simply refers to the index of the input observations. This same visual 
representation of the model outputs will be used in Section 3 below, with 
the time-axis corresponding to the onset timing of the input observations 
(in seconds). 

The predictive distribution (Fig. 1c-top in blue) adapts to changes in 
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the input observations (with darker blue corresponding to higher 
probability in the prediction and zero probability in white). Changes in 
the predictive distribution are a consequence of shifts in the context 
beliefs (Fig. 1c-middle), displayed as vertical slices at each time t, with 
color corresponding to the log-probability of each context boundary ci 
on the vertical axis (here, yellow and blue correspond to larger and 
smaller beliefs, respectively). For example, interpreting the vertical slice 
at t = 60 from the bottom-up, beliefs indicate very low probability for 
context hypotheses with ci < 30, a peak around ci = 30, and medium 
probability for ci > 30, indicating the context hypothesis with ci = 30 has 
the highest belief at time t = 60 given previous observations (note this 
matches ground truth for the most recent change in the input sequence). 
The diagonal boundary reflects the causal nature of the model: at each 
time t, there are only context hypotheses with boundaries ci in the past (i. 
e., ci ≤ t). The surprisal (Fig. 1c-bottom) shows the momentary mismatch 
of each input after it has been observed. Note that higher surprisal 
corresponds with observations that fall farther outside of the predictive 
distribution in the top panel. 

The use-cases of the D-REX model mentioned above are not 
exhaustive, nor are the three principal outputs of the model—surprisal, 
prediction, beliefs—the extent of possible responses produced by the 
model. They are presented here as the basic building blocks of the 
model’s response which can be used to derive application-specific out
puts to interpret a variety of experimental paradigms and listening tasks 
related to predictive processing. 

2.4. Model parameters 

The parameters of the D-REX model (not to be confused with the 
unknown distributional parameters θ) have straightforward in
terpretations in terms of prior knowledge, individual differences in 
neural resources, and the underlying computational implications for 
predictive algorithms in the brain. These parameters give the D-REX 
model flexibility to serve multiple purposes, from asking specific ques
tions about perceptual processes to tailoring the model to fit behavior of 
individual subjects. 

2.4.1. Priors: π 
The priors π are the initial statistical estimates for a new context 

hypothesis and take the same form as the sufficient statistics θ̂ and have 
the same units. These priors represent any “prior knowledge” in the 
model regarding the statistics of the input sequence after a change before 
any new inputs have been observed. In most cases, the priors can be set to 
sufficient statistics estimated from exposure stimuli with the same sta
tistical properties as the target stimuli. In general, because only a few 
parameters need to be estimated (e.g., sample mean and variance), not 
much training data is needed, which is not the case for other statistical 
models (Pearce and Wiggins, 2012). The priors can also be used to test 
hypotheses about how prior knowledge affects predictions: for example, 
the effect of different long-term prior experience on listener responses to 
the same inputs, or the evolution of trial-to-trial learning over the course 
of an experiment. 

2.4.2. Hazard rate: ht 
The hazard rate ht is the probability of a change in the underlying 

statistics generating the sensory inputs (i.e., the parameters θ) occurring 
at time t before any inputs after time t have been observed. If the hazard 
rate ht is greater than zero, a new context hypothesis is created at time t 
with belief equal to ht, i.e., b1,t = ht. The larger ht is, the more volatility 
and change is assumed in the underlying statistics of the input. The 
hazard rate can be constant, meaning that changes in the unknown 
parameters θ are equally probable at all times, or it can vary over time, 
encompassing prior knowledge about when changes are expected to 
occur in the input sequence. 

2.4.3. Perceptual parameters: M, N 
Previous studies have shown that human listeners do not operate as 

ideal Bayesian observers (Wilson and Niv, 2012). Two perceptual pa
rameters in the model represent neurally plausible constraints to pre
dictive processing:  

Memory M is the maximum number of context hypotheses 
and represents working memory capacity constraints 
in the brain (Conway et al., 2001; Just and Carpen
ter, 1992). If context hypotheses are created at each 
time-step (i.e., if ht > 0, ∀ t), M also represents the 
maximum context window used by the model to 
generate predictions, or equivalently, the maximum 
sample size used to estimate statistics θ̂.  

Observation noise N sets a lower bound on prediction uncertainty, 
representing limitations in perceptual fidelity along 
the input dimension (Kidd et al., 2007; Wightman 
and Kistler, 1996). Observation noise is equivalent to 
adding independent Gaussian noise to the observed 
input with zero-mean and constant variance N2, 
which has the effect of both increasing uncertainty of 
the prediction and decreasing precision of the suffi
cient statistics θ̂. N has the same units as the input 
sequence. 

Both of these perceptual parameters affect predictive processing, and 
they can be used to fit the model to individual listener behavior by 
defining a model response analogous to the listener response and per
forming a parameter search to find the parameters that best replicate 
listener response. An example of this can be found in Skerritt-Davis and 
Elhilali (2018). 

3. Examples 

In this section, we apply the D-REX model to real-world audio ex
amples to give the reader some intuition behind the causal relationship 
between sensory inputs and model outputs. Examples were selected to 
represent a range of everyday sound sources from music, speech, and 
environmental sounds. These examples demonstrate the model’s ca
pacity to capture a variety of statistical structures along an assortment of 
input dimensions related to spectral, spatial, and temporal processing. 
While the tracking of the example sequences may seem obvious from an 
engineering perspective, how this is achieved in the brain is not. The 
model provides a framework to test alternative hypotheses for how the 
brain tracks statistical structures, infers relevant contexts, and integrates 
across multiple timescales and dimensions, hence facilitating the com
parison between model predictions and experimental data (Skerritt-
Davis and Elhilali, 2018, 2019). 

Each panel in Fig. 2 shows the input sequence (top, in black) with the 
three model outputs as they evolve over time: predictive distribution 
(top, in blue), beliefs (middle), and surprisal (bottom). All audio clips 
were downloaded from publicly available sources, and input sequences 
for the model were extracted from the acoustic waveform using custom 
MATLAB scripts. Table 1 contains a description of each example audio 
clip in Fig. 2. Audio clips and code used to create Fig. 2 are included in 
Supplementary Materials. 

In each example, an “ideal-observer” model was used with zero 
observation noise and infinite memory parameters. The distributional 
choice f (and temporal dependence D, when applicable) was chosen 
based on the input dimension and/or to illustrate the impact of this 
choice on the outputs from the model. Examples are organized according 
to the input dimension. 

Spatial location. Fig. 2 a and b show model outputs from a binaural 
recording of a buzzing bee flying around the head. As an acoustic sur
rogate for spatial location, the input dimension used here is the 
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Interaural Level Difference (ILD-dB), the dB-ratio of root-mean-squared 
(RMS) energy between the left and right channels in 50 ms analysis 
frames. Both Fig. 2a and b use a Gaussian distribution in the model, but 
differ in the temporal dependence D. In Fig. 2a, the model assumes no 
temporal dependence (D = 1), and statistical changes are apparent in the 
prediction and in the beliefs as the input deviates from the running 
mean, which can also be seen in peaks in surprisal. In this case, the 
model interprets the input as a series of segments with static mean and 
variance; the clear “staircase” image in the beliefs shows this 
segmentation. 

In contrast, when temporal dependence is incorporated as in Fig. 2b 
(D = 2), no changes are apparent. Here, the model collects covariances 
between adjacent inputs, tracking the trajectory of the sequence along 
the input dimension. Note that the precision of the prediction is much 
higher compared to Fig. 2a. This offers an alternative predictive inter
pretation of the same input sequence. 

Pitch. Fig. 2c and d show model outputs from two Bach melodies. 
Pitch was extracted from source MIDI files using the MATLAB-MIDI 
toolbox1 . Pitches are represented in semi-tones to reflect logarithmic 
tonotopy in the auditory system. Fig. 2c uses a Gaussian distribution 
again but with much longer temporal dependence (D = 10). The large 
covariance structure collected by the model is sensitive to the arpeggi
ated melody in the first half of the input sequence, as can be seen in the 
coalescing of the prediction around the input, as well as in the low 
surprisal. The model then adapts to the change in melody motif around 
t = 20. Note that because the model uses statistical representations, 
exact repetitions were not necessary to capture the regularity in the first 
half of the sequence. 

In Fig. 2d, the model uses a Gaussian mixture model (GMM) to 
represent the pitches of another Bach melody. While this distribution 
does not have temporal dependence, it is more flexible for representing 
arbitrary distributions in the input. The prediction captures the 

Fig. 2. Model outputs for example inputs from real-world audio clips. Each panel displays the model predictive distribution (top), context beliefs (middle), and 
surprisal (bottom) over time, with the input sequence overlaid on the predictive distribution (top, in black). The input dimension (feature), distributional choice in 
the model, and audio event annotation are indicated above. Audio clips can be found in Supplemental Information. 

1 https://github.com/kts/matlab-midi 
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multimodal nature of the input and adapts gradually to changes in the 
statistics, as can be seen by the dispersal of beliefs across multiple 
contexts. Note that the peaks in surprisal coincide with lower- 
probability observations in the high component of the sequence, but 
the overall surprisal trend is downward, as the model builds better es
timates of the underlying statistics. 

Spectral profile. Fig. 2e and f use Gaussian distributions to predict 
two features of the spectrum from orchestral music recording: spectral 
spread and spectral centroid. These spectral features were derived from 
the cochleogram, a physiologically-inspired spectrogram computed 
from the acoustic waveform as part of the NSL toolbox2, using 50 ms 
analysis frames. With both features, changes in orchestration (i.e., which 
instruments are playing at each moment) are reflected in the beliefs from 
the model. These two examples demonstrate how the model can be used 
to track timbre in the acoustic input. 

Energy. Fig. 2g and h apply a log-normal distribution to the RMS 
energy measured in frames from two everyday recordings. RMS energy 
was computed directly from the acoustic waveform in 50 ms analysis 
frames. In Fig. 2g, peaks in surprisal correspond with dog barks and a 
whistle. Note that the surprisal of the first dog bark is higher than the 
later events, a consequence of the statistics of the preceding context. In 
Fig. 2h, the beliefs capture turn-taking in conversational speech between 
a male speaker and group laughter. 

Onset timing. The final example in Fig. 2i applies the model to a 
temporal dimension: the timing of transient onsets extracted from a 
recording of a marching band drum line. Transient onsets were extracted 
by finding peaks in the mean power across high-frequency channels 
from the cochleogram (center frequency>1760 Hz) using 16 ms analysis 
frames. The model assumes a Poisson distribution in the input. Note the 
change in rhythm in the input sequence is reflected in the beliefs, and 
higher surprisal indicates moments when the rate of transients deviates 
from the preceding statistics. 

These examples illustrate the flexibility of the model to build pre
dictions from a variety of auditory inputs along various perceptual di
mensions. Importantly, we do not prescribe a particular set of statistics 
in the model. Rather, the flexibility to utilize different statistics offers an 
opportunity to compare various statistical representations to see which 
best explains experimental results. 

4. Discussion 

The D-REX model is a functional instantiation of existing theoretical 
formulations for predictive processing and object formation in percep
tion, where sound sources are represented probabilistically and sensory 
inputs are incorporated into the brain’s internal representation of the 
world (Winkler et al., 2009; Friston and Kiebel, 2009; Friston, 2010; 
Bizley et al., 2013; Winkler and Schröger, 2015). The composition of the 
D-REX model aligns with previous literature regarding the underlying 
computations behind predictive processing: the brain builds statistical 
representations estimated from sounds over time (McDermott et al., 

2013; Piazza et al., 2013; Dahmen et al., 2010; Brady et al., 2009), and 
the brain maintains multiple hypotheses for how much of the past is 
relevant to the present moment (Luo and Poeppel, 2012; Pieszek et al., 
2013, Lau et al., 2017). These claims are represented explicitly in the 
model by statistical estimates collected over different time-windows, 
each of which gives a prediction for future inputs. Prediction errors 
are then used to update probabilistic beliefs in each context, weighting 
contexts proportionally by their evidence. This competition between 
concurrent hypotheses for the relevant context is crucial for robust 
interpretation of sensory inputs with dynamic uncertainty. 

By no means a complete picture of predictive coding in auditory 
perception, the D-REX model is a computational framework offering 
several footholds from which facets of predictive processing can be 
explored. By connecting the model’s outputs to experimental responses, 
the model can act as a “simulated” listener undergoing the same 
experimental tasks as human listeners. The internal components of the 
model can then be tinkered with and tuned to explore which configu
rations of the model give rise to responses that match listener responses. 
This approach can be used to investigate many open questions in pre
dictive processing in audition. 

The model can be used to investigate the nature of the internal sta
tistical representation employed by the brain. What statistics are 
collected by the brain? How do these statistics differ between perceptual 
dimensions? To what extent are dependencies over time and across di
mensions represented? How do statistical representations vary with 
listeners’ attentional state or long-term experience? Existing models in 
the literature offer a framework to explore these questions, though often 
constraining the mathematical formulation to a particular set of statis
tics or type of experiment (Furl et al., 2011; Garrido et al., 2013; 
McDermott et al., 2013; Barascud et al., 2016). The D-REX model was 
formulated to address these questions with a broader scope by allowing 
a comparison of different statistical representations and generalizing to 
many stimuli and perceptual tasks. For example, in one experiment, the 
model can be used to determine the statistical representation that best 
replicates listener responses; this same model can then be used to predict 
listener responses in a separate experiment. The model can also serve in 
the design of experiments and stimuli that intentionally tease apart 
hypothesized statistical representations (as in Skerritt-Davis and Elhi
lali, 2018). 

Many experiments have demonstrated that our perception of the 
present is modulated by what we have heard in the past, from recent 
contextual effects (Snyder et al., 2008; Geiser et al., 2012; Luo and 
Poeppel, 2012; Herrmann et al., 2015; Mcwalter and Mcdermott, 2019) 
to life-long experience (Strait et al., 2010; Ch et al., 2009), and the 
D-REX model can be used to investigate these effects at different 
time-scales. At short-term scales, the context windows of the model can 
be used to ask questions about the granularity of the statistical repre
sentation of context in memory, for example, to set an upper bound on 
the maximum context window used by listeners, or to find the minimum 
set of contexts that can replicate listener behavior, and whether this is 
consistent across stimuli with different levels of complexity. At longer 
time-scales, the priors of the model can be used to represent different 
prior expectations of the listener learned from previous exposure, where 

Table 1 
List of audio examples. The first column refers to the panel in Fig. 2, the second column contains filenames of audio clips included in Supplementary Materials, and the 
third column contains URLs to the source for each audio clip.  

Panel Description Filename Source 

a,b Buzzing bee AudioS1.mp3 ccrma.stanford.edu/azim/220a/hw2.html 
c Bach melody (MIDI) AudioS2.mp3 en.midimelody.ru/bach-johann-sebastian 
d Bach melody (MIDI) AudioS3.mp3 en.midimelody.ru/bach-johann-sebastian 
e Orchestral music AudioS4.mp3 Youtube.com/watch?v=pKOpdt9PYXU 
f Orchestral music AudioS5.mp3 Youtube.com/watch?v=pKOpdt9PYXU 
g Dog barks, whistle AudioS6.mp3 Freesound.org/people/conleec/sounds/175917/ 
h Conversational speech AudioS7.mp3 Freesound.org/people/dobroide/sounds/33699/ 
i Drum line AudioS8.mp3 Youtube.com/watch?v=c4S4MMvDrHg  

2 http://nsl.isr.umd.edu/downloads.html 
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model responses using different priors could be used to investigate how 
prior experience affects predictions or how listener responses reflect 
learning over the course of an experiment. Again, these questions can be 
approached by using the model to give targeted hypotheses for experi
mental outcomes. 

As a surrogate for the computational processes behind predictive 
processing in individual listeners, the model can be used to explain 
differences in behavioral or neural responses across listeners, variability 
which has typically not been incorporated into previous models of 
predictive processing despite its influence on statistical learning (Sie
gelman and Frost, 2015). In addition to examining individual differences 
in the processes mentioned above, the perceptual parameters of the 
model (memory and observation noise) can provide additional insight 
into how known constraints on neural resources manifest in 
subject-to-subject variability in listener responses. 

An additional strength of the model lies in its ability to combat the 
noise that invariably creeps into experimental paradigms incorporating 
uncertainty. Behavioral and neural responses to stochastic stimuli are 
themselves stochastic, and trial-to-trial variability can cloud results, 
especially in neural responses where precise time-locking is often a 
prerequisite to any event-related analysis. The model can be used to 
reduce jitter by aligning neural responses to events derived from model 
response to the same stimulus. Neural responses can then be correlated 
with specific aspects of predictive processing (e.g., prediction error, 
precision, evidence accumulation) (Sedley et al., 2016; Lecaignard et al., 
2015; Hsu et al., 2015). The model provides an avenue to take findings 
established in more tightly-controlled experiments, and see if they hold 
in more complex settings where well-defined events for time-locking are 
less apparent. 

Finally, the model is modular and easily extendable, both concep
tually and operationally in the code. In Section 3 we demonstrated the 
capacity of the model to capture many possible statistical representa
tions along different sensory dimensions in real-world audio examples, 
but the input dimensions and probability distributions used here are not 
complete. New probability distributions can be incorporated into the D- 
REX model, and the model can be applied along any dimension in the 
acoustic input. One current limitation in the model is that it operates on 
acoustic inputs that are sampled discretely in time. While this suffices 
for many experimental and real-world sounds that unfold sequentially in 
time (i.e., music, speech, alerting sounds), future work could extend the 
same modeling framework to operate in continuous time. Moreover, the 
modeling framework can be expanded in other ways to broaden its 
application. As currently implemented, the model operates at a single 
level of the sensory input and along a single time-scale, but it could be 
layered to build hierarchical predictions at different levels of abstraction 
or multiple time-scales (Heilbron and Chait, 2018). In addition, while 
the model was designed for audition, the same sequential prediction 
computations could be applied in and across other sensory modalities. 
Future work can also address how predictive algorithms identified by 
the model could be implemented in neural circuits (Wilson et al., 2013). 

Beyond retrospective interpretation of existing results, the D-REX 
model can be used to guide future experiments probing the temporal 
processing of complex sounds. As a flexible and practical computational 
model for predictive coding, it can be used as a tool to pursue a deeper 
understanding of the computational mechanisms behind predictive 
coding of rich, dynamic sounds in a variety of listening scenarios under a 
single unifying framework. 
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Kocsis, Zsuzsanna, Mill, Robert, Winkler, István, 2014. Stable individual 
characteristics in the perception of multiple embedded patterns in multistable 
auditory stimuli. Frontiers in Neuroscience. https://doi.org/10.3389/ 
fnins.2014.00025. ISSN 1662453X.  

Denham, Susan L., Winkler, István, 2020. Predictive coding in auditory perception: 
challenges and unresolved questions. ISSN 14609568.  

Di Liberto, Giovanni M., Pelofi, Claire, Bianco, Roberta, Patel, Prachi, Mehta, Ashesh D., 
Herrero, Jose L., de Cheveigné, Alain, Shamma, Shihab, Mesgarani, Nima, 2020. 
Cortical encoding of melodic expectations in human temporal cortex. eLife 9, 3. 
https://doi.org/10.7554/eLife.51784. ISSN 2050-084X. URL https://elifesciences. 
org/articles/51784.  

Friston, Karl, Kiebel, Stefan, 2009. Predictive coding under the free-energy principle. 
Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi. 
org/10.1098/rstb.2008.0300. ISSN 14712970.  

Friston, Karl J., 2010. The free-energy principle: a unified brain theory? Nature Reviews 
Neuroscience 11 (2), 127–138. https://doi.org/10.1038/nrn2787. ISSN 1471-003X. 
URL http://www.nature.com/articles/nrn2787.  

B. Skerritt-Davis and M. Elhilali                                                                                                                                                                                                             

https://doi.org/10.1016/j.jneumeth.2021.109177
http://arxiv.org/abs/0710.3742
http://arxiv.org/abs/0710.3742
https://doi.org/10.1111/cogs.12477
https://doi.org/10.1016/j.tics.2012.05.003
https://doi.org/10.1016/j.tics.2012.05.003
http://linkinghub.elsevier.com/retrieve/pii/S1364661312001210
http://linkinghub.elsevier.com/retrieve/pii/S1364661312001210
https://doi.org/10.1371/journal.pone.0144788
https://doi.org/10.1371/journal.pone.0144788
https://doi.org/10.1073/pnas.1508523113
http://www.pnas.org/lookup/doi/10.1073/pnas.1508523113
https://doi.org/10.1371/journal.pcbi.1000301
https://doi.org/10.1371/journal.pcbi.1000301
https://doi.org/10.1016/j.cub.2013.03.003
https://doi.org/10.1016/j.cub.2013.03.003
http://www.ncbi.nlm.nih.gov/pubmed/23523247
http://www.ncbi.nlm.nih.gov/pubmed/23523247
https://doi.org/10.7554/eLife.24910
https://elifesciences.org/articles/24910
https://elifesciences.org/articles/24910
https://doi.org/10.1037/a0016797
https://doi.org/10.1037/a0016797
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0050
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0050
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0055
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0055
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0055
https://doi.org/10.3758/BF03196169
http://www.springerlink.com/index/10.3758/BF03196169
https://doi.org/10.1016/j.neuron.2010.05.018
https://doi.org/10.1016/j.neuron.2010.05.018
http://www.cell.com/neuron/fulltext/S0896-6273(10)00386-7
http://www.cell.com/neuron/fulltext/S0896-6273(10)00386-7
https://doi.org/10.1371/journal.pone.0015554
https://doi.org/10.1371/journal.pone.0015554
http://dx.plos.org/10.1371/journal.pone.0015554
http://dx.plos.org/10.1371/journal.pone.0015554
https://doi.org/10.3389/fnins.2014.00025
https://doi.org/10.3389/fnins.2014.00025
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0080
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0080
https://doi.org/10.7554/eLife.51784
https://elifesciences.org/articles/51784
https://elifesciences.org/articles/51784
https://doi.org/10.1098/rstb.2008.0300
https://doi.org/10.1098/rstb.2008.0300
https://doi.org/10.1038/nrn2787
http://www.nature.com/articles/nrn2787


Journal of Neuroscience Methods 360 (2021) 109177

9

Furl, N., Kumar, S., Alter, K., Durrant, S., Shawe-Taylor, J., Griffiths, T.D., 2011. Neural 
prediction of higher-order auditory sequence statistics. NeuroImage 54 (3), 
2267–2277. URL http://www.ncbi.nlm.nih.gov/pubmed/20970510.  

Garrido, Marta I., Sahani, Maneesh, Dolan, Raymond J., 2013. Outlier Responses Reflect 
Sensitivity to Statistical Structure in the Human Brain. PLoS Computational Biology 
9 (3), e1002999. https://doi.org/10.1371/journal.pcbi.1002999. ISSN 1553-7358. 3 
URL https://dx.plos.org/10.1371/journal.pcbi.1002999.  

Geiser, Eveline, Notter, Michael, Gabrieli, John D.E., 2012. A corticostriatal neural 
system enhances auditory perception through temporal context processing. Journal 
of Neuroscience. https://doi.org/10.1523/JNEUROSCI. 5153-11.2012. ISSN 
02706474.  

Grossberg, Stephen, 1980. How does a brain build a cognitive code? Psychological 
Review. https://doi.org/10.1037/0033-295X871.1. ISSN 0033295X.  

Grossberg, Stephen, Govindarajan, Krishna K., Wyse, Lonce L., Cohen, Michael A., 2004. 
ARTSTREAM: a neural network model of auditory scene analysis and source 
segregation. Neural Networks 17 (4), 511–536. https://doi.org/10.1016/j. 
neunet.2003.10.002. ISSN 08936080. 5 URL https://linkinghub.elsevier.com/retrie 
ve/pii/S0893608003002727.  

Hansen, N.C., Pearce, M.T., 2014. Predictive uncertainty in auditory sequence 
processing. Frontiers in psychology 5 (9), 1052. https://doi.org/10.3389/ 
fpsyg.2014.01052. 

Heilbron, Micha, Chait, Maria, 2018. Great Expectations: Is there Evidence for Predictive 
Coding in Auditory Cortex? Neuroscience 389, 54–73. https://doi.org/10.1016/j. 
neuroscience.2017.07.061. ISSN 18737544. URL https://doi.org/10.1016/j.neuro 
science.2017.07.061https://doi.org/10.1016/j.neuroscience.2017.07.061.  

Herrmann, Björn, Henry, Molly J., Fromboluti, Elisa Kim, Devin McAuley, J., 
Obleser, Jonas, 2015. Statistical context shapes stimulus-specific adaptation in 
human auditory cortex. Journal of Neurophysiology 113 (7), 2582–2591. https:// 
doi.org/10.1152/jn.00634.2014. ISSN 0022-3077. URL http://jn.physiology. 
org/lookup/doi/10.1152/jn.00634.2014.  

Hsu, Y.F., Le Bars, S., Hamalainen, J.A., Waszak, F., 2015. Distinctive Representation of 
Mispredicted and Unpredicted Prediction Errors in Human Electroencephalography. 
Journal of Neuroscience 35 (43), 14653–14660. https://doi.org/10.1523/ 
JNEUROSCI, 2204-15.2015. 10 URL http://www.jneurosci.org/cgi/doi/10 
.1523/JNEUROSCI. 2204-15.2015.  

Just, Marcel A., Carpenter, Patricia A., 1992. A capacity theory of comprehension: 
Individual differences in working memory. Psychological Review 99 (1), 122–149. 
https://doi.org/10.1037/0033-295X.99.1.122. ISSN 1939-1471. URL http://doi. 
apa.org/getdoi.cfm?doi=10.1037/0033-295X99.122.  

Karl, J., Friston, 2005. A theory of cortical responses. Philosophical Transactions of the 
Royal Society B: Biological Sciences 360 (1456), 815–836. https://doi.org/10.1098/ 
rstb.2005.1622, 4 URL http://rstb.royalsocietypublishing.org/content/360/1456/ 
815.abstract.  

Kidd, Gary R., Watson, Charles S., Gygi, Brian, 2007. Individual differences in auditory 
abilities. The Journal of the Acoustical Society of America 122 (1), 418–435. https:// 
doi.org/10.1121/1.2743154. ISSN 0001-4966. URL http://asa.scitation.org/doi/ 
10.1121/1.2743154.  

Knill, David C., Pouget, Alexandre, 2004. The Bayesian brain: the role of uncertainty in 
neural coding and computation. Trends in neurosciences 27 (12), 712–719. https:// 
doi.org/10.1016/j.tins.2004.10.007. URL http://www.sciencedirect.com/science/ 
article/pii/S0166223604003352.  

Kumar, S., Joseph, S., Pearson, B., Teki, S., Fox, Z.V., Griffiths, T.D., Husain, M., 2013. 
Resource allocation and prioritization in auditory working memory. Cognitive 
Neuroscience 4 (1), 12–20. https://doi.org/10.1080/17588928.2012.716416. ISSN 
17588928.  

Lau, Brian, Monteiro, Tiago, Paton, Joseph J., 2017. The many worlds hypothesis of 
dopamine prediction error: implications of a parallel circuit architecture in the basal 
ganglia. ISSN 18736882.  

Lecaignard, Françoise, Bertrand, Olivier, Gimenez, Gérard, Mattout, Jérémie, 
Caclin, Anne, 2015. Implicit learning of predictable sound sequences modulates 
human brain responses at different levels of the auditory hierarchy. Frontiers in 
Human Neuroscience. https://doi.org/10.3389/fnhum.2015.00505. ISSN 
16625161.  

Lieder, F., Daunizeau, J., Garrido, Marta I., Friston, Karl J., Stephan, K.E., 2013. 
Modelling Trial-by-Trial Changes in the Mismatch Negativity. PLoS computational 
biology 9 (2), e1002911. 

Luo, Huan, Poeppel, David, 2012. Cortical oscillations in auditory perception and speech: 
Evidence for two temporal windows in human auditory cortex. Frontiers in 
Psychology. https://doi.org/10.3389/fpsyg.2012.00170. ISSN 16641078.  

McDermott, Josh H., Wrobleski, David, Oxenham, Andrew J., 2011. Recovering sound 
sources from embedded repetition. In: Proceedings of the National Academy of 
Sciences of the United States of America. ISSN 00278424. doi:10.1073/ 
pnas.1004765108. 

McDermott, Josh H., Schemitsch, Michael, Simoncelli, Eero P., 2013. Summary statistics 
in auditory perception. Nature Neuroscience 16 (4), 493–498. https://doi.org/ 
10.1038/nn.3347. ISSN 1097-6256. URL http://www.nature.com/articles/nn.3347.  

Mcwalter, Richard, Mcdermott, Josh H., 2019. Temporal Integration Windows for 
Auditory Statistical Estimation. Proceedings of the 23rd International Congress on 
Acoustics. 

Mill, R.W., Bohm, T.M., Bendixen, A., Winkler, István, Denham, S.L., 2013. Modelling the 
emergence and dynamics of perceptual organisation in auditory streaming. PLoS 
computational biology 9 (3), e1002925. https://doi.org/10.1371/journal. 
pcbi.1002925. 

Murphy, Kevin P., 2007. Conjugate Bayesian Analysis of the Gaussian Distribution. 
Technical Report, p. 7. 

Nassar, M.R., Wilson, R.C., Heasly, B., Gold, J.I., 2010. An Approximately Bayesian 
Delta-Rule Model Explains the Dynamics of Belief Updating in a Changing 
Environment. Journal of Neuroscience 30 (37), 12366–12378. https://doi.org/ 
10.1523/JNEUROSCI. ISSN 0270-6474. 0822-10.2010. URL http://www.jneurosci. 
org/cgi/doi/10.1523/JNEUROSCI. 0822-10.2010.  

Nix, J., Hohmann, V., 2007. Combined estimation of spectral envelopes and sound source 
direction of concurrent voices by multidimensional statistical filtering. IEEE 
Transactions on Audio, Speech and Language Processing 15 (3), 995–1008. 

Overath, Tobias, Cusack, Rhodri, Kumar, Sukhbinder, von Kriegstein, Katharina, 
Warren, Jason D., Grube, Manon, Carlyon, Robert P., Griffiths, Timothy D., 2007. An 
Information Theoretic Characterisation of Auditory Encoding. PLoS Biology 5 (11), 
e288. https://doi.org/10.1371/journal.pbio.0050288.g001. 

Pearce, Marcus, 2005. The Construction and Evaluation of Statistical Models of Melodic 
Structure in Music Perception and Composition. PhD thesis. URL http://openaccess. 
city.ac.uk/8459/.  

Pearce, Marcus T., Wiggins, Geraint A., 2012. Auditory Expectation: The Information 
Dynamics of Music Perception and Cognition. Topics in Cognitive Science. https:// 
doi.org/10.1111/j. 1756-8765.2012.01214.x. ISSN 17568757.  

Piazza, Elise A., Sweeny, Timothy D., Wessel, David, Silver, Michael A., Whitney, David, 
2013. Humans Use Summary Statistics to Perceive Auditory Sequences. 
Psychological Science. https://doi.org/10.1177/0956797612473759. ISSN 
14679280.  

Pieszek, Marika, Widmann, Andreas, Gruber, Thomas, Schröger, Erich, 2013. The Human 
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Winkler, István, Schröger, Erich, 2015. Auditory perceptual objects as generative models: 
Setting the stage for communication by sound. Brain and Language 148 (C), 1–22. 
https://doi.org/10.1016/j.bandl.2015.05.003. ISSN 10902155. 9 URL https://doi.or 
g/10.1016/j.bandl.2015.05.003.  

Wilson, Robert C., Nassar, Matthew R., Gold, Joshua I., 2013. A Mixture of Delta-Rules 
Approximation to Bayesian Inference in Change-Point Problems. PLoS 
Computational Biology 9 (7). https://doi.org/10.1371/journal.pcbi.1003150. ISSN 
1553734X.  

Wilson, Robert C., Niv, Yael, 2012. Inferring relevance in a changing world. Frontiers in 
Human Neuroscience. https://doi.org/10.3389/fnhum.2011.00189. ISSN 
16625161.  

Wightman, Frederic L., Kistler, Doris J., 1996. Individual differences in human sound 
localization behavior. The Journal of the Acoustical Society of America. https://doi. 
org/10.1121/1.415531. ISSN 0001-4966.  

Winkler, István, Denham, Susan L., Nelken, Israel, 2009. Modeling the auditory scene: 
predictive regularity representations and perceptual objects. Trends in Cognitive 
Sciences 13 (12), 532–540. https://doi.org/10.1016/j.tics.2009.09.003. ISSN 
13646613. 10 URL https://linkinghub.elsevier.com/retrieve/pii/S1364661 
309002095.  

B. Skerritt-Davis and M. Elhilali                                                                                                                                                                                                             

http://www.ncbi.nlm.nih.gov/pubmed/20970510
https://doi.org/10.1371/journal.pcbi.1002999
https://dx.plos.org/10.1371/journal.pcbi.1002999
https://doi.org/10.1523/JNEUROSCI. 5153-11.2012
https://doi.org/10.1037/0033-295X871.1
https://doi.org/10.1016/j.neunet.2003.10.002
https://doi.org/10.1016/j.neunet.2003.10.002
https://linkinghub.elsevier.com/retrieve/pii/S0893608003002727
https://linkinghub.elsevier.com/retrieve/pii/S0893608003002727
https://doi.org/10.3389/fpsyg.2014.01052
https://doi.org/10.3389/fpsyg.2014.01052
https://doi.org/10.1016/j.neuroscience.2017.07.061
https://doi.org/10.1016/j.neuroscience.2017.07.061
https://doi.org/10.1016/j.neuroscience.2017.07.061https://doi.org/10.1016/j.neuroscience.2017.07.061
https://doi.org/10.1016/j.neuroscience.2017.07.061https://doi.org/10.1016/j.neuroscience.2017.07.061
https://doi.org/10.1152/jn.00634.2014
https://doi.org/10.1152/jn.00634.2014
http://jn.physiology.org/lookup/doi/10.1152/jn.00634.2014
http://jn.physiology.org/lookup/doi/10.1152/jn.00634.2014
https://doi.org/10.1523/JNEUROSCI
https://doi.org/10.1523/JNEUROSCI
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.%202204-15.2015
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.%202204-15.2015
https://doi.org/10.1037/0033-295X.99.1.122
http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X99.122
http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X99.122
https://doi.org/10.1098/rstb.2005.1622
https://doi.org/10.1098/rstb.2005.1622
http://rstb.royalsocietypublishing.org/content/360/1456/815.abstract
http://rstb.royalsocietypublishing.org/content/360/1456/815.abstract
https://doi.org/10.1121/1.2743154
https://doi.org/10.1121/1.2743154
http://asa.scitation.org/doi/10.1121/1.2743154
http://asa.scitation.org/doi/10.1121/1.2743154
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1016/j.tins.2004.10.007
http://www.sciencedirect.com/science/article/pii/S016622360400335
http://www.sciencedirect.com/science/article/pii/S016622360400335
https://doi.org/10.1080/17588928.2012.716416
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0170
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0170
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0170
https://doi.org/10.3389/fnhum.2015.00505
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0180
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0180
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0180
https://doi.org/10.3389/fpsyg.2012.00170
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0190
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0190
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0190
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0190
https://doi.org/10.1038/nn.3347
https://doi.org/10.1038/nn.3347
http://www.nature.com/articles/nn.3347
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0200
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0200
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0200
https://doi.org/10.1371/journal.pcbi.1002925
https://doi.org/10.1371/journal.pcbi.1002925
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0210
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0210
https://doi.org/10.1523/JNEUROSCI
https://doi.org/10.1523/JNEUROSCI
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.%200822-10.2010
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.%200822-10.2010
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0220
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0220
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0220
https://doi.org/10.1371/journal.pbio.0050288.g001
http://openaccess.city.ac.uk/8459/
http://openaccess.city.ac.uk/8459/
https://doi.org/10.1111/j. 1756-8765.2012.01214.x
https://doi.org/10.1111/j. 1756-8765.2012.01214.x
https://doi.org/10.1177/0956797612473759
https://doi.org/10.1371/journal.pone.0053634
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053634
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053634
https://doi.org/10.1016/b978-0-08-010421-8
https://doi.org/10.1016/b978-0-08-010421-8
http://www.jstor.org/stable/42581366
https://doi.org/10.7554/eLife.11476
https://doi.org/10.7554/eLife.11476
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0260
http://refhub.elsevier.com/S0165-0270(21)00112-6/sbref0260
https://doi.org/10.1016/j.jml.2015.02.001
https://doi.org/10.3813/AAA.919279
https://www.ingentaconnect.com/content/10.3813/AAA.919279
https://www.ingentaconnect.com/content/10.3813/AAA.919279
https://doi.org/10.1371/journal.pcbi.1006162
https://doi.org/10.1371/journal.pcbi.1006162
http://www.ncbi.nlm.nih.gov/pubmed/29813049
http://www.ncbi.nlm.nih.gov/pubmed/29813049
https://doi.org/10.1016/j.heares.2009.12.021
https://doi.org/10.1016/j.heares.2009.12.021
https://doi.org/10.1037/0096-1523.34.4.1007
https://doi.org/10.1037/0096-1523.34.4.1007
https://doi.org/10.1371/journal.pcbi.1006820
https://doi.org/10.1371/journal.pcbi.1006820
https://doi.org/10.1016/j.tics.2006.05.009
https://doi.org/10.1523/JNEUROSCI
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.%205003-11.2012
https://doi.org/10.1016/j.bandl.2015.05.003
https://doi.org/10.1016/j.bandl.2015.05.003
https://doi.org/10.1016/j.bandl.2015.05.003
https://doi.org/10.1371/journal.pcbi.1003150
https://doi.org/10.3389/fnhum.2011.00189
https://doi.org/10.1121/1.415531
https://doi.org/10.1121/1.415531
https://doi.org/10.1016/j.tics.2009.09.003
https://linkinghub.elsevier.com/retrieve/pii/S1364661309002095
https://linkinghub.elsevier.com/retrieve/pii/S1364661309002095

	Computational framework for investigating predictive processing in auditory perception
	1 Introduction
	2 D-REX Model
	2.1 Model assumptions
	2.2 Robust prediction of dynamic observations
	2.2.1 Sufficient statistics θ^
	2.2.2 Multiple hypotheses for the unknown context
	2.2.3 “Integrating out” the unknown context
	2.2.4 Iterative processing

	2.3 Model outputs
	2.4 Model parameters
	2.4.1 Priors: π
	2.4.2 Hazard rate: ht
	2.4.3 Perceptual parameters: M, N


	3 Examples
	4 Discussion
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary Data
	References


