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ABSTRACT

Background: The brain tracks sound sources as they evolve in time, collecting contextual information to predict
future sensory inputs. Previous work in predictive coding typically focuses on the perception of predictable
stimuli, leaving the implementation of these same neural processes in more complex, real-world environments
containing randomness and uncertainty up for debate.

New Method: To facilitate investigation into the perception of less tightly-controlled listening scenarios, we
present a computational model as a tool to ask targeted questions about the underlying predictive processes that
connect complex sensory inputs to listener behavior and neural responses. In the modeling framework, observed
sound features (e.g. pitch) are tracked sequentially using Bayesian inference. Sufficient statistics are inferred
from past observations at multiple time scales and used to make predictions about future observation while
tracking the statistical structure of the sensory input.

Results: Facets of the model are discussed in terms of their application to perceptual research, and examples taken
from real-world audio demonstrate the model’s flexibility to capture a variety of statistical structures along
various perceptual dimensions.

Comparison with Existing Methods: Previous models are often targeted toward interpreting a particular experi-
mental paradigm (e.g., oddball paradigm), perceptual dimension (e.g., pitch processing), or task (e.g., speech
segregation), thus limiting their ability to generalize to other domains. The presented model is designed as a
flexible and practical tool for broad application.

Conclusion: The model is presented as a general framework for generating new hypotheses and guiding inves-
tigation into the neural processes underlying predictive coding of complex scenes.

1. Introduction

particularly salient when considering how predictive coding operates in
complex, real-world environments. Here, we propose a computational

Sound is by nature a temporal signal, unfolding as a series of acoustic
events: the patter of footsteps on a city street, the sequence of phonemes
in speech, the progression of individual notes or chords in music. Pre-
dictive coding theory offers an explanation for how the brain processes
such sequential inputs. Broadly, the theory proposes the brain uses the
recent context to build an internal model of the external world, and this
internal representation is used to make predictions of future events (Karl
and Friston, 2005; Series and Seitz, 2013; Heilbron and Chait, 2018).
Despite its widespread adoption, there remain many long-standing open
questions about how predictive coding is implemented, such as the na-
ture of the brain’s internal representation and how it balances stability
with flexibility in the face of change and uncertainty (Denham and
Winkler, 2020; Clark, 2013; Grossberg, 1980). These questions become
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model that can serve as a tool to guide future investigation into how
predictive coding theory manifests in the perception of everyday scenes.

Computational modeling has been used previously to expand the
realm of investigation in predictive coding in the brain. It has facilitated
the interpretation of trial-by-trial variability in listener responses (Lie-
der et al., 2013), the link between individual spiking neurons and neural
responses to deviance measured at the scalp (Wacongne et al., 2012),
and the recasting of various listening phenomena, such as streaming and
object perception, in terms of predictive coding (Denham et al., 2014;
Winkler and Schroger, 2015). While some models focus on the percep-
tion of deterministic sensory inputs (McDermott et al., 2011; Mill et al.,
2013), computational modeling is particularly useful for studying sta-
tistical processing in the brain, where stimulus-driven analyses are often
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constrained by the uncertainty in stochastic stimuli and their elicited
responses (Garrido et al., 2013; Herrmann et al., 2015; Boubenec et al.,
2017). However, a common limitation of these models is that they are
often designed for a particular experimental paradigm (e.g., the oddball
paradigm) (Lieder et al., 2013; Mill et al., 2013; Barniv and Nelken,
2015), a particular perceptual dimension (e.g., pitch) (Balaguer-Bal-
lester et al., 2009; Tabas et al., 2019), or a particular perceptual task (e.
g., speech segregation) (Nix and Hohmann, 2007), thus limiting their
ability to generalize to other domains. Some notable exceptions are the
IDyOM model, initially formulated for musical expectation (Pearce,
2005), which has been used to decode neural responses to music stimuli
(Hansen and Pearce, 2014; Di Liberto et al., 2020) as well as describe
statistical learning of sound sequences in general (Agres et al., 2018;
Barascud et al., 2016). Additionally, the ARTSTREAM model, based on
Gestalt principles of perception, incorporates predictive coding into a
broader framework for auditory scene analysis (Grossberg et al., 2004).
These models, however, place various limitations on the domain of
sensory inputs: the IDyOM model operates on a discrete set of inputs (i.
e., an alphabet), ignoring any ordering or distance between elements,
and the ARTSTREAM model assumes smoothness and harmonicity.
These provisions hinder the ability of these models to apply broadly
across different listening scenarios or explore the internal representa-
tions used in predictive processing in general.

In this work, the computational model put forth provides a potential
algorithmic solution for the predictive processes employed in everyday
listening. It makes minimal assumptions on the sensory input, instead
offering a framework to compare different internal representations in
the brain. This model is grounded in theoretical accounts of predictive
coding based in Bayesian inference (Knill and Pouget, 2004; Tenenbaum
etal., 2006; Daunizeau et al., 2010), and it incorporates key principles of
statistical tracking (e.g. predict, observe, update) within a compact
formulation. The same mathematical underpinnings have previously
been explored in predictive-inference tasks using sequences of numbers
(Nassar et al., 2010; Wilson et al., 2013). In lieu of modeling neural
mechanisms directly (such as in Wacongne et al., 2012; Balaguer-Bal-
lester et al., 2009; Tabas et al., 2019), we use neurally plausible com-
putations to model the cognitive processes that map sensory inputs to
decision and action. This approach favors simplicity in relating model
inputs, outputs, and parameters to perceptual processes, facilitating the
exploration of underlying predictive mechanisms and their connection
to neural and behavioral responses in a broad range of experimental
studies and realistic listening environments.

We present this modeling framework in its general form for practical
application in the study of statistical inference in predictive processing
in audition. Previously, we have shown how a specific implementation
of this model can replicate various results from controlled psycho-
acoustic experiments in predictive processing of pitch under a single
statistical assumption (Skerritt-Davis and Elhilali, 2019). Here, we
demonstrate the flexibility of the model for predictive processing of
natural sounds using different statistics along a variety of input di-
mensions. In contrast to existing models with limited application to
real-world sounds, this model can provide a deeper understanding of the
computational mechanisms behind predictive tracking of rich, dynamic
sounds by guiding interpretation of experimental results under a unified
framework, generating new hypotheses and predictions for future
investigation, and pushing the boundary of what is considered feasible
for study in the laboratory towards the complexity that we encounter in
everyday listening.

2. D-REX Model
The Dynamic Regularity Extraction (D-REX) model is a computa-

tional model for predictive processing of sequential sounds. Source code
is available at: http://www.github.com/jhu-lcap/DREX-model.

Journal of Neuroscience Methods 360 (2021) 109177
2.1. Model assumptions

The D-REX Model builds a predictive distribution, ¥, for the next
input x.,; given all previously observed inputs up to time t:

lIlz = IFD(-’Cr+l|xl:z) (1)

where the input observations {x;},,- are continuous-valued and
sampled discretely in time, and the notation x;.; refers to the observed
sequence of observations from time 1 to time t: x1.; = {x3, X3, ..., X¢}. The
observed inputs {x;} can be any acoustic or perceptual feature extracted
from the acoustic waveform (e.g., pitch, RMS energy, spectral spread,
loudness, spatial location). For example, the input to the model could be
the sequence of pitches extracted from a melody. To maintain generality
in this section, input observations x; are presented with arbitary units at
discrete times equivalent to their sequential indices (i.e., t=1, 2, 3, ...).
In Section 3, we will present specific examples of x; from real-world
sounds sampled in continuous time along various acoustic and percep-
tual dimensions.

The input sequence is assumed to be stochastic, drawn from a
parametric probability distribution f with unknown parameters 6, i.e., at
each time t, x; ~ fy. For example, if f is a univariate Gaussian distribution,
6 would be the unknown mean and variance. While the form of the
distribution f is constant, the model does not assume stationarity in this
distribution, i.e., the parameters 6 can change at unknown times. Fig. 1a
shows an example input sequence generated from a Gaussian distribu-
tion with two changes in the parameters 6 (changes indicated by ar-
rows). The D-REX model currently includes built-in support for the
following distributions: Gaussian, Log-normal, Gaussian mixture, and
Poisson. This list is not exhaustive, and additional distributions can be
easily incorporated into the model code.

With Gaussian and Log-normal distributions, the distribution is
additionally specified by D, the number of successive observations
assumed to be statistically dependent in the input sequence. When the
input observations have a constant sampling rate, D can equivalently be
described as the temporal extent of dependence between observations.
For D > 1, the model assumes successive observations are drawn from a
joint distribution with dimensionality D, and the form of the unknown
parameters 6 reflect this dependence. For example, a multivariate
Gaussian distribution with D =2 is sensitive to dependence (i.e., non-
zero covariance) between adjacent observations, while with D=1, ob-
servations are assumed to be statistically independent. As D increases,
the model can capture temporal dependence across wider spans of the
input observations if it exists.

The choice of distribution f (and temporal dependence D) is crucial,
as they determine what statistical structures are captured by the model.
When modeling perceptual processes, the choice of distribution repre-
sents an implicit hypothesis that the brain is sensitive to these same
statistical structures or regularities, therefore it can be used to compare
different internal representations in the brain.

2.2. Robust prediction of dynamic observations

Under these assumptions, the challenge for the model is to make
predictions that are robust both to the unknown dynamics in the un-
derlying generating distribution and to the uncertainty stemming from
stochastic inputs.

2.2.1. Sufficient statistics 0

The model represents past information via sufficient statistics 9
collected from the observed inputs. These sufficient statistics are esti-
mates of the unknown parameters ¢ and depend on the distribution
choice f: for example, for a Gaussian distribution with D=1, the sta-
tistical estimates @ are the sample mean and sample variance of the
observed inputs. The model prediction then depends on these statistical
estimates in lieu of the past observations themselves:
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Fig. 1. Model description. a) The model uses multiple context hypotheses to account for unknown changes in the observed sequence. Context-specific predictions ?t

based on sufficient statistics 6t are combined, weighted by corresponding beliefs ﬁt, to yield the predictive distribution ¥, for the next input x;. b) Upon observing
X¢+ 1, the predictions and new input are used to update the statistics and beliefs, which are used in turn to predict the next input, and so on. There are three principal
outputs from the model at each time: the surprisal of the newly observed input based on its prediction, the predictive distribution for the next input, and the beliefs
(or posterior distribution over contexts). ¢) Outputs from the model for the example sequence in a). The top panel shows the predictive distribution at each time (in
blue) with the input sequence overlaid, the middle panel shows the context beliefs, with each row corresponding to a particular context hypothesis c;, and the bottom
panel shows the surprisal for each input observation. Note the predictive distribution and context beliefs reflect the underlying change in statistics inferred by

the model.

P(XH»] |x1:r) = P(xrﬂ ‘(9,) (2)
where sufficient statistics @t are estimated from the context xy.;.

2.2.2. Multiple hypotheses for the unknown context

The choice of context window impacts the quality of the prediction.
For example, if 6 changed at any point in the observed sequence, a
context that includes all past observations will result in poor statistical
estimates of the current parameters. Without a priori knowledge of when
these changes occur, the model must infer the appropriate context
window from the data. To do this, the model makes predictions using
multiple contexts, each referred to as a context hypothesis for parsing the
past into observations that are relevant for the current prediction and
those that are not.

Let the set of context hypotheses be C = {ci}, i€ {1,....M}, wherec;
is the beginning of the i context window and M is the total number of
hypotheses. At each time ¢, the model maintains a corresponding set of
sufficient statistics collected over each context, 6t = {6;;}, and pro-
duces a set of predictive probabilities for the next observation given each
context, ?t = {pi.}. For the it context hypothesis:

Pir = P(XH»I |Ci7x£,:t) = P(xr+l |§i.r) (3)

Note that this context-specific predictive probability only depends on
observations after the context boundary c;, because observations before
c; are inferred to have been drawn from a different distribution (i.e., with
different unknown parameters 6). In this section, time is simplified to be

equivalent to the observation index, therefore c; is unitless (i.e., ¢; =1).
However, in general the ¢;’s can occur at any point in time—in the ex-
amples in the next section, ¢; has units in seconds.

The model also maintains a set of context beliefs B. = {bi+}, each
representing the evidence for the i context given all previously
observed inputs up to time t:

bi, = P(Ci |X1:r) ()]

These beliefs form a discrete posterior distribution over context
hypotheses.

By default, the model produces a new context hypothesis at each
time-step, entertaining the possibility of a change at any time. Depending
on the application, this can be adjusted using the input parameters of the
model to represent prior knowledge about when changes occur. In
addition, a smaller set of context hypotheses decreases the computa-
tional cost of the model. Oftentimes, the beliefs are concentrated on a
few context hypotheses (see Fig. 2a-i, middle panels), so reducing the set
of context hypotheses by pruning or applying a threshold to the beliefs
would not affect performance, and it would result in a sparser and more
efficient tracking of the statistical past.

2.2.3. “Integrating out” the unknown context

To build the full predictive distribution ¥, the context-specific pre-
dictive probabilities p;; are combined across context hypotheses,
weighted by their corresponding beliefs b;; (see Fig. 1a-right):
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This weighted summation “integrates out” the unknown context in a
Bayesian fashion, building a probabilistic prediction for x,; that adapts
to changes in the underlying statistics of the observed sequence.

Fig. 1a shows an illustration of how the model builds the predictive
distribution for x;.; given an example input sequence xj. using three
context hypotheses (with context windows starting at cj, ¢y, ¢3 and
statistics 51.:, @2_0 53‘[). For simplicity, time is equivalent to the
sequential observation index. Context-specific predictions (p1,, p2,r, P3,0
show how the distributions differ by context, and the beliefs (b1 ¢, b1, b3,
o) show the relative evidence for the three context hypotheses at time t.
In this example, the model uses a Gaussian with D =1 (i.e., no temporal
dependence). Note that c; is the only context that does not span an
unknown change in distribution parameters ¢: its prediction p; ; more
closely matches the statistics of the recently observed inputs, and it has
the highest belief by ;. The final predictive distribution ¥, is a weighted
summation of the context-specific predictions.

2.2.4. Iterative processing
Fig. 1b shows the main processing stages that the model undertakes
in each time-step:

Observe The new input x;;1 is observed.
Predict The probability of x;.; under each context hypothesis is
computed using the context-specific predictive distributions

?t (see Eq (3)).

Update Sufficient statistics ?t are updated sequentially with the newly
observed input (e.g., for Gaussian distributions, see Murphy

(2007)). Beliefs Ft are are also updated sequentially using the
predictive probabilities, where the new beliefs reflect how well
each context hypothesis predicted the newly observed input
(see Adams and MacKay, 2007 for details).

The updated statistics and beliefs, 6t+1 and E)Hl, are used in turn to
process the subsequent input x;;2, and so on. For more details on a
particular application of this model using Gaussian statistics, see Sker-
ritt-Davis and Elhilali (2018).

2.3. Model outputs

There are three main outputs from the model, as shown in Fig. 1b,
which can each be used to relate the model to behavioral and neural
responses in various experimental paradigms. Importantly, the model is
causal, so all outputs depend only on previously observed inputs.

(i) Sti1 is the surprisal of the input x;1. After x;,1 has been observed,
the surprisal S;;; indicates the mismatch between this observa-
tion and its predictive probability in bits:

Si1 = _ZUgP(XtH |x1:r) (6)

where the probability is the likelihood of the observed input at time
t+ 1 given all previous observations (see Eq (5)). Observations with
a low probability of occurring have high surprisal, whereas those
with a high probability have low surprisal, and observations with
probability 1 (i.e., completely predictable) have zero surprisal. The
term surprisal used here is related to information content, or the
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information gained when a random variable is observed (Samson,
1953).

Surprisal is analogous to a probabilistic deviance response. In
particular, surprisal can be related to the Mismatch Negativity
(MMN) in electrophysiology responses (for comparisons of D-REX
surprisal to MMN results in the literature, see Skerritt-Davis and
Elhilali, 2019). Surprisal can also be related to discrimination para-
digms where the contrastive property in the stimulus relates to
predictability. For example, average surprisal can be used to
discriminate between sequences with different entropy (Overath
et al., 2007; Barascud et al., 2016).

(ii) W1 is the predictive distribution of the next observation X2, or
the weighted sum of context-specific predictions (see Eq (5)). As a
probability distribution, quantities such as the expected value (i.
e., the predicted value of the next input), the entropy, or the
precision can be derived from ¥;,; and used to connect neural
event-related or oscillatory responses to specific aspects of pre-
diction (Sedley et al., 2016; Kumar et al., 2013; Arnal and Giraud,
2012). For example, the predictive distribution can be used to
examine the evolution of precision-weighted EEG responses in
the brain (Barascud et al., 2016).

(iii) E)H,l, the context beliefs, form the discrete posterior probability
distribution over context hypotheses (see Eq (4)). The beliefs
represent the relative evidence across context hypotheses. Similar
to the predictive distribution, measures can be derived from the
beliefs to relate it to behavioral and neural respones, e.g., the
expected context at time t: E[¢;] = Zfilcibivt.

Beliefs can be particularly useful in change detection paradigms. For
example, the beliefs in Fig. 1c¢ can be used to compute the probability
at least one change has occurred in the observed sequence:

P(Change) = P(c; > 1|xip41) = Z bisi1 @

it >l

where the summation of beliefs after the initial context hypothesis c;
represents the probability that the context begins after the beginning
of the observed sequence (i.e., a change has occurred). Alternatively,
the beliefs can be used to define a moment-by-moment measure of
shift in the beliefs at each time as they adapt to changing statistics:

8, = Dys(B.IIB 1) ©)

where Djs(- || ) is the Jensen-Shannon divergence, or the dis-
tance, between beliefs before and after observing x;. 1.

To relate model outputs to behavioral responses, a threshold can
be applied to any of these measures of change to acquire a binary
change-detection decision from the model. This decision response
can then be used to fit the model to listener behavior (for
example, see Skerritt-Davis and Elhilali, 2018). In this case, the
threshold represents an additional parameter of the model, where
decreasing the threshold results in increased sensitivity in the
model to change, and vice-versa.

Fig. 1c displays model outputs for an example sequence as it evolves
over time (in black, same as in Fig. 1a). For this illustration, the time-axis
simply refers to the index of the input observations. This same visual
representation of the model outputs will be used in Section 3 below, with
the time-axis corresponding to the onset timing of the input observations
(in seconds).

The predictive distribution (Fig. 1c-top in blue) adapts to changes in
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the input observations (with darker blue corresponding to higher
probability in the prediction and zero probability in white). Changes in
the predictive distribution are a consequence of shifts in the context
beliefs (Fig. 1c-middle), displayed as vertical slices at each time t, with
color corresponding to the log-probability of each context boundary c;
on the vertical axis (here, yellow and blue correspond to larger and
smaller beliefs, respectively). For example, interpreting the vertical slice
at t =60 from the bottom-up, beliefs indicate very low probability for
context hypotheses with ¢; < 30, a peak around c; =30, and medium
probability for ¢; > 30, indicating the context hypothesis with c¢; = 30 has
the highest belief at time t = 60 given previous observations (note this
matches ground truth for the most recent change in the input sequence).
The diagonal boundary reflects the causal nature of the model: at each
time t, there are only context hypotheses with boundaries c; in the past (i.
e., ¢; <t). The surprisal (Fig. 1c-bottom) shows the momentary mismatch
of each input after it has been observed. Note that higher surprisal
corresponds with observations that fall farther outside of the predictive
distribution in the top panel.

The use-cases of the D-REX model mentioned above are not
exhaustive, nor are the three principal outputs of the model—surprisal,
prediction, beliefs—the extent of possible responses produced by the
model. They are presented here as the basic building blocks of the
model’s response which can be used to derive application-specific out-
puts to interpret a variety of experimental paradigms and listening tasks
related to predictive processing.

2.4. Model parameters

The parameters of the D-REX model (not to be confused with the
unknown distributional parameters 6¢) have straightforward in-
terpretations in terms of prior knowledge, individual differences in
neural resources, and the underlying computational implications for
predictive algorithms in the brain. These parameters give the D-REX
model flexibility to serve multiple purposes, from asking specific ques-
tions about perceptual processes to tailoring the model to fit behavior of
individual subjects.

2.4.1. Priors: &
The priors z are the initial statistical estimates for a new context

hypothesis and take the same form as the sufficient statistics 6 and have
the same units. These priors represent any “prior knowledge” in the
model regarding the statistics of the input sequence after a change before
any new inputs have been observed. In most cases, the priors can be set to
sufficient statistics estimated from exposure stimuli with the same sta-
tistical properties as the target stimuli. In general, because only a few
parameters need to be estimated (e.g., sample mean and variance), not
much training data is needed, which is not the case for other statistical
models (Pearce and Wiggins, 2012). The priors can also be used to test
hypotheses about how prior knowledge affects predictions: for example,
the effect of different long-term prior experience on listener responses to
the same inputs, or the evolution of trial-to-trial learning over the course
of an experiment.

2.4.2. Hagard rate: h;

The hazard rate h; is the probability of a change in the underlying
statistics generating the sensory inputs (i.e., the parameters 6) occurring
at time t before any inputs after time t have been observed. If the hazard
rate h; is greater than zero, a new context hypothesis is created at time ¢
with belief equal to hy, i.e., b= h;. The larger h; is, the more volatility
and change is assumed in the underlying statistics of the input. The
hazard rate can be constant, meaning that changes in the unknown
parameters 6 are equally probable at all times, or it can vary over time,
encompassing prior knowledge about when changes are expected to
occur in the input sequence.

Journal of Neuroscience Methods 360 (2021) 109177

2.4.3. Perceptual parameters: M, N

Previous studies have shown that human listeners do not operate as
ideal Bayesian observers (Wilson and Niv, 2012). Two perceptual pa-
rameters in the model represent neurally plausible constraints to pre-
dictive processing:

Memory M is the maximum number of context hypotheses
and represents working memory capacity constraints
in the brain (Conway et al., 2001; Just and Carpen-
ter, 1992). If context hypotheses are created at each
time-step (i.e., if hy>0, Vt), M also represents the
maximum context window used by the model to
generate predictions, or equivalently, the maximum

sample size used to estimate statistics 9.
Observation noise N sets a lower bound on prediction uncertainty,
representing limitations in perceptual fidelity along
the input dimension (Kidd et al., 2007; Wightman
and Kistler, 1996). Observation noise is equivalent to
adding independent Gaussian noise to the observed
input with zero-mean and constant variance N?,
which has the effect of both increasing uncertainty of
the prediction and decreasing precision of the suffi-

cient statistics 0. N has the same units as the input
sequence.

Both of these perceptual parameters affect predictive processing, and
they can be used to fit the model to individual listener behavior by
defining a model response analogous to the listener response and per-
forming a parameter search to find the parameters that best replicate
listener response. An example of this can be found in Skerritt-Davis and
Elhilali (2018).

3. Examples

In this section, we apply the D-REX model to real-world audio ex-
amples to give the reader some intuition behind the causal relationship
between sensory inputs and model outputs. Examples were selected to
represent a range of everyday sound sources from music, speech, and
environmental sounds. These examples demonstrate the model’s ca-
pacity to capture a variety of statistical structures along an assortment of
input dimensions related to spectral, spatial, and temporal processing.
While the tracking of the example sequences may seem obvious from an
engineering perspective, how this is achieved in the brain is not. The
model provides a framework to test alternative hypotheses for how the
brain tracks statistical structures, infers relevant contexts, and integrates
across multiple timescales and dimensions, hence facilitating the com-
parison between model predictions and experimental data (Skerritt--
Davis and Elhilali, 2018, 2019).

Each panel in Fig. 2 shows the input sequence (top, in black) with the
three model outputs as they evolve over time: predictive distribution
(top, in blue), beliefs (middle), and surprisal (bottom). All audio clips
were downloaded from publicly available sources, and input sequences
for the model were extracted from the acoustic waveform using custom
MATLAB scripts. Table 1 contains a description of each example audio
clip in Fig. 2. Audio clips and code used to create Fig. 2 are included in
Supplementary Materials.

In each example, an “ideal-observer” model was used with zero
observation noise and infinite memory parameters. The distributional
choice f (and temporal dependence D, when applicable) was chosen
based on the input dimension and/or to illustrate the impact of this
choice on the outputs from the model. Examples are organized according
to the input dimension.

Spatial location. Fig. 2 a and b show model outputs from a binaural
recording of a buzzing bee flying around the head. As an acoustic sur-
rogate for spatial location, the input dimension used here is the



B. Skerritt-Davis and M. Elhilali

a) Feature: Interaural Level Diff.
Distribution: Gaussian, D=1

buzzing bee

.

P SE—- o
r e -

ILD, dB
;h o w»
i

&
M
by
i
ILD, dB
bhow

C;, sec
G, sec
N Ao

o

o

Surprisal,
bits

Surprisal,
bits

1 2 3 4 5 6
Time, sec

d) Feature: Pitch
Distribution: GMM

piano flutes

=]
S
S

e,

Pitch, Hz
T

Spread, Hz
a
8

bits
2
8

)

Surprisal,
bits
Surpr/sa/

MMLMWAWWMWJMW

Surprisal,

b) Feature: Interaural Level Diff.
Distribution: Gaussian, D=2

\./\NNMWWW

T/me sec

e) Feature: Spectral spread
Distribution: Gaussian, D=1

i
i

C; sec
SN ow
SR8
C;, sec
L
h |
1L h
:
C;, sec
N SO ®
A

Journal of Neuroscience Methods 360 (2021) 109177

C) Feature: Pitch
Distribution: Gaussian, D=10

buzzing bee piano

x .
<

£

g

o

Q

“n

(&)

®

20

3

@

12 16 20 24
Time, notes

f) Feature: Spectral centroid
Distribution: Gaussian, D=2

winds winds winds
strings cellos N strings
T
’ 1500 L
e i) T4 .
. 1000, 4 1 l
e s i N g,
o

12 18 24 1 3 4 5
Time, notes Time, sec Tlme, sec
g) Feature: RMS energy h) Feature: RMS energy i) Feature: Transient onsets

Distribution: Log-normal, D=1

dog dog dog whistle male speech

0.06
0.04
0.02

Energy, V
e o9
SR

C;, sec
L
C;, sec

Energy, V

Distribution: Log-normal, D=2

laughter

Distribution: Poisson

Il

(marching band)

T

male speech

Onsets

I

9 o 12
6 8 8
3 G 4
~ 24 ~ 18 - - 4
T T T
.‘é% {\ /\‘/\V\./\ él g w Jl J .g %
IS g g
ER N NN RPN T A Y 1“‘\*““‘””“@“%%]”“
1 2 3 4 5 6 1.2 3 4 5 6 7 2 4 6 8 10 12 14
Time, sec Time, sec Time, sec

Fig. 2. Model outputs for example inputs from real-world audio clips. Each panel displays the model predictive distribution (top), context beliefs (middle), and
surprisal (bottom) over time, with the input sequence overlaid on the predictive distribution (top, in black). The input dimension (feature), distributional choice in
the model, and audio event annotation are indicated above. Audio clips can be found in Supplemental Information.

Interaural Level Difference (ILD-dB), the dB-ratio of root-mean-squared
(RMS) energy between the left and right channels in 50 ms analysis
frames. Both Fig. 2a and b use a Gaussian distribution in the model, but
differ in the temporal dependence D. In Fig. 2a, the model assumes no
temporal dependence (D = 1), and statistical changes are apparent in the
prediction and in the beliefs as the input deviates from the running
mean, which can also be seen in peaks in surprisal. In this case, the
model interprets the input as a series of segments with static mean and
variance; the clear “staircase” image in the beliefs shows this
segmentation.

In contrast, when temporal dependence is incorporated as in Fig. 2b
(D =2), no changes are apparent. Here, the model collects covariances
between adjacent inputs, tracking the trajectory of the sequence along
the input dimension. Note that the precision of the prediction is much
higher compared to Fig. 2a. This offers an alternative predictive inter-
pretation of the same input sequence.

Pitch. Fig. 2¢ and d show model outputs from two Bach melodies.
Pitch was extracted from source MIDI files using the MATLAB-MIDI
toolbox' . Pitches are represented in semi-tones to reflect logarithmic
tonotopy in the auditory system. Fig. 2c uses a Gaussian distribution
again but with much longer temporal dependence (D =10). The large
covariance structure collected by the model is sensitive to the arpeggi-
ated melody in the first half of the input sequence, as can be seen in the
coalescing of the prediction around the input, as well as in the low
surprisal. The model then adapts to the change in melody motif around
t=20. Note that because the model uses statistical representations,
exact repetitions were not necessary to capture the regularity in the first
half of the sequence.

In Fig. 2d, the model uses a Gaussian mixture model (GMM) to
represent the pitches of another Bach melody. While this distribution
does not have temporal dependence, it is more flexible for representing
arbitrary distributions in the input. The prediction captures the

! https://github.com/kts/matlab-midi
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Table 1

List of audio examples. The first column refers to the panel in Fig. 2, the second column contains filenames of audio clips included in Supplementary Materials, and the
third column contains URLs to the source for each audio clip.

Panel Description Filename Source

a,b Buzzing bee AudioS1.mp3 ccrma.stanford.edu/azim/220a/hw2.html
c Bach melody (MIDI) AudioS2.mp3 en.midimelody.ru/bach-johann-sebastian
d Bach melody (MIDI) AudioS3.mp3 en.midimelody.ru/bach-johann-sebastian
e Orchestral music AudioS4.mp3 Youtube.com/watch?v=pKOpdt9PYXU
f Orchestral music AudioS5.mp3 Youtube.com/watch?v=pKOpdt9PYXU
g Dog barks, whistle AudioS6.mp3 Freesound.org/people/conleec/sounds/175917/
h Conversational speech AudioS7.mp3 Freesound.org/people/dobroide/sounds/33699/
i Drum line AudioS8.mp3 Youtube.com/watch?v=c4S4MMvDrHg

multimodal nature of the input and adapts gradually to changes in the
statistics, as can be seen by the dispersal of beliefs across multiple
contexts. Note that the peaks in surprisal coincide with lower-
probability observations in the high component of the sequence, but
the overall surprisal trend is downward, as the model builds better es-
timates of the underlying statistics.

Spectral profile. Fig. 2e and f use Gaussian distributions to predict
two features of the spectrum from orchestral music recording: spectral
spread and spectral centroid. These spectral features were derived from
the cochleogram, a physiologically-inspired spectrogram computed
from the acoustic waveform as part of the NSL toolbox?, using 50 ms
analysis frames. With both features, changes in orchestration (i.e., which
instruments are playing at each moment) are reflected in the beliefs from
the model. These two examples demonstrate how the model can be used
to track timbre in the acoustic input.

Energy. Fig. 2g and h apply a log-normal distribution to the RMS
energy measured in frames from two everyday recordings. RMS energy
was computed directly from the acoustic waveform in 50 ms analysis
frames. In Fig. 2g, peaks in surprisal correspond with dog barks and a
whistle. Note that the surprisal of the first dog bark is higher than the
later events, a consequence of the statistics of the preceding context. In
Fig. 2h, the beliefs capture turn-taking in conversational speech between
a male speaker and group laughter.

Onset timing. The final example in Fig. 2i applies the model to a
temporal dimension: the timing of transient onsets extracted from a
recording of a marching band drum line. Transient onsets were extracted
by finding peaks in the mean power across high-frequency channels
from the cochleogram (center frequency>1760 Hz) using 16 ms analysis
frames. The model assumes a Poisson distribution in the input. Note the
change in rhythm in the input sequence is reflected in the beliefs, and
higher surprisal indicates moments when the rate of transients deviates
from the preceding statistics.

These examples illustrate the flexibility of the model to build pre-
dictions from a variety of auditory inputs along various perceptual di-
mensions. Importantly, we do not prescribe a particular set of statistics
in the model. Rather, the flexibility to utilize different statistics offers an
opportunity to compare various statistical representations to see which
best explains experimental results.

4. Discussion

The D-REX model is a functional instantiation of existing theoretical
formulations for predictive processing and object formation in percep-
tion, where sound sources are represented probabilistically and sensory
inputs are incorporated into the brain’s internal representation of the
world (Winkler et al., 2009; Friston and Kiebel, 2009; Friston, 2010;
Bizley et al., 2013; Winkler and Schroger, 2015). The composition of the
D-REX model aligns with previous literature regarding the underlying
computations behind predictive processing: the brain builds statistical
representations estimated from sounds over time (McDermott et al.,

2 http://nsl.isr.umd.edu/downloads.html

2013; Piazza et al., 2013; Dahmen et al., 2010; Brady et al., 2009), and
the brain maintains multiple hypotheses for how much of the past is
relevant to the present moment (Luo and Poeppel, 2012; Pieszek et al.,
2013, Lau et al., 2017). These claims are represented explicitly in the
model by statistical estimates collected over different time-windows,
each of which gives a prediction for future inputs. Prediction errors
are then used to update probabilistic beliefs in each context, weighting
contexts proportionally by their evidence. This competition between
concurrent hypotheses for the relevant context is crucial for robust
interpretation of sensory inputs with dynamic uncertainty.

By no means a complete picture of predictive coding in auditory
perception, the D-REX model is a computational framework offering
several footholds from which facets of predictive processing can be
explored. By connecting the model’s outputs to experimental responses,
the model can act as a “simulated” listener undergoing the same
experimental tasks as human listeners. The internal components of the
model can then be tinkered with and tuned to explore which configu-
rations of the model give rise to responses that match listener responses.
This approach can be used to investigate many open questions in pre-
dictive processing in audition.

The model can be used to investigate the nature of the internal sta-
tistical representation employed by the brain. What statistics are
collected by the brain? How do these statistics differ between perceptual
dimensions? To what extent are dependencies over time and across di-
mensions represented? How do statistical representations vary with
listeners’ attentional state or long-term experience? Existing models in
the literature offer a framework to explore these questions, though often
constraining the mathematical formulation to a particular set of statis-
tics or type of experiment (Furl et al., 2011; Garrido et al., 2013;
McDermott et al., 2013; Barascud et al., 2016). The D-REX model was
formulated to address these questions with a broader scope by allowing
a comparison of different statistical representations and generalizing to
many stimuli and perceptual tasks. For example, in one experiment, the
model can be used to determine the statistical representation that best
replicates listener responses; this same model can then be used to predict
listener responses in a separate experiment. The model can also serve in
the design of experiments and stimuli that intentionally tease apart
hypothesized statistical representations (as in Skerritt-Davis and Elhi-
lali, 2018).

Many experiments have demonstrated that our perception of the
present is modulated by what we have heard in the past, from recent
contextual effects (Snyder et al., 2008; Geiser et al., 2012; Luo and
Poeppel, 2012; Herrmann et al., 2015; Mcwalter and Mcdermott, 2019)
to life-long experience (Strait et al., 2010; Ch et al., 2009), and the
D-REX model can be used to investigate these effects at different
time-scales. At short-term scales, the context windows of the model can
be used to ask questions about the granularity of the statistical repre-
sentation of context in memory, for example, to set an upper bound on
the maximum context window used by listeners, or to find the minimum
set of contexts that can replicate listener behavior, and whether this is
consistent across stimuli with different levels of complexity. At longer
time-scales, the priors of the model can be used to represent different
prior expectations of the listener learned from previous exposure, where
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model responses using different priors could be used to investigate how
prior experience affects predictions or how listener responses reflect
learning over the course of an experiment. Again, these questions can be
approached by using the model to give targeted hypotheses for experi-
mental outcomes.

As a surrogate for the computational processes behind predictive
processing in individual listeners, the model can be used to explain
differences in behavioral or neural responses across listeners, variability
which has typically not been incorporated into previous models of
predictive processing despite its influence on statistical learning (Sie-
gelman and Frost, 2015). In addition to examining individual differences
in the processes mentioned above, the perceptual parameters of the
model (memory and observation noise) can provide additional insight
into how known constraints on neural resources manifest in
subject-to-subject variability in listener responses.

An additional strength of the model lies in its ability to combat the
noise that invariably creeps into experimental paradigms incorporating
uncertainty. Behavioral and neural responses to stochastic stimuli are
themselves stochastic, and trial-to-trial variability can cloud results,
especially in neural responses where precise time-locking is often a
prerequisite to any event-related analysis. The model can be used to
reduce jitter by aligning neural responses to events derived from model
response to the same stimulus. Neural responses can then be correlated
with specific aspects of predictive processing (e.g., prediction error,
precision, evidence accumulation) (Sedley et al., 2016; Lecaignard et al.,
2015; Hsu et al., 2015). The model provides an avenue to take findings
established in more tightly-controlled experiments, and see if they hold
in more complex settings where well-defined events for time-locking are
less apparent.

Finally, the model is modular and easily extendable, both concep-
tually and operationally in the code. In Section 3 we demonstrated the
capacity of the model to capture many possible statistical representa-
tions along different sensory dimensions in real-world audio examples,
but the input dimensions and probability distributions used here are not
complete. New probability distributions can be incorporated into the D-
REX model, and the model can be applied along any dimension in the
acoustic input. One current limitation in the model is that it operates on
acoustic inputs that are sampled discretely in time. While this suffices
for many experimental and real-world sounds that unfold sequentially in
time (i.e., music, speech, alerting sounds), future work could extend the
same modeling framework to operate in continuous time. Moreover, the
modeling framework can be expanded in other ways to broaden its
application. As currently implemented, the model operates at a single
level of the sensory input and along a single time-scale, but it could be
layered to build hierarchical predictions at different levels of abstraction
or multiple time-scales (Heilbron and Chait, 2018). In addition, while
the model was designed for audition, the same sequential prediction
computations could be applied in and across other sensory modalities.
Future work can also address how predictive algorithms identified by
the model could be implemented in neural circuits (Wilson et al., 2013).

Beyond retrospective interpretation of existing results, the D-REX
model can be used to guide future experiments probing the temporal
processing of complex sounds. As a flexible and practical computational
model for predictive coding, it can be used as a tool to pursue a deeper
understanding of the computational mechanisms behind predictive
coding of rich, dynamic sounds in a variety of listening scenarios under a
single unifying framework.
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