




local neighboring frames, a graph-based pose optimization
module and a pose-depth bundle adjusted optimization. To
enable an efficient and practicable optimization, we propose
to update only selected keypoints in the depth map in the
optimization process, while inferring the entire dense depth.
The use of all image pixels for optimization would result
in the difficulty of convergence of model training due to the
significant parameters to optimize (e.g., optimize hundreds of
thousands images with over one hundred thousand pixels for
each image). To the best of our knowledge, our proposed
network is one of the first approaches to enable online
optimization in the unsupervised deep VO structure. An
overview of our training pipeline is depicted in Fig. 2.

A. Unsupervised Monocular VO Pipeline
Given monocular video sequences, we are able to use

geometric and photometric consistencies between the target
frame to reference views to train depth estimation and motion
estimation. As illustrated in Fig. 2, the self-supervision
simultaneously constrains the depth inference network and
pose estimation network. Pose estimation network is trained
by multiple adjacent local frames composed of a target frame
It and the referenced neighboring frames It+1. A group
of relative poses are able to be inferred. Simultaneously,
corresponding depth map for each input frame is generated
by the depth estimation network. The initial estimated depth
maps and pose vectors will then be optimized by the pose
graph and bundle adjustment, which will be detailed in Sec.
III-B and Sec. III-C.

1) Multi-view Re-projection Loss: Given each pair of two
images It and It+1, the estimated depth map Dt, and the
estimated camera motion Tt−>t+1, we are able to compute
the per-pixel correspondence by projecting the pixel of the
target image to the reference images. Supposing a known
camera intrinsic K, the correspondence of the pixel pt in
It+1 can be represented by the following equation:

pt+1 = KT̃t−>t+1D̃(pt)K
−1pt (1)

To warp the target frame It to reference frame It+1 and
constrain a smooth reconstruction Ĩt+1, we compute the per-
pixel minimum photometric loss across multiple reference
frames rather than the averaging photometric error [11] as:

L =

N∑
i=1

mint′∈{t−i,t+i} ρ(It, It′−>t) (2)

where N is the number of frames. ρ is a weighted com-
bination of L1 loss term and the structural similarity index
measure (SSIM) loss [14] to achieve a robust image recon-
struction performance, denoted as:

ρ(I1, I2) =
α

2
(1−SSIM(I1, I2))+(1−α)||I1− I2||1 (3)

2) Moving Object Masking: As the loss constraint Eq.
2 should meet the assumption of static scenes and moving
cameras, objects with large motion and occlusions will create
non-rigid transformation which will degrade the learning
effect of camera pose and depth estimation. In this case,

we propose to incorporate the depth inconsistency mask
[4] to exclude the moving objects and regions. The depth
inconsistency map for each pixel value p is computed as:

Ddiff (p) =
|Dt

t+1(p)−D
′

t+1(p)|
Dt

t+1(p) +D
′
t+1(p)

(4)

where Dt
t+1 is the synthesized depth at t+1 frame generated

from It based on the estimated camera motion Tt−>t+1, and
D

′

t+1 is the bilinear interpolation of the estimated depth at
t + 1 frame. So, the moving mask can be computed based
on the depth inconsistency map Ddiff as:

Mmoving = 1−Ddiff (p) (5)

where Mmoving ranges from 0 to 1, which intends to
give small weights to the regions containing moving and
occluded objects. Considering that there could exist non-
moving frames in specific scenes (stopping), which may
affect the training of camera motion estimation, we apply
auto-masking to compute the photometric loss between the
neighboring moving frames only, filtering out those points
whose relative motion is the same:

Mauto =

{
1, if ||It − I

′

t ||1 < ||It − It+1||1
0, else

(6)

where Mauto is a binary mask. I
′

t is a warped frame from
It+1 based on the estimated depth map D̃ and relative camera
motion T̃ .

B. Pose Graph Optimization
Normally, pose estimation from the deep neural net-

work suffers from a relatively large drift. We propose
to incorporate pose graph to optimize each camera pose
node c= [c̃1, c̃2, ..., c̃n] computed from the estimated relative
rigid camera transformation T= [T̃1, T̃2, ..., T̃n]. Let zij =
γ(c̃i, c̃j) + nij to be the edge of each camera pose vertex
pair c̃i and c̃j , where the noise is formulated as a zero-mean
white Gaussian as nij ∼ N(0,Wij). The graph optimization
is then described as a problem of maximizing the posterior
probability of all points on the camera’s trajectory, given the
estimated camera pose c and the observed edge constraints
γ between the pose nodes:

Prob(Z|c) =
∏
ij

prob(zij |(c̃i, c̃j)) (7)

By following the Gaussian distribution assumption and
taking the natural logarithm on both sides of Eq. 7, the
maximum likelihood estimation can be easily converted
to the minimization problem by the following least-square
function:

x̃ = argminx

∑
ij

eTijΣijeij =

argminx

∑
ij

||zij − γ(c̃i, c̃j)||TΣ−1
ij ||zij − γ(c̃i, c̃j)|| =

argminx

∑
ij

||zij − γ(c̃i, c̃j)||TW−1||zij − γ(c̃i, c̃j)||

(8)
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where Eq. 8 is a non-linear least-square optimization and eij
is the error between zij and the estimated value γ(c̃i, c̃j).

To solve the optimization equation, iterative Gauss-
Newton is used for solving Eq. 8. Specially, an optimization
for the estimated camera pose c̃(n) at the current time n is
calculated by the approximation of the second-order Taylor-
series as:

c̃ ≃
∑
ij

||zij − γ(c̃
(n)
i , c̃

(n)
j )− Γn

ijδc||TW−1

||zij − γ(c̃
(n)
i , c̃

(n)
j )− Γn

ijδc|| = ||J (n)δc− k(n)||2
(9)

where k is the corresponding residual vector as equation
below, and Γn

ij is the partial derivative of the edge constraint
γ to the estimated camera pose c̃, and J is the Jacobian
matrix which is composed of all the computed Jacobians Γ
as:

J =


W

−1/2
12 Γ12

...

W
−1/2
i−1,j−1Γi−1,j−1

W
−1/2
i,j Γi,j



k=


W

−1/2
12 (z12 − γ(c̃1, c̃2))

...

W
−1/2
i−1,j−1(zi−1,j−1 − γ(c̃i−1, c̃j−1))

W
−1/2
i,j (zi,j − γ(c̃i, c̃j))

 (10)

Eq. 9 can be further simplified by applying QR factoriza-
tion on J . Hence, Eq. 9 can be rewritten as:

min||Jδc− k||2 = ||[Q1 Q2]

[
R
0

]
δc− k||2 =

||Q1

[
R
0

]
δc− k||2 = ||

[
R
0

]
δc−QT

1 k||2 =

||
[
R
0

]
δc−QT

1

[
d
e

]
||2 = min||Rδc− d||2

(11)

Hence, δc can be computed as:

δc = (RTR)−1RT d (12)

Based on the pose graph optimization, the optimized cam-
era pose c̃update can be corrected from the initial estimation
from the pose estimation network c̃ and a small correction
δc as: c̃update = c̃+ δc. Hence, the relative pose estimation
can be correspondingly refined to T̃update = T̃ + δT .

C. Bundle Adjustment Integration

Considering that the pose graph optimization ignores the
3D point information and the self-supervision from the
unsupervised VO network is able to constrain both initial
scene depth D̃ and the refined relative camera pose T̃update,
we propose to further refine them for more precise poses
and depths by solving them in geometric bundle adjustment
(BA) optimization. This process is formulated as minimizing

the total energy E of the re-projection errors e on the image
pixel p across all the frames as:

E = argmin
∑
i=1

∑
j=1

||eij(p, T̃update, D̃)|| =

argmin
∑
i=1

∑
j=1

||I(pi,j)− Ii(π(T̃update,i,M(D̃j)))||
(13)

where the global energy E that needs to be minimized is
composed by a series of errors between the pixel intensity of
the projected 3D points and the corresponding image pixel.
Considering that it is not practicable to optimize the entire
depth estimated from the depth estimation network, we only
selected 2000 keypoints (ORB feature is used in our setting)
from the input image.

To minimize the global energy E over all depths at the
selected keypoints and the corresponding camera motion, we
define the parameter vector P and the measurement vector
X as:

P = (T̃T
update,1, ..., T̃

T
update,i |

M(D̃1),M(D̃2), ...,M(D̃j))
T ,

X = (pT11, p
T
12, ..., p

T
21, ...p

T
ij)

T

(14)

The estimated measurement vector X̃ can be expressed
as:

X̂ = (p̂T11, p̂
T
12, ..., p̂

T
1m, p̂T21, ..., p̂

T
nm) = ν(P +∆) =

ν(T̃update + δT̃update,M(D̃) + δM(D̃)) ≈
ν(P ) +AδT̃update +BδM(D̃)

(15)

Therefore, the bundle adjustment optimization is equal to
minimize the squared Σ−1

X norm as:

ϵT ϵ =
∑
i

∑
j

||ϵij ||2 = ||X − X̂||2 → ϵTΣ−1
X ϵ

= ||X − X̂||2ΣX

(16)

Σ represents convariance matrix. The above normal equa-
tion can be solved with Levenberg–Marquardt (LM) non-
linear least-square algorithm:

(JTΣ−1
X J + µI)δ = JTΣ−1

X ϵ (17)

The updating vector for LM algorithm becomes:

δ = (δT̃update
, δT

M(D̃)
) = (δT

T̃1
, δT

T̃2
, ...,

δT
T̃i
, δT

M(D̃1)
, δT

M(D̃2)
, ..., δT

M(D̃j)
)

(18)

And the Jacobian matrix J is:

∂X̂

∂P
= [

∂X̂

∂T̃update

| ∂X̂

∂M(D̃)
] (19)

Therefore, the covariance matrix becomes:

ΣX = diag(ΣX11 ,ΣX12 ...ΣXij ) (20)
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