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New insights into band inversion and topological
phase of TiNI monolayer†

Shahram Yalameha, a Zahra Nourbakhsh,a Mohammad Saeed Bahramyb and
Daryoosh Vashaee *acd

Two-dimensional (2D) topological insulators (TIs) hold great promise for future quantum information

technologies. Among the 2D-TIs, the TiNI monolayer has recently been proposed as an ideal material

for achieving the quantum spin Hall effect at room temperature. Theoretical predictions suggest a

sizable bandgap due to the spin–orbit coupling (SOC) of the electrons at and near the Fermi level with a

nontrivial Z2 topology of the electronic states, which is robust under external strain. However, our

detailed first-principles calculations reveal that, in contrast to these predictions, the TiNI monolayer has

a trivial bandgap in the equilibrium state with no band inversion, despite SOC opening the bandgap.

Moreover, we show that electron correlation effects significantly impact the topological and structural

stabilities of the system under external strains. We employed a range of density functional theory (DFT)

approaches, including HSE06, PBE0, TB-mBJ, and GGA+U, to comprehensively investigate the nontrivial

topological properties of this monolayer. Our results demonstrate that using general-purpose functionals

such as PBE-GGA for studying TIs can lead to false predictions, potentially misleading experimentalists in

their efforts to discover new TIs.

I. Introduction

Two-dimensional (2D) quantum materials such as 2D topolo-
gical insulators (TIs) and 2D topological Dirac semimetals have
become a new paradigm in condensed matter physics because
of their exotic properties and technological applications in
spintronics and quantum computing.1–6 The quantum spin
Hall (QSH) insulators, known as 2D TIs, host an insulating
bulk gap and unique edge states that are protected by time-
reversal symmetry (TRS).3,7–9 In addition to 2D TIs, another
class of 2D quantum materials is 2D topological Dirac semi-
metals. Graphene is the first and most obvious example of 2D
Dirac materials.10 The Dirac points of graphene are located at K
and K0 high symmetry points. These Dirac points are protected
by inversion, and time-reversal symmetry, where the spin
rotation symmetry is conserved. Generally, a 2D Dirac semi-
metal can be located at high symmetry points, along high

symmetry lines, or generic points in the 2D Brillouin zone
(BZ). For example, NP,11 Ta2Se3,

12 Be3C2,
13 and B2S

14 2D
materials have such Dirac points.

The key identifiers of 2D/3D TIs are band inversion and
topological invariants.2 Theoretically predicted and experimen-
tally observed TIs usually appear in those materials containing
elements with strong SOC.15,16 Although band inversion cannot
rigorously define any topological phase, it is very suggestive in
identifying compounds for new topological states and under-
standing the topological nature of various topological
materials.17 The SOC may induce a band inversion, changing
the bandgap in TIs.1 It should be noted that band inversion
occurs at points in the BZ called time-reversal invariant
momentum (TRIM) points.3,18 The TRIMs are the points in
reciprocal space connected via a reciprocal lattice vector and a
time-reversal (TR) operation. In bulk materials, these TRIMs Gi

are defined by�Gi = Gi + G, where G is a bulk reciprocal transfer
lattice vector. The G point in the bulk BZ is thus always a TRIM.
There are seven (three) more possibilities in 3D (2D) that can be
found using the reciprocal lattice vector G = mb1 + nb2 + ob3
(m, n, and o are 0 or 1). The TRIMs are the points on the BZ
boundary reached by moving halfway along these vectors. The
specific TRIMs depend on the crystal structure. The high
symmetry of the TRIMs is reflected in the symmetry of the electronic
band structure. Suppose that we have an electronic state with energy
and spin em(k). Kramer’s degeneracy guarantees the existence of a
degenerate state ek(�k). If k is a TRIM, �k can also be reached by
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adding a reciprocal lattice vector to k, implying that there must not
only be a degenerate state ek(�k) but also one em(k), that is, the state
is double-degenerate at a TRIM.19 Interestingly, for materials with
inversion symmetry, this does not have any consequences because
the inversion symmetry alone guarantees the bands spin degeneracy,
as it implies the existence of a state em(�k) for every state em(k) in the
BZ.19 Another key identifier is nontrivial edge/surface states pro-
tected by TRS due to the double degeneracy guaranteed by Kramers’
theorem.2,18 The Berry curvature is closely related to many physical
phenomena, leading to nontrivial edge/surface states showing uni-
que electronic transport properties.2,20 The unique aspect of topolo-
gical insulators is the robust, spin-polarized conducting surface state
encapsulating these materials. The topological surface state can
serve as a platform to study fundamental quasiparticle phenomena
such as Majorana fermions21 and magnetic monopole-like
behavior,22 as well as to explore future electronics such as quantum
computing and spintronics.23,24

Recently, a new class of layered transition metal nitride halides
(MTiX,M = Zr, Hf; X = Cl, Br, I) and theirmonolayer phase have been
experimentally and theoretically investigated.25–28 Moreover, Liang
et al.26 and Wang et al.29 have proposed titanium nitride halides
monolayers (TiNX; X = F, Cl, Br, I), which are dynamically and
thermally stable, and their optical, transport, and thermoelectric
properties have been extensively investigated. Most recently, Wang
et al.28 found that the TiNI monolayer possesses nontrivial

topological properties. This monolayer is predicted to undergo a
band inversion at the G point within the Perdew–Burke–Ernzerhof
generalized gradient approximation (PBE-GGA). The origin of this
band inversion has, however, not been determined. The resulting
bandgap is suggested to be 50.7 meV along the G–X direction in the
Brillouin zone. Furthermore, including electron correlation effects
within the HSE06 formalism seems to further increase the nontrivial
bandgap to 273.1 meV, suggesting that the QSH effect can be easily
achieved at room temperature due to this small energy bandgap.

One of the challenges before entering the stage of experimental
investigations, especially in two-dimensional materials, is the
correct detection and evaluation of the bandgap and the stability
of the compounds, which can be done using the first-principles
calculations. We revisit the TiNI monolayer in the present work
and study its topological properties. First, using the PBE-GGA
approach, we study the topological properties, including band
inversion, topological index Z2 by the Wilson-loop method,30 and
topological edge states in the presence and absence of SOC. Next,
we show that the band inversion in this monolayer is driven by the
chemical bonding effect and not due to the spin–orbit coupling, a
feature not realized before.28 The findings from our investigation
demonstrate that the TiNI monolayer does not possess a non-
trivial bandgap in its equilibrium state, contrary to a prior report.
The HSE06 and PBE0 hybrid functionals, as well as the TB-mBJ
approach, were employed to reach this conclusion. Moreover, we

Fig. 1 (a) Top and side views of the crystal structure of the TiNI monolayer; the unit cell is indicated with a solid black square. (b) 2D and 1D BZ with
specific symmetry points. The red dots represent Dirac points located at P = (kx = � 0.045, ky = 0.0) Å�1 in the 2D BZ. (c) Phonon dispersion and PDOS of
the TiNI monolayer at its equilibrium lattice parmeters. All the branches have positive frequencies without any imaginary phonon modes in the entire BZ,
evidencing the dynamic stability of this monolayer.
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analyzed the impact of uniaxial strain on the electronic properties
of the TiNI monolayer and showed that it is insufficiently dyna-
mically stable to support nontrivial topological states.

This paper is arranged as follows. In Section II, we briefly
introduce the simulation methods. In Section III. A, we present
the structural properties of the TiNI monolayer in comparison to
other works. Section III. B is devoted to the numerical results,
focusing on the electronic and topological properties of this

monolayer. Finally, the conclusions of this work are highlighted in
Section IV.

II. Computational methods

We performed electronic band structure calculations of the TiNI
monolayer using the density functional theory (DFT) implemented
in the WIEN2K package.31 The calculations were carried out using

Table 1 Lattice constants and distance between adjacent atoms of TiNI monolayer compared

a (Å) b (Å) Ti–Ti (Å) Ti–I (Å) Ti–N (Å) N–N (Å) N–I (Å) I–I (Å) I–Ti (Å)

This work 3.537 3.972 2.996 2.836 2.019 2.732 3.227 3.537 2.836
Other work 3.529a 4.004a 2.990a 2.840a 2.030a 2.760a 3.240a 3.530a 2.840a

3.53b 3.99b

3.51c 3.98c

a Ref. 31. b Ref. 26. c Ref. 44.

Fig. 2 (a) The 3D electronic band structures of TiNI monolayer using PBE-GGA scheme in the presence and absence of SOC. Without including SOC,
TiNI monolayer is gapless. The inclusion of SOC opens up a bandgap of 27.31 meV, which is due to the presence of the heavy element iodine. (b) The
calculated band structures without SOC at high symmetry point. The inset shows the band structure around the G point with (red color) and without (blue
color) SOC. (c) Electron partial density of states (DOS) projected onto different atoms and orbitals of the TiNI monolayer. (d) The crystal orbital
Hamiltonian populations (COHP) diagram. The negative and positive values of COHP indicate anti-bonding and bonding states, respectively.
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the Perdew–Burke–Ernzerhof (PBE) functional,32 as well as the
Heyd–Scuseria–Ernzerhof (HSE06)33 and PBE034 hybrid functionals.
To account for the strong correlation of the Ti element with [Ar]
3d24s2 electron configuration and improve band splitting, we also
applied the GGA+U method. In the GGA+U approach, we set the
Hubbard U term for Ti to 1.2 eV, which resulted in calculated lattice
parameters (a = 3.986 Å, b = 3.542 Å, c = 9.065 Å) of the TiNI bulk
structure that are in good agreement with experimental values
(a = 3.941 Å, b = 3.515 Å, c = 8.955 Å).35 This value of the Hubbard
U parameter is consistent with the value (1.0 eV) calculated by Wang
et al.28 We also employed the Tran–Blaha modified Becke–Johnson
exchange potential approximation (TB-mBJ)36 calculations to im-
prove the band gaps.

An 18 � 18 � 4 k-point mesh is used in these calculations. A
vacuum spacing of 15 Å between the neighboring slabs was
applied to avoid unphysical interactions between periodic
images. The edge states spectrums were calculated using the
iterative Green’s function method37 in a tight-binding Hamil-
tonian based on the maximally localized Wannier functions
projected from the bulk Bloch wave functions.38,39 In this
method for the evolution of the Wannier Center of Charges
(WCCs) for a given energy band n, we use the relationship

between the Wannier functions (WFs) and lattice vector R,
which can be written as:

R; nj i ¼ 1

2p

ðp
�p
dke�ik:ðR�xÞ unkj i: (1)

So, the WCC (i.e., %xn) is defined as the mean value of h0n|%x|0ni,
where %x is the position operator, and h0n| is the state corres-
ponding to a Wannier function in the cell with R = 0. Therefore,
we can write,38–40

�xn ¼
i

2p

ðp
�p
dk unk @kj junkh i (2)

Assuming that
P
i

�xIi þ �xIIi ¼ 1=2p
Ð
BZA

I þ AII for Kramers
pairs I and II, the summation is over the occupied states and
A (= AI + AII) is the Berry connection. So, we have the formula for
the Z2 topological index:

40

Z2 ¼
X
i

�xIi ðT=2Þ � �xIIi ðT=2Þ
� �

�
X
i

�xIi ð0Þ � �xIIi ð0Þ
� �

: (3)

where T can be substituted for the k points of the first BZ. The
Z2 topological index can be determined by the even or odd

Fig. 3 The I-py and Ti-dxy orbital-resolved band dispersions of TiNI monolayer near the Fermi energy without (a) and with (b) SOC. The conduction band
(CB) and valence band (VB) around the G point are mainly formed by the I-py and Ti-dxy orbitals, respectively, indicating the band inversion around the G
point. The parities of the eigenstates at the G point are shown with ‘‘+’’ and ‘‘�’’. (c) The evolution of WCCs in the presence of SOC. Z2 index can be
obtained by counting the number of times an arbitrary horizontal reference line (blue dash-line) crossed the evolution of the WCCs. Z2 = 0 for an even
and Z2 = 1 for an odd number of crossings. (d) Calculated PBE-GGA (green color) and GGA+U (blue color) band structure of TiNI monolayer with SOC in
the equilibrium state. The Hubbard parameter (U) for Ti element has a value of 1.2 eV.
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number of crossings of any arbitrary horizontal reference
line.30,41

The phonon dispersion was calculated using the supercell
approach with the finite displacement method. A 3 � 3 � 1
supercell was built to calculate phonon dispersion using the
PHONOPY package.42 To investigate the interatomic bonding in
the TiNI monolayer, we calculated the crystal orbital Hamilto-
nian populations (COHPs) using the LOBSTER package.43

In this study, we utilized uniaxial strains to investigate the
band structure and topological band order of the TiNI mono-
layer. To achieve this, in-plane uniaxial strains were applied
along the x- and y-axis by uniformly altering the lattice with
e = (l � l0)/l0, where l (l0) represents the strained (equilibrium)
lattice constants (l = a, b). The two Bravais primitive lattice
vectors were given by eqn (4) and the reciprocal lattice basis
vectors were calculated accordingly, as shown in eqn (5).

R1 = (a, 0, 0), R2 = (0, b, 0), (4)

K1 ¼
2p
a
ð1; 0; 0Þ; K2 ¼

2p
b
ð0; 1; 0Þ; (5)

The TiNI Brillouin zone (BZ) is rectangular and contains four
high-symmetry points, G = (0, 0, 0), X = (p/2a, 0, 0), M = (p/2a, p/
2b, 0), and Y = (0, p/2b, 0), as shown in Fig. 1(b). Applying strain
causes a change in the bond lengths of atoms. In the long
wavelength region, the atom located at position r1 is displaced
to a new position, r2 = r1+ r1�ru, after the strain is applied. For a
homogeneous strain, ru can be expressed as ru = e, where e is
the strain tensor. In the case of x-directed (y-directed) strain,
the non-vanishing element of the strain tensor is exx (eyy),
denoted by ex or ey in the current literature for simplicity.

Therefore, the two Bravais primitive lattice vectors can be
expressed as shown in eqn (6), and the reciprocal lattice
basis vectors can be calculated immediately, as given in eqn (7).

R0
1 ¼ ðð1þ exxÞa; 0; 0Þ; R0

2 ¼ ð0; b; 0Þ: x-direction;

R0
1 ¼ ða; 0; 0Þ; R0

2 ¼ ð0; ð1þ eyyÞb; 0Þ: y-direction;
(6)

K 0
1 ¼

2p
að1þ exxÞ

ð1; 0; 0Þ; K 0
2 ¼

2p
b
ð0; 1; 0Þ: x-direction;

K 0
1 ¼

2p
a
ð1; 0; 0Þ; K 0

2 ¼
2p

bð1þ eyyÞ
ð0; 1; 0Þ: y-direction;

(7)

As a result, the perfect rectangular BZ is deformed, and its
coordinates are altered according to eqn (8):

G ¼ 0;0;0ð Þ; X¼ p
2a 1þexxð Þ;0;0
� �

; M¼ p
2a 1þexxð Þ;

p
2b

;0

� �
;

Y¼ 0;
p
2b

;0
� �

:x-direction

G¼ 0;0;0ð Þ; X¼ p
2a

;0;0
� �

; M¼ p
2a

;
p

2b 1þeyy
� 	;0

 !
;

Y¼ 0;
p

2b 1þeyy
� 	;0

 !
:y-direction

(8)

Fig. 4 (a) The nanoribbon width is set to 121.1 Å to avoid the interaction between the edges. The local density of states without (b) and with (c) SOC
inclusion. In the absence of the SOC, there are two topological edge states (two branches of the edge states overlap) connecting two 2D Dirac
semimetals along the high symmetry line � %X– �G– %X. With the inclusion of the SOC, the two branches of the topological edge states split due to the energy
gap opening, connecting the valence and conduction bands.
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III. Results and discussions
A. Geometrical structures and stability in the equilibrium
state

TiNI monolayer crystallizes in an orthorhombic structure
with the space group Pmmn, D13

2h, (No. 59), as shown in
Fig. 1(a and b). Our calculated lattice constants and atomic
positions agree with those reported in the literature (see
Table 1).28

To confirm the dynamical stability of the TiNI monolayer
at its equilibrium lattice parameters, we calculated its

phonon spectrum, which is shown in Fig. 1(c). The figure
demonstrates that all branches have positive frequencies,

and there are no imaginary phonon modes throughout the

Brillouin zone, indicating the dynamic stability of the TiNI
monolayer. Additionally, we plotted the phonon partial den-

sity of states (PDOS) in the same figure. The lower frequency

DOS is mainly contributed by Ti, while the higher frequency
DOS is primarily due to N and I. It is important to note that

the mechanical and thermal stability of this monolayer at

equilibrium has also been examined by Lei et al.44

Fig. 5 The variation of the bandgap at the G point of the TiNI monolayer under uniaxial strain (�6 r ex/y r 6%) along the x-axis (a) and y-axis (b) in the
presence of SOC within the HSE06 approach. (c) Band structures of the TiNI monolayer under the external uniaxial compression strains along the x-axis
without and with SOC. To correct the electronic structure states, we employed the HSE06 approach. When the SOC effect is not considered, the energy
bandgap gradually decreases with decreasing lattice constant (a0), and when it reaches �6%, the bandgap closes. In this case, like the PBE-GGA
approach, the band structure shows a semimetallic character with the Dirac semimetal points slightly away from the G point along the�X–G–X direction.
Considering the SOC simultaneously, a nontrivial bandgap opens. The I-py and Ti-dxy orbital-resolved band dispersions within the HSE06 approach of
TiNI monolayer near EF with SOC for 0% and �6% are calculated.
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B. Electronic and topological properties

At first, we investigate the topological properties and the band
inversion of the TiNi monolayer in an equilibrium state within
the PBE-GGA approach and compare the results with the
previous study28 (band inversion concept and the factors affect-
ing it are reviewed in the ESI†). We then revisit these studies
within the HSE06 approach in an equilibrium state and under
external strains. Also, the dynamical stability of this monolayer
is determined under such strains. It should be noted that the
study conducted within the PBE-GGA approach is only for an
examination of the accuracy of the method and to show why the
previous results28 contradict this work; otherwise, as we will
show using the more accurate method based on HSE06, this
monolayer cannot be a candidate for the QSH effect at room
temperature.

The 3D electronic band structures of TiNI were calculated
employing the PBE-GGA functional in the presence and
absence of SOC, as shown in Fig. 2(a and b). Without including
SOC, the TiNI monolayer is gapless, showing a semimetallic
character with the Dirac-like states slightly away from the G
point along the G–X direction (this direction is also shown
in Fig. 2(b)). These Dirac-like gapless points are located at
P = (kx = � 0.045, ky = 0.0) Å�1 in the 2D BZ (Fig. 1(b)).
Considering the SOC, TiNI appears to be an insulator with a
small bandgap of 27.31 meV. Nevertheless, this bandgap is
significantly smaller than the previous report (50.1 eV).28 This
difference may be due to minor differences in the lattice
constants taken in these two works (see Table 1) or the
computational code used to perform the calculations as the
VASP package (with pseudopotential method) was used in
ref. 28, whereas we used WIEN2K (with the full potential
method). The calculated partial DOS for N-p, I-p, and Ti-d
orbitals are shown in Fig. 2(c) (the other orbitals are neglected
due to their small contributions around the Fermi energy). The
results show that N-p and I-p orbitals are occupied below the
Fermi energy (EF), forming 3- and 1- anionic valent states,
respectively, while the bands above EF are mainly dominated
by Ti’s 3d orbitals, making it behave as a 4+ cation. Moreover,
the (N-p, I-p) and (N-p, Ti-d) states have hybridization around
EF. The calculated COHP of I–N, Ti–N, Ti–Ti, and Ti–I chemical
bonds are shown in Fig. 2(d). The negative and positive values
of COHP indicate anti-bonding and bonding states, respec-
tively. The anti-bonding states of I–N and Ti–N bands are below
EF (range from 0 to �3.5 eV). The bonding states just above the
EF are derived from Ti–Ti and I–N.

First, to identify the topological nature of this monolayer, we
investigate the band inversion. As mentioned earlier, other
mechanisms may also lead to band inversion besides SOC.
The orbital-resolved band dispersions near the Fermi level
using PBE-GGA approach without and with SOC are shown in
Fig. 3. According to this figure, the conduction band (CB) and
valence band (VB) around the G-point are mainly contributed
by the I-py and Ti-dxy orbitals, respectively, indicating the band
inversion around the G point is not due to the SOC (see
Fig. 3(a)). The band inversion of this monolayer is due to the

hybridization of N-p orbitals with I-p and Ti-d orbitals, as well
as the presence of N–I and Ti–Ti bonding states above EF and
the anti-bonding states of Ti–N below EF. The band inversion
can be attributed to the presence of these bonding and anti-
bonding states. In addition, this is a typical band inversion
between states of opposite parity, insensitive to the presence or
absence of SOC, as shown in Fig. 3(a) and (b). Therefore,
although the SOC opens the bandgap, it is not playing a
defining role in the band inversion. Although the mechanism
of band inversion has not been investigated in ref. 28 the py–dxy
band inversion reported there agrees with our results.

The effect of the Hubbard parameter (U) value of 1.2 eV in
the GGA+U method was also investigated to understand the
topological band order of this monolayer, considering the
presence of the Ti element. Fig. 3(d) presents the band struc-
ture at the equilibrium state of this monolayer with SOC,
obtained using both the GGA and GGA+U approaches, allowing
for a direct comparison between the two. Interestingly, in the
GGA+U method, band inversion also occurs, with the only
difference being a reduction in the bandgap to 15 meV when
compared to the GGA method. This result is consistent with
previous GGA+U calculations (U = 1 eV) reported by Wang
et al.28

To confirm the topological features of TiNI, other influential
characteristics, namely Wannier Charge Centers (WCCs), are
calculated in the absence and presence of SOC. Fig. 3(c) shows
the evolution of the WCCs using the Wilson-loop method along
the kx direction in the half of the first BZ. The WCC is crossed at
an odd number of times with any straight horizontal line (blue
line), revealing that TiNI monolayer is topologically nontrivial
(i.e., QSH insulator) with Z2 = 1. This calculated Z2 topological
index agrees with the results of ref. 28 (Fu and Kane method45)
and ref. 44 (Wilson-loop method).

The emergence of the topological edge states at the bound-
aries is one of the most characteristic features of nontrivial
topological 2D materials. These edge states can be deduced
from the bulk-boundary correspondence,46 which indicates
that for nontrivial topological invariants, there are gapless
surface modes despite the insulating bulk behavior away from
the surface. We have calculated the 1D edge states to demon-
strate their existence in the TiNI monolayer. Fig. 4 shows the
local density of states (LDOS) of the edge states.

In these calculations, the ribbon width is set to 121.1 Å to
avoid the interaction between the two edges, as shown in
Fig. 4(a). When the SOC is ignored, there are two edge states
(two branches of the edge states overlap) connecting two 2D
Dirac semimetals along the high symmetry line (see 1D BZ
projected from 2D BZ in Fig. 2(b)) � %X– �G (or �G– %X), as indicated
in Fig. 4(b). In the presence of the SOC hybridization, a narrow
bandgap opens, and the edge states split into two branches
connecting CB to VB, as shown in Fig. 4(c). The calculated
LDOS of the edge states is approximately consistent with the
calculated electronic structure of the TiNI nanoribbon in the
presence of SOC reported in ref. 28.

In order to accurately determine the electronic band split-
ting and investigate the effect of external strain on the band
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structure and its topological properties, we employed the
HSE06 and PBE0 hybrid functionals, as well as the TB-mBJ
approach. We have employed an in-plane uniaxial strain along
the x- and y-axis, maintaining the crystal symmetry by uni-
formly changing the lattice as e = (l � l0)/l0, where l (l0) is
strained (equilibrium) lattice constants (l = a, b). Fig. 5(a) and
(b) shows the bandgap variation at the G point of the TiNI
monolayer under uniaxial strain (�6 r ex/y r 6%) along the x-
axis and y-axis in the presence of SOC within the HSE06
approach. In the equilibrium state (i.e., 0% strain), a trivial
bandgap B0.36 eV (B0.48 eV) opens in the presence (absence)
of SOC. These results are in good agreement with those
reported by Liang et al. (0.44 eV in the absence of SOC)26 but
contradict the stated 273.1 meV nontrivial bandgap in ref. 28 As
the uniaxial compression strain increases along the x-axis, the
trivial bandgap decreases until a critical stress value ex E �4%
is reached. By passing this critical value, the nontrivial bandgap
opens, and the topological phase transition occurs (the band
inversion occurs), as shown in Fig. 5(a) and (c). In this case
(ex 4 �4%), the topological properties of this monolayer within
the HSE06 approach are similar to corresponding results within
the PBE-GGA approach.

In the case of uniaxial compression strains along the y-axis,
the bandgap value decreases gradually and linearly relative to
the strain, and the topological phase transition does not occur,
as demonstrated in Fig. 5(b) (detailed band structure informa-
tion is available in the ESI†).

We also investigated the bandgap variation at the G point of
this monolayer under uniaxial strains along the x-axis and
y-axis in the presence and absence of SOC within the PBE0
approach (see Fig. S5 and S6, ESI†). The calculated bandgap in
the equilibrium state for the TiNI monolayer using the PBE0
functional is 0.95 eV (with SOC) and 1.08 eV (without SOC). The
different results obtained using PBE0 compared to HSE06 may

stem from the fact that the exchange energy for HSE06 has less
Hartree–Fock fraction than PBE0.34,47 However, band inversion
does not occur in this approach under different uniaxial
strains. Phonon dispersion calculations show that TiNI mono-
layer under uniaxial compression strains along the x-axis
maintains its dynamic stability up to a maximum of �1% to
�3%, and in the strains ex 4 �3%, negative frequency modes
appear in the phonon dispersion (see Fig. S7, ESI†). Therefore,
although this monolayer transitions to a nontrivial topological
phase under strains ex 4 �4% along the x-axis, it cannot find
practical applications due to its instability unless the material
is somehow stabilized, e.g., using doping.

In addition to the hybrid functionals discussed earlier, the
TB-mBJ approach was also employed to investigate the electro-
nic and topological properties of the TiNI monolayer. The
TB-mBJ calculations revealed that, in its equilibrium state,
the TiNI monolayer possesses a trivial bandgap of 281 meV
with SOC. The band structures of the TiNI monolayer under
external uniaxial strains along the x- and y-axis with SOC were
also investigated and are presented in Fig. S9 in the ESI.† As
shown in Fig. S9(a) (ESI†), when the uniaxial compression
strain along the x-axis reaches ex = �4%, the bandgap becomes
zero, marking the topological phase transition point. Beyond
this critical point, band inversion occurs, and a nontrivial
bandgap of approximately 31 meV emerges. When subjected
to tensile strain along the x-axis (or compressive strain along
the y-axis), the TiNI monolayer exhibits an increase (or
decrease) in its bandgap, resulting in a transition from a trivial
bandgap to an indirect bandgap (G - X) (Fig. S9(b) and (c),
ESI†). On the other hand, when subjected to tensile strain
along the y-axis, the bandgap gradually and linearly increases
(Fig. S9(d), ESI†).

Finally, to compare the effect of strain on the bandgap in
HSE06, PBE0 and TB-mBJ approaches, the variations of the

Fig. 6 The variation of the bandgap of the TiNI monolayer under uniaxial strain (�6% to 6%) along the (a) x-axis and (b) y-axis. Three approaches (HSE06,
PBE0, and TB-mBJ) were used to analyze the changes in the bandgap. Colored arrows indicate indirect band gaps (G - X).
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bandgap as a function of strain in the x- and y-axis are specified
in Fig. 6. Fig. 6(a) illustrates that, for the strains ranging from
�6% to 6% along the x-axis, there is an increasing trend in the
bandgap demonstrated by all three approaches. As indicated by
the arrows in this figure, a strain level above 5% leads to a
transformation of the direct bandgap into an indirect one. As
can be seen in Fig. 6(b), the bandgap increases linearly with the
increase of uniaxial tensile strain. This trend is also linear for
uniaxial compression strains and the bandgap decreases with
increasing strain. At uniaxial compressive strains above �5%,
the direct bandgap turns into an indirect bandgap. The results
show that the bandgap calculated by two approaches TB-mBJ
and HSE06 are very close to each other, while PBE0 approach
shows the bandgap with larger values. This is because it has
been found that PBE0 tends to overestimate the band gaps.48 It
has been found that for band gaps smaller than 5.0 eV, the
HSE06 hybrid functional leads to results that are rather close to
the experimental values, however, there is a clear underestima-
tion for large band gaps.49 Moreover, TB-mBJ approach is the
most balanced potential, not showing obvious underestimation
or overestimation for small or large band gaps.31,49 Therefore,
at the moment the TB-mBJ approach represents the best
alternative to the much more expensive hybrid functional
method such as PBE0 and HSE06 approaches.

IV. Conclusions

In conclusion, our first-principles calculations demonstrate
that the electronic structure and topological properties of the
TiNI monolayer are highly dependent on the choice of func-
tional used for the calculation. While the PBE-GGA approach
exhibits band inversion in both the presence and absence of
spin–orbit coupling,28 our more accurate band structure ana-
lyses within the HSE06, PBE0, and TB-mBJ approaches show
that no band inversion occurs in the equilibrium state. On the
other hand, the GGA+Umethod exhibits band inversion as well,
with the only difference being a decrease in the bandgap to
15 meV compared to the PBE-GGA approach. Our findings
further reveal that under compression strain within the
HSE06 and TB-mBJ approaches, the band inversion occurs
similarly to the PBE-GGA approach, but the monolayer becomes
dynamically unstable. These results contradict the findings of a
previous study and demonstrate that the TiNI monolayer
cannot play a role as a quantum spin Hall system in practical
applications.

Furthermore, our findings highlight the potential pitfalls of
relying solely on general-purpose functionals such as PBE-GGA
or GGA+U when studying 2D or 3D topological insulators.
These functionals can result in false predictions and mislead
experimentalists in their effort to grow new TIs. While these
functionals are designed to be relatively simple and compu-
tationally efficient, they do not always accurately capture the
complex electronic behavior of TIs. Overall, our study pro-
vides valuable insights into the electronic properties and
topological behavior of TiNI monolayer, contributing to the

growing body of knowledge on 2D materials and topological
insulators.
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