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ARTICLE INFO ABSTRACT

Handling Editor: Kathleen Aviso Regional water supply systems in arid regions worldwide face growing challenges due to increasing demands

under conditions of water scarcity. For coastal regions, the addition of seawater desalination as an alternative

Ix;,:: :rrfs:ources system water source can hedge against uncertainty stemming from demands placed on the system and hydrological
Desalination inputs to the natural resources. In order to effectively integrate desalination into a water supply system,
Mixed water qualities water managers utilize optimization models that solve for the optimal mix of desalination and natural
Uncertainty resources to meet consumer demands at a sufficient water quality while maintaining sustainable levels in

the natural resources. The complexity of managing both quantity and quality for a water supply system facing
uncertainties is increased by contractual limitations between desalination plant owners and water managers
that dictate the desalination production decisions to occur at the start of the year before the uncertainties
have been revealed. To incorporate the misalignment between decision timelines and the order in which
the uncertainty is revealed, a two-stage optimization approach is utilized where management decisions are
split into implementable decisions representing the desalination production volumes, and recourse decisions
representing supply volumes from the remaining sources and water allocations in the supply network. An
iterative process is then undertaken in which in the first stage the implementable decisions are solved for
potential uncertain scenarios, and then introduced to the second stage as inputs where the recourse decisions
are iteratively solved for new uncertain scenarios. This framework is applied to the Israeli national water supply
system, where the unique challenges of managing mixed salinity sources and asynchronous decision timelines
in the face of uncertainty are addressed. A multicriteria decision analysis method is then applied where
tradeoffs are found between the upfront investment in desalination and the expected system operational cost
and robustness to failure. The inclusion of multicriteria decision analysis to analyze the multiple desalination
production alternatives allows for including stakeholders preferences in model-based decision-making.

Optimal management

1. Introduction of conventional water supply, desalination is increasingly becoming

a cost-competitive alternative (Sood and Smakhtin, 2014). Further-

Water supply systems (WSS) worldwide have to effectively with-
stand uncertainty in population growth and future climate conditions
in order to overcome water stress. For many such systems, desali-
nation has become a robust alternative water source for its ability

more, by 2050 population growth combined with decreasing natural
resource availability is expected to double the total volume of water
produced by desalination (Darre and Toor, 2018). Regional water

to convert non-potable sources such as seawater and brackish water
into potable water, while maintaining flows irrespective of drought
conditions (Avni et al., 2013). The total volume of water produced
from desalination plants globally has increased from 13 million cu-
bic meter per day (MCMD) in 2000 to 95 MCMD in 2019 (Jones
et al., 2019). As technological advances drive down the cost of de-
salination and water scarcity in natural resources increases the cost
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systems generally have a variety of consumers (e.g., municipal, indus-
trial, and agricultural) with diverse water quality requirements, where
desalination can be combined with other water sources (e.g., aquifers,
surface water, and reclaimed water) to meet the specific needs of
each consumer (Slater et al., 2020). As global weather patterns are
expected to face increased variability leading to more extreme and
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frequent events such as droughts (Dore, 2005), it is imperative that
water managers foresee scarcity events in order to leverage drought-
resistant desalination supply ahead of time to overcome future deficits
in natural resources (Slater et al., 2020).

To determine the operation of regional WSSs, water management
models can be used to mathematically define the objectives of water
managers and constraints imposed on the system via physical laws and
other system requirements (Loucks and Van Beek, 2017). Depending
on management goals and system characteristics, water management
models can differ in the types of decision variables incorporated and
the timelines in which decisions are made. Traditional models applied
at the regional scale focus on decisions related to water quantities,
solving for both the volume of water to be utilized from each source and
how those volumes are distributed in the system to various consumers.
Such models have been used in the past to minimize the operational
cost of a system while meeting demand requirements from consumers
(e.g., Draper et al. (2003), Jenkins et al. (2004) and Watkins et al.
(2004)), maximize the total net benefits between competing parties
through compromises in water usage (e.g., Fisher et al. (2002) and
Booker et al. (2005)), and foster conjunctive use between surface
and groundwater sources (Pulido-Velazquez et al., 2006). For systems
with diverse source qualities and consumer quality thresholds, WSS
management models also include nonlinear solute mass balances where
solute concentrations are included as decision variables (Mehrez et al.,
1992). Such quantity-quality models have been applied to various
regional WSSs to find optimal source production and water allocations
at steady-state (e.g., Ostfeld and Shamir (1993), Alidi and Al-Faraj
(1994) and Cohen et al. (2000)) over a short-term horizon (Tu et al.,
2005), and over a long-term horizon (Housh et al., 2012). In the case
of a WSS with supply from desalination plants, salinity is often the
water quality parameter of concern, and quantity—quality optimization
models can be applied to find the optimal blending of desalinated
water with other sources with different salinity levels to meet the
water quality thresholds for municipal, agricultural, and industrial
consumers (Slater et al., 2020). While providing a low-salinity, drought
resistant supply, the introduction of desalination to a regional water
supply portfolio introduces challenges for water managers through
high energy costs (Shemer and Semiat, 2017; Vahid Pakdel et al.,
2020), decreased mineral composition in supply water (Avni et al.,
2012, 2013), and brine production requiring disposal (Ahmed et al.,
2001; Khan and Al-Ghouti, 2021). An additional challenge for water
managers is the decision timeline for desalination plants, where com-
plex contractual agreements require water production to be decided
in advance before the future conditions are known (Israeli Ministry
of Finance, 2022). Hence, the desalination productions decisions are
made ahead of time using forecasted uncertain scenarios, while the
remaining decisions, such as supply from the natural resources and
water allocations in the system, can be made at a later stage once the
uncertainty is revealed. In a management model, the disparate decision
timelines can be handled by splitting the decision variables into here-
and-now decisions and wait-and-see decisions, where the former are
made against forecasted scenarios, and the latter are made in response
to the revealed scenarios (Ben-Tal et al., 2004). Through the inclusion
of asynchronous decision timelines for water quantity and quality vari-
ables, water managers are able to model the behavior of multi-quality
systems under uncertain conditions while reflecting the chronological
sequence of decision-making.

Two of the primary sources of uncertainty for water supply sys-
tems include consumer demands and hydrological inflows (Cosgrove
and Loucks, 2015). In the long-term, demand uncertainty is primarily
defined by uncertain population growth and in the short-term, by un-
certain consumer behavior and natural variability (Dandy et al., 2023).
Uncertainty in hydrological inflows is connected more broadly to hy-
droclimatic uncertainty, where precipitation, snowmelt runoff, and
other climate-influenced hydrological processes affect replenishment of
natural water resources (McMillan et al., 2018). Recent trends have
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indicated a loss of stationarity in historical record, where the likelihood
for extreme events such as prolonged droughts are expected to increase
in many regions (Parry et al., 2007). The traditional approach to han-
dling uncertainty is to operate under the assumption that the expected
scenario will occur, and optimize the decisions in response (Perelman
et al., 2013). However, when the revealed uncertainty deviates from
the expected scenario, the final model decisions can result in non-
optimal or infeasible solutions (Sen and Higle, 1999). Furthermore, for
quantity—quality models that are nonlinear in nature, small deviations
from the expected values of the uncertain parameters can result in large
deviations in the final solution which means that water systems are at
risk of going over-budget or not meeting system requirements (Housh,
2011). In this research, uncertainty is characterized by a set of sce-
narios that represent different possibilities for consumer demands in
the system and hydrological inflows to the natural resources. Scenario-
based methods have been utilized by decision-makers to solve for a
range of water resources management problems, including watershed
management (Liu et al., 2007), planning of water and wastewater
infrastructure (Kang and Lansey, 2013), and long-term planning for
expanding the capacity of water sources (Ray et al., 2012). The use of
scenario-based methods is appropriate when details of the probability
distributions underlying the uncertain parameters are themselves un-
known. When there is insufficient data to build accurate distributions
or the distributions are no longer characteristic of the uncertainty, such
as with non-stationary processes, methods that incorporate unknown
distributions directly into the optimization model can result in sub-
optimal solutions (Herman et al., 2014). In contrast, scenario-based
approaches find optimal solutions for each individual scenario, thereby
producing a set of non-dominant solutions that can be assessed a
posteriori based on stakeholder preferences. The result is an effective
characterization of uncertainty without relying on a precise probability
distribution.

Beyond the technical benefits of the scenario-based approach, the
utilization of scenarios is beneficial for stakeholders who are not in-
volved in the modeling process, as solving for individual scenarios and
comparing the different solutions is an intuitive method for incorpo-
rating uncertainty (Kang and Lansey, 2013). However, the differing
solutions may consist of many tradeoffs between stakeholder objectives
where no solution is clearly superior. Multicriteria decision analysis
(MCDA) is a method to integrate stakeholder preferences into the
decision-making process and use them to differentiate between alter-
native solutions and elucidate inherent tradeoffs (Morais and Almeida,
2007). For a water system, common preferences might include eco-
nomic considerations such as minimal operating costs, performance
considerations such as the satisfaction of consumer demands and ful-
fillment of water quality standards, or other preferences specific to
the system being considered (Haimes, 1977). MCDA methods have
been used to explore tradeoffs in water systems to manage water
losses (Morais and Almeida, 2006), develop long-term management
strategies (Pudenz et al., 2002), improve the operation of a two-
reservoir system (Srdjevic et al., 2004), and plan for the feasibility
and site-selection of desalination infrastructure (Vishnupriyan et al.,
2021). As stated by Gough and Ward (1996), the primary charac-
teristics of environmental decision-making include the existence of
considerable uncertainty, the potential for decisions that lead to irre-
versible outcomes, and the combination of multiple decision-makers
and objectives. Given these circumstances for a regional water supply
system, a scenario-based optimization model in conjunction with MCDA
serves as a tool to aid in the decision-making process by properly
assessing the uncertainty and providing interpretable results to the
relevant stakeholders.

It follows that the goal of this research is to provide a model-
ing tool for decision-makers managing regional water supply systems
that blends desalination sources with natural resources throughout the
water network in order to provide the optimal water quantity and
quality to the different consumers. The primary challenges for such
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Fig. 1. INWSS schematic.

a system are (1) multi-quality sources and diverse consumers, (2)
disparate decision timelines, and (3) uncertainty in consumer demands
and hydrological inflows. To address these challenges, an optimiza-
tion approach is proposed that combines (1) nonlinear constraints for
salinity considerations (2) a two-stage approach to handle differing
decision timelines, and (3) a scenario-based method that solves the
nonlinear optimization model for different potential scenarios in both
modeling stages. The final results of the optimization model are ana-
lyzed using a MCDA approach to assess tradeoffs in operational cost
and system robustness in order to help facilitate decision-making for
future desalination production as a potential hedge against uncertain
conditions. The result is a unified modeling framework that is applied
to the Israeli National Water Supply System (INWSS) where desalina-
tion is combined with aquifers and surface water to supply municipal
and agricultural demands, as well as transboundary water transfers.
Given the increasing incorporation of desalination plants into regional
water supply systems worldwide combined with increasing variability
in global climate conditions, insights gained from the INWSS can be
an important source for other regional system seeking to secure their
future water supply.

2. Methodology

In this section we propose a framework to aid decision-makers in the
management of a multi-quality regional water supply system, where
the system faces uncertainties in hydrological inflows and consumer
demands. First, we introduce the study area and problem. Second,
we propose a two-stage optimization framework to manage the de-
salination flow rates, where in Stage I, the desalination decisions are

solved against forecasted uncertainty, and in Stage II, the desalination
decisions are provided as inputs and the model is tested against new
realizations of uncertainty. Third, the results of the two-stage model
are distilled into performance metrics that represent the operational
cost and system robustness. Finally, a multicriteria decision analysis
method is showcased for analyzing the performance tradeoffs found
in the decision alternatives and assisting decision-makers in evaluating
and choosing between them.

2.1. Problem definition

2.1.1. Israeli national water supply system

The water management framework is applied to the INWSS, which
is responsible for delivering water from Israel’s supply sources to
local water suppliers through a central conveyance system (Housh
et al., 2012). Historically, the primary water sources include ground-
water aquifers and Lake Kinneret, however, as the demand for water
increased with a growing population, Israel heavily invested in de-
salination by building five seawater desalination plants over the past
two decades, combining for a total capacity of 585 million cubic
meters (MCM) (Shemer and Semiat, 2017). In total, the sources in the
INWSS consist of seawater desalination plants, brackish water desali-
nation plants, aquifers, and Lake Kinneret (Mekorot, Israeli National
Water Company, 2022). The system demands include municipal and
agricultural demands, environmental demands that consists of water
discharged into the Jordan River to maintain sufficient flow, and
transboundary demands to the Kingdom of Jordan to satisfy a water
supply contract between the two countries (Elmusa, 1995). A schematic
of the INWSS is displayed in Fig. 1.
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Fig. 2. Model framework comprised of a two-stage optimization approach followed by multicriteria decision analysis.

Despite the diversified water supply portfolio, Israel still faces the
continual threat of water scarcity in its natural resources, where in-
creased variability in future climate conditions is expected to exac-
erbate water stress (Gophen et al., 2020; Givati et al., 2019). Fur-
thermore, over-extraction of groundwater aquifers allows for greater
seawater intrusion (Housh, 2011) while both over-pumping and high
evaporation levels are primary factors in the increasing salinity levels of
Lake Kinneret (Rimmer et al., 2011). As such, it is necessary to properly
manage the supply from desalination plants to blend with the high-
salinity water from the natural resources in order to satisfy the demand
and water quality requirements of the INWSS, all while maintaining
sustainable water levels in the natural resources. During the water
management planning process, the quantity of water produced from the
desalination plants is decided in advance through contracts between
plant managers and the water authority (Israeli Ministry of Finance,
2022), resulting in asynchronous decision timelines between the desali-
nation plants and natural resources. When planning the water supply
from each source, water managers must use forecasts of uncertain
hydrological inflow to the natural resources and consumer demands in
the system (Herman et al., 2014). However, a problem arises when the
revealed inflows and demands deviate from their forecasted values and
the desalination plants are constrained to the flow rate contracts. It is
thus necessary to incorporate uncertainty in the inflows and demands
into the decision-making process.

Previous studies have been conducted on management of the IN-
WSS, including a focus on the blending of the multi-quality sources
using a deterministic approach (Housh et al., 2012), a stochastic ap-
proach to managing uncertain aquifer recharge (Housh et al., 2013),
and a robust approach to managing uncertain inflow to Lake Kin-
neret (Housh and Aharon, 2021). In the proposed model, the previ-
ous studies are expanded through the inclusion of both hydrological
and demand uncertainties, implementation of a two-stage modeling
framework, and evaluation of modeling results using a multicriteria
decision analysis. These additions serve to provide a more complete
description of the uncertainties faced by the INWSS, adapt the uncer-
tainty management approach to account for the reality of asynchronous
decision timelines faced by decision-makers, and present a comprehen-
sive assessment of the inherent tradeoffs in the system that directly
incorporates stakeholder preferences.

2.1.2. Optimization model
The proposed framework (see Fig. 2), comprised of a two-stage op-
timization model with a posteriori multicriteria decision analysis, was

developed for the INWSS to determine the flow rates from the desalina-
tion plants that maximize stakeholder goals under a range of potential
hydrological and demand scenarios. In the two stage optimization
model, the management decisions are split into implementable and
recourse decisions. The implementable decisions represent the flow
rates supplied from the desalination plants and the recourse variables
represent the flow rates supplied from the aquifers and Lake Kinneret,
the water distribution and salinity levels in the supply system, and the
water level in Lake Kinneret. In Stage I of the two-stage optimization
process, the desalination flow rates are optimized with respect to N,
of different forecasts of hydrological and demand scenarios, and the
resultant set of desalination flow rates is aggregated into a family of N,
sets of desalination flow rates that are representative of the full range
of original solutions. In Stage II, each set of desalination flow rates is
implemented as an input and the optimization model is solved for a
new set of N, scenarios, allowing the recourse decisions to adapt to
the revealed uncertainty. The Stage II model relaxes constraints from
the Stage I model, allowing the recourse decisions to incur a deficit
in supply at the demand zones, exceed salinity thresholds, and drop
below the minimum sustainable water level in Lake Kinneret. Following
the two stage process, the N; x N, outputs of the Stage II model
are distilled into N, sets of cost and robustness performance metrics,
where the latter defines the extent to which the recourse decisions
are able to withstand violating the demand, salinity, and sustainability
constraints for uncertain scenarios for which they were not optimized
for in the first stage. Further details on the calculation of the robustness
metrics are provided in Section 2.4. To determine tradeoffs between
the N, sets of performance metrics, the MCDA method PROMETHEE II
(Preference Ranking Organization Method for Enrichment Evaluation)
is utilized (Brans and De Smet, 2016).

2.2. First stage model

In the first stage, a nonlinear optimization model is formulated to
determine the least-cost water supply mix for the INWSS for a set
of hydrological and demand scenarios. The INWSS is modeled as a
graph representing the system topology, where the nodes include the
supply sources, demand zones, and intermediate junctions, and the
edges represent the system links. The supply system is represented in
Fig. 1, where the sources include five seawater desalination plants,
two brackish water desalination plants, 13 aquifer pumping stations,
and Lake Kinneret, which all blend together through the conveyance



G. Hendrickson et al.

network to supply consumers represented through four municipal de-
mand zones designated as Galilee West, North, Center, and South.
Additionally, Lake Kinneret supplies water directly to the agricultural,
environmental, and transboundary demand zones which represent local
agricultural regions, the Jordan River, and the Kingdom of Jordan.
The decision variables in the first stage are decided for each month
of time horizon ¢ = 1,...,T. The variables include the flow rates
delivered to the system from the desalination plants Q!, aquifers Q?,
and Lake Kinneret Q;{, the flow rates Q’[ and salinity levels C} for each
link in the system, the flow rate Q' and salinity levels C! for the water
discharged to the Jordan River, the flow rate Q' and salinity levels C.
for the demand zones, and the salinity level C} and water level H] in
Lake Kinneret. The inputs to the model include the salinity levels of the
desalinated C!, and aquifer C} water supplied to the system, the flow

rates for the demand zones 5’2, the inflow into Lake Kinneret [ ]{, the

mass of solute into Lake Kinneret M}, and the initial salinity Cg and
water level H,? in Lake Kinneret.

The constraints of the optimization model include mass and salinity
balances at the intermediate junctions i and demand zones z, complete-
mixing at the intermediate junctions and demand zones, and state
equations that track salinity and storage in Lake Kinneret. The general
equations for the mass and salinity balances in each month ¢ are
formulated as follows:

t t _ nt —
Y 0.-30.,=D, t=1,..T €]
fELin.z KELaul.z
t t t_ nt —
Y €0, -CLY0,=CD, t=1..T @
feLlﬂ.Z KELOMLZ
where L;, , and L are the sets of links into and out of demand zone

in,z out,z
z, and D’z is the uncertain demand at demand zone z. When Egs. (1)

and (2) are applied to the intermediate junctions, the terms C’ and 5'7
on the right-hand side of the mass and salinity balance constraints are
zero. The blending of water in each node is modeled as complete and
instantaneous mixing (Loucks and Van Beek, 2017):
Ct 12
c;:M t=1,...T ©)
ZKGL‘ Qf

where L,,; is set of links flowing into node i. Mass and salinity balances
are also applied at Lake Kinneret, where Eq. (4) models the water mass
balance, Eq. (5) models the solute mass balance, and Eq. (6) models

the relationship between the water level and storage volume:

—1 _"’ _
S-S~ +0, =1, t=1,...T (@]
t -1 t—1 t o t —_
c-Si-crt.sittyc -0 =M;  t=1,...T 5)
S, =aH, +b t=1,....T (6)

where Q;( is the flow from Lake Kinneret to the rest of the system, S,’(
is the storage volume, H ,’c is the water level, C]’( is the salinity, I ,’c is the
uncertain hydrological input, M, is the total solute mass input, and a
and b are parameters that approximate the relationship between the
storage and water level (Housh et al., 2012). Egs. (4) and (5) are the
state equations that link variables through time steps 7 and ¢ — 1.
Upper and lower bounds are placed on the decision variables that
represent operational constraints in the INWSS and enforce the goals
of Israel Water Authority (IWA) to supply consumers with high-quality
water and maintain sustainable water levels in Israel’s natural re-
sources. The desalination flow rates are limited by the maximum
monthly capacity of each plant. To meet water quality standards for the
consumers, maximum limits are placed on the salinity variables at the
demand zones. The lower limit for all flow rate and salinity variables is
zero unless previously specified otherwise. To ensure sustainable usage
of the natural resources, the monthly extraction flow rate from the
aquifers and Lake Kinneret are limited by an upper bound, a minimum
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discharge from Lake Kinneret to the Jordan River is applied to maintain
environmental flows, and the water level in Lake Kinneret is bounded
by a lower and upper limit to avoid over-extraction and overfilling.
Lake Kinneret is below sea level, and the lower limit is set at the
historical minimum level of —214.87 m, while the upper limit is set
as at —208.8 m.

The objective function for the Stage I model combines the op-
erational cost of supply water from each source with sustainability
objectives set by the decision-maker. The operational costs include the
unit cost of water supply from desalination plants and aquifers, and
dynamic tariffs that represent the energy cost of pumping from Lake
Kinneret for different seasons and supply amounts. The sustainability
objectives are represented through variable rates imposed on discharge
to the Jordan River and extraction from Lake Kinneret, where the rate
per unit of water changes based on the quantity of water discharged or
extracted. The objective function is formulated as:

minimize Z (Z ra0 + Z r, 0+ f) (Q;()> +HONH+ 00 )
t d a

where Q;, o Q;C represent the flow rate supplied from desalination
plants, aquifers, and Lake Kinneret at time ¢, QST and QZ represent the
total quantity of water discharged into the Jordan River and supplied
from Lake Kinneret over the entire time horizon, r, and r, represent the
unit costs applied to desalination plants and aquifers, and f{, f,, and
f5 are functions that represent complex cost structures for the supply
sources and sustainability considerations for Israel’s natural resources.
In addition to the cost functions included in Eq. (7), arbitrarily small
unit costs are applied to the conveyance through one of the links in each
pair of bidirectional links seen in Fig. 1, thereby ensuring conveyance
in only one direction. The three functions f ]’ , [», and f3 are displayed
in Fig. 3. Fig. 3(a) shows f|, a piecewise linear function that models
the energy cost of pumping from Lake Kinneret, represented through
dynamic tariffs. The y-axis is represented by the total cost of pumping,
slope of each line segment represents the tariff applied depending on
the month ¢ and quantity of water extracted 0}, and the three separate
lines represent the different cost structures applied during the winter
(blue), summer (orange), and remaining months (yellow). Fig. 3(b)
shows f,, a piecewise damage function that represents the desire to
avoid discharging large quantities of water from Lake Kinneret into the
Jordan River. The y-axis represents the total cost of discharging water
to the Jordan River and the x-axis represents the total quantity of dis-
charged water throughout the year. At low discharge levels represented
in the first segment, no cost is applied to the objective function, and at
high discharge levels represented by the second segment, a penalty cost
is applied to the objective. Fig. 3(c) shows f3, a nonlinear cost function
that represents the sustainability goal of limiting pumping from Lake
Kinneret. As opposed to f{, f3 does not represent a cost incurred from
pumping, but rather, it is a quadratic damage function that makes
the cost of withdrawing water from Lake Kinneret more expensive as
the total amount of water withdrawn increases. The y-axis represents
the total cost of withdrawing water and the x-axis represents the total
amount of water withdrawn from Lake Kinneret throughout the year.
For all functions, the costs are in Million New Israeli Shekels (MNIS)
and the flow rates are in MCM.

The objective function in Eq. (10) is converted to a linear function
in order to decrease the computational complexity of the model. First,
the quadratic cost function f; is approximated as a piecewise linear
function (Housh and Aharon, 2021):

£(00) ~ f3(Q;) = max (a,0f +by) (8)

where S is the number of segments in f;. Each piecewise function is
then formulated as a linear program:

min A

st. a,0+b, <A ©)

s=1,...,8
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where Q is a generic flow rate variable and A is an auxiliary variable
that represents the value of the piecewise function. The formulation in
Eq. (9) is applied to f, and f, for all + where QO = Q;c and Q = O,
respectively, and applied to f; where QO = Q{. The final objective
function is formulated as:

F| = minimize Z (Z
t

d

raQl + Y r 0L+ A +/1’2> + 1 (10)
a

where /{’1, 4, and 43 are the auxiliary variables representing the values

Offli f2r andf3' - -

The uncertain inputs D!, and I, I’( are sampled from a joint inflow-
demand multivariate normal distribution, characterized by a mean
vector u and covariance matrix X. The values of the mean vector are
populated by the expected inflow and demand values for each month
(referred to as the baseline scenarios in the remainder of the text).
The baseline scenario for the consumer demands are provided by the
IWA based on extrapolation of historical demand records, population
growth predictions, and analysis of future development plans (Israel
Water Authority, 2011). The baseline hydrological scenario is based on
the combination of expected direct inflows from a local stream, surface
flow from the surrounding basin, percolation into the subsurface, and
evaporation values, and is provided by the IWA in an internal report.
The diagonal of the covariance matrix is populated by the variance of
each parameter and the off-diagonal cells are populated by the pairwise
covariance values between each of the parameters. Each covariance
value is calculated from the pairwise correlations and standard devi-
ation of each parameter. The correlation values are characterized by
two variable relationships, the correlation between inflows in different
months (p = 0.7) and the correlation between demands in different
months (p = 0.7). While a correlation between inflow and demand
is also expected, no correlation was assumed in order to sample a
larger range of uncertainty scenarios. The standard deviation for the
inflows in each month are set at 10% of the baseline annual inflow
(o‘L = 10 MCM) and the standard deviations for the demands are set
at 10% of each baseline demand (o) = 0.1D%). Furthermore, the Latin
Hypercube Sampling algorithm was used for the sampling procedure
in order to increase the diversity of the input scenarios (Rajabi et al.,
2015).

For each realization of 5; and INfc, the first stage model is solved,
generating a large set of implementable decisions. The set of imple-
mentable decisions is then aggregated into a smaller subset of decisions
using the k-medoids algorithm, where the medoid of each cluster pop-
ulates the final subset of implementable decisions (Arora et al., 2016).
The aggregation process serves to remove redundant implementable
decisions, increase the variety between decisions, and decrease the
total computation time required for the full two-stage optimization
model (Housh et al., 2013). While many clustering algorithms can be
applied to aggregate the set of implementable decisions, the k—medoids
algorithm is selected to ensure the new subset of implementable deci-
sions is comprised of values from the original set. The use of algorithms

that select the centroid of the cluster may result in infeasibilities in
the optimization model, since the implementable variables would not
have been actual solutions determined from the Stage I model. The final
result of the clustering process is a family of N; sets of implementable
decisions, where an individual set is denoted by Q.

2.3. Second stage model

Following the aggregation of the implementable decisions, each set
Q) is provided as an input into the Stage II model and the model is
solved for N, more realizations of l~)’z and TI’C The total number of model
runs in the second stage is thus N, x N,. In the second stage, the model
described in Section 2.2 is relaxed to allow the system to incur a deficit
to the demand zones, exceed the salinity limits at the demand zones,
and violate the water level limits in Lake Kinneret. The changes reflect
the IWA goals of meeting all demands, supplying high-quality water to
consumers, and maintaining sustainable water levels in Lake Kinneret.
To allow demand deficits, Egs. (1) and (2) which represent the general
form of the water and solute mass balances, are relaxed for the demand
zones:

2 Q-0 <D i=1..T an

(€L, ; C€Lyy ;.

2 clo —C’ZQ’ <C'D t=1,...T 12)
=t z = Tz7z —

(€L, (€L z

Next, the upper bounds on C?, and the lower bound on H]’( are removed,
allowing the salinity at the demand zones and the water level in Lake
Kinneret to exceed the limits set by the IWA. A violation occurs when
the model fails to supply all demands, exceeds the salinity limits, or
exceeds the water level lower limit. Penalty functions are added to the
objective function that penalize each of the constraint violations, where
the demand, salinity, and sustainability violations are calculated as:

,}dzzz(f);_gtz) 13)
z t

v, = ZZmax (O,C;—EZ) 14
F4 t

(15)

v, = Zmax (0.H, — H})
t

where Q?, is the demand supplieg to demand zone z and is equivalent to
the left-hand side of Eq. (11), D’Z is the uncertain demand at demand
zone z, C, is the upper limit for salinity at demand zone z, and H,
is the water level lower limit in Lake Kinneret. The demand violation
v, represents the deviation between the demand and actual water
supplied, where Q' cannot supply more water than 5; . However, in
Egs. (14) and (15) where C. and H ,’( are unbounded, violations are
only considered when the deviations exceed the upper and lower limits,
respectively. Thus, v, and v, are formulated such that the violations are
only counted when the deviations are positive, i.e., when C. > C, and
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HL < H, (Boyd et al., 2004). The violations are formulated as penalty
functions and added to the objective function in the first stage Eq. (10)
to yield the final objective function for the second stage model:

F, = minimize )’ <Z raQl + Y\ r, 0L + ,1']>
t a

d

+ Ay + A3 + aguy + ayu, + agug (16)

where a;, a,, and a, are the penalty coefficients for each respective
function. The final outputs of the two stage model are N, sets of
implementable decisions and N, sets of recourse decisions for each set
of implementable decisions.

2.4. Model evaluation

The performance metrics used to assess the Stage II solutions are
the desalination cost I, expected recourse cost I, expected total
cost Irc, and robustness with respect to demand I p, quality /o, and
sustainability Ig. The units for all cost metrics are MNIS whereas the
robustness metrics are unitless. Each metric is a vector of length N,
where each index n represents a different Stage I realization. Both the
total cost and recourse costs are N, X N, matrices, where each value in
the total cost matrix is calculated as the objective function in the Stage
I model F, described in Eq. (10), and each value in the recourse cost
matrix is calculated as:

Fre= ), <Z r, O+ 41 + /1’2> + 13 a7z
t a

where Fp. is the combined cost of supply from the aquifers and Lake

Kinneret, and discharge to the Jordan River. The cost metrics I and

I are then calculated by averaging each row of the total and recourse

cost matrices over all Stage II runs, resulting in vectors I and Iz of

size N.

Robustness has been defined in water systems planning as the ability
of a water resource system to maintain performance under a wide range
of possible future conditions (Borgomeo et al., 2018). For this research,
the definition of robustness is adapted to reflect system performance
against different realizations of 5’Z and INI’( In this definition, system
performance is equated with the violations of the demand, quality,
and sustainability constraints as calculated in Egs. (13)-(15), and as
such, the robustness metrics are calculated from each v, v,, and vs.
To account for both the magnitude and frequency of violations, the
robustness metrics are formulated as the combination of (1) the average
normalized magnitude of violations (Abokifa et al., 2020) and (2) the
percent of Stage II solutions that incur a violation (Whateley et al.,
2014; Moody and Brown, 2013). For each Stage I solution, the final
demand, quality, and sustainability metrics are calculated as:

G Y

IRD(”)=<1—EZ{m)'Pd 18)
ST

Tro(m = <1 B Fq gl‘ max,-(UfI)> “Pq a9
1 Ny v

IRS(")=<1—FS§WS(UD>'PS (20)

where n is the index of the Stage I solution, N,, N, o and N, represent
the total number of violations of each constraint across all Stage II
solutions, and p,, p,, and p, represent the fraction of Stage II solutions
that have at least one violation. The scaling parameter is selected as
the maximum violation across all Stage II solutions for each constraint
in order to convert all of the robustness metrics into a value between 0
and 1. The average normalized violations are then subtracted by 1 in
order to equate a value of 1 to maximum robustness, and a value of 0
to minimum robustness.
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2.5. Multicriteria decision analysis

In the first step of the Stage II model evaluation, the N, x N, sets of
recourse decisions are distilled into N, sets of six performance metrics.
While the performance metrics provide a comprehensive representation
of the Stage II results, evaluating tradeoffs between the solutions is
challenging when there are six different criteria and many solutions. To
aid decision makers in identification of the decision alternative most
aligned with their preferences, the MCDA method PROMETHEE II is
utilized to filter and rank the sets of solutions against one another based
on the performance metrics (Brans and De Smet, 2016). Intuitively,
the PROMETHEE method involves evaluating and comparing the dif-
ferent solutions, where the decision-makers’ preferences are included
by assigning weights to the different metrics. The final results are an
aggregation of a solution’s performance across all metrics into a single
score that reflects the alignment of the solution with the decision-
makers preferences. A summary of the process is illustrated in Fig. 4.
In step (a), the deviation between each pair of solutions is calculated
for a performance metric k:

di (i, j) = L)) = I, (j) (21)

where i and j represent the different decision alternatives. In step
(b), a preference function P, is defined which indicates the extent to
which a solution i outranks or is outranked by a solution j, where
the outranking score is between 0 and 1. For the selected preference
function, d,’(’”" represents the minimum deviation value below which
a preference score of 0 is assigned, 4’ represents the maximum
deviation value above which a preference score of 1 is assigned, and
any d, between the two limits is linearly interpolated between 0 and
1. Various preference functions can be chosen, however, the preference
function in (b) is selected to ignore small difference in performance
and avoid over-valuing large difference in performance. In step (c), the
overall preference index x is calculated through a weighted summation
of all the preference scores:

6
i, j) =Y, w P, j) (22)
k=1
where weights w, are values between 0 and 1 that represent stake-
holder relative preferences between the different performance metrics.
In step (d), positive and negative outranking flows for each alternative
i, T and ¢, are determined by averaging the columns and rows of =
for all i # j, formulated as:

Ny
1
. .
@‘ﬁ:j%ﬂw) 23)
1 <
@=N_y;mN) (24)

where A is the set of decision alternatives to i, column i of = represents
the extent to which solution i outranks the other solutions, and row i
of 7 represents the extent to which solution i is outranked by the other
solutions. The final score for each solution is then calculated as the net
outranking flow:

bi=¢f —¢; (25)

Following the application of the PROMETHEE II outranking method
to the performance metrics, the decision alternative with the highest
value is denoted as the favored choice for the given preferences.

3. Results

The proposed methodology is applied to the INWSS where the
uncertain hydrological inflows and consumer demands threaten the
capability of water managers to ensure all demand, quality, and sus-
tainability requirements are met. The goal of this analysis is to first
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Fig. 4. PROMETHEE II methodology.

determine the extent to which the implementable decisions can prepare
the system for various realizations of uncertainty, and then elucidate
the tradeoffs between different decisions with regard to operational cost
and system robustness. The results of the research are summarized as
follows. First, the Stage I results for the baseline hydrological and de-
mand scenarios, where the outputs represent the deterministic INWSS
model when no consideration is given to uncertainty are presented.
Next, the robustness of the system is calculated by introducing new
scenarios in the Stage II model for which baseline implementable
decisions were not originally optimized for. The full implementation
of the modeling framework is then applied, in which N, = 1000
realizations of the Stage I model are solved, the implementable deci-
sions are clustered into N, = 20 representative sets, and each set is
implemented into the Stage II model and tested against N, = 50 new
scenarios. Tradeoffs between the individual cost metrics I ¢, Igc, and
I;¢ are then examined from the Stage II results, and the PROMETHEE
II method is applied to incorporate all performance metrics into a single
comparative analysis that reveals tradeoffs between the operational
cost and system robustness.

Implementation of the proposed framework, including mathemat-
ical model development, scenario sampling, multicriteria assessment,
and all other data analysis, was performed using MATLAB, and the
optimization model was solved with the global optimization solver
BARON (Sahinidis, 2017). All data to model the INWSS is available
in the Supplementary Material. The proposed model was developed
through a collaboration with the IWA, which gave feedback for the
abstraction of the model and its assumptions (Housh, 2011). Model val-
idation was conducted through extensive sensitivity analyses, wherein
the model was tested against extreme values of key parameters such as
water inflow rates, salinity levels, and costs, and examined to ensure
the model responded as expected. Further validation was performed on
the results, namely, water and solute mass balance checks on individual
nodes, the Lake Kinneret sub-system, and the system in its entirety.

3.1. Stage I baseline performance

In this section, the outputs of the Stage I model are analyzed,
where the inputs are the baseline scenarios for the hydrological inflow
and consumer demands. The purpose of this analysis is to examine
the results of the optimization model applied to the INWSS when the
model has perfect foresight of the uncertainty. The baseline hydro-
logical inflow and the baseline demands for the four municipal zones
are displayed as the black lines in Fig. 5(a) and (b), respectively. In
Fig. 5(a), the baseline inflow scenario provides Lake Kinneret with a
net total 103 MCM over the entire year, however, the inflow is negative
from June until October. Such negative inflow values occur when
evaporation into the atmosphere and percolation into the subsurface
exceed stream and surface flows, resulting in net water loss. The months
with negative inflow coincide with months with high demands in the
municipal demand zones, as shown in Fig. 5(b).

The results of the Stage I model are summarized in Figs. 6 and
7. Fig. 6(a) displays the flow rates supplied in each month from the
desalination plants, aquifers, and Lake Kinneret and (b) the monthly
water levels in Lake Kinneret. Fig. 7 displays the average salinity level
in the demand zones in (a), and the monthly salinity levels in Lake
Kinneret in (b). The model outputs displayed in both figures represent
the deterministic condition, where the inputs are the baseline scenario
in which no uncertainty is considered. Since the Stage I model has
complete knowledge of the hydrological and demand conditions, the
supply flow rates and water allocations in the system are able to be
determined such that all demand, salinity, and sustainability goals are
met.

In Fig. 6(a), the flow rates supplied from the three sources, indicated
by the darker color of each bar, are plotted over the respective monthly
capacities, indicated by the lighter color in each bar. In the summer
months of July-August, all three sources provide an increase in supply
and the aquifers in particular reach full utilization in order to meet
the seasonal high demands shown for each of the municipal consumers
in Fig. 5(b). As the extraction levels from Lake Kinneret rise during
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Fig. 5. Baseline hydrological and demand scenarios input to Stage I model (black line), and 200 realizations of T and D input to Stage II model (colored lines).
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Fig. 7. Baseline scenario results: (a) average salinity of supply for demand zones, (b) monthly salinity levels in Lake Kinneret.

these months, the outflow exceeds the inflow and the water level begins
to drop, as shown in Fig. 6(b) where the lake water level is plotted
along with the lower boundaries. The lower of the two bounds is
designated as the “black line” by the IWA and indicates the lowest
level in the historical record, while the red boundary represents the
boundary imposed on H, in the Stage I model. In the baseline scenario,
the water level in Lake Kinneret does not threaten to cross the Stage I
bound.

In the baseline scenario, Lake Kinneret does not need to supply any
water to the municipal demand zones, but rather, all water from the

lake is distributed directly to the local demand zones represented by
the agricultural region, the Jordan River, and the Kingdom of Jordan.
The water usage for these three demand zones has a much higher
salinity threshold than the municipal demand zones, which allows
them to utilize water directly from Lake Kinneret without any mixing
from other sources. Fig. 7(a) displays the average salinity level for the
year for each demand zone, indicated by the dark blue bars, over the
allowable salinity levels, indicated by the light blue bars. West Galilee
is generally more prone to high salinity levels due to its reliance on
water from Lake Kinneret and local aquifers to meet demand, however,
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Fig. 8. Constraint violations in baseline solution for 200 uncertain hydrological and demand scenarios in Stage II: (a) demand, (b) water quality, and (c) sustainability.

it primarily receives supply from aquifers in the baseline scenario which
allows the demand zone to remain within allowable salinity levels. The
remaining consumers zones have much greater access to the seawater
desalination plants which results in low salinity levels. The salinity
levels for the agriculture region, Jordan River, and Kingdom of Jordan
are equal to the average salinity level in Lake Kinneret, where the
monthly salinity values plotted in Fig. 7(b) show an increasing level
of salinity throughout the year due to water loss and solute transport
into the lake.

3.2. Stage II baseline performance

In this section, the implementable decisions optimized for the base-
line scenario, i.e., the desalination flow rates in Fig. 6(a), are tested
against 200 new hydrological and demand scenarios to assess the
system performance when the uncertain inputs deviate from their ex-
pected values. Given the baseline implementable decisions, the recourse
decisions are found for each of the new input scenarios, and the system
performance for each scenario is assessed through violations of the
demand, quality, and sustainability constraints. Fig. 5 displays the 200
new input scenarios for the hydrological inflow to Lake Kinneret in
(a), and the municipal demands in (b). The environmental, agricultural
and transboundary demands are not subject to uncertainty, as the
local agricultural regions and Kingdom of Jordan have fixed supply
agreements with the IWA, and the environmental flows into the Jordan
River are governed by minimum supply constraint and the objective
function. For all plots, the baseline scenario is the black line, and
the sampled scenarios are colored based on their standardized annual
values. The process of standardizing the data allows the two inputs
to be compared with one another, as they are now defined by their
standard deviations with respect to their probability distribution as
opposed to being defined by their original units. Additionally, the
standardized scores are given as absolute values on the color bar,
where scenarios that induce high stress in the system are indicated by
red, i.e., low T and high 5, and scenarios that induce low stresses in
the system are indicated by blue. Preliminary analysis of the Stage II
model revealed a tradeoff under high-stress scenarios in the decision
to either incur penalties for supply deficits or pay increasing rates for
supply from Lake Kinneret, however, the penalties applied to quality
and sustainability violations were shown to be redundant. As a result,
the penalty coefficients for the quality and sustainability violations in
the Stage II model were set at O for the application to the INWSS.

In Fig. 8, the violations with respect to the three metrics are
displayed as scatter plots, where each individual point represents a
single iteration of the Stage II model. The red markers on each plot
represent the Stage II solutions in which there was at least one violation
with respect to the specific robustness metric explored, and the black
markers represent Stage II solutions in which there were no violations.
Additionally, the size of the red markers represents the normalized
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sum of the violation magnitudes. The x and y axes represent the mean
hydrological inflow and demand inputs across the year, respectively,
where the values are standardized such that the origin represents the
baseline hydrological and flow scenarios, the location of each point
on the grid represents the number of standard deviations away from
the baseline scenario each input lies. For example, in Fig. 8(a), there
are a total of 200 markers that each represent a Stage II solution. The
first quadrant represent solutions that were solved for high inflows and
high demands, and similarly, the points in the third quadrant represent
solutions that were solved for low inflows and low demands. The red
markers represent solutions that violated the demand constraints, and
the size of each marker represents the extent of the violation. Likewise,
the red markers in Fig. 8(b)-(c) represent violations in the quality and
sustainability constraints.

Low hydrological input scenarios were the primary cause of supply
and sustainability violations, as displayed in Fig. 8(a) and (c), where
supply violations primarily occurred in scenarios with high demand in
conjunction with low hydrological input. While salinity violations also
correlated with high demand scenarios, they primarily occurred during
periods of high hydrological input, as shown by the activity in the
upper right quadrant of Fig. 8(b). In such a scenario, Lake Kinneret is
sufficiently replenished to allow for a larger volume of available supply
water as well as a lower rate for pumping. This combination of factors
yields a greater utilization of supply water from Lake Kinneret which
raises the salinity of the water delivered to nearby consumer zones past
the allowable threshold. Any combinations of scenarios less than 0.3
standard deviations away from the baseline scenario do not incur any
violations, indicating the baseline solution to be robust to small changes
in the forecasted scenarios. However, Fig. 8(b) reveals a violation that
occurs when the demand scenario exceeds 0.3 standard deviations,
even when the inflow scenario is near the baseline value. Overall, only
56% of the solutions had zero violations. No violations are incurred
when the revealed uncertainty is less severe than the hydrological and
demand forecasts, as seen in the bottom right quadrant of the three
plots.

3.3. Two-stage implementation

In this section, the full two-stage model was applied to analyze
the performance of a range of different desalination flow rates against
potential future scenarios. Cost and robustness metrics are calculated
for each set of desalination flow rates following the Stage II model, and
final results are analyzed to determine tradeoffs between the upfront
cost of investing in desalination, and the expected recourse and total
costs of system operation. First, the Stage I model was solved for N, =
1000 realization of the uncertain scenarios, producing a total of 837
feasible sets of desalination flow rates. Since the Stage I model has
strict bounds on demand, quality, and sustainability, a total of 163
of the input scenarios resulted in infeasible solutions. The 837 sets of
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Fig. 9. Two-stage model results. The baseline solution is represented by the blue dashed line and all other lines are colored with respect to desalination cost.

desalination flow rates were then aggregated to N; = 20 unique sets
of desalination flow rates (as detailed in Section 2.1.2). Next, the new
decisions were passed to Stage II where they were each tested against
N, = 50 new input scenarios. The performance of each of the new
desalination decisions is plotted on parallel axes in Fig. 9, where the
performance metrics are calculated as in Section 2.4. The x-axis of the
plot shows the cost metrics Ipc, Igc, and I;¢ in units of MNIS, and
the robustness metrics Ixp, Irp, and Ixg which are unitless. The y-
axis shows the value of each performance metric for all desalination
decisions determined from the Stage I model. For each axis, the value
that represents the best performance, e.g., lowest cost and highest
robustness, is found at the top of the axis, and the value that represents
the worst performance is found at the bottom. Each line is colored
with respect to its total cost of desalination, where red lines represent
solutions that have a greater investment in desalination and yellow
lines represent solutions that have lower investment in desalination.
The performance of the baseline solution is plotted as the dashed blue
line for comparison with the alternative solutions.

The intersecting lines indicate the presence of tradeoffs in system
performance between the different solutions. Looking at the relation-
ship between the connected values in the I,- and Ip. axes, a clear
tradeoff exists between the cost of desalination and the expected re-
course costs, as indicated by the lines with high desalination cost also
tending to have low recourse costs, and vice versa. This relationship
suggests that a greater upfront investment in desalination reduces the
potential recourse costs once the uncertainty has been revealed. A
similar relationship holds between the desalination cost and the total
operational cost, however, some solutions over-invest in desalination
to the point at which it outweighs any savings accumulated in the
recourse costs. The tradeoffs between the cost metrics apparent in
Fig. 9 are made explicit in Fig. 10, where the desalination-recourse cost
relationship is plotted in (a), and the desalination-total cost relation-
ship is plotted in (b). It can be seen that as desalination investment
increases, the range of potential costs once the uncertainty is revealed
is diminished, i.e., paying more for desalination upfront limits the
expected future costs and hedges against extreme outcomes.

3.4. Evaluation of decision alternatives

In this section, the PROMETHEE II method is applied to the set of
N, performance metrics calculated from the set of N, implementable
decisions and the subsequent Stage II recourse decisions. A sensitivity
analysis is then performed on the stakeholder preferences, represented
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by the performance metric weights w,, in order to assess the tradeoffs
between operational cost and system robustness. The weights are first
split into the two categories of cost and robustness, where each set
of weights is represented by a single weight, w, and wg, divided
equally within the category. The two representative weights are then
varied between 0 and 1 over 50 iterations (step size = 0.02), where
we + wg = 1, and the PROMETHEE 1I analysis is repeated for each
iteration. As the stakeholder preferences shift from a cost-focus (w, = 1)
to a robustness-focus (wi = 1), the favored solution adapts to the
new preference values. Fig. 11 displays the results of the sensitivity
analysis, where Fig. 11(a) shows the upfront desalination cost versus
the combined robustness score for the solutions that were included in
the optimal set, and Fig. 11(b) shows the results of the two-stage model
where the optimal solutions are highlighted and the base solution is
displayed as a blue dashed line. The markers in Fig. 11(a) are sized
with respect to the number of times in the sensitivity analysis in which
a particular solution was determined to be optimal, and the colors are
vary from a robustness-focus (yellow) to cost-focus (red). The first y-
axis in Fig. 11(b) displays the desalination costs as a percentage relative
to the baseline desalination cost and the remaining axes have the same
units as in Fig. 9.

The cost-focus solution, with a desalination cost of 490 MNIS and
total robustness score of 0.9, is the only favored solution that has
a decrease in total desalination production relative to the baseline
scenario. While this solution had the lowest total expected cost, the
desalination cost only decreased by 3%, indicating that all solutions
with less investment in desalination pay more in recourse cost than
they save from decreasing desalination investment. On the other end of
the spectrum, the robustness focused solution has a desalination cost of
590 MNIS, a 16% increase from the baseline solution, while achieving a
robustness score of 0.98. Representing one of the compromises between
cost and robustness, the solution with a 5% increase in desalination was
the favored solution for 40% of the preference scenarios, the largest of
any of the favored solutions. With a w, range between 0.18 and 0.56,
the solution is predominantly selected in robustness-favored (w, > 0.5)
scenarios, however, it is the only solution that is selected for both a
cost-favored and robustness-favored preference.

4. Discussion
The application of the two-stage framework to the INWSS empha-

sizes the need for quantity—quality models to manage water supply
systems with multi-quality sources under uncertainty. When the Stage



G. Hendrickson et al.

650 \
—_ a
0
. O
<600 ¢
[2]
[e]
O
(0]
[2]
5 550 | @
[]
3
o
: &
& 500 S
g [
o (]
® [ ]
450 -— : : : ‘
400 450 500 550 600

Desalination Cost (MNIS)

Journal of Cleaner Production 415 (2023) 137785

1060

1040

Expected Total Cost (MNIS)

1020 1
@
1000 | @ )
® @
@
980 — : : : :
400 450 500 550 600

Desalination Cost (MNIS)

Fig. 10. Two-stage model results. (a) Expected recourse cost versus desalination cost, (b) expected total cost versus desalination cost. The color of each marker corresponds with
the associated solution in Fig. 9 and the size of each point corresponds to the variance of the recourse and total cost distributions.

1 0.99 0.96
600 - -16%
a) ®
1 ~
580 - ‘
9% e
| e
_ | w
2]
é 560 [
= O 3% ‘
3
540
5 O ‘
£ |
EE +4% | |
‘= ‘ ‘
? 5201 I \ \
2 !
+10%
500 -
o \
1
480 : : :  116% !
09 092 094 096 098 1052 0.92 0.65 0.93
Robustness Score
Ipc Irc Irc Irp Iro Irs

Fig. 11. Optimal solutions ranging from cost-focused to robustness-focused: (a) desalination cost vs. robustness scatter plot of optimal solutions, (b) optimal solutions highlighted

on parallel plot.

I model is solved for the baseline hydrological and demand scenar-
ios, the optimal solution utilizes supply from the more saline source,
Lake Kinneret, to directly supply the demand zones with high salinity
tolerances while mixing with supply from lower salinity sources, de-
salination plants and aquifers, to remain within stricter salinity bounds
for the West Galilee demand zone. As a result of both water outflow
via pumping and solute inflow, the salinity level in Lake Kinneret
increases throughout the year (Fig. 7(b)), highlighting the need to
balance the system objectives of fulfilling system demands, maintaining
water quality, and ensuring sustainable water levels in the natural
resources. While the optimal solution satisfies all constraints for the
baseline scenario, violations with respect to the demand, quality, and
sustainability constraints are incurred when the optimal desalination
production in the baseline scenario is insufficient under new high
stress scenarios. Solutions that register violations represent situations in
which hydrological and demand projections underestimate the severity
of the actual inflows and consumer demands, resulting in recourse
decisions that are unable to compensate for the inadequate supply
from the desalination plants. Overall, the demand, water quality, and
sustainability violations are all localized in different regions of the

12

scatter plots (see Fig. 8), indicating a diverse set of hydrological and
demand input scenarios that will push the system to violate one of the
three constraints.

For decision-makers, the complex problem of regional water man-
agement under uncertain conditions is compounded by multifaceted
goals that can be in conflict with one another. Multicriteria analysis
methods are essential to describe inherent tradeoffs in solution alterna-
tives and present the results in an intelligible manner for stakeholders.
For the INWSS, a clear economic tradeoff exists between the desalina-
tion cost and the expected recourse costs, where greater investments
upfront in desalination tend to result in lower expected recourse costs
(see Fig. 10(a)). However, greater production from desalination plants
only increases the expected total cost up to a point, as increases in
desalination investment past a critical point cost more than the savings
gained in the expected recourse costs. Furthermore, when managing
uncertain outcomes, decision-makers are not only interested in the ex-
pected costs, but in the range of potential costs. In this view, an increase
in desalination investment results in a decrease in the variance of the
recourse and total costs, indicating that paying in advance for greater
desalination production decreases the uncertainty of system perfor-
mance and hedges against extreme outcomes. Another intricacy in the
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management of regional water systems is the balance between system
operational costs and system robustness, a tradeoff that is revealed in
the INWSS decision alternatives through adjusting stakeholder weights
in the PROMETHEE II method. All solutions that increased the desali-
nation investment resulted in greater robustness (see Fig. 11), where
the maximally robust solution increased the desalination investment by
16% from the baseline cost. Likewise, the solution optimized strictly for
the least total cost was the only solution that recommends a decrease
in upfront desalination investment, albeit only by 3% of the baseline
investment.

Aside from the identification of patterns and tradeoffs in the results,
multicriteria analysis also serves the benefit of directly implementing
stakeholder preferences into the decision-making process. By assess-
ing a wide range of future scenarios and computing the effects of
implementing different decisions, the proposed framework allows for
stakeholders to assign their preferences a posteriori to determine the
decision alternative that most closely aligns with their choices. Imple-
mentation of stakeholder preferences a posteriori allows for the rapid
evaluation of sets of different preferences and has the advantage of
concurrent identification of compromises between stakeholder conflicts
and subsequently, minimization of resource expenditures to resolve
those conflicts. For example, out of the final decision alternatives, 40%
of the cost-robustness preference scenarios converged to the same solu-
tion, which also proved to dominate in situations when both cost and
robustness were respectively favored. Given the intricate and complex
nature of water resource systems, as well as the diverse interests of
stakeholders, a participatory modeling approach is emphasized, which
requires close collaboration with stakeholders during model develop-
ment, implementation, and validation. This approach serves to build
trust, foster future collaboration, and promote co-learning amongst
the other stakeholders including water managers, water consumers,
and policymakers (Basco-Carrera et al., 2017). The proposed research
exemplifies such collaborative efforts, where the modeling framework
was iteratively developed with the IWA, who in turn provided essen-
tial data and feedback to validate modeling assumptions and ensure
clarity of presentation. Primary points of emphasis for expanding this
approach include increasing stakeholder engagement in areas of sce-
nario analysis, prioritizing the presentation of comprehensible results
for stakeholders with various levels of familiarity and expertise, and
validating the model with historical events to develop trust in model
predictions.

There are many avenues for extending the proposed research into
other applications. Future work to improve upon this research should
focus on extending the model time horizon to multiple years or decades
in order to analyze long-term tradeoffs, adding other sources of un-
certainty in water resources systems such as population growth and
hydrological recharge to aquifers, and examining potential hazard sce-
narios such as desalination plant failures. For the INWSS, direct exten-
sions include testing the impact of the transboundary water trading
system such as the water-for-energy swap signed between Israel and
Jordan (Vohra, 2021), supporting future planning decisions includ-
ing the addition of a new desalination plant to be built in North
Israel (Maariv Online, 2022), changes in water use and future wa-
ter demand (Kramer et al., 2022). Likewise, the proposed two-stage
modeling framework is also applicable to other water-stressed regional
water supply systems that must manage different water quality sources,
uncertainties, asynchronous decision timelines, and complex objectives.
Potential applications include a focus on the energy-water nexus sur-
rounding desalination plants, where the framework can be utilized to
help optimize desalination production decisions and account for the in-
terplay between water-for-energy and energy-for-water systems (Sood
and Smakhtin, 2014; Helerea et al., 2023). The extension of the pro-
posed framework would require the collection of new data, such as
operational energy intensity data, water and energy cost data, penalty
costs for violating energy and water production commitments, as well
as energy and water departments acquiescent to data sharing and
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co-coordination. In all applications and future work, a participatory
modeling approach is paramount to ensuring applicability of solutions
to real-world systems, which is the utmost priority in the search for
innovative solutions to water scarcity.

5. Conclusions

In this work, a two-stage optimization model combined with mul-
ticriteria decision analysis is proposed as a tool for decision makers
to analyze tradeoffs between implementable decisions for regional
water systems facing uncertainty. The framework is applied to the
INWSS where the effects of upfront investment in desalination on the
system robustness and expected operational cost are determined. This
method is beneficial for systems which do not require parameterizing
the uncertainty with distributions for which sufficient data does not
exist, or might not accurately represent future conditions. Furthermore,
performing the multicriteria assessment a posteriori allows the model
to find a compromise between multiple competing objectives while
sampling large number of uncertain scenarios without creating an
intractably large problem.

More broadly, this work displays the benefits that desalination
investment has on securing the regional water supply under extreme
conditions. Motivated by an imbalance between water availability and
growing demands, the development of the desalination sector in Israel
was made possible through multi-decadal water system planning, sig-
nificant investment of resources into research and development by the
Israeli government, and coordination with desalination and technology
companies through public-private partnerships. The insights gained
from Israel’s pathway to water security provides a blueprint for other
regions looking to integrate desalination and other cleaner production
technologies into their regional water management strategy. Given the
growing trend of desalination around the globe combined with the
increase of extreme climate conditions that defy historical trends, this
methodology can be adapted and implemented to combat the global
challenge of water insecurity.
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