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ABSTRACT

Bismuth oxide exhibits a complex array of structures with a broad range of properties of various technological importance. We derive the phase transition pathway
using the in-situ heating X-ray diffraction data, evidencing four polymorphs of a, , 8, and y. We prove that the observed phase transitions are due to the cooperative
pseudo-Jahn-Teller distortion in the crystal originating from mixing the ground state Biss and excited Big, states. Using the electron localization function and crystal
orbital theory, we explore the role of the Bi>* lone pair in the second-order phase transition. It is found that the 0o, states have a critical role in stabilizing the lone
pair activity, which leads to a pseudo-Jahn Teller distortion cooperatively inducing the phase transition.

1. Introduction

Bismuth oxide (BizO3) has been shown to have widely attractive
properties such as wide optical bandgap, high refractive index, high
dielectric permittivity, and the highest ionic conducting material of all
known oxygen ion conductors, making it suitable for applications that
range from solid oxide fuel cells [1], gas sensors [2,3], optical coating

[4], catalysis [5,6], and optoelectronics [7]. BioO3 exists in four poly-
morphs of a, §, 5, and y [8,9] with additional structures such as e-Bi,O3
(orthorhombic) [10], 0-BizOs3 (triclinic) [11], and n- BiO3 (hexagonal)
[12] reported. The stable room temperature monoclinic o -phase (P24 /c)
transforms to the high-temperature face-centered cubic 5-phase (Fm3m)
with a defective CaFy structure at 730 °C, which is stable up to the
melting point of 850 °C. On cooling, the metastable tetragonal  (P42;c)
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or body-centered cubic y (i23) can be obtained at 650 °C and 640 °C,
respectively, depending on the experimental conditions. The f-a tran-
sition occurs at 400 °C, and the y-a transition occurs at 500 °C [8,13].
Fig. 1 demonstrates this phase transition graphically with respect to
temperature. The temperature-dependent XRD shown in Fig. 1 confirms
the reported values.

The 652 orbitals form the lone pair on the Bi atoms, and the structural
transitions and orientations of the stable and metastable phases can be
attributed to the positions of these lone pairs. The structural relationship
between the different phases of the crystal raises the question of the
underlying mechanism governing the phase transitions in this system.
The different polymorph phases of bismuth oxide have been stabilized at
room temperature by adding various dopant oxides to substitute
different sites in the bismuth oxide crystal [14-17]. The stabilization of
these phases has been extensively studied, but a fundamental under-
standing is still lacking.

The Jahn-Teller effect can be defined as the geometrical instability
due to the degenerate energy levels of the ion, which ultimately leads to
distortion of the crystal field surrounding the ion [18]. In high symmetry
systems with non-degenerate energy levels, the distortion can be
attributed to the pseudo-Jahn Teller effect [19], which can occur due to
the coupling of the ground and excited states. The pseudo-Jahn Teller
effect with the possibility of mixing the 2s and 2p orbitals for a single
electron in the T state through the 71, mode was first shown by Opik and
Pryce [20]. Orgel showed that a stereochemically active lone pair leads
to asymmetric distortion of the octahedra due to the mixing of the s and
p states in non-cubic environments lacking a center of symmetry that can
affect the chemistry of the related ions [21]. The connection between
these distortions and the Jahn-Teller effect for In + ion in the octahedral
environment of the InCl crystal was shown by Maaskant [22]. In crys-
tals, these local distortions can affect the system globally, creating a
cooperative effect and leading to a phase transition. Phase transitions
due to Jahn Teller and pseudo-Jahn Teller effects have been previously
reported in the literature [23].

In this work, we investigate the phase transition path followed by the
bismuth oxide system by calculating the electron localization function
and crystal orbital hamiltonian population to understand the electronic
structure. The location and activity of the lone pair are identified
computationally. We show how the lone pair system in the higher
temperature phase is semi-active due to the hybridization of the Bi-O
orbitals and long-range Bi-Bi interaction. Using the results, we
demonstrate that the Bi center undergoes a pseudo-Jahn Teller distor-
tion leading to the phase transition path of §—f—a, which is observed in
experiments. In this paper, we discuss the transition of §—p—a as we
have shown experimentally through high-temperature XRD and do not
discuss the 8—y—a transition. The stability of the y-phase depends
mainly on impurities and vacancies in the structure, which have also
been discussed by many authors °[8,9,24,25].

2. Computational details

The calculations were carried out using the first principle based on
density functional theory (DFT) [26]. We used the generalized gradient
approximation (GGA) by Perdew-Burke-Erznerhof (PBE) [27] for the
exchange correlation implemented within the projector augmented
wave method [28] in the Quantum Espresso package [29,30]. A plane

! The sample of Bi;O3 was procured from Sigma Aldrich (99.99%). The
temperature dependent XRD was conducted using PANalytical Empyrean
Diffractometer using a standard Bragg-Brentano geometry, 40 kV acceleration
voltage, 44 mA current, and a step size of 0.02°with provision for high-tem-
perature measurement. The data was collected at the heating rate of 10 deg/
min from 25 °C to 600 °C and 5 deg/min from 600 °C to 750 °C. The cooling
rate was set at 5 deg/min from 750 °C to 500 °C and 10 deg/min from 500 °C to
25 °C.
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wave cutoff of 500 eV was implemented with k-point grid density using
the Monkhorst Pack [31] method of 5 x 5 x 5 used for a-BioO3z and 6 x 6
% 6 for p-BinO3 and 8- BipO3 configurations. The structural optimization
was carried out by fitting the energy volume curve to the Murnaghan
equation of state [32]. The position of the atoms was optimized such that
the forces between each atom converged to 0.0006 eV. The density of
states, electron localization function, and band structure for the elec-
trons were computed using the post-processing tool in Quantum
Espresso.

The electron localization function, as shown by Becke and Edge-
combe[33], is the measure of the probability of finding an electron in the
vicinity of another electron. This can provide information about the
core, bonding, non-bonding, and lone pairs in the real space for different
regions in the crystal. The electron localization function (ELF) for the
Kohn-Sham orbitals y; and electron density p is given by Silvi and Savin
[34], defined as:

ELF =
14+ (2

()

where

Z\V

1 IVﬂI

73 2\5/3 53
D/,—10(37[) P

ELF is a dimensionless quantity that varies from 0 to 1 and is close to
1 for regions occupied by paired electrons. ELF has been used to visu-
alize bonding in solids and to study lone pair distortion in different
crystal systems [35,36].

To visualize the local chemical bonding in energy-resolved regions
using density functional theory, Crystal Orbital Hamiltonian Population
(COHP) [37] has found many exciting applications. COHP analysis gives
information regarding bonding, antibonding, and non-bonding energy
regions, along with the contribution of an atom to the distribution of
energies. On the interpretation of the COHP data, a positive COHP value
indicates bonding in the energy region, and a negative COHP corre-
sponds to antibonding. The computer program LOBSTER [38-40] is
used for calculating the COHP in different configurations.

The distortion around the lone pair is caused by the interaction be-
tween the s and p orbitals of the anion and is mediated by the p orbitals
of the cation. This can also be interpreted as a double pseudo-Jahn Teller
effect [41]. The pseudo-Jahn-Teller effect can be evaluated by calcu-
lating the effective force constant, as shown by Bersuker and Polinger
[15,42]

o2

—<o 0>—2Z o

(3Q2

Where H is the Hamiltonian, Q is the normal coordinate, v, is the non-
degenerate ground state, and y, is the excited state. The first term
corresponds to the APES, considering the Born-Oppenheimer approxi-
mation. The second term contributes to the instability of the system,
which is the off-diagonal vibronic coupling constant.

3. Results

The relaxed structure of different phases of Bi;O3 is shown in Table 1.
The calculated lattice parameters were within tolerance with the
experimentally determined values.

4. §- BisOs

The 6 phase of bismuth oxide is the best-known ion conductor, but
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Fig. 1. Phase transition pathways for the bismuth oxide system and the in-situ heating XRD data. Bi>O3 exists in four polymorphs of a, §, 5, and y. The stable room
temperature monoclinic « -phase (P2; /c) transforms to the high-temperature face-centered cubic 5-phase (Fm3m) with a defective CaF, structure at 730 °C, which is
stable up to the melting point of 850 °C. On cooling, the metastable tetragonal § (P42;c) or body-centered cubic y (i23) can be obtained at 650 °C and 640 °C,
respectively, depending on the experimental conditions. The p-a transition occurs at 400 °C, and the y-a transition occurs at 500 °C.

due to its instability at room temperature, it places a limitation on the
application in solid oxide fuel cells. It is usually doped with lanthanide
oxides to stabilize it at lower temperatures, but that decreases its ionic
conductivity [48]. The 5 phase adopts a defective CaF, structure, where
the high ionic conductivity is attributed to the ordered oxygen vacancies
in the system. The oxygen vacancies in the § structure are ordered in
three possible alignments <100>, <110>, and <111> [39,41]

The oxygen vacancy sites for each vacancy arrangement in the
§-BiyO3 crystal lattice are shown in Fig. 2(a—c). The ELF plot in the Bi-Bi
plane is given in Fig. 2(d-f), and the O-O plane is given in Fig. 2(g-i).
The deep blue color in the ELF plot signifies the extreme where the
localization probability is minimum, and the red color signifies the
maximum probability. The PAW calculation considers only the valence
electrons with [He]2522p2 and [Xe]5d'%6s? for the O and Bi atoms,
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Table 1

Calculated and experimental structural properties for different phases of bismuth oxide [9,13,43-47].
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Space group

Lattice Parameters A
Calculated (Expt)

Volume (AB)

a- Biy03 P2;/c
f- Bi»O3 P42;c
8- BiyO3 <100> Fm3m
<110> Fm3m
<111> Fm3m

a = 5.9498 (5.8458) a =1y =90 (90) 346.101
b = 8.3275 (8.1656) p =112.473 (112.969)

¢ =7.5594 (7.5077)

a =7.8791 (7.7439) a=p=y=290(90) 357.182
b =7.8791 (7.7439)

¢ = 5.7536 (5.6287)

a = 5.3760 (5.6607) a=p=1y=290(90) 161.180
b = 5.3760 (5.6607)

¢ = 5.5768 (5.6607)

a = 5.8653 (5.6607) a=p=1y=90(90) 165.627
b = 5.5342 (5.6607)

¢ = 5.5342 (5.6607)

a = 5.4589 (5.6607) a=p=1y=90(90) 162.672

b = 5.4589 (5.6607)
¢ = 5.4589 (5.6607)

(a

N

(d)

(8

<100>

Fig. 2. 8-Biy03: (a—c) The crystal structures indicating the different vacancy configurations (empty red circles). (d—f) The ELFs projected on the Bi-Bi plane are
shown. The asymmetry is seen in the <100> and <110> configurations, whereas the <111> direction is perfectly symmetric across the diagonal. (g-i) The ELFs
projected on the O-O plane are shown with bonding between the Bi-O atoms. (For interpretation of the references to color in this figure legend, the reader is referred

to the Web version of this article.)

respectively. The deep red on the O atom in the O-O plane can be
attributed to the 2s 22p? state.

The ELF plot gives us information regarding the type of bonding
between the Bi-O atom. Based on the ELF plot in the O-O plane, we can
see a lone pair attractor basin between the Bi-O atom indicating a single
o bond between these atoms. The ¢ bond can result from the s-p hybrid
bond between Bigs — Oz, and a p-p bond between Bigp —O2p. The high
symmetry of the structure can point towards the Big, — Oz being present
in the system. The ELF in the Bi-Bi plane around the <100> and <110>
configuration shows a slight asymmetric distribution with its lobe
pointing towards the Bi atom at the vertices of the lattice. The <111>
configuration has a symmetric configuration stretched along the

diagonals. Based on the ELF plots, we can confirm a long-range Bi-Bi
interaction exists. The electron density across the O-O plane for the
8-BipO3 configurations, which is given by Walsh et al. [49], demon-
strated an asymmetric electron density in the <100> and <110>
configuration and symmetric in the <111> configuration, attributed to
active and inactive lone pairs, respectively. In this result, we show that
the lone pair is absent in 8-Bi;O3, and the long-range Bi-Bi interactions
result in asymmetry in the <100> and <110> phases.

We calculate the COHP and partial density of states for the Bi and O
orbitals to investigate the bonding between the Bi-O and to investigate
the availability of energy states. The COHP plot for the different &
configurations is presented in Fig. 3, showing the level of mixing
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Fig. 3. 8-BiyO3: Crystal Orbital Hamiltonian Populations for <100>, <110>, and <111> are given in (a—c) respectively for Bigp-O2p (red) and Bigs-Oap, (blue). The
partial density of states for <100>, <110> and <111> are given in (d—f) respectively Big}, (blue), Oz, (red), Bigs(black). (For interpretation of the references to color

in this figure legend, the reader is referred to the Web version of this article.)

between the different energy states. For the <100> and <110> con-
figurations, there is a strong bonding between the Big - O, states, with a
peak also seen for the bonding between Big, - O, orbitals near the
valence bands. In the conduction band, we have strong bonding char-
acters for Big, - Opp orbitals, with the bonding between Bigs - Ogp
significantly reduced. The partial density of states <100> and <110>
show peaks for the Bigs and Oz, near the top of the valence band with
reduced contribution from the Big, states. The available Big, states
significantly increase in the conduction band compared to the Big, states.
The COHP for the <111> configuration indicates a bonding between the
two orbitals at the valence band and into the conduction band. The
partial density of states for the <111> configuration shows a flat band
across the Fermi level for the Big, with the states significantly increasing
in the conduction band. This can be seen as a semi-metallic behavior for
the <111> configuration.

In the & configuration, the ELF plot shows evidence of an inactive
lone pair, and the COHP plot shows a bonding state Bigs/Bigp—O2p in the
conduction band close to the Fermi energy. As the phase is stable at high
temperatures, the high energy mixing between the Bigs and Big|, can be
concluded. Medvedeva et al. also showed that the Bi-O hybridizes

(b)

through the Bi, ;, , with the neighboring oxygen atoms through the Bisp
- Og), orbital, which confirms our result [38].

5. B-BiyOs3

B-BioOshas a wide bandgap and shows excellent photocatalytic ac-
tivity under visible light [50,51]. The crystal lattice of the p-Bi,O3 can be
considered as an ordered superstructure of the cubic fluorite arrange-
ment with the oxygen vacancies ordered in the <111> and <100> di-
rection [42,52]. The Bi-O4 trigonal pyramids are linked via oxygen
atoms to give empty channels at (0,0, z) and (1/2,1/2, z). The lone pairs
are directed toward these channels. f- BizO3 has a direct bandgap and
was calculated to be 1.8 eV compared to the experimental value of 2.58
eV [53].

The ELF plot for the p phase is shown in Fig. 4 along the Bi-Bi plane.
The asymmetric distribution in ELF indicates where the lone pair is
located at the (% '4 z) channel; Laarif and Theobald have calculated the
position of the lone pair by using the geometric examination of the bond
distances at the same location [54]. The lone pairs are oriented toward
each other, which is not usually expected as the coulomb repulsion due

Lone pairs ©

Fig. 4. B-Bi»03: (a) The ELF in 3D along the Bi-Bi plane, (b) 2D display of the ELF plot across the Bi-Bi plane, and (c) 2D display of the ELF plot across the O-O plane.
The asymmetric distribution of the ELF indicates the position of the lone pair at each view, as pointed by arrows.
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Fig. 5. p-BixOg3: (a) Crystal Orbital Hamiltonian Population (COHP) for with
the bonding character of Big,-Ozp (red) and Bigs-Oop (blue). (b) The partial
density of states for the orbitals Bigy, (blue), O, (red), Bigs (black). (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)

to the lone pair electron charge should orient them away from each
other. The ELF in the O-O plane is shown in Fig. 4, displaying the ¢
bonding between the Bi-O atoms. The Bi-O hybridization of the sp
orbital can follow as an increased spread in the distribution of the
electrons resulting in a semi-active lone pair.

The COHP plot in Fig. 5 demonstrates a Bigs;-O2, bonding state and
Bigp-O2p, antibonding state below the Fermi level. The conduction band
show bonding for both states. In this system, the high energy state is the
bonding/antibonding state between Big,-Ogp orbitals, and the ground
state is the bonding between Bigs-Ozp orbitals. The partial density of
states shows peaks in the Oz, Bigs, and Bigp in the valence band, with
increased states of Bigp in the conduction band. The p- BiyO3 is a high-
temperature phase stable at 630°C-450°C, which can lead to the hy-
bridization of the Bigs and Big, with the Oy, atoms. As the Pseudo Jahn
Teller is due to the mixing of the ground and excited states, we can as-
sume the excited states to be the bonding between the Big,-O2, atoms.

Materials Chemistry and Physics 299 (2023) 127534
6. (X-Bi203

The monoclinic a-phase is the ground state phase for BiyOs. The
a-BipO3 is a subject of significant research, and one may find a great deal
of literature [2,3,55]. The lone pair activity around the Bi atom greatly
influences a highly irregular structure found in this phase. The a-phase
has an indirect bandgap with a calculated value of 2.05 eV compared to
the experimental value of 2.85 eV [56].

The ELF plot across the Bi-Bi plane shown in Fig. 6 has an asym-
metric distribution indicating an active lone pair. Contrary to the
p-BizOs3 the lone pair is oriented away from the Bi atoms. The O-O plane
show bonding between the Bi and O atoms, but a reduction in the lone
pair attractor basin can be seen. The volume of the a-phase is larger than
its higher temperature phases. The COHP plot shows a Bigs-O2, bonding
and Big,-O2p antibonding at the valence bands, similar to the p phase
and bonding in the conduction band. The partial density of states shows
the overlapping O, and Big, near the Fermi level, with the excited states
still dominated by the Bigp, states. Contrary to the p phase, there are
additional peaks in the Bigp, Bigs, and Oy, close to the Fermi level (see
Fig. 7).

7. Discussion

Analysis of vibronic interaction can help study the structural defor-
mation resulting from the phase transition. The distortion in the local
Bi-O bonds is determined by the activation of the lone pair electrons and
the direction it traverses to achieve stability. The PJT problem is the 2-
level problem for the ground and excited state. The strong vibronic
coupling between the ground and excited states leads to the ground state
instability. The local destabilizing force due to the mixing of the ground
and excited states induced by the pseudo-Jahn Teller effects results in a
cooperative effect in the crystal, ultimately leading to the phase tran-
sition. By studying the cooperative pseudo-Jahn Teller effect, we can
accurately describe the distortion modes and reveal different structures
that can be accessible to the system but not thermodynamically favored.
By employing the argument of cooperative pseudo-jahn teller effect, the
stabilization of the high temperature phases of Bi;O3 by different dop-
ants can be explained as an inherent cancellation of the pseudo-jahn
teller distortion due to the reduction in the cooperative effect in the
cooperative effect.

8. 8-p Transformation

The ELF and COHP calculation showed that the high symmetry
8-phase has a mixture of Bigs- O2p and Bigp—Oo) states. The deformation
on the local Bi-Og octahedra in the §-BioO3 phase can be represented by
the local symmetry with point group Op. The energy diagram in Fig. 8
shows that the 8-phase belongs to the Oy, point group with the LUMO in
the T7, mode and the HOMO in the A;g mode.

In the case of Bi-Og, the ground state A;; (HOMO) holds the 6s2 lone
pair couples with the Ty, excited state. As the excited state is degenerate,
it leads to a JT effect within itself, and the problem can be a combination
of the PJ + JT effect. This problem was shown by Bersuker [57] as (A +
T) ®(aig + eg + tag + t1u). As the eg and tag do not couple to the A;g and
Ty, terms, we can consider a pure PJT problem to get an (A1g + T1y) ®t1y
problem.

The Ty, has three functions given by |x>, |y>, and |z>, and the A4
can be given by |s > as shown in Fig. 9(a-b), leading to three components
of the displacements as Qx, Qy, and Q.. The vibronic force constant can
be calculated as

F:<A1g

o0H .
a—Q[‘Tm) 1=Xy,2

Following Bersuker [55], the APES in the dimensional t;, space is
solved with a two-dimensional trough of equipotential minima points, as
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Fig. 6. a-Biz03: (a) The ELF in 3D along the Bi-Bi plane, (b) 2D display of the ELF plot across the Bi-Bi plane, and (c) 2D display of the ELF plot across the

(a) |
6 Bi(65)-0(2p)
Bi(6p)-O(2p)

<

Energy (eV)
fa)

0
E-Ef(eV)

Fig. 7. a-Biy0Os: (a) Crystal Orbital Hamiltonian Population (COHP) with the
bonding character of Big,-O2p, (red) and Bigs-O2p, (blue). (b) The partial density
of states for the orbitals Big, (blue), Oy, (red), Bigs (black). (For interpretation
of the references to color in this figure legend, the reader is referred to the Web
version of this article.)

Energy

A

Thy

1]
|
oy

Fig. 8. Energy diagram for different phases of bismuth oxide based on the point
groups. The cubic &-phase is given by the Oy, point group, the B-phase is given by
the D4 point group, and the monoclinic a-phase is given by the Czp, point group.

shown in Fig. 9(c). The minima indicate a tetragonal distortion based on
the crystal structure of the p-phase.

The stabilization of the & phase can be achieved by doping with a
system to break the cooperative effect for the corresponding distortion.

9. p-a Transformation

Next, we explore the effect of the lone pair on the p to « transition.
The lone pair around the Bi is asymmetric in the p-phase but was shown
to have a wider distribution than the a-phase indicating a semi-active
lone pair. The ELF plot also showed the direction of the lone pair to
point towards the neighboring Bi atom lone pair, and long-range Bi-Bi
interaction can be seen to be present, which is mediated through the
Bigs-Oop hybridization. Based on the energy diagram in Fig. 8, the
B-phase belongs to the Dyg4 point group with the LUMO in the B; mode,
and the HOMO with the lone pair is in the A; mode. The direction of
distortion in a lone pair active system is usually in the direction of the
lone pair as it offers a path of the lowest energy for diffusion. Fig. 10(a)
shows the lone pair location based on the ELF plot. The ground state
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E

(¢)

Fig. 9. Vibration modes of 8-Bi»O3: (a) A;g and (b) Ty, modes in the z-direction are shown. The direction of motion for the oxygen atoms in the vibration modes for
ground and excited states are calculated using character projected operators using group theory [58]. (c) The APES for the A;g + Tiu.

Lone pairs <

(a)

AN

(b)

Fig. 10. (a) Lone pair locations are shown as yellow lobes based on ELF calculation. (b) A; and (c) B; vibrational modes for the Bi atom (purple) show the direction
preferred in the p-Bi,O3 crystal structure. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

vibration of A; is seen to orient towards the lone pair space. The Pseudo
Jahn-Teller problem is given by (A;+B;) ®b; where the ground and
excited state couple through the b; mode.

A similar treatment of calculating the vibronic constant can be
conducted for the f-phase. A more straightforward analysis can be done
based on the treatment of strain in the crystal and how it couples with
the elastic modes. The quadratic representation of the A; mode is \xz +
¥?), and the B; mode is given as |x? — y?), which can be classified as a
symmetry-adapted strain. The }xz +¥?) can be defined as the symmetry
retaining strain and the |x2—y?) can be classified as the symmetry-
breaking strain. The mixing of these two strains can be attributed to
the PJTE. The b; mode couples these two strains with the elastic mode,
leading to a symmetry breaking in the crystal and, consequently, the
structural phase transition.

10. Conclusion

The phase transition pathway chosen by bismuth oxide was inves-
tigated experimentally and theoretically. It was found that the phase
transition relies primarily on the lone pair system. We demonstrate how
the lone pair system evidences the existence of the pseudo-Jahn Teller
effect, leading to phase transition in the crystal. Through the ELF cal-
culations, we predict the location of these lone pairs, and through COHP
calculations, we confirm the bonding and antibonding between the or-
bitals. Investigating the electronic structure of different phases of bis-
muth oxide, we find that the coupling between the ground state Bi-6s
and excited states Bi-6p creates instability leading to a pseudo-Jahn
Teller distortion and the phases observed experimentally. The transi-
tion from the cubic §-phase to the tetragonal p-phase is posed as a
pseudo-Jahn-teller problem given as (A1g + T1y) ®t1y, Which shows the
coupling through the A4 and Ty, state through the t;, mode. Similarly,
the p—a transition is posed as (A;+B1) ®b; problem with coupling the

A; and B; state through the b; mode.
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