This article was downloaded by: [2603:7000:2b42:a600:31el:acd3: 7ele:fe66] On: 01 April 2022, At: 06:53
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Optimization

INFORME JOURNAL
! ON OPTIMIZATION Publication details, including instructions for authors and subscription information:

- - ‘ http:// pubsonline.informs.org

N hd ‘ Gradient Sampling Methods with Inexact Subproblem
‘ = Solutions and Gradient Aggregation

- - ‘ Frank E. Curtis, Minhan Li
1N | l

[ ] ]
:ff*:*- ‘i

To cite this article:
Frank E. Curtis, Minhan Li (2022) Gradient Sampling Methods with Inexact Subproblem Solutions and Gradient Aggregation.
INFORMS Journal on Optimization

Published online in Articles in Advance 01 Apr 2022
. https://doi.org/ 10.1287/ ij00.2022.0073

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’'s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2022, INFORMS

Please scroll down for article—it is on subsequent pages

informs,

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http:// www.informs.org




. INFORMS JOURNAL ON OPTIMIZATION
Infcrms@ Articles in Advance, pp. 1-20

http://pubsonline.informs.org/journal/ijoo ISSN 2575-1484 (print), ISSN 2575-1492 (online)

Gradient Sampling Methods with Inexact Subproblem Solutions
and Gradient Aggregation

Frank E. Curtis,®* Minhan Li®

@Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
*Corresponding author

Contact: frank.e.curtis@gmail.com, (&) https: // orcid.org/0000-0001-7214-9187 (FEC); mil417@lehigh.edu (ML)

Received: August 6, 2021 Abstract. Gradient sampling (GS) methods for the minimization of objective functions
Revised: January 2, 2022 that may be nonconvex and/or nonsmooth are proposed, analyzed, and tested. One of the
Accepted: January 8, 2022 most computationally expensive components of contemporary GS methods is the need to
Published Online in Articles in Advance: solve a convex quadratic subproblem in each iteration. By contrast, the methods proposed
April 1, 2022 in this paper allow the use of inexact solutions of these subproblems, which, as proved in
hitps:/doi.org/10.1287/ij00.2022.0073 the paper, can be incorporated without the loss of theoretical convergence guarantees.

Numerical experiments show that, by exploiting inexact subproblem solutions, one can
Copyright: © 2022 INFORMS consistently reduce the computational effort required by a GS method. Additionally, a

strategy is proposed for aggregating gradient information after a subproblem is solved
(potentially inexactly) as has been exploited in bundle methods for nonsmooth optimiza-
tion. It is proved that the aggregation scheme can be introduced without the loss of theoret-
ical convergence guarantees. Numerical experiments show that incorporating this gradient
aggregation approach can also reduce the computational effort required by a GS method.

Funding: This work was supported by the National Science Foundation Division of Computing and
Communication Foundations [Grants CCF-1618717, CCF-1740796].
Supplemental Material: The online companion is available at https://doi.org/10.1287 /1j00.2022.0073.

Keywords: nonsmooth optimization « nonconvex optimization « gradient sampling - inexact subproblem solutions « gradient aggregation

1. Introduction

The gradient sampling (GS) methodology (Burke et al. 2005) has proved to be effective for solving nonsmooth,
nonconvex minimization problems. Based on the conceptually simple idea of computing an approximate e-steep-
est-descent direction at a point by finding the minimum-norm element of the convex hull of gradients evaluated
at randomly generated nearby points, one can prove convergence to stationarity of a GS method under relatively
loose assumptions. That said, here are two ways in which implementations of GS methods could be more
efficient:

e Each iteration of a GS method requires the solution of a convex quadratic subproblem (QP) for computing a
search direction. The overall computational expense of a GS method could be reduced if one could terminate each
call to a QP solver early and then employ the inexact QP solution as the search direction in the “outer” GS method.
Such an inexact solution might cause a search direction to be less productive than if an exact QP solution were com-
puted, meaning that more outer iterations may be required. However, as in other optimization algorithms that
exploit inexact subproblem solutions, one might still obtain overall computational savings through consistently
reduced per-iteration costs.

e Bundle methods represent another important class of algorithms for nonsmooth minimization. Implementa-
tions of bundle methods can be made significantly more efficient through the use of subgradient aggregation,
wherein one can compress the information from a QP solution such that a subsequent QP can be solved more rap-
idly. Implementations of GS methods could be made more efficient if such an idea could be incorporated.

In this paper, we propose enhancements to the GS methodology such that one can exploit inexact subproblem
solutions and gradient aggregation. (We do not refer to subgradient aggregation because the GS methodology
requires the identification of points at which the objective function is differentiable or even continuously differ-
entiable, at which gradients are to be evaluated when search directions are being computed.) We show techni-
ques for exploiting these ideas that maintain the convergence guarantees of previously proposed GS methods.
Implementations of our ideas in a C++ software package show that exploiting both inexact subproblem solutions
and gradient aggregation can lead to consistently noticeable reductions in required computational effort.



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
2 INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS

1.1. Literature Review

The GS methodology was introduced by Burke et al. (2005); see also Burke et al. (2002). Shortly after, Kiwiel
(2007) showed an elegant convergence analysis of a GS method and showed how the convergence guarantees
could be maintained by multiple variations of the basic approach. Kiwiel (2010) also proposed and analyzed a
derivative-free GS method aimed at avoiding the cost of gradient computations. Later, Curtis and Que (2013,
2015) showed how one could sample gradients adaptively and introduce quasi-Newton Hessian approximations
to maintain convergence guarantees while improving practical performance. (Here, as is common in the litera-
ture on quasi-Newton methods for solving nonsmooth optimization problems, we use the term “Hessian approx-
imation” loosely; rather than as an approximate second-derivative matrix, it should merely be thought of as a
matrix that approximates local changes in the gradient at points at which f is differentiable.) See also Curtis et al.
(2020) for how to loosen the restrictions on the Hessian approximation scheme. A feature of the algorithms in all
of these articles is that the analyses require that the convex QP subproblems for computing search directions be
solved exactly in every iteration.

A method for reducing the costs associated with solving QPs in a GS method was proposed by Maleknia and
Shamsi (2020). In this work, the authors argue that an “ideal” direction, which can be computed using a rela-
tively inexpensive procedure, can be used in place of a QP solution when it is found to be sufficiently large in
norm. The authors argue that convergence guarantees are maintained with this replacement and show empiri-
cally that fewer QPs need to be solved. Our proposed approach is different from this one in two main respects.
First, rather than prescribe a formula for a particular direction that may be used, our algorithm involves condi-
tions for an inexact QP solution that are more generic. This gives more computational flexibility to the algorithm.
Second, whereas the algorithm by Maleknia and Shamsi (2020) still requires that some QPs be solved exactly—
such as when the ideal direction is too small in norm, which occurs when approaching stationarity—our algo-
rithm allows for inexact solutions of the QPs in all cases.

GS ideas have been extended in various ways, such as to attain good local convergence rate properties (Helou
et al. 2017) and to solve constrained optimization problems (Curtis and Overton 2012, Tang et al. 2014, Hosseini
and Uschmajew 2017). See Burke et al. (2020) for further discussion. Such extensions are beyond the scope of this
article, wherein we focus on techniques for unconstrained minimization that ensure convergence from an arbitra-
rily chosen starting point. That said, our proposed enhancements could be employed in conjunction with these
extensions.

Another prevailing methodology for solving nonsmooth optimization problems is the class of bundle meth-
ods, which have a long history (Mifflin 1982; Kiwiel 1985a, b, 1996, Schramm and Zowe 1992; Hiriart-Urruty and
Lemaréchal 1993; Lemaréchal et al. 1995; LukSan and VI¢ek 1998; Haarala et al. 2004, 2007; Mifflin and Sagas-
tizabal 2005; Ruszczynski 2006; Apkarian et al. 2008; Hare and Sagastizabal 2010). We also direct the reader’s
attention to more modern bundle methods that exploit inexact function value and derivative information; see,
for example, de Oliveira et al. (2014), de Oliveira and Solodov (2016), van Ackooij and Frangioni (2018), and
Hare et al. (2016). The technique employed in some bundle methods that is relevant for this paper is that of sub-
gradient aggregation; see, for example, Kiwiel (1985a). The use of aggregation in this paper is similar although
the surrounding convergence analysis is different because of the distinct differences in the convergence analyses
of bundle and GS methodologies. For one thing, convergence analyses of GS methods are inherently probabilistic
because of the random sampling of points.

1.2. Notation

We write R to denote the set of real numbers, R" to denote the set of n-dimensional real vectors, and R"*" to
denote the set of m-by-n-dimensional real matrices. For any symmetric H € R™", we write H > 0 to indicate that
H is positive definite. For H € R™" such that H >0, we define the corresponding norm |[[t||; := VoI Ho for any
veR". We write N:={0,1,2,...} to denote the set of nonnegative integers and use 1 to denote a vector of ones
whose length is determined by the context in which it appears (e.g., through an inner product with a vector of
known length). For any countable set S, we write |S| to denote the cardinality of S.

Throughout the paper, we consider the minimization problem

min f(x), M

xeR"
where the objective function f : R” — R satisfies the following assumption.

Assumption 1. The objective function f is bounded below over R", locally Lipschitz on R", and continuously differentiable
on an open set D with full measure in R".



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS 3

We propose GS algorithms, each of which is designed to produce an iterate sequence—that is, {x;} with x;, € R" for
all k € N—converging to stationarity of f, which is to say that any cluster point of {x,} is stationary for f. Throughout,
we refer to stationarity in the sense of Clarke (1983). Such stationarity for f can be defined as follows. By Rademacher’s
theorem under Assumption 1, the (Clarke) set of generalized gradients of fat x € R" is given by

f (x) = conv{klim VF(x) - {xx} = x withx, e Dforall ke N}; 2)

see Clarke (1983, theorem 2.5.1). For € € [0, o), the set of e-generalized gradients of fat x € R" is
Oef (x) = convdf(B(x,€)), where B(x,e):={x e R":|[x — 1, < €}. (3)

One finds that df (x) = 9f(x); see Goldstein (1977, corollary 2.5). A point x € R" is said to be e-stationary for f if
0 € O¢f (x) and is said to be stationary for fif 0 € df(x).

One could remove from Assumption 1 the assumption that f is bounded below, in which case the methods we
propose would terminate finitely at a stationary point for f or, with probability one, generate iterates that either
converge to (e-)stationarity for f (see Theorems 1 and 2) or have objective values that diverge to —co. However, to
focus on the more interesting setting, we include in Assumption 1 that f is bounded below, meaning this latter
case cannot occur. For the algorithms that we propose to be well-posed, one only needs to assume that f is (not
necessarily continuously) differentiable in an open set with full measure in R"”. However, a theoretical guarantee
of convergence to stationarity requires that f be continuously differentiable over such a set as we have included
in Assumption 1. See Burke et al. (2020) for further discussion.

The first algorithm that we propose (see Algorithm 1) has a nested loop (with the “inner” loop being stated in
Algorithm 2). Iterations for the outer loop are indexed by k € N. We apply this iteration number subscript to other
values—in addition to x;—computed in the outer loop of the algorithm. Iterations for the inner loop are indexed
by j € N. Quantities computed during the inner loop are denoted with a double subscript; for example, d ;.

1.3. Outline

In Section 2, we propose and analyze an algorithm that employs inexact subproblem solutions. In Section 3, we
propose gradient aggregation within a GS method and show that it can be used while maintaining the same
guarantees as the method from Section 2. Numerical experiments employing both techniques are presented in
Section 4. Concluding remarks are given in Section 5.

2. GS Algorithm with Inexact Subproblem Solutions

We propose a GS algorithm that allows for the use of inexact subproblem solutions in each iteration. In this sec-
tion, we present the proposed algorithm and then prove that iterates generated by it converge to (e-)stationarity
with probability one. In our presentation, we focus on the components of the algorithm and analysis that are dis-
tinct from previous GS methods. Details that are not new are provided in an online companion to this article.

2.1. Algorithm Description
In iteration k€N of our proposed algorithm, an iterate x; € D is available along with a sampling radius
€x € (0,00), a set of sample points

Xy :={xr0,Xk1, - - -, Xip, } C B(xy, €) N D where x; = x; for some py € N,
and the corresponding matrix of gradients
Gri=[Vflxro) Vf(wa) - Vf(xip,)] e RPHD, 4)

Given this matrix of gradients, a symmetric positive definite Hessian approximation Hy, and the corresponding
inverse Wy := H; !, the search direction is computed by approximately solving the primal-dual pair of QPs given by

1 1
min  z+= ||d]? max —= ||Guyll3
(P) :={ (@2)eR" 2 Il and (D):= {veR*" 2 G, : (5)
st. Gid<z1 st. 1Ty=1,y>0

We assume that both Hy and Wj are available for all k € N. It is straightforward to maintain both approximations
through the use of quasi-Newton techniques.



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
4 INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS

Letting (dy ., zx.) denote the optimal solution of (P) for each k € N, one finds that the solution component dj .
can be viewed as the minimizer of the piecewise quadratic function

1
T, 212
x| { Vf (xx,) d} + 5l -
The optimal solution y; . of (D) can be viewed as the vector such that Gyyy . is the least Wi -norm element of the
convex hull of the columns of Gy, that is, the Wi-projection of the origin onto this hull. The following lemma
reveals important properties of these solutions.

Lemma 1. For all k € N, either (dy ., z..) = (0,0) and the origin lies in the convex hull of the columns of Gy or dy.. is a direc-
tion of strict descent for f at x; with

Vf (i)' dy,. < —d} Hyd,. < 0. (6)
In all cases, di. = =WiGiyi,. and |Gy llw, = I, -

Proof. The properties follow from the Karush-Kuhn-Tucker (KKT) conditions for (5); see, for example, Curtis
and Que (2013, equation (27); 2015, lemma 2.2). O

As our focus is on an algorithm that solves (5) approximately for all k € N, the statement of our algorithm is
facilitated by defining, in each outer iteration, sequences of inner iterates of a solver for the primal-dual subpro-
blems (5). Let {(dx,z;)} and {y;} be sequences of primal and dual iterates, respectively, generated when (5) is
solved iteratively. Our algorithm requires that both primal and dual QP iterate sequences are generated. How-
ever, this is not an expensive requirement. After all, motivated by Lemma 1, one may choose for a given yj,; €
R to set

dij — —WiGryrj and zj < max Vf(xk/i)Tdk,j, (7)

i€{0,...,pk}
in which case one only needs to generate a dual iterate sequence, and a corresponding sequence of primal-
feasible solutions is obtained through (7). In addition, to reduce expense, one does not need to evaluate (7) in
each inner iteration; one might only evaluate it and check for termination periodically and/or after an initial
number of inner iterations. In any case, for the sake of generality, we define our algorithm to allow {d;} and
{=WiGryij} to differ.
With respect to the QP solver, we merely assume that the following holds.

Assumption 2. For all k€ N, the primal and dual iterates when solving (5) satisfy {(dxj, zk;, Yi;)} — (ks Zksr Vi) In
addition, for all (k,j) € N X N, one has

Gld; <z 1, 1Ty =1, and yy; >0,
that is, (dy.j, zxj, Yx ;) is primal-dual feasible for all (k,j) € N X N.

Under Assumption 2, the primal and dual iterates satisfy weak duality with respect to (5) for all (k,j) € N x N.
In particular, defining the QP primal and dual objective functions gi: R” x R — R and 0y : R**' — R, respec-
tively, where

1 1
9¢(d,2) =z + 5 |y, and Ox(y) =~ [Gylly,

one has that gx(dy j, zx,) > Ok(yx,) for all (k,j) € N X N.

Our algorithm with inexact subproblem solutions is stated as Algorithm 1, for which the details of the search
direction computation are stated in Algorithm 2. The statement of Algorithm 1 focuses on its unique aspects
related to the conditions that we require of inexact QP solutions. Other subroutines that we employ for the line
search, iterate perturbation strategy (a feature required by the theoretical convergence analyses of all GS meth-
ods), sample set updates, and quasi-Newton updates are similar to those used in Curtis and Que (2015) and Cur-
tis et al. (2020). Hence, we relegate them to the online companion. The algorithm also requires a subroutine for
setting parameters related to the quasi-Newton updates that influence the line search subroutine. The approach
is derived from properties of the self-correcting nature of quasi-Newton updating; see Byrd and Nocedal (1989).
This subroutine is also provided in the online companion.

Each iteration of Algorithm 2 takes an approximate subproblem solution from the QP solver. The loop termi-
nates in one of two situations. If (10) holds, then one has obtained a dual iterate such that the corresponding



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS 5

convex combination of columns of Gy is sufficiently small in appropriate norms. In this case, one has identified
that the current iterate may be sufficiently close to €;-stationarity, in which case Algorithm 1 reduces the sam-
pling radius. On the other hand, if (11) holds along with either (12) or (13) (see Algorithm 2), then our analysis in
the following section reveals that a sufficiently accurate QP solution yielding a direction of sufficient descent has
been obtained. Condition (11) is motivated by Lemma 1, specifically (6), because (dx, yx) = (=WiGrr o, Yi,j,) yields

(11)
Vf(xk)Tdk = —Vf(xk)TWkayk < —KyZGZWkayk = _KdZdek-

The role played by Conditions (12) and (13), which make use of the values defined in (8) and (9) (see Algorithm 2),
is explained in the following section.

Notice that an implementation of Algorithm 2 does not require storage and a search through all previous sub-
problem solutions when determining the indices in line 4. One only needs to store the best (in terms of objective
values) primal and dual solution estimates during the loop and employ these values when checking for termina-
tion of the loop. Line 4 is only written in this manner for ease of exposition and to allow us to consider situations
in which these inner iterations do not necessarily produce primal and dual subproblem solutions that have objec-
tive values that converge monotonically to the optimal value.

Algorithm 1 (Gradient Sampling Algorithm with Inexact Subproblem Solutions)
Require: (0,a) € (0,00); (1,9) € (0,1)% ¢ € (1,00); ¥ € (0,1]; p € N with p > n+1; xo € D; Hy > 0; €9 € (0, 00).
1: Set Wy « Hy?, Xo < {xo}, po < 0, Go by (4), and g « 0.
2:Set (1, 11) € (0,1) X (1, 0) by Online Algorithm 4 (Parameter Selection).
3: Choose ne(n,1).
4:forall ke N do

5: if [[Vf(x)ll, = 0 then

6: terminate and return the stationary point x;.

7 end if

8: Set yy.j, by Algorithm 2 (Search Direction Computation).
9: Set (dr, yi) < (=WiGiYx o Yk jo)-

10: Set ay > 0 by Online Algorithm 5 (Armijo-Wolfe Line Search).
11: if (10) (see Algorithm 2) holds with vy ;, = yx

12: set €x11 < Yep and oy < 0;
13: elseif oy >

14: set €xy1 «— € and 0y — Ok;
15: else

16: set €xy1 < € and Oy « (0}
17: end if

18: Set X111 € D by Online Algorithm 6 (Iterate Perturbation).

19: Set (Hy+1, Wit1) by Online Algorithm 7 (Approximation Updates).

20: Set (Xk+1, Pr+1) by Online Algorithm 8 (Sample Set Update) and Gy by (4).
21: end for

Algorithm 2 (Search Direction Computation for Algorithm 1)
Require: v € (0, 00); (p, k) € (0,1)
1: Set
Ty — 07 + 204 € (0,1). (8)
2:forallje N do
3: Set (dyj, zx, yx,j) satisfying Assumption 2 from the jth iterate from a solver for (5).
4: Set ji; «— arg min;c(o,. . jy G(dk,i, k) and jo «— arg maxc(o,... j Ox(Yi,i)-
5 if qk(dk,jq,zk,jq) > 0, then set /\k,jq =00
6 else set

Ok (yk0)
k(@i jy 1 Zkjg)

242
Akj, < max{l - M, p}. 9)
-1

7: end if



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation

6 INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS
8 if
max{|[WiGi¥ioll2 IGrvkjolla} < ver, (10)
9: then terminate and return yy ;,;
10: else if
—Vf(xk)TWkayk,ja < —K]/,ZJ-HG]];Wkayk,ja (11)
11: and either
qx(dxj, zxj,) — Ok jy) < Te(—qr(dj,, 2xj,)) (12)
12: or
Ok (Ykjo) — Ok(Yio) = Ak, (qk(dkj,, 2kj,) — Ok(Yk0)) (13)
13: then terminate and return y; ;.
14: end if
15: end for

2.2. Inexactness Conditions for the QP Solver
Convergence analyses of GS methods rely on a fundamental property of any compact, convex set, call it S CR”,
that does not contain the origin. Intuitively, this property is that, if u € S is sufficiently close to the projection of
the origin onto S, then u makes a sufficiently acute angle (with respect to a given metric) with any v € S. Such a
lemma appears as Burke et al. (2005, lemma 3.1) and Kiwiel (2007, lemma 3.1) and is proved in a more general
setting as Curtis and Que (2015, lemma 3.5). The conditions that we impose on inexact subproblem solutions are
motivated by trying to ensure a property of this type but in an even slightly more general setting. Specifically,
the lemma that we use is the following. In the lemma, we refer to the concept of a W-projection (with W > 0) of
the origin onto a compact, convex set S, that is,

Pw(S) := arg min [ls]|y. (14)

s€S

Our new generalization of the lemma can be seen in Inequality (15), which does not require that a given vector
u € S is sufficiently close to the W-projection of the origin, but merely sufficiently close to a small enough neigh-
borhood of this projection.

Lemma 2. Suppose S CR" is a_compact and convex set with 0 ¢ S. For any B €(0,1) and W >0, there exists (c,0) €
(1} oo)2 such that, for any (1,0,2,0) € S X S X (0,¢] % (0,6] with

[l < (1 +2) [IPw(S)llw +6 (15)
(where Pw(S) is defined in (14)), it follows that v" Wu > B ||u||€\,.

Proof. Consider arbitrary f € (0,1) and W > 0. To derive a contradiction, suppose the implication is false; that is,
for any (¢, 0) € (0, 00)2, there exists (1,v,¢,0) € Sx S x (0,¢] x (0,6] with

el < (1+2) IPw(S)ll +6 and 0" Wu < B [julfy, -
This means that there exist infinite sequences {u;} C S and {v;} C S such that
il < (1+1/0) |IPw(S)lly + 1/i and ol Wu; < B ||ui||$,\, forall i€ N. (16)

Because S is compact, these sequences have convergent subsequences; hence, without loss of generality, one can
assume that {u;} — u and {v;} — v for some (u,v) € S x S with

o' Wi < B |lulfy - (17)

On the other hand, by the definition of {1}, it follows that u = Py/(S), which is nonzero because S does not
include the origin. Moreover, by Bertsekas (2009, proposition 1.1.8) and the definition of Pw/(S) (as the W-projec-
tion of the origin onto S), one finds that

(0 - 1) W(o—u) <00 Wi > [llfy,

which contradicts (17) because g € (0,1). O



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS 7

Our goal now is to prove two lemmas that motivate the use of (12) and (13) as stopping conditions for the loop
in Algorithm 2. Specifically, if Ox(yi.) <0, each lemma shows that these conditions—(12) and (13), respectively,
in the two lemmas—imply that

0> Ox(ykj,) = (1 +0%) Ok(ys.) (18)
=0 < [|Grykjollw, < (1 +01) IGryi-llw, -

Importantly, these algorithmic conditions imply that (18) holds without knowledge of yi .. The inequalities in (18)
are important because they, along with Lemma 2 (c.f. (15)), play a central role in our convergence analysis in Sec-
tion 2.3 for Algorithm 1.

Lemma 3. Suppose that, in iteration k € N of Algorithm 1, one has Ox(yy.) < 0. In addition, suppose that, during iteration
j €N of Algorithm 2 (during outer iteration k € N), one finds that (12) holds. Then, (18) holds.

Proof. By weak duality for (5), one has that

Ok (W) = OcWijo) < a(dj,, zkj,) — Ok(Yijy)
and  — q(dj,, zk,,) < —Ok(Yi..)-
Combined with (12) and (8) (see Algorithm 2), it follows that

Oc(Yi) — Ok(Wkjy) < Te(—Ok(k)) = (0f + 20 (=6x(yx..)),
which shows that (18) holds as desired. O

When 0k(yx.) <0, weak duality for (5) implies that (12) (see Algorithm 2) can hold only if g(dy;,,z;,) <0.
Hence, one does not need to check if gi(dy,,, zx;,) < 0 holds before employing (12) as a stopping condition for the
QP solver. By contrast, the next lemma shows that (13) (see Algorithm 2) should be used as a stopping condition
for the QP solver only if qk(dk,jq,zk,jq) <0. Algorithm 2 ensures this by setting Ay, < co when qk(dk,jq,zk,jq) >0, and
otherwise, the lemma shows that A, € (0,1).

Lemma 4. Suppose that, in iteration k € N of Algorithm 1, one has Ox(yx.) < 0. In addition, suppose that, during iteration
j € N of Algorithm 2 (during outer iteration k € N), one finds that qi(dy,, zx;,) < 0 and (13) holds. Then, (18) holds.

Proof. By g(dx,, zk,) < 0 and weak duality for (5), one finds in (9) (see Algorithm 2) that

Oclyeo) o ¢ (19)
Qk(dk,jquk,jq)
If Ok(yx0) = Gx(dr,,, 21, ), then (dx,,, zxj,, yro) is a primal-dual solution of (5) and Ox(yko) = Ok(Yx,j,) = Ok(Yx,.), which
means that (18) holds. Hence, we may proceed under the assumption that 6x(yxo) < qx(dkj,, zx;,) <0, which
implies that (19) holds strictly. Observing (9) (see Algorithm 2), one finds Ay, € (0,1). This fact, (13) (see Algo-
rithm 2), and weak duality for (5) imply

Ok(Wrjo) — Ox(yro) = Ak, (qk(dj,, 2k s,) — O(Wro))
> Mej, (Ok(k,.) — O(yk0)) 2 0,

which, along with Ay € (0,1) and the facts that 6x(yx.) < 0 and

Ok(Wko0) < Or(Wko)
Ok(k) ~ qeldr, 2k,)

0
= Bu(yeo) > — k0 0k,

qk(dk,j,,rzk,jq
implies that
Ox(Wkjo) = Akj, OxWi) + (1= Ak, ) Ox(Yi0)
1 q

Ox(Yx0) (20)

> A+ (1= Aip) —T0 g ().
= Ak,]q +( k,]q)qk(dk,quzk,jq) Gk(yk, )

In addition, one finds that Ay, in (9) (see Algorithm 2) satisfies

Okyko) 2
G% + 20} _ akldig sz gy) (1+0x)

Ok (Yr,0) 1 - O (Wk,0)

Wiy rZijq) Wiy rZijq)

Ak,jq >1-

7



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
8 INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS

implying that

Ok(Yro0) 2
— " < (1+o0y),
Ty, ) = W)

which, along with (20) and the fact that O(vx.) < 0, shows that

Ak/jq + (1 — Ak:jq)

Ox(Yko0)

IR 6 () = (1 + 002 0(yk),
7y, 77) K (Yi) = ( %) O0(Wx,)

Qk(yk,jo) = Ak,]ﬁ + (1 - Akr/a)
as desired. O

2.3. Convergence Analysis
In this section, we show under Assumptions 1 and 2 that Algorithm 1 either terminates finitely with a stationary
point for f or, with probability one, generates a sequence of iterates that converge to stationarity for f. Throughout
this section, let K be the indices of the outer iterations performed by the algorithm before termination (if the algo-
rithm ever terminates) or the failure of a subroutine (if a subroutine ever fails). The subroutines that may fail are
the iteration perturbation procedure (Online Algorithm 6) and the sample set update (Online Algorithm 8),
wherein failure means that a loop does not terminate. If such an event occurs in iteration k, then K = {1,...,k}. If
the algorithm never terminates and no subroutine ever fails, then one simply has that the iterations performed
are £ =N.

We begin by showing that the algorithm is well-posed along with important properties of the subroutines
stated in the online companion.

Lemma 5. Algorithm 1 is well-posed; it either terminates finitely or, with probability one, it performs an infinite number of
iterations. In any case, for all k € K, the following hold true.

a.Hk>0ande=H,:1 > 0.

b. (A, yo) satisfies [, = Gl

c. In line 10, Online Algorithm 5 terminates finitely with ay > 0. If py <p, then oy = 0 or oy € [a, @]. Otherwise, if px = p,
then oy € (0,@]. In any case, if ay > 0, then

(i) = (e + aveeti) > nevemax{|ldill3 , IGiyill3} (21a)
and v'd > nVf (xk)Tdk, wherev € Of (xi + oy dy), (21b)

or at least (21a) holds (which is sufficient if deemed by Online Algorithm 5).
d. In line 18, Online Algorithm 6 yields, with probability one, Xy, € D satisfying

Fxe) = f(xee1) = nagmax{|dl3 , IGeyil3}, (22a)
Vf(xee1) di > 7VF () dy, (22b)
and ||+ i = xeiall, < min{ag, edmin{|ldely, Gy}, (220)

or at least satisfying (22a) and (22c) (which is sufficient if deemed by Online Algorithm 6).
e. If line 20 is reached and one finds that

el > & lkl; and oy > a, (23)
then Online Algorithm 8 yields X1 < {Xy11} and pyyq < O; otherwise, with probability one,
X1 & (X1} U Spar U (X N B(xpr1, €k41))) C B(Xps1, €x41) With pryq = min{py +1,p}.

Finally, let Kuw:={k €K :oqdy =: s, £ 0}, which are the indices for which Online Algorithm 7 may yield
(Hys1, Wis1) # (Hi, Wi). If Ky w is infinite, then for any x € (0,1), there exists (i, 1) € (0,00)* with u < such that, for
every K € N, the following hold for at least [ xK values of k € K w: B -

111Gyl < I1Giyiliy, (24a)
and [WiGiyillz < T IGuylz - (24b)
If KCu,w is finite, then such constants exist satisfying (24) for all k € KC.

Proof. If the algorithm reaches iteration k € K in which the condition in line 5 holds, then the algorithm termi-
nates finitely. In this case, all subroutines in iterations {0,1, ...,k — 1} must have terminated successfully prior to



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS 9

termination. Moreover, in this case, (24) follows from the fact that only a finite number of iterations are per-
formed and the following proof of part (a) of the lemma.

a—d. The facts that Hy > 0 and Wy > 0 follow from the initialization of the algorithm. Now suppose that iteration 1
is reached. If 59 = 0, then H; < Hj > 0 and W; < W, > 0; otherwise, positive definiteness of H; and W follows the
fact that (EC.1) implies s]vp > 0 and from well-known properties of Broyden-Fletcher-Goldfarb-Shanno (BFGS)
updating; see, for example, Nocedal and Wright (2006, chapter 6). Inductively, positive definiteness of Hy and Wj
for any k € N follows by the same arguments.

This completes the proof of the lemma for the case when the algorithm reaches k € IC at which the condition in
line 5 holds. Hence, we may proceed under the assumption that this condition does not hold for any k € K.
Suppose that the algorithm reaches iteration k € K. To prove that, with probability one, it reaches iteration k + 1
(i.e., without failure of a subroutine), it suffices to prove parts (b)—(e) (because part (a) has been proved
already).

b-d. By part (a), one has Hy >0 and W; > 0, from which it follows that strong duality holds at the primal-
dual optimal solution of (5). Because Ox(y) <0 for all y € N, there are two cases to consider, namely, whether
Ok(yk.) =0 or Ok(yk.) <O0. First, suppose that O;(yx.) =0. Because Wi >0, this implies that Gy . =0. Under
Assumption 2, we have that yi; — yi .. This limit, the fact that Gyyi. =0, and the facts that Wy >0 and €, >0
together imply that (10) (see Algorithm 2) holds for some sufficiently large j € N. Now suppose that Ox(yx.) <O0.
If (10) holds for any j € N, then the inner loop terminates, and there is nothing left to prove; hence, we may pro-
ceed assuming that (10) does not hold for any j € N. Under Assumption 2, we have that (dx, yx,;) = (dk. Yi,.)-
This limit, continuity of g, and 0y, the fact that Ox(yx.) <0, strong duality for (5), Lemma 1, and the fact that 7 €
(0,1) imply that (11) and (12) (see Algorithm 2) will be satisfied for some sufficiently large j € N. Finally, the
fact that H = W, ! and at termination of the inner loop the algorithm yields d = —W; Gy, implies that ||, =]
Gryillw, as desired.

c—d. The proof follows in the same manner as that for Curtis and Que (2015, lemma 2.3).

e. The proof follows in the same manner as that for Curtis and Que (2015, lemma 2.5).

Because we have shown that, if the algorithm reaches iteration k € K, then it reaches iteration k + 1 with proba-
bility one, it follows that, again with probability one, an infinite number of iterations are performed. Finally, with
respect to the stated property of the sequence {(Hx,Wi)}ex,, . the proof follows in the same manner as that for
Curtis et al. (2020, corollary 3.2). O

The next three lemmas are similar to results previously proved for GS methods. First, the following lemma is a
simple consequence of the previous lemma (specifically, parts (c) and (e)) and the sample set update strategy,
namely, Online Algorithm 8. A similar result was proved as Curtis and Que (2015, lemma 3.3).

Lemma 6. If K =N, then IC, := {k € N : oy > 0} is infinite.

Proof. Suppose K = N and observe by Lemma 5(c) that o, > 0 for all k € N. In order to derive a contradiction, sup-
pose that there exists an index k, € N such that ay =0 for all k€ N with k > k,. By Lemma 5(c), this means that
pe <p—1 for all k > k,. However, with a; =0, one finds that (23) does not hold, which by Lemma 5(e) implies
that pry1 > min{py + 1, p}. This implies the existence of some k > k, such that p; > p, which by Lemma 5(c) implies
that a; > 0, a contradiction of the definition of the index k,. O

The next lemma shows a useful upper bound on the objective function value at iteration k + 1 € K; for a similar
result, see, for example, Curtis and Que (2015, lemma 3.4).

Lemma 7. Ifk+1 € K, then

1
frn) <fxx) - Eﬂ [besr — xkllzmaX{IIdkllz, ||Gk]/k||2}-

Proof. Suppose k + 1 € IC, which implies that k € K. Lemma 5(a and b) implies that d = 0 if and only if Gyyy = 0. If
dr = 0 and Gyyi =0, then xy41 = x;, and the result follows trivially. Otherwise, in iteration k € X, Lemma 5(d)
shows that xy,; satisfies (22a) and (22c). The triangle inequality and (22c) implies

[tier = xila < min{ay, e ymin{ldl, [1Geyilly} + aue [l
< aye [[didlyming{2, 1+ [IGiyidlz / lIdill, }-



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
10 INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS

Hence, along with (22a), one finds that
fi) = f(x) < —nagemax{[ldll3 , 1IGryil2}
= —nay dlmax{lldily, Gyl / i}

max{[dll, IGkyall? / i}
min{2,1+ ||kak||2/ ||dk||2}

< =1 |beesn = xll

1 e = xilymax{lidill, Gy},

N[ =

as desired. O

Now, we enter the core theory of GS methods. At its heart is the closure of the convex hull of gradients at
points of differentiability in an €,-neighborhood about a given point X € R", namely,

G(X, ex) := clconvVE(B(X, ) N D). (25)

Along with this, for any w € (0, ), the subset of the Cartesian product of e,-balls about x; is given by

Pk
Ti(X,w):= {Xk € l—[(IB(xk,ek) ND):
0

IPw, (conv({Vf(x)}rex Dllw, < [IPw, (G, €)llw, + w},

both of which are defined with respect to each iteration number k € N and a point x € R". (In the definition of
Ti(X,w), recall that Py, (-) has been defined in (14).) The following lemma, which follows Kiwiel (2007, lemma
3.2(i)) and Curtis and Que (2013, lemma 4.7; 2015, lemma 3.6), shows that, if the sample set size indicator py is suf-
ficiently large and x is sufficiently close to X, then for any w € (0, ), there exists a nonempty open subset of
7T (X, w). This will be critical in our main result, in which we need to show in certain situations that an element of
this subset can be found through random sampling of points.

Lemma 8. Let X € R" and w € (0, c0) be given. If k € KC and py = n+ 1, then there exists C > 0 such that, with x; € B(x,C),
there is a nonempty open T C T (X, w).

Proof. Using the metric defined by W, the proof follows the same argument of Kiwiel (2007, lemma 3.2(i)),
which makes use of Carathéodory’s theorem. [J

We now present a convergence theorem for Algorithm 1. Much of the proof follows similar arguments as that
for Curtis and Que (2015, theorem 3.1), which we present for completeness. The new features are twofold: (1) our
algorithm is even less conservative about the Hessian and inverse Hessian updates than the method in Curtis
and Que (2015), so our convergence result relies on arguments about self-correcting properties of BEGS updating
that we have stated in Lemma 5, which borrows from Curtis et al. (2020), and (2) our inexactness conditions and
our Lemma 2, which have not appeared before for GS methods, play critical roles in the proof of the theorem.

Theorem 1. Suppose i € (0,1). Algorithm 1 either terminates finitely with a stationary point for f or, with probability one,
it performs an infinite number of outer iterations. In the latter case, with probability one, the sampling radius sequence satis-
fies {ex} \\ 0, and every cluster point of the iterate sequence {x;} is stationary for f.

Proof. If Algorithm 1 terminates finitely with a stationary point for f, then there is nothing left to prove. Other-
wise, by Lemma 5, it follows with probability one that an infinite number of outer iterations are performed,
meaning C = N. Because our desired conclusion only needs to hold with probability one, we may assume going
forward that I = N. Under this assumption, our next aim is to prove that {e;} “\, 0 with probability one. We con-
sider two cases.

e Case 1: Suppose that K, := {k € N :d; =0} is infinite. By Lemma 5(a and b), it follows that Gyyx =0 for all
k € IC4. This fact, the fact that || = o0, and (10) (see Algorithm 2) imply that {e;} N\, 0.

e Case 2: Suppose that K; := {k € N : d; = 0} is finite. Let us proceed by supposing that there exists k. € N and a
sampling radius € € (0, o) such that €, = € for all k € N with k > k.. Our aim is to show that the existence of such a
pair (ke, €) occurs with probability zero. From (10) (see Algorithm 2),

max{|ldll,, |Gkykll.} > ve for all k> k. (26)



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS 11

On the other hand, Assumption 1, Lemma 7, and (22a) imply that

S ler = xelpmax{lidilly, Gy} < oo (27a)
k=ke
> agmax{lldill5 , IGkyill5} < oo (27b)
k=k.

In conjunction with (26), the bound in (27a) implies that the iterate sequence {x;} is a Cauchy sequence, meaning
{xx} = X for some x € R". At the same time, with (26), the bound in (27b) implies that {a,} — 0. We claim this
implies that p, = p for all sufficiently large k € Iy, where K, is defined as in Lemma 6. Indeed, because {a;} — 0,
it follows by Lemma 5(c) that, for sufficiently large k € N, either (i) px < p and a, = 0 or (ii) px = p and a; > 0. Com-
bined with the fact that |/C4| < oo, it follows along with Lemma 6 that there exists an infinite number of iterations
indexed by k > k. such that ajdy # 0 and p, = p, whereas all other iterations for sufficiently large k > k. yield
ar = 0. Going forward, for ease of notation in the remainder of the proof of this case, because x4 < x; and
(Hys1, Wis1) <= (Hg, Wi) whenever o, =0, let us proceed without loss of generality under the assumption that
ke =0 and € = g and that ay > 0, dx # 0, and p, = p for all k € N. Notice that, under these conditions, the set Krw
defined in Lemma 5 equals N. Correspondingly, for a given x € (0,1), let K, be the indices of iterations for which
(24) holds; in particular, for k € K, one has from (24a) and (24b) that

L

Because (10) (see Algorithm 2) does not hold for any k > k,, it follows that either (12) or (13) (see Algorithm 2)
holds for all k > k.. Hence, by Lemmas 3 and 4, it follows that (18) holds for all k > k., meaning for all k > k. that

Gkyillw, < (1 + k) [IPw, (conv({Vf ()} e, Dllw, - (29)

Subcase 2a: If ¥ is e-stationary, then ||Pw, (G(x,€))llyy, = 0 for any W; > 0. Therefore, with u € (0, 00) defined in (28),
w =ve/(/ii(1+0)), and (C,7) chosen as in Lemma 8, it follows that there exists k; € N with k¢ > ke such that x; €
B(x, Q) for all k > k;, and with (29),

max{|ldl2, IGkyill2} < Vi [IGryilw,
< V(1 +0g) [Py, (conv({VF (1)} rer)lw, (30)
<AVu(l+op)w <ve
whenever k > k¢, k€ K, and X € 7. Combining (26) and (30), it follows that X} ¢ 7 for all k > k; with ke K.
However, this is a probability zero event because, for all such k, the set X will contain new points from B(x, €)
that are generated independently whether k € K, meaning that, with probability one, there exists sufficiently
large such k with k € IC;, and X € 7, which would yield (30).

Subcase 2b: If X is not e-stationary, then it follows from Lemma 5(c) that a satisfies (21a) for all k € N. In partic-
ular, (21a) holds either with a; > ya or with ay < ya such that

flxe+ 7 addy) = f(xe) = =y~ agemax{|idell3 , IGiyil3)- (31)

In the latter case, Lebourg’s mean value theorem (Clarke 1983, theorem 2.3.7) implies the existence of a point X €
[xk, X + ¥ agdi] and g, € Of (Xx) such that

o1
max{I} , IGil3) < g IGiyily, , where p:= max{ﬁ, —}. (28)

flo+y  andy) = f (i) =y oG e (32)
Combining (31), (32), and the fact that dy = —W; Gy, one finds that
31 WiGryk < max{[ldill3 , 1IGeyll3}- (33)

On the other hand, for any w € (0, 00) and ((, 7) as in Lemma 8, there exists k, > ke such that x; € B(x, min{C,e/3})
for k > k,,, and with (29),

IGkyillw, < (1 + i) [IPw, (conv({Vf ()} e, N,
< (1 +00) [IPw, (G, €)llw, + (1 + op)w

whenever k >k,, k€ K,, and X} € 7. Hence, for such k, it follows by Lemma 2 with S =G(¥,¢), f = Ny e (0,1)

(34)



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
12 INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS

(where this inclusion is guaranteed by Online Algorithm 4), and W = W, that, for sufficiently small o € (0,0) and
w € (0,00), one finds that (28) and (34) imply

0" WiGiye > 111 || Giye Iy,

> nmax{|ldll3 , [IGeyill3} for all v € G(x, €). (35)

There exists k, > k,, such that oy is sufficiently small for all k > k, with k € I, because {a;} — 0 and the construc-
tion of the algorithm implies that {ox} — 0. Together, (33) and (35) imply that g, ¢ G(x,€) whenever k > k,, k€ IC,,
and X} € 7. However, by the facts that 17y, = 1 and y; > 0, Assumption 1, and Clarke (1983, proposition 2.1.2), it
follows for all k > k, with k € IC,, that

delly = IWeGryill, < VE Gyl < VELsg ),

where Lz ) € (0,00) is a Lipschitz constant for f over B(x,€). This shows that {||dil|,}tex, is bounded. This fact,

along with {ay} — 0, implies that ay < ye/(3 ||dll,) for all sufficiently large k € K,; that is, y 'y ||dill, < €/3 for all
sufficiently large k € K,. Along with the fact that x; € B(X, min{(,e/3}) implies |[x; — X[, <e€/3, it follows that
¥ € B(X,2min{C,€/3}/3), and hence, g, € G(¥, ) for all sufficiently large k € N. Overall, because g, ¢ G(x,€) when-
ever k>k;, k€ Ky, and Xy € T, yet g, € G(x,€) for all sufficiently large k, it follows that X ¢ 7 for all sufficiently
large k € K. However, this is a probability zero event because |C,| = co and the sample points are generated inde-
pendently of whether k € IC, ..

We have shown that {e,} \, 0 with probability one. If {e;} \, 0, then by (10) (see Algorithm 2), there exists an
infinite index set K¢ := {k € N : ¢4 « e}, where

max{|[dillo, |Gy} < ex for all k € K.

The same argument as in Curtis and Que (2013, theorem 4.2, case 2), which borrows from Kiwiel (2007, theorem
3.3, part (iii)), shows all cluster points of {x;} are stationary for f. O

Our second convergence result, presented as the following corollary, considers the case when one chooses 1) = 1
so that the sampling radius remains that €y € (0, c0) for all k € K. Similar results have appeared in the literature to
prove a similar property of other GS methods; see, for example, Kiwiel (2007, theorem 3.5).

Corollary 1. Suppose = 1. Algorithm 1 either terminates finitely with a stationary point for f or, with probability one, it
performs an infinite number of outer iterations. In the latter case, with probability one, it either reaches iteration k € N such
that 0 € G(xy, €) or every cluster point of the iterate sequence {xy} is €,-stationary for f.

Proof. As in the proof of Theorem 1, if Algorithm 1 terminates finitely with a stationary point for f, then there is
nothing left to prove. Otherwise, by Lemma 5, it follows with probability one that an infinite number of outer itera-
tions are performed, meaning K = N. If the algorithm reaches iteration k € N in which 0 € G(x, €x), then there is
nothing left to prove. Otherwise, following the arguments in the proof of Theorem 1, it follows that inf{||Gxyll, :
k e N} > 0 is a probability zero event. In the probability one event that inf{||Gyxll, : k € N} = 0, the conclusion fol-
lows from the fact that d¢, f is closed. O

3. GS Algorithm with Gradient Aggregation
Our second algorithm adds a conceptually straightforward but practically significant enhancement to Algorithm 1.
In particular, we add a procedure for exploiting gradient aggregation that can significantly reduce the size of the
subproblems to be solved approximately in each outer iteration of the algorithm. We remark that this enhance-
ment to the GS methodology is only possible when one is able to employ inexact subproblem solutions. This is the
case because the exact solution of a subproblem involving a “gradient aggregation vector” does not offer the exact
solution of a subproblem involving individual gradients and no aggregation.

In this section, we present a statement of the proposed algorithm, then show that it offers the same conver-
gence guarantees as does Algorithm 1.

3.1. Algorithm Description

Our algorithm with inexact subproblem solutions and gradient aggregation is stated as Algorithm 3. The algo-
rithm borrows much from Algorithm 1; we have written it in such a manner that only its unique steps are stated.
The main idea of the enhancement is the following. For any k +1 € K such that oy > 0, the matrix of gradients
Gp41 contains all points in the set X1 as in Algorithm 1. However, for any k+ 1 € K such that x;,1 = x;, because



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS 13

ay = 0, rather than solve a subproblem defined by gradients at all points in X,1, the algorithm considers a sub-
problem in which the gradients defining the matrix G, (which compose a submatrix of Gy,1) have been aggregated
into a single gradient aggregation vector Gxyx. The following lemma shows that a feasible point for the subpro-
blem that the algorithm considers in iteration k + 1 corresponds to a feasible point for the subproblem that would

be defined by all gradients in G/l

Algorithm 3 (GS with Inexact Subproblem Solutions and Gradient Aggregation)
Require: [ ... same parameters and initial values as in Algorithm 1 except Gy ... ]
1: Set GM! by (4), Go¥® by (4), and ar_1 < 0.
2:forallke N do
3: if aj_; > 0 or px > p then
set Gy « Gl
else
set Gy « G,*%.
end if
[...same as line 5-19 of Algorithm 1 ... ]
Set (X1, Pr+1) by Online Algorithm 8 and G,f(‘ﬂ by (4).
10: if o) > 0 then

11: set Gt «— G,

12: else

13: set Go8 «— [ Vf(xt1) Grvie [VF(0)rear\(royuy) 1-
14: end if

15: end for

Lemma 9. Consider k € K such that k > 1 and ay_y = 0, meaning Gy = G,*%. For any j € N such that yy; is computed, this
vector, which is feasible for the dual problem in (5), corresponds uniquely to a feasible point for the dual problem in (5) if
Gl were used in place of Gy = G,°5.

Proof. Consider any j € N such that y; is computed. Let [y,]; and [y ], denote the first and second elements of
Y, respectively, with the subvector of all remaining elements of v ; being denoted as [y ].,. One finds that

nggyk,j
= V() el + (Gro1yr-0 i o + [VF(0) e\ v ) Wk jls2
[Yxjl1 [yxjlh
= [Vf(xk) G-t [Vf(x)]xexk\(xkuxk,l)] yk—l[]/k,j]z = Gifcuu ykfl[yk,j]z ’
[yk,j]>2 []/k,j]>2
where—because ]lTyk_1 =1, ]lTyk,j =1, Y1 2 0, and y,; > 0—it follows that
[yk,j]l [yk,;]l
17| yia [yk,j]z} =land |yi-1lykila | >0,
[Wjls2 [Wrjls2

which proves the desired result. O

Theorem 2. Suppose i € (0,1). Algorithm 3 either terminates finitely with a stationary point for f or, with probability one,
it performs an infinite number of outer iterations. In the latter case, with probability one, the sampling radius sequence satis-
fies {ex} \y 0 and every cluster point of the iterate sequence {xy} is stationary for f.

Proof. For all k€ N, the result of Lemma 1 holds regardless of whether G, = ngg or Gy = G,f(ull because Gy has
Vf(xx) as its first column in either case. The results of Lemmas 3 and 4 also continue to hold regardless of whether
Gy = ngg or Gy = G,f(‘ﬂl, implying that the inner loop terminates finitely for all k € K. Now, consider the pair
(A, i) = (=WiGkyk, yi) upon termination of the inner loop in iteration k € K. If Gy = G,fcuu, then the properties of
(di, yx) are the same as that in Algorithm 1. Otherwise, when Gy = Gigg, one may consider

[vk]1
[yk—l [yk]> (36)

[]/k] >2




Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
14 INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS

as the dual vector as shown by Lemma 9. The arguments of Lemmas 5-8 and Theorem 1 now follow in the same
manner as in Section 2 using GI'!! in place of Gy and y; or (36) in place of the dual vector for all k € K. Crucial in
these arguments is that, if the sample set size indicator p; ever exceeds p, then Gy =G!'!! and the algorithm
behaves as Algorithm 1 for such k€ K. O

Corollary 2. Suppose Y = 1. Algorithm 3 either terminates finitely with a stationary point for f or, with probability one, it
performs an infinite number of outer iterations. In the latter case, with probability one, it either reaches iteration k € N such
that 0 € G(xy, €) or every cluster point of the iterate sequence {x;} is €g-stationary for f.

Proof. The proof follows from that of Theorem 2 in the same manner as the proof of Corollary 1 follows from
that of Theorem 1. O

4. Numerical Experiments

In this section, we present the results of numerical experiments with implementations of our proposed algo-
rithms. The main purpose of these experiments is to show that the introduction of inexactness and gradient
aggregation can reduce the computational expense of an adaptive GS algorithm consistently and often substan-
tially. As a sanity check, we also provide a comparison between our implementation of Algorithm 3 and a state-
of-the-art code. All experiments were run on a Macbook Air with a 2.2 GHz Dual-Core Intel Core i7 processor
running macOS 11.4.

We implemented our algorithms in the C++ software package NonOpt (Curtis 2021). For the parameters used
in the algorithms and subroutines, we employed the values stated in Table 1. These values are used consistently
across all of our experiments. As is typical in implementations of GS methods, our implementations assume that
X+ axdi € D for all k € N, meaning that the loop in Online Algorithm 6 always terminates in the first iteration;
hence, the parameter ¢ is not used. The initial point xo € R" in each run of the algorithm was chosen in a
problem-dependent manner; see our discussions in the following sections about the initial points used.

NonOpt contains a dual active-set QP solver that we used for solving the QP subproblems. To reduce CPU
time, during the solve of a given QP, the termination conditions (10)—(13) (see Algorithm 2) are not checked in
every iteration of the QP solver. Instead, these conditions are checked only after (pi +1)/4 QP iterations have
been performed, and after this threshold is reached, the conditions are checked only once every four QP solver
iterations.

In our implementations, the outer iteration sequence terminates if

max{[|GiYlleor WiGi¥/illoo, €} < 107 (37)

or once an objective function value tolerance or CPU time limit is reached. These latter criteria are discussed in
further detail in the subsequent sections.

We consider the performance of three implementations, to which we refer as follows:

e GS-exact: An implementation of an adaptive GS method in which the QP subproblems are solved “exactly”
in each iteration; in particular, every aspect of this implementation is the same as that of GS-inexact except that,

Table 1. User-Specified Parameters for Our Implemented Algorithms and Subroutines

Parameter(s) Range Values Description

v (0,00) 1 Stationarity measure tolerance

asa (0,00) 1072 < 100 Step size thresholds

init (0,00) 1 Initial step size

P ©,1) 0.01 Inexactness threshold bound

K 0,1) 0.0001 Inexactness threshold

¥ 0, 1) 0.1 Sampling radius reduction factor

L 0, 1) 0.5 Inexactness parameter reduction factor
n<nq 0, 1) 1071 <0.9 Armijo-Wolfe line search parameters
P [1+1,00)NN 10n Sample set size threshold

o (0, 0) 10 Inexactness threshold reset value

Y 0,1) 0.5 Step size modification factor
p<1<o (0,00) 107 <1< 108 BFGS updating thresholds

g (0,00) 1072 Curvature threshold

P N 0.01n Size of addition to sample set

Hy >0 I Initial Hessian approximation

€ (0, 0) max{0.01,0.1 [[Vf(xo)lle } Initial stationarity radius




Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS 15

when tasked to solve each QP subproblem, the QP solver is run until the {,-norm of the KKT error for the QP is
reduced below 1071°.

e GS-inexact: Animplementation of Algorithm 1.

e GS-inexact-agg: Animplementation of Algorithm 3.

4.1. Randomly Generated Test Problems

Our algorithms are designed to minimize objectives that may be nonconvex and/or nonsmooth. However, in
order to conduct a controlled comparison between the aforementioned implemented algorithms, our main
experiment involves randomly generated convex test problems of the form

min g"x + leHx + max{Ax + b}, (38)
xeR" 2

where g € R", H € R™" is symmetric and positive definite, A € R"™", b € R", and the max is taken element-wise.
(By employing convex as opposed to nonconvex test problems, we can be sure that the results of our experiments
are not skewed by two algorithms converging to different local minimizers and other related circumstances.) The
problems were constructed such that the unique global minimizer is always x. = 0, the global minimum is always
f(x.) =0, and the number of elements of the vector Ax. +b = b yielding the max, call it m 4, is always predeter-
mined. Specifically, each problem was constructed in the following manner. Observe that x, € R" solves (38) if
and only if there exists (1.,z.) € R” X R such that

g+Hx, + ATy, =0

1-y'1=0
Ax,+b-2z1<0
¥.20

yI(Ax. +b-2z1)=0, (39)

and, when x, = 0, one finds that f(x.) = 0 with the number of elements of Ax, + b = b yielding the max being m 4 if
and only if one finds that m 4 elements of b are equal to zero with the rest being strictly negative. Hence, in the
construction of each problem, the first m 4 elements of b were set to zero and each of the remaining elements was
set to the negative of a random value drawn from a x? distribution. The matrix A was then set randomly with
each element being drawn from a standard normal distribution. Next, the first m 4 elements of y. were set ran-
domly with each element drawn from a uniform distribution over [0, 1]. The remaining elements were set to zero

and then the entire vector was normalized so that y'1 = 1. Next, ¢ < ATy.. Finally, H « HTH, where each ele-

ment of H was drawn from a standard normal distribution. These steps were verified to ensure that H > 0 and
(0,v.,0) satisfies (39) with the desired value of 1 4.

When solving potentially nonconvex and/or nonsmooth optimization problems, termination conditions can
be sensitive in practice; for example, one can find that the termination condition (37) may be satisfied relatively
early for some problems, whereas for other problems, the magnification of small numerical errors can cause (37)
to take longer to be satisfied. Hence, we added a condition for these experiments that terminates an algorithm
whenever the objective value is less than a prescribed threshold of 107°. This is reasonable in these experiments
because f(x.) = 0 for all problems.

For the purposes of these experiments, 15 problems were generated; with n = 1,000 and m = 500, five problems
were generated for each of the values m 4 € {125,250,375}. In this manner, we provide results for a range of
dimensions of the “U-space” and “V-space” at the minimizer; see, for example, Liu and Sagastizabal (2020). For
each problem, each of the three implemented algorithms were run from the same randomly generated starting
point; in particular, each element for the initial point was drawn from a standard normal distribution. Because
GS methods are randomized, we ran each algorithm 10 times for each problem and provide averages of perform-
ance measures.

Results for GS-exact, GS-inexact, and GS-inexact-agg are provided in Tables 2—4, respectively. Averaged
over the 10 runs for each algorithm and problem, we provide the required number of iterations (iters), required
total number of QP solver iterations (QP-iters), required number of objective function evaluations (funcs),
required number of objective gradient evaluations (grads), and final objective value (f). Because the total compu-
tational effort is roughly proportional to the total number of QP iterations, for GS-inexact, we provide the rela-
tive change in the required total number of QP iterations as compared with GS-exact, and for GS-inexact-agg,
we provide the relative change as compared with GS-inexact. (This is a rough proxy for computational effort



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
16 INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS

Table 2. Results for GsS-exact Averaged over 10 Runs

n m my iters QP-iters funcs grads f

1,000 500 125 5,059 22,126 39,484 37,939 +9.970765e—04
1,000 500 125 5,185 23,701 40,681 39,243 +9.969306e—04
1,000 500 125 5,559 25,350 44,227 40,406 +9.961246e—-04
1,000 500 125 4,513 21,721 35,696 34,544 +9.986064e—04
1,000 500 125 6,660 31,010 53,104 50,547 +9.952435e—-04
1,000 500 250 4,660 23,396 36,201 38,673 +9.970373e—04
1,000 500 250 4,700 24,705 36,514 39,828 +9.949415e—-04
1,000 500 250 4,841 24,237 37,157 40,845 +9.967083e—04
1,000 500 250 4,324 23,389 33,250 38,513 +9.967001e—04
1,000 500 250 4,910 25,148 37,763 40,083 +9.975146e—04
1,000 500 375 3,958 22,479 29,712 33,767 +9.936715e—-04
1,000 500 375 3,738 21,626 28,174 32,966 +9.967347e—04
1,000 500 375 5,540 31,959 42,412 48,309 +9.970079e—-04
1,000 500 375 5,291 29,483 40416 46,418 +9.97063%e—04
1,000 500 375 3,956 25,199 30,153 36,355 +9.953953e—-04

because the cost for each QP solver iteration can differ depending on the number of nonzero variables in the
dual solution estimate. That said, we found it to be the best measure for comparison as opposed to CPU time,
which can vary despite the algorithm being run with the same initial conditions, random number generator
seeds, and so on.) In these statistics, a negative percentage indicates that GS-inexact (respectively, GS-inexact-
agg) required fewer total QP solver iterations than GS-exact (respectively, GS-inexact); for example, a statistic
of —z% indicates that the algorithm lowered the required total number of QP solver iterations by z%.

Observe that between the termination condition (37) and the condition that the algorithm terminates if the
objective value fell below 107, one finds that the solutions obtained by all algorithms on all problems were com-
parable in quality with final objective values on the order of 107°. That said, one finds in the results in Tables 2—4
that inexactness and gradient aggregation reduce the total number of QP solver iterations consistently and often
substantially. Interestingly, one also finds in many cases that GS-inexact and GS-inexact-agg also require fewer
outer iterations. This was not necessarily expected and might not represent behavior that one should anticipate
in general. That said, one explanation for this behavior is that requiring exact subproblem solutions may tend to
produce shorter search directions, whereas by allowing inexactness in the subproblem solutions, the algorithm is
able to take longer steps in each iteration. In any case, because of the reduced number of QP solver iterations
required per outer iteration, one may expect a reduction in total computational effort for GS-inexact and
GS-inexact-agg even if these algorithms were to require the same number, or even more, of outer iterations
than GS-exact.

Table 3. Results for Gs-inexact Averaged over 10 Runs

n m my iters QP-iters funcs grads f change in QP-iters, %
1,000 500 125 5,598 19,170 45,902 44,969 +9.977302e—-04 -13.36123
1,000 500 125 5,436 19,003 44,530 44,422 +1.023123e-03 —19.82204
1,000 500 125 6,015 19,754 49,600 45,475 +9.977170e—04 —22.07298
1,000 500 125 5,014 15,902 41,134 37,434 +9.984253e—-04 —26.78950
1,000 500 125 7,206 22,222 59,453 52,540 +9.990196e—-04 —28.33939
1,000 500 250 5,197 20,830 42,745 45,009 +9.978813e—04 —10.96660
1,000 500 250 5,150 20,822 42,436 44944 +9.978613e—04 —15.71849
1,000 500 250 5,000 19,857 40,225 42,308 +9.988319e—-04 -18.07192
1,000 500 250 4,711 19,706 38,700 42,438 +9.941688e—-04 —15.74402
1,000 500 250 5,653 21,889 46,103 47,035 +9.976889e—04 —12.95639
1,000 500 375 4,316 19,615 34,423 36,914 +9.952806e—04 —12.74017
1,000 500 375 4,327 20,723 34,861 37,765 +9.973864e—04 —4.175375
1,000 500 375 6,316 31,207 52,132 58,984 +9.962637e—04 —2.353611
1,000 500 375 5,520 24,971 44,869 48,141 +9.981637e—04 —15.30415
1,000 500 375 4,517 21,625 36,977 41,138 +9.969319e-04 —14.18299

Note. The final column indicates the relative change in QP-iters compared with GS-exact.



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS 17

Table 4. Results for GS-inexact-agg Averaged over 10 Runs

n m my iters QP-iters funcs grads f change in QP-iters, %
1,000 500 125 4,769 14,484 36,291 34,707 +9.981286e—04 —24.44093
1,000 500 125 4,905 14,965 37,272 35,982 +9.988238e—04 —21.24999
1,000 500 125 5,528 17,036 42,753 39,277 +9.969082e—-04 —13.75838
1,000 500 125 4,600 13,978 35,343 32,215 +1.002537e—-03 —12.09518
1,000 500 125 6,486 20,017 50,219 46,658 +1.624848e—03 —9.921205
1,000 500 250 4,581 15,239 34,511 35,282 +1.115497e-03 —26.84115
1,000 500 250 4,214 13,802 31,259 31,523 +2.096993e—-03 —33.71098
1,000 500 250 4,407 13,665 31,907 31,061 +9.981417e—-04 —31.18384
1,000 500 250 4,253 13,844 31,533 32,841 +9.984159e—04 —29.74861
1,000 500 250 4,950 16,218 36,826 37,262 +9.974769e—-04 —25.90921
1,000 500 375 4,026 14,203 29,311 30,293 +9.966796e—-04 —27.58802
1,000 500 375 3,754 12,767 27,003 27,208 +9.967023e—04 —38.39113
1,000 500 375 5,684 21,193 41,911 44,935 +9.982174e-04 —32.08651
1,000 500 375 5,133 17,739 37,718 38,859 +1.066837e—03 —28.96165
1,000 500 375 4,288 15,233 31,248 32,955 +9.956476e—-04 —29.55487

Note. The final column indicates the relative change in QP-iters compared with GS-inexact.

4.2. Test Set Problems

To demonstrate that our implementation can be competitive with a state-of-the-art solver in terms of obtaining
high-quality solutions within a reasonable CPU time limit, we performed an experiment to compare the perform-
ance of the state-of-the-art code LMBM (Karmitsa accessed 2021) and GS-inexact-agg. The experiments with GS-
inexact-agg in the previous section were performed with full BEGS approximations, but the experiments in this
section were performed with a limited-memory BFGS strategy with a history of 50 so that the algorithm would
be more similar to LMBM, which uses limited memory approximations (with a history of seven). We also decreased
the size of additions to the sample set to p « [max{1,107*1}] (see Table 1) to increase speed for the CPU-time-
limited experiments for solving the larger scale problems that are considered here.

We chose a set of 20 test problems for which LMBM has been tuned, some of which are convex and some of
which are nonconvex. The first 10 problems come from Haarala et al. (2004) and the second 10 come from LukSan
et al. (2002). (LMBM comes with implementations of the first 10 problems; for the remaining test problems, we
obtained Fortran implementations from Luksan, accessed in 2021.) All of the problems are scalable in the sense
that they can be defined for any dimension # € N. For any n € N, the aforementioned sources describe an initial
point xp € R" for each problem. We followed these rules for determining the initial points used in our
experiments.

The dimension of each problem was chosen using the following procedure to ensure that the CPU time
required by LMBM to reach a good solution was nontrivial for all problems. Starting with n = 10,000, the dimen-
sion was decreased by 100 or increased by 1,000 in an iterative manner until the average CPU time required by
LMBM (using its default termination conditions) over 10 runs was at least one second and at most 10 seconds. This
led to the problem sizes shown in Table 5.

LMBM and GS-inexact-agg have many differences. For example, LMBM employs a bundle method and GS-inex-
act-agg employs a GS method. The termination criteria of the two codes are also very different; for example,
besides observing termination criteria related to detecting stationarity, LMBM may terminate for various reasons
related to the iterate and/or objective value not changing significantly between iterations. Hence, in order to
offer a fair and illustrative comparison, after the problem sizes were determined using the aforementioned proce-
dure, we ran both LMBM and GS-inexact-agg with their main termination conditions effectively disabled and a
CPU time limit of 20 seconds. (Specifically, for LMBM, we set RPAR(1) = RPAR(2) = RPAR(4) = RPAR(5) = 107* and
RPAR(3) = —10%, and for GS-inexact-agg, we set the right-hand side of (37) to 107, This means that LMBM was
allowed to run at least as long as it would have run with its default termination conditions and that both codes
were given the same CPU time limit.)

The results obtained by the codes are shown in Table 5. Both codes report the number of iterations (iters) and
function evaluations (funcs) that were performed as well as the final objective value (f) obtained. Because the
algorithms have various differences, it is not necessarily informative to compare the number of iterations or func-
tion evaluations required by the two methods. In addition, some of the test problems are nonconvex, meaning
that it is possible in some instances for a solver to be attracted to a stationary point that is not a local/global mini-
mizer. Nonetheless, one can compare final objective values to get a general sense of the performance of the



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
18 INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS

Table 5. Results for LMBM and GS-inexact-agg Within 20-Second CPU Time Limit

LMBM GS-inexact-agg

name n iters funcs f iters funcs f
MaxQ 1,500 48,234 49,913 +1.02076e-10 24,706 55,256 +2.101717e—19
MxHilb 2,000 510 1,668 +1.56265e—-02 296 1,300 +1.101971e—07
Chained_LQ 11,000 688 7,149 —1.55549¢e+04 183 1,381 —1.555488e+04
Chained_CB3_1 10,000 582 5473 +1.99985e+04 421 3,045 +2.000014e+04
Chained_CB3_2 42,000 205 417 +8.39980e+04 147 1,131 +8.399800e+04
ActiveFaces 10,000 8,481 8,604 +0.00000e+00 305 4,765 +1.869505e—-10
Brown_Function_2 10,000 4,872 8,796 +2.47374e—09 285 2,651 +5.175338e—-07
Chained_Mifflin_2 10,000 952 8,873 —-7.07043e+03 143 929 —7.070059e+03
Chained_Crescent_1 21,000 337 1,844 +1.90958e—10 208 1,504 +2.205846e—-10
Chained_Crescent_2 10,000 2,926 37,537 +6.49194e—04 157 1,097 +4.584530e—-02
Test29_2 140,000 1,104 1,109 +9.99847e-01 81 408 +9.992071e—01
Test29_5 600 1,677 9,104 +4.77363e—-06 1,701 10,803 +1.651470e—07
Test29_6 130,000 227 6,223 +2.00000e+00 43 361 +2.002375e+00
Test29_11 10,000 598 5,135 +1.20472e+05 265 1,888 +1.204895e+05
Test29_13 600 2,377 17,148 +3.39884e+02 2,103 17,411 +3.392142e+02
Test29_17 10,000 8,795 11,208 +2.12820e-03 342 3,071 +3.940380e—05
Test29_19 25,000 991 33,977 +1.00000e+00 91 640 +1.000004e+00
Test29_20 10,000 640 12,197 +5.00001e-01 181 1,400 +5.000012e-01
Test29_22 109,000 76 3,041 +1.68293e—10 50 646 +4.753889e—07
Test29_24 12,000 1,050 12,544 +3.91284e-02 254 2,485 +1.302162e—03

Note. Objective values in bold indicate that the final objective value is better than other alternative within the first three significant digits.

solvers with respect to which one finds that the results are generally comparable. For emphasis, we mark in bold
text the final objective values that were better than the alternative within the first three significant digits. One
finds that, in the cases when one final objective value was significantly better than the other using this threshold,
each code yielded a lower objective value for six problems.

The results in Table 5 can be visualized in the form of an accuracy profile (Beiranvand et al. 2017), which for a
given relative accuracy (with respect to the initial objective value), shows the number of problems in the test set
for which each solver is able to attain the desired relative accuracy. To construct a profile, for each problem, we
set the “optimal” value as the best objective value obtained by one of the solvers, and because LMBM only reports
the final objective value to an accuracy of six digits, we used a maximal improvement value of six. The profile
can be seen in Figure 1. It shows that GS-inexact-agg is able to “solve” more problems up to five digits of accu-
racy although LMBM is able to solve one more problem to six digits of accuracy. Overall, the profile shows that the
solvers are competitive in terms of the quality of solutions obtained on this test set.

Figure 1. Accuracy Profile Corresponding to the Results in Table 5

1 T T T T
[

09 1

e o o
o N @
T T T
1 1
*

Portion of runs completed
o
6]

04r .

031 i

02r .

01r —a— LMBM .
~—&— NonOpt (GS-inexact-agg)

% > 3 4 5 6

Relative accuracy obtained



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS 19

5. Conclusion

We have proposed, analyzed, and tested two algorithms for minimizing locally Lipschitz objective functions.
The algorithms are based on the gradient sampling methodology. The unique feature of the first algorithm is
that it can allow inexactness in the subproblem solutions while maintaining convergence guarantees, which is
new to the literature on gradient sampling methods. The unique feature of the second algorithm is that it can use
inexact subproblem solutions and aggregated gradients in place of individual gradients in the subproblem defi-
nitions. Our numerical experiments show that employing inexactness and aggregation can each reduce computa-
tional effort.

References

Apkarian P, Noll D, Prot O (2008) A trust region spectral bundle method for nonconvex eigenvalue optimization. SIAM |. Optim. 19(1):
281-306.

Beiranvand V, Hare W, Lucet Y (2017) Best practices for comparing optimization algorithms. Optim. Engrg. 18:815-848.

Bertsekas DP (2009) Convex Optimization Theory (Athena Scientific, Nashua, NH).

Burke JV, Lewis AS, Overton ML (2002) Approximating subdifferentials by random sampling of gradients. Math. Oper. Res. 27(3):567-584.

Burke JV, Lewis AS, Overton ML (2005) A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM |. Optim. 15(3):
751-779.

Burke JV, Curtis FE, Lewis AS, Overton ML, Simdes LEA (2020) Gradient sampling methods for nonsmooth optimization. Bagirov AM, Gau-
dioso M, Karmitsa N, Mdkeld MM, Taheri S, eds. Numerical Nonsmooth Optimization (Springer, Cham), 201-225.

Byrd RH, Nocedal ] (1989) A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM |. Numeri-
cal Anal. 26(3):727-739.

Clarke FH (1983) Optimization and Nonsmooth Analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts (John Wiley
& Sons, New York).

Curtis FE (2021) NonOpt. Accessed January 13, 2022, https: // coral.ise.lehigh.edu/frankecurtis /nonopt/.

Curtis FE, Overton ML (2012) A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization. SIAM J.
Optim. 22(2):474-500.

Curtis FE, Que X (2013) An adaptive gradient sampling algorithm for nonsmooth optimization. Optim. Methods Software 28(6):1302-1324.

Curtis FE, Que X (2015) A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global convergence guarantees. Math. Pro-
gramming Comput. 7(4):399-428.

Curtis FE, Robinson DP, Zhou B (2020) A self-correcting variable-metric algorithm framework for nonsmooth optimization. IMA ]. Numerical
Anal. 40(2):1154-1187.

de Oliveira W, Solodov M (2016) A doubly stabilized bundle method for nonsmooth convex optimization. Math. Programming 156:125-159.

de Oliveira W, Sagastizabal C, Lemaréchal C (2014) Convex proximal bundle methods in depth: A unified analysis for inexact oracles. Math.
Programming 148:241-277.

Goldstein AA (1977) Optimization of Lipschitz continuous functions. Math. Programming 13(1):14-22.

Haarala N, Miettinen K, Mékeld MM (2004) New limited memory bundle method for large-scale nonsmooth optimization. Optim. Methods
Software 19(6):673-692.

Haarala N, Miettinen K, Mékeld MM (2007) Globally convergent limited memory bundle method for large-scale nonsmooth optimization.
Math. Programming 109(1):181-205.

Hare W, Sagastizabal C (2010) A redistributed proximal bundle method for nonconvex optimization. SIAM |. Optim. 20(5):2442-2473.

Hare W, Sagastizabal C, Solodov M (2016) A proximal bundle method for nonsmooth nonconvex functions with inexact information. Comput.
Optim. Appl. 63(1):1-28.

Helou ES, Santos SA, Simdes LEA (2017) On the local convergence analysis of the gradient sampling method for finite max-functions.
J. Optim. Theory Appl. 175(1):137-157.

Hiriart-Urruty JB, Lemaréchal C (1993) Convex Analysis and Minimization Algorithms II. A Series of Comprehensive Studies in Mathe-
matics (Springer-Verlag, New York).

Hosseini S, Uschmajew A (2017) A Riemannian gradient sampling algorithm for nonsmooth optimization on manifolds. SIAM |. Optim. 27(1):
173-189.

Karmitsa N (2021) LMBM. Accessed January 13, 2022, http://napsu.karmitsa.fi/lmbm.

Kiwiel KC (1985a) A linearization algorithm for nonsmooth minimization. Math. Oper. Res. 10(2):185-194.

Kiwiel KC (1985b) Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics (Springer-Verlag, New York).

Kiwiel KC (1996) Restricted step and Levenberg-Marquardt techniques in proximal bundle methods for nonconvex nondifferentiable optimi-
zation. SIAM |. Optim. 6(1):227-249.

Kiwiel KC (2007) Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM ]. Optim. 18(2):379-388.

Kiwiel KC (2010) A nonderivative version of the gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM ]. Optim. 20(4):
1983-1994.

Lemaréchal C, Nemirovskii A, Nesterov Y (1995) New variants of bundle methods. Math. Programming 69(1):111-147.

Liu S, Sagastizabal C (2020) Gradient sampling methods for nonsmooth optimization. Beyond First Order: VU-Decomposition Methods (Springer
International Publishing, Cham, Switzerland), 297-329.

LukSan L (2021) Test problems in Fortran. Accessed January 13, 2022, http: //www.cs.cas.cz/ luksan/test.html.

LukSan L, Vi¢ek J (1998) A bundle-Newton method for nonsmooth unconstrained minimization. Math. Programming 83(1):373-391.

LukSan L, Tuma M, Siska M, VIgek J, Ramegova N (2002) UFO 2002: Interactive system for universal functional optimization. Technical
Report 883, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic.



Curtis and Li: GS with Inexact Subproblems Solutions and Aggregation
20 INFORMS Journal on Optimization, Articles in Advance, pp. 1-20, © 2022 INFORMS

Maleknia M, Shamsi M (2020) A gradient sampling method based on ideal direction for solving nonsmooth optimization problems. J. Optim.
Theory Appl. 187(3):181-204.

Mifflin R (1982) A modification and an extension of Lemarechal’s algorithm for nonsmooth minimization. Sorensen DC, Wets R]B, eds. Non-
differential and Variational Techniques in Optimization (Springer, Berlin, Heidelberg), 77-90.

Mifflin R, Sagastizabal C (2005) A Vi{-algorithm for convex minimization. Math. Programming 104(2):583-608.

Nocedal J, Wright S (2006) Numerical Optimization. Springer Series in Operations Research, 2nd ed. (Springer, New York).

Ruszcezynski A (2006) Nonlinear Optimization (Princeton University Press, Princeton, NJ).

Schramm H, Zowe ] (1992) A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis,
numerical results. SIAM |. Optim. 2(1):121-152.

Tang CM, Liu S, Jian JB, Li JL (2014) A feasible SQP-GS algorithm for nonconvex, nonsmooth constrained optimization. Numerical Algorithms
65(1):1-22.

van Ackooij W, Frangioni A (2018) Incremental bundle methods using upper models. SIAM ]. Optim. 28(1):379-410.



	s1
	s1A
	s1B
	s1C
	s2
	s2A
	s2B
	s2C
	s3
	s3A
	s4
	s4A
	TF1
	s4B
	TF2
	TF3
	s5

