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A B S T R A C T 

A popular numerical method to model the dynamics of a ‘full spectrum’ of cosmic rays (CRs), also applicable to radiation/neutrino 

hydrodynamics, is to discretize the spectrum at each location/cell as a piecewise power law in ‘bins’ of momentum (or frequency) 

space. This gives rise to a pair of conserved quantities (e.g. CR number and energy) that are exchanged between cells or bins, 

which in turn give the update to the normalization and slope of the spectrum in each bin. While these methods can be evolved 

exactly in momentum-space (e.g. considering injection, absorption, continuous losses/gains), numerical challenges arise dealing 

with spatial fluxes, if the scattering rates depend on momentum. This has often been treated either by neglecting variation of 

those rates ‘within the bin,’ or sacrificing conservation – introducing significant errors. Here, we derive a rigorous treatment of 

these terms, and show that the variation within the bin can be accounted for accurately with a simple set of scalar correction 

coefficients that can be written entirely in terms of other, e xplicitly evolv ed ‘bin-inte grated’ quantities. This eliminates the 

rele v ant errors without added computational cost, has no effect on the numerical stability of the method, and retains manifest 

conserv ation. We deri ve correction terms both for methods that explicitly integrate flux variables (e.g. two-moment or M1-like) 

methods, as well as single-moment (advection-diffusion, FLD-like) methods, and approximate corrections valid in various 

limits. 
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1  I N T RO D U C T I O N  

Understanding cosmic ray (CR) propagation and dynamics in the 

interstellar medium (ISM) and circum/intergalactic medium remains 

an unsolved problem of central importance in space plasma physics 

(Zweibel 2013 , 2017 ; Amato & Blasi 2018 ; Kachelrieß & Semikoz 

2019 ), with major implications for fields ranging from astro- 

chemistry, planet, star, and galaxy formation (e.g. Chen, Bryan & 

Salem 2016 ; Girichidis et al. 2016 ; Pakmor et al. 2016 ; Salem, 

Bryan & Corlies 2016 ; Simpson et al. 2016 ; Ruszkowski, Yang & 

Zweibel 2017 ; W iener , Pfrommer & Oh 2017 ; Butsky & Quinn 

2018 ; Farber et al. 2018 ; Jacob et al. 2018 ; Chan et al. 2019 ; Su et al. 

2020 ; Hopkins et al. 2020 ; Ji et al. 2020 , 2021 ; Bustard & Zweibel 

2021 ). 

In models which seek to dynamically evolve the CR population on 

large scales [as opposed to either historical semi-analytical models, 

which solve for the equilibrium CR distribution function (DF) in 

a static analytical Galaxy model, e.g. Korsmeier & Cuoco 2016 ; 

Evoli et al. 2017 ; Amato & Blasi 2018 ; Liu, Yao & Guo 2018 , 

or particle-in-cell type simulations which model the dynamics of 

individual CRs], a central challenge is the high dimensionality of 

the DF f ( x , p , t) as a function of position x , CR momentum p , 

and time t . Recently, a number of studies (Girichidis et al. 2022 ; 

Hanasz, Strong & Girichidis 2021 ; Hopkins et al. 2022b ; Ogrodnik, 

Hanasz & W ́olta ́nski 2021 ) have addressed this by implementing 

⋆ E-mail: phopkins@caltech.edu 

variations of the method proposed in Girichidis et al. ( 2020 ) (with 

broadly similar methods used earlier in e.g. Jun & Jones 1999 ; 

Miniati 2001 , 2007 ; Miniati et al. 2001 ; Jones & Kang 2005 ; Mimica 

et al. 2009 ; Yang & Ruszkowski 2017 ; Winner et al. 2019 as well), 

wherein the isotropic part of the DF f̄ 0 is represented as a piecewise 

power-law function of momentum, in ‘bins’ of p spanning some 

dynamic range; one can then integrate (to arbitrary precision) bin- 

to-bin fluxes of conserved CR number and energy (representing 

e.g. continuous loss or gain processes) or source/sink terms (injec- 

tion or catastrophic losses or secondary production) in momentum 

space. 

The method has many advantages. (1) Because real CR spec- 

tra are smooth and power-law-like over a wide dynamic range, 

these studies have shown that the spectrum over some very wide 

dynamic range can be represented accurately with a relatively 

small number of bins per species, imposing modest computational 

and memory cost. (2) The momentum-space and coordinate-space 

(advection/streaming/diffusion) operations can be operator-split, 

allowing the spatial part of the equations to be integrated with 

standard, well-studied and high-order numerical methods (exactly 

identical to previous treatments that considered just a single CR 

‘fluid’ or bin or total energy density scalar field, e.g. Salem et al. 

2016 ; Ruszkowski et al. 2017 ; Butsky & Quinn 2018 ; Chan et al. 

2019 ; Hopkins et al. 2020 ; Ji et al. 2020 , 2021 ; Su et al. 2020 ; 

Bustard & Zweibel 2021 ). (3) Conservation of number and energy 

is manifest, which ensures robustness of many results even in 

highly noisy conditions or in extreme injection/loss events. (4) It 

is accurate and converges efficiently in momentum-space. (5) It 
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trivially generalizes for methods that evolve either the ‘two-moment’ 

equations for the CR DF (where one evolves both the isotropic part 

of the DF and its flux, or equi v alently the mean CR pitch angle), 

or ‘one-moment’ equations (where one assumes the flux is in local 

steady-state, so evolve just the isotropic part of the DF subject to a 

diffusion + streaming equation), as well as to even-further-simplified 

models (e.g. replacing the correct anisotropic diffusion with isotropic 

diffusion). These and other advantages have led, for example, to the 

first simulations simultaneously evolving multispecies CR spectra 

alongside ‘live’ fully coupled MHD dynamics on Galactic scales 

(Hopkins et al. 2022b ). 

Ho we ver, while the momentum -space properties of this class of 

piece wise-po wer-law methods are very well defined (and easy to 

demonstrate), there is a known conceptual challenge in coordinate - 

space. Specifically, gi ven some piece wise-po wer-law representation 

of f in a ‘bin,’ the spatial flux of f should depend on momentum, 

varying ‘across the bin’. But since the flux depends itself on gradients 

of various moments of the DF itself, a naive attempt to integrate 

or average the flux over the bin leads to expressions of the form 
∫ 

d 3 p F [ p , f [ p ] , .... ] · ∇ · G [ p , f [ p ] , ... ], where F , G are some 

arbitrary tensor functions. These are not just complicated, but appear 

at first to require ‘sub-binning’ of f into infinitesimally small bins, 

each of which has a separately computed gradient, in order to e v aluate 

accurately (Girichidis et al. 2020 ). As a result, most studies abo v e 

have adopted the ‘bin-centred’ approach, wherein one assumes that 

all quantities of rele v ance for computing spatial fluxes are assumed 

to be constant o v er the momentum-width of a bin. This retains 

advantages (1), (2), (3), and (5) abo v e, but leads to well-known 

artefacts in the spectrum when spatial transport (e.g. diffusion) 

dominates the escape time, sacrificing some of (4). Alternative 

approaches have been discussed (e.g. Girichidis et al. 2022 ), but 

(as noted by these authors) these generally sacrifice all of (2), 

(3), and (5); in particular the proposed non-bin-centred methods 

sacrifice conservation and consistenc y (the y cannot be derived from 

the underlying DF equations) and can potentially lead to numerical 

instability or unphysical behaviours when momentum-space terms 

(e.g. losses) dominate. 

In this paper, we derive a consistent treatment of these terms that 

resolves all of the challenges above and retains all of advantages 

(1–5) abo v e. By considering a two-moment pitch-angle expansion 

of the Vlasov equation on scales large compared to CR gyro-radii, 

we show that the key conceptual ingredient required to resolve these 

issues is a consistent treatment of how the mean CR pitch angle 

varies across a ‘bin’. But we also show that the structure of the 

equations imposes consistency conditions that determine this at the 

level of approximation needed for the piece wise-po wer-law recon- 

struction. With this properly treated, we show the corrected numerical 

method is structurally identical to the ‘bin-centred’ approximation 

with appropriate scalar correction coefficients that are determined 

entirely in terms of already-evolved numerical quantities. We further 

show that the correction coefficients can be (self-consistently) even- 

further simplified if either (1) only the one-moment equation for 

the CRs is dynamically evolved, or (2) one only needs to capture 

the exact behaviour in all rele v ant limits of the local-steady-state 

flux equation (e.g. one is interested primarily in time-scales long 

compared to CR scattering times). 

While our primary moti v ation in this paper is focused on ap- 

plications to CRs, this qualitative method, and the challenges 

abo v e, also apply in principle to analogous methods which evolve 

spectra of other collisionless species (e.g. radiation or neutrinos) 

as piece wise-po wer laws in similar fashion (e.g. Baschek et al. 

1997 ). In this context, most ‘moment-based’ multigroup methods 

for radiation-hydrodynamics have focused on evolving just the 

radiation/neutrino energy in each ‘bin’ (e.g. Castor 2007 ), ef fecti vely 

equi v alent to representing the spectrum as piecewise-constant, rather 

than a piecewise power law. Although conceptually simpler, the 

piecewise-constant approach requires an order of magnitude larger 

number of ‘bins’ across some frequency or energy range in order 

to represent spectra with steep or dynamically evolving power- 

law slopes, and sacrifices the ability to simultaneously conserve 

number and energy. A method like the piece wise-po wer-law scheme 

abo v e for neutrinos has been discussed in e.g. Rampp & Janka 

( 2002 ) and M ̈uller, Janka & Dimmelmeier ( 2010 ) (their ‘simul- 

taneously number-and-energy-conserving scheme,’ although it is 

described in different language than we use here), but similar 

conceptual difficulties (see Mezzacappa et al. 2020 ) have limited its 

application. 

2  A  M E T H O D  F O R  H A N D L I N G  FLUXES  O F  

PIECEWISE-POWER-LAW  SPECTRA  

2.1 Set-up and definitions 

Consider a population of CRs 1 with some phase-space DF f = 

d N cr /d 
3 x d 3 p , with polar momentum coordinates p = | p | , pitch angle 

μ ≡ cos θ ≡ ˆ p · ˆ b (where ̂  b ≡ B / | B | is the magnetic field direction), 

and phase angle φg . The comoving evolution equations for the spatial 

or coordinate-space part of the first two μ-moments of f can be written 

(Hopkins, Squire & Butsky 2022a ): 2 

D t f̄ 0 = −∇ · ( v f̄ 1 ˆ b ) + .... , (1) 

D t f̄ 1 + v ˆ b · ∇ · ( D f̄ 0 ) = −D̄ μμ f̄ 1 − D̄ μp ∂ p f̄ 0 + ... , (2) 

where f̄ n ≡ (4 π ) −1 
∫ 

d μd φg μ
n f , so f̄ 0 is the isotropic part of the 

DF and f̄ 1 ≡ 〈 μ〉 f̄ 0 ; D t X ≡ ∂ t X + ∇ · ( v gas X) = ρ d t ( X/ρ); χ ≡

(1 − 〈 μ2 〉 )/2 and D ≡ χ I + (1 − 3 χ ) ̂  b ⊗ ˆ b ; D̄ μμ ≡ ν̄ is the pitch- 

angle averaged scattering rate (at the given p and x ); and D̄ μp ≡

ν̄ χ p v̄ A /v in terms of the CR velocity v = β c and v̄ A ≡ v A ( ̄ν+ −

ν̄−) / ( ̄ν+ + ν̄−) in terms of the ‘forward’ and ‘backward’ scattering 

coefficients ν± and phase speed v A of gyro-resonant Alfv ́en waves 

(those with wavelength ∼r gyro ). We stress that equations ( 1 )–( 2 ) are 

valid for any arbitrary gyrotropic DF: different ‘closure’ assumptions 

relate to how 〈 μ2 〉 is specified (see Hopkins et al. 2022a ), which is 

not important for our purposes. 

In equations ( 1 )–( 2 ), the ‘...’ refers to terms which do not propagate 

CRs in coordinate space (e.g. injection & catastrophic losses D t f = j , 

and continuous energy loss/gain processes D t f = p 
−2 ∂ p [ p 

2 ... ]). 

These can be operator-split and solved accurately with methods 

like those in Section 1 (Girichidis et al. 2020 , 2022 ; Hanasz et al. 

2021 ; Hopkins et al. 2022b ; Ogrodnik et al. 2021 ), which model the 

spectrum as a piece wise-po wer law. In these methods, within some 

infinitesimally small volume domain j , for each CR species s , within 

some ‘bin’ m defined o v er a momentum interval p − < p < p + , we 

1 For our purposes here, different species of CR are linearly independent so it 

is sufficient to consider the DF for a single species (the total DF can then be 

reconstructed by simply summing o v er species). 
2 Equation ( 1 ) formally follows from the Vlasov equation, with the standard 

quasi-linear scattering terms from Schlickeiser ( 1989 ), assuming the DF is 

approximately gyrotropic, expanding to leading order in O( r gyro /L macro ) (the 

ratio of gyro radius to resolved macroscopic scales) and O( | v gas | /c) (ratio of 

background MHD bulk velocities to c ). 
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assume that f̄ 0 can be represented as a power law with slope αf 0 , i.e.: 

f̄ 0 , j,m,s ≈ ( f̄ 0 ) 0 , j,m,s 

(

p 

p 0 , m,s 

)αf 0 , j ,m,s 

, (3) 

where for analytical convenience we define p 0 ≡ ( p 
+ p 

−) 1 / 2 as the 

geometric mean momentum of the ‘bin’. It is immediately obvious 

that the spatial part of equations ( 1 )–( 2 ) is independent for each 

‘bin’ m and species s (i.e. there is no cross-term in equations 1 –2 

coupling different species or momenta), so we only need to consider 

one such bin to completely specify the numerical method. We 

therefore drop the j , m , s notation for brevity, with the understanding 

that all quantities considered here can (and should) depend on s , m , 

and spatial location. 

For reference below we also define ξ ≡ p + / p − as a dimensionless 

‘bin width’. 

2.2 Conser v ed quantities and the spatial flux 

Given our power-law representation of f̄ 0 in equation ( 3 ) with two 

parameters (( f̄ 0 ) 0 and αf 0 ), we can clearly represent or evolve exactly 

two independent conserved scalar quantities of the DF (and their 

associated fluxes as we show below) associated with each bin. These 

are typically chosen to be the CR number and (kinetic) energy, with 

volumetric densities n , ǫ. 3 We can define the density of any such 

scalar quantity in the bin by 

q ≡

∫ 

d 3 p φq f = 

∫ p + 

p −
4 π p 

2 dp φq f̄ 0 , (4) 

where for q = ( n, ǫ) we have φq = (1 , T [ p]) (with T ≡ ( p 
2 c 2 + 

m 
2 
s c 

4 ) 1 / 2 − m s c 
2 for rest mass m s ). So evolving (( f̄ 0 ) 0 , αf 0 ) is 

equi v alent to evolving ( n, ǫ). Returning to equation ( 1 ), multiplying 

by 4 π p 
2 dp φq and integrating we immediately have: 

D t q = −∇ · F q + .... (5) 

F q ≡ ˆ b F q = ˆ b 

∫ p + 

p −
4 π p 

2 dp v φq f̄ 1 , (6) 

which is a standard hyperbolic conservation equation that can be 

integrated to desired accuracy, provided an expression for F q . 
4 

Conversely, since the DF in equation ( 3 ) has two parameters which 

vary in space and time: ( f̄ 0 ) 0 and αf 0 , in order to update both in a time- 

step self-consistently in a manifestly conserv ati ve manner, we must 

update both ( q , q ′ ) = ( n, ǫ), which requires computing both fluxes 

( F q , F q ′ ). The updated ( n, ǫ) in some next time-step then immediately 

give the new (( f̄ 0 ) 0 , αf 0 ). For details, see Girichidis et al. ( 2020 ). 

In principle, any ‘basis function’ representation of f ( p ) in the bin 

with two free parameters (of which a power law is simply most 

conv enient, giv en the real shape of the CR DF) should allow us to 

conserve two scalar quantities (CR number, energy) from evolving 

equation ( 5 ). If we also explicitly evolve the corresponding flux 

equations D t F q (derived below), then we should also conserve both 

3 We can freely choose to evolve the kinetic or total CR energy, since given 

the CR number they are trivially related. Here and in most applications the 

kinetic energy is preferable because in the non-relativistic limit, determining 

the kinetic energy via subtracting the rest energy from the total energy (two 

large numbers) can lead to fractionally large floating-point errors. 
4 We can trivially turn equation ( 5 ) into a flux equation for the volume- 

inte grated conserv ed quantities of CR number or energy ( Q j = ( N j , E j ) = 
∫ 

V j 
d 3 x q) by integrating over some volumetric domain V j in usual finite- 

volume fashion, giving d t Q j = −
∮ 

∂j F q · A . 

of their fluxes (i.e. the CR number and energy flux, which correspond 

to the CR current and momentum density fields). 

2.3 The flux evolution equation 

So, taking equation ( 2 ), multiplying by 4 π p 
2 dp v φq and integrat- 

ing, we have for the flux equation: 

D t F q + ̂ b · ∇ · I ∇,q = −I 0 ,q − I 1 ,q (7) 

I ∇,q ≡

∫ p + 

p −
4 π p 

2 dp v 2 φq D f̄ 0 (8) 

I 0 ,q ≡

∫ p + 

p −
4 π p 

2 dp v φq D̄ μp 
∂ f̄ 0 

∂p 

= 

∫ p + 

p −
4 π p 

2 dp ̄ν χ αf 0 v̄ A φq f̄ 0 (9) 

I 1 ,q ≡

∫ p + 

p −
4 π p 

2 dp φq D̄ μμ v f̄ 1 

= 

∫ p + 

p −
4 π p 

2 dp ̄ν v 〈 μ〉 φq f̄ 0 , (10) 

where we made use of various definitions abo v e. Now define, for 

any quantity X which might vary as a function of p , X 0 ≡ X [ p = p 0 ] 

(i.e. X 0 is the value of X at the bin centre). We can then immediately 

define the integral I terms in the following convenient form: 

I ∇,q ≡ ω ∇,q v 
2 
0 D 0 q (11) 

I 0 ,q ≡ ω 0 ,q ν̄0 χ0 αf 0 v̄ A, 0 q (12) 

I 1 ,q ≡ ω 1 ,q ν̄0 F q , (13) 

which places the complicated integrals into the dimensionless func- 

tions ω (define by the abo v e relations to I). This allows us to write 

the flux equation in familiar form: 

D t F q + v 2 0 
ˆ b · ∇ ·

(

D 
eff 
0 ,q q 

)

= −νeff 
0 ,q 

(

F q − v eff 
st ,q q 

)

(14) 

with the modified ‘ef fecti ve’ coef ficients: 

D 
eff 
0 ,q ≡ ω ∇,q D 0 (15) 

νeff 
0 ,q ≡ ν̄0 ω 1 ,q (16) 

v eff 
st ,q ≡ −

ω 0 ,q 

ω 1 ,q 
χ0 αf 0 v̄ A, 0 . (17) 

2.4 The bin-centred approximation 

As discussed in Section 1 , equation ( 14 ) has largely been evolved 

according to the ‘bin-centred’ approximation, which e v aluates F q 

as if we had an infinitesimally narrow bin centred at p = p 0 , i.e. 

taking ω ∇, q = ω 1, q = ω 0, q = 1. This has obvious advantages: (1) it 

is numerically straightforward: in fact the spatial (advection + flux) 

equations for a single CR ‘bin’ become numerically exactly identical 

to the ‘single-bin’ CR equations (wherein one inte grates o v er the 

entire CR spectrum and simply evolves a ‘total CR energy’); (2) it is 

fairly trivially stable and robust (any integration method which can 

handle the two-moment equations for single-bin CRs, or radiation, 

or the one-moment diffusion + streaming equation, is trivially 

numerically stable and robust here); (3) it is simple; (4) it still 

retains manifest conservation: one still evolves both F q and F q ′ (so 

e.g. can manifestly conserve CR number and energy as desired), 
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with F q /q = F q ′ /q 
′ ( � q q ′ → 1, as defined below) required for 

consistency in this approximation (since we have taken the limit | p + 

− p −| / | p + + p −| → 0 or ln ξ = ln ( p + / p −) → 0, or v 〈 μ〉 = constant 

across the bin, by definition). 

The problem with this approximation is that it is not consistent 

with a non-trivial variation of 〈 μ〉 as a function of p within the 

bin . Specifically, from the abo v e, this assumes the CR drift velocity 

( v 〈 μ〉 ) is constant o v er each bin width. As a result, a piecewise 

power-law spectrum at injection (ignoring losses or any other effects 

besides pure spatial flux) will advect conserving the local-power- 

law slope αf 0 in each bin. But if ν̄ is a decreasing function of 

p (as physically expected), the advection speed of higher- p bins 

will be faster than lower- p bins, so (for a fixed injection rate) their 

equilibrium abundance will be lower, steepening the spectrum bin-to- 

bin. But since the slopes within each bin are conserved by flux in this 

approximation, one ends up with a spectrum that features a series 

of ‘step’-like features between each bin (see e.g. Girichidis et al. 

2020 , 2022 ; Hopkins et al. 2022b ; Ogrodnik et al. 2021 ). We stress 

that these errors are usually small, and only apply when dif fusi ve 

transport is the fastest loss/escape timescape (other loss/gain terms 

in these methods do modify the CR slopes, and as we sho w belo w, in 

the CR streaming limit, the correct behaviour actually is equi v alent to 

the bin-centred approximation). Ef fecti vely, in flux-steady-state (see 

Section 2.6 below) in the highly relativistic limit (the case of greatest 

interest), the bin-centred fluxes are formally what we would obtain 

if the dif fusi vity ν were a piecewise-constant function of p (constant 

across each bin). But of course, that is not usually the desired model. 

Because as we will show below, all of the correction terms ω ≈

1 + ( ... ) | ln ξ | 2 + ... deviate from unity at O( | ln ξ | 2 ), the error here 

is formally second order in momentum-space and would converge 

to some desired accuracy if we simply increased the number of bins 

to make | ln ξ | sufficiently small. But in most applications, that is 

computationally prohibitive. 

2.5 Towards a better approximation 

To do better, we must e v aluate the correction terms ω for finite ln ξ . 

By definition, most of the necessary inputs ( φq , f̄ 0 , v) and their 

dependence on p are specified. Ho we ver, the challenge is that all 

three ω terms depend on powers of μ (through f̄ 1 or χ , D 0 ). This 

introduces new variables whose dependence on p (via μ) is not a 

priori specified. 

2.5.1 Terms which depend weakly on pitch angle 

Let us begin with ω ∇ . This depends only on specified inputs as 

abo v e and D 0 , which depends on 〈 μ2 〉 through χ . But here we 

can make use of the limiting behaviours of D : for DFs which 

are near isotropic (hence 〈 μ〉 → 0 is small), χ → 1 / 3 + O( 〈 μ〉 2 ) 

so D → I / 3 + O( 〈 μ〉 2 ), while for DFs which are near maximally 

anisotropic/coherently free-streaming from a source ( 〈 μ〉 → ±1), 

χ → O([ |〈 μ〉| − 1] 2 ) so D → ˆ b ⊗ ˆ b + O([ |〈 μ〉| − 1] 2 ). In either 

regime, the dependence on 〈 μ〉 is quite weak, so even if 〈 μ〉 varies 

across the bin, it will produce very little variation in D . So long as we 

do not see a very rapid transition from confinement to free-streaming 

across a single bin (which we do not expect), then it is almost al w ays 

safe to neglect the variation in χ and D across any reasonable spectral 

bin size, i.e. take I ∇,q ≈ D 0 

∫ p + 

p − 4 π p 
2 dp v 2 φq f̄ 0 . If we do this, 

then equation ( 11 ) immediately yields: 

ω ∇,q ≈

∫ p + 

p − dp p 
2 f̄ 0 v 

2 φq 
∫ p + 

p − dp p 2 f̄ 0 v 
2 
0 φq 

. (18) 

This can in principle be integrated numerically to arbitrary preci- 

sion. But recalling that we have already parametrized the spectrum 

as a piecewise power law, it is useful to parametrize other quantities 

such as v and φq as approximate power-law functions of p o v er the 

domain of the bin, e.g. take 

αX ≡
∂ ln X 

∂ ln p 

∣

∣

∣

p= p 0 
≈

� ln X 

� ln p 
= 

ln ( X 
+ /X 

−) 

ln ( p + /p −) 
, (19) 

where X 
± ≡ X [ p = p ±]. So e.g. αq = 0 exactly for q = n . For 

CRs with p ≫ m s c, αv ≈ 0 and αq ≈ 1 for q = ǫ (for p ≪ m s c, 

αv ≈ 1 and αq ≈ 2 for q = ǫ), so these are close to exact 

power la ws re gardless, and so long as the spectral bins are small 

enough that there is no substantial spectral curvature within a bin 

(a necessary assumption for a piece wise-po wer-law treatment to be 

valid in the first place), approximating non-power -law beha viour with 

equation ( 19 ) introduces no significant errors beyond our original 

piece wise po wer-law approximation. 5 We can then immediately 

write: 

ω ∇,q ≈
(3 + αf 0 + αq ) 

(3 + αf 0 + αq + 2 αv ) 

( ξ 3 + αf 0 + αq + 2 αv − 1) 

( ξ 3 + αf 0 + αq − 1) 
ξ−αv 

≈ 1 + 
αv 

6 

(

3 + αf 0 + αq + αv 

)

| ln ξ | 2 + O( | ln ξ | 4 ) (20) 

with ξ ≡ p + / p − = exp (ln [ p + / p −]) (and the second expression above 

is a series expansion in | ln ξ | ). Note that with the definition in 

equation ( 19 ), ξαX ≡ X 
+ /X 

− for any X , so we could equi v alently 

write: 

ξ 3 + αf 0 + αq + 2 αv = 

(

p 
+ 

p −

)3 (
f̄ + 

0 

f̄ −0 

)

( 

ψ 
+ 
q 

ψ −q 

) 
(

v + 

v −

)2 

(21) 

if the latter is more convenient. 

With these assumptions, we can note 6 I 0 ,q ≈

χ0 αf 0 v̄ A, 0 

∫ p + 

p − 4 π p 
2 dp ̄ν φq f̄ 0 , and immediately follow a 

5 More specifically, for the various α terms that appear in this paper, f̄ 0 and 

〈 μ〉 or f̄ 1 within a bin are assumed to be exact power laws by construction, so 

αf 0 and αμ hav e e xact values but these can (and will) vary across cells and in 

time. The scattering rate ν is often assumed to be an e xact power-la w constant 

in time, but does not have to be (it could have curvature and/or vary with local 

plasma properties). Of course αq = 0 identically for q = n , but for q = ǫ, 

αq is approximate (but it is fixed across all time and cells for a given bin. 

Likewise for αv ). One could numerically evaluate all integrals presented here 

for the rele v ant ω terms exactly, without approximating terms such as ǫ as 

piece wise po wer laws; but in our numerical tests this provides no appreciable 

impro v ement in accurac y compared to using the simpler, analytical power-law 

approximations we provide. 
6 In this expression, we also take v̄ A outside the integral. This depends 

implicitly on p through ν± as v̄ A = v A ( ̄ν+ − ν̄−) / ( ̄ν+ − ν̄−). But like with 

χ , this is almost al w ays in one of two limits, either of which is p -independent. 

As shown in Hopkins et al. ( 2022c ), if extrinsic turbulence strongly dominates 

CR scattering and is forw ard/backw ard symmetric in the Alfv ́en frame, then 

v̄ A → 0 is small and constant (and the term will be unimportant regardless). If 

otherwise (if e.g. self-confinement dominates or the scattering is asymmetric) 

then v̄ A = ±v A independent of p . So we can generally safely neglect the p - 

dependence of this within the bin here, especially as we later show that the 

steady-state behaviour of this ‘streaming’ term reduces to the bin-centred 

approximation. 
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similar procedure to obtain ω 0 : 

ω 0 ,q ≈

∫ p + 

p − dp p 
2 ν̄ f̄ 0 φq 

∫ p + 

p − dp p 2 ν̄0 f̄ 0 ˜ φq 

≈
(3 + αf 0 + αq ) 

(3 + αf 0 + αq + αν) 

( ξ 3 + αf 0 + αq + αν − 1) 

( ξ 3 + αf 0 + αq − 1) 
ξ−αν/ 2 

≈ 1 + 
αν

12 

(

3 + αf 0 + αq + αν/ 2 
)

| ln ξ | 2 + O( | ln ξ | 4 ) . (22) 

Note that αν corresponds to ν̄ ∝ p 
αν ; for the commonly adopted 

phenomenological assumption in modelling Galactic and Solar 

system CR observables that the dif fusi vity scales as κ ∝ R 
δ for 

CR rigidity R (at energies where β ≈ 1), we have αν ≈ −δ, so 

those observations imply −0.7 � αν � −0.4 (Blasi & Amato 2012 ; 

Vladimirov et al. 2012 ; Gaggero et al. 2015 ; Cummings et al. 2016 ; 

Guo, Tian & Jin 2016 ; J ́ohannesson et al. 2016 ; Korsmeier & Cuoco 

2016 ; Evoli et al. 2017 ; Amato & Blasi 2018 ; De La Torre Luque 

et al. 2021 ; Hopkins et al. 2022b ). 

2.5.2 Terms which depend strongly on pitch angle 

Now consider ω 1, q . Here, we cannot neglect the implicit μ- 

dependence, because the fluxes F q are directly proportional to 〈 μ〉 . 

So make the ansatz , like abo v e, that we can approximate 〈 μ〉 ∝ p 
αμ

o v er the (relatively narrow) width of the bin, giving: 

ω 1 ,q = 

∫ p + 

p − dp p 
2 ν̄ 〈 μ〉 v f̄ 0 φq 

∫ p + 

p − dp p 2 ν̄0 〈 μ〉 v f̄ 0 φq 

≈
(3 + αf 0 + αq + αv + αμ) 

(3 + αf 0 + αq + αv + αμ + αν) 

×
( ξ 3 + αf 0 + αq + αv + αμ+ αν − 1) 

( ξ 3 + αf 0 + αq + αv + αμ − 1) 
ξ−αν/ 2 

≈ 1 + 
αν

12 

(

3 + αf 0 + αq + αv + αμ + αν/ 2 
)

| ln ξ | 2 

+ O( | ln ξ | 4 ) . (23) 

Here, as in the expressions above and in various expressions below, 

the first (explicit integral) expression is exact. The second makes the 

power-law substitution, and is exact to the extent that the power- 

law approximation for the quantities inside the integrand is exact 

o v er the width of the bin. 7 The third is a series approximation in 

| ln ξ | , which is generally not necessary for our numerical e v aluations 

in a code implementation of these methods, but is convenient here 

for intuition-building and understanding different limits discussed 

below. 

Equation ( 23 ) would allow us to evolve equation ( 14 ), except 

now we have introduced a new parameter αμ which is not a priori 

specified. Ho we ver, it is not actually the case that αμ is unconstrained. 

Since our update to the DF (equation 3 ) requires evolving both of 

a pair ( q , q ′ ) ( = ( n, ǫ)) with associated fluxes ( F q , F q ′ ), then by 

combining the definitions of ( q , q ′ , F q , F q ′ ), one can show there is 

7 Technically, we have to be careful about the case where the integrand with 

dp scales exactly as p −1 , in which case the power-la w e xpressions should 

e v aluate to ln instead of those shown. But for any case where the index is not 

e xactly ne gativ e one this is can be solv ed without issue and if constructing 

a numerical interpolation one can interpolate across this boundary without 

divergences. 

one independent consistency relation that must be satisfied: 

� q q ′ ≡

(

F q 

q v 0 

)

/ ( F q ′ 

q ′ v 0 

)

= 
q ′ F q 

q F q ′ 

≡

(

∫ p + 

p − dp p 
2 〈 μ〉 v f̄ 0 φq 

)

(

∫ p + 

p − dp p 2 〈 μ〉 v f̄ 0 φ′ 
q 

)

(

∫ p + 

p − dp p 
2 f̄ 0 φq ′ 

)

(

∫ p + 

p − dp p 2 f̄ 0 φq 

)

≈
(3 + αf 0 + αq ) 

(3 + αf 0 + αq ′ ) 

(3 + αf 0 + αq ′ + αv + αμ) 

(3 + αf 0 + αq + αv + αμ) 

×
( ξ 3 + αf 0 + αq ′ − 1) 

( ξ 3 + αf 0 + αq − 1) 

( ξ 3 + αf 0 + αq + αv + αμ − 1) 

( ξ 3 + αf 0 + αq ′ + αv + αμ − 1) 

≈ 1 + 
1 

12 

(

αq − αq ′ 
) (

αv + αμ

)

| ln ξ | 2 + O( | ln ξ | 4 ) . (24) 

Once again we give the exact integrals, solution making the power- 

law replacement, and series approximation in turn. 

This is sufficient to specify αμ and therefore ω 1, q , according to the 

different integration methods described below. 

2.5.3 Solution methods 

With expressions for ω, equation ( 14 ) can be numerically in- 

te grated with e xactly the same numerical methods as used for 

the ‘bin-centred’ method abo v e – the ω terms only amount to 

a scalar renormalization of D 0 , ν̄0 , and v st which are arbitrary 

anyways from the point of view of the numerical method. The 

added complication comes almost entirely from determining αμ

consistently to e v aluate these terms. Consider three methods to 

do so: 

(i) Exact: One option is to exactly update ( q , q ′ , F q , F q ′ ) subject 

to the constraint � q q ′ (equation 24 ). One can think of this as 

‘replacing’ the value of αμ with that determined by � q q ′ in the 

original equations for ( q , q ′ , F q , F q ′ ). While do-able in principle, 

this (a) is extremely non-linear and in volves in verting several 

complicated and numerically stiff functions of four variables; (b) 

couples the ( q , q ′ , F q , F q ′ ) variables explicitly so we are forced to 

update all simultaneously with a single implicit step, i.e. we cannot 

operator-split as is usually desired; and (c) can sometimes lead to 

non-inv ertible e xpressions if great care is not taken with numerical 

errors. 

(ii) Approximate, Inte grated: Alternativ ely, if the numerical 

method e xplicitly inte grates the variables F q and F q ′ (e.g. two- 

moment methods), then we can insert the values of ( q , q ′ , F q , F q ′ ) 

at some point in the time-step (at the beginning of the step or ‘drifted’ 

to a half-step for a standard explicit method, or their exact values at 

step-end for implicit integration) into equation ( 24 ) and solve for αμ

from that expression, then use this value of αμ in equation ( 14 ) to 

calculate the update to F q and F q ′ . This is similar to how the other 

variables in equation ( 14 ) appear and is numerically straightforward 

[the single numerical inversion of equation 24 for a given � q q ′ 

value is straightforward as well]. We find this works quite well. 8 

8 Some numerical caution is still al w ays needed. For example, if one adopts 

the power-law approximations given above, then one needs to treat the 

regime around certain values where some expressions would seemingly 

produce divergences carefully . Specifically , this arises when the integrand 

in the original exact expression takes values ∼
∫ 

p −1 dp, so the power- 

law solutions should be replaced with logarithmic solutions: for example 

if 3 + αf 0 + αq = 0 in equation ( 24 ), which could numerically give a 0/0 

error. F or power-la w indices close to these critical values we recommend 

either using the exact integral solutions (ideally), or a loopkup table designed 
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And in one-moment methods, we must determine the appropriate 

F q , F q ′ self-consistently and simultaneously, which we discuss 

below. 

(iii) ‘Local-Steady-State’ Values: A still simpler, but even more 

numerically robust method is to not solve for αμ from the constraint 

equation ( 24 ) exactly, but to instead adopt the value it would have for 

the corresponding terms in equation ( 14 ) if the flux equation were 

in local steady-state. We derive this and further define below. 

This has the advantage that it is extremely robust and trivially 

numerically stable (provided whatever integration method used for 

the ‘bin centred’ approximation is also stable). It sacrifices manifest 

consistency between equations ( 24 ) and ( 14 ) for q , q ′ , but we are 

guaranteed that when the flux equations D t F q are close to local 

steady-state (which is usually the case), the consistency relations are 

satisfied. 

We also note that while it is generally advisable to use the 

full numerical expressions for ω, the series expressions we show 

(expansions in | ln ξ | ) work surprisingly well for even large ξ , valid 

to better than ∼ 10 per cent for all ω terms for any ξ � 3, and for 

some of the terms (especially in the ultra-relativistic limit) the series 

expression works well up to ξ � 100 (assuming the underlying 

terms could, in fact, be approximated as power laws reliably over 

that dynamic range). 

2.6 Local flux steady-state behaviours 

Consider the case where the flux equations (equation 2 ) reach 

approximate local-steady-state, i.e. | D t F q | → 0 (or | D t F q | ≪ | ν F q | ). 

This occurs on approximately the scattering time ∼ν−1 , which is very 

short in the Galactic ISM (from observations, ν−1 ∼ 30 yr for ∼ 1 

GeV CRs; see Hopkins et al. 2022b ). Thus even if we explicitly 

evolv e F q , we e xpect it to be close to this ‘local flux steady-state’ 

value in many regimes. Moreover, the ‘one-moment’ numerical 

methods assume this is exactly true, to directly solve for F q and 

insert it into equation ( 1 ) to directly obtain a diffusion-streaming 

equation for the CRs (see e.g. Zweibel 2013 , and references therein). 

Noting that this implies the strong-scattering limit, so the CRs are 

nearly isotropic ( χ → 1/3, D → I / 3), we immediately obtain from 

equation ( 14 ): 

F q → v eff 
st ,q q −

v 2 
0 

3 νeff 
0 ,q 

∇ ‖ 

(

ω ∇,q q 
)

, (25) 

where ∇ ‖ ≡ ˆ b · ∇. So up to the ‘ef fecti ve’ coef ficients being slightly 

modified by the ω terms, this is just the usual steaming/diffusion 

expression, with streaming speed v eff 
st ,q and ef fecti ve anisotropic dif- 

fusivity κ‖ ∼ v 2 0 / 3 ν
eff 
0 ,q (if we assume isotropically tangled magnetic 

fields on small scales, this can be further approximated as an isotropic 

dif fusi vity D 0 ∼ κ‖ /3). 

2.6.1 The ‘Alfv ́enic streaming-dominated’ limit 

Consider the case where the Alfv ́enic streaming term domi- 

nates in equation ( 25 ), F q → v eff 
st ,q q (this can occur in e.g. self- 

confinement models when ν̄ → ∞ ). Then equation ( 24 ) becomes 

� q q ′ = ( ω 0 ,q ω 1 ,q ′ ) / ( ω 0 ,q ′ ω 1 ,q ). This is solved exactly if and only 

if αμ → −αv , i.e. the CR drift velocity v drift = 〈 μ〉 v ∝ p 
0 is 

independent of momentum (as it must be, since they are drifting, 

to be interpolated o v er the rele v ant range, rather than taking the power-law 

expressions directly at face value. 

by definition in this limit, at the momentum-independent streaming 

speed across the bin). Inserting this into the expressions for v eff 
st ,q , we 

immediately have: 

ω 0 ,q 

ω 1 ,q 
→ 1 , v eff 

st ,q → −
αf 0 

3 
v̄ A, 0 . (26) 

In this limit, because the drift velocity is constant (across the bin), 

and the gradient/ D term and dif fusi ve terms are irrele v ant, we see 

that we have recovered exactly the same F q that we would have in 

the bin-centred approximation. 

2.6.2 The diffusive or super-Alfv ́enic limit 

Now consider the limit where the ‘diffusive’ term dominates in 

equation ( 25 ), so F q → ( v 2 0 / 3 ν
eff 
0 ,q ) ∇ ‖ ( ω ∇,q q). Note that when some 

literature refers to ‘super-Alfv ́enic streaming,’ this still comes from 

this particular term (and there is no distinction, for our purposes here). 

The constraint equation then becomes � q q ′ = ( ω 1 ,q ′ ℓ q ′ ) / ( ω 1 ,q ℓ q ), 

where 

ℓ q ≡
q 

∇ ‖ ( ω ∇,q q) 
. (27) 

Solving for αμ from this constraint gives a highly non-linear 

equation to be solved for αμ → αμ( ℓ q ′ /ℓ q , αν, αq , αv , αμ αq ′ ). 
9 It 

is more instructive to parametrize ℓ q in a similar piece wise-po wer- 

law manner: let us define ∇ ‖ f̄ 0 ≡ f̄ 0 /ℓ f where ℓ f = ℓ f ( p ) is defined 

o v er an infinitesimally small range of p , and let us assume this 

scales similarly as ℓ f ∝ p 
αℓ . 10 If we combine this with the steady- 

state expressions for F q in terms of the rele v ant gradients, and use 

equations ( 28 )–( 29 ), we see that the consistency relations are satisfied 

exactly for αμ → −αν + αv − αℓ , which we can immediately insert 

in equation ( 23 ). 

With these definitions and some similar algebra, it is also conve- 

nient to note that we can write: 

F q → −κ∗
‖ ,q ∇ ‖ q = −

(

ω κ,q 
v 2 

0 
3 ̄ν0 

)

∇ ‖ q (30) 

ω κ,q ≈
(3 + αf 0 + αq − αℓ ) 

(3 + αf 0 + αq − αℓ + 2 αv − αν) 

×
( ξ 3 + αf 0 + αq −αℓ + 2 αv −αν − 1) 

( ξ 3 + αf 0 + αq −αℓ − 1) 
ξ−αv + αν/ 2 

≈ 1 + 
(2 αv − αν) 

12 

(

3 + αf 0 + αq + αv − αℓ − αν/ 2 
)

| ln ξ | 2 

+ O( | ln ξ | 4 ) (31) 

i.e. the ef fecti ve dif fusi vity is simply modified by a correction 

factor ω κ , q . For � GeV CRs, where we have empirically typical 

αf 0 ∼ −4 . 7 (from direct observation; e.g. Cummings et al. 2016 ), αν

9 If we take αμ → −αv − αν + �αμ and, for compactness, write α3 αf 0 q 
≡

3 + αf 0 + αq , we have: 

ℓ q ′ 

ℓ q 
≈

α3 αf 0 q 
( α3 αf 0 q 

′ + �αμ) 

α3 αf 0 q 
′ ( α3 αf 0 q 

+ �αμ) 

( ξ
α3 αf 0 q 

′ 
− 1) ( ξ

α3 αf 0 q 
+ �αμ

− 1) 

( ξ
α3 αf 0 q − 1) ( ξ

α3 αf 0 q 
′ + �αμ

− 1) 

, (28) 

which can then be solved for �αμ. 
10 We can also immediately calculate the relation between αℓ and ℓ q ′ /ℓ q : 

ℓ q ′ 

ℓ q 
≈

α3 αf 0 q 
( α3 αf 0 q 

′ + 2 αv − αℓ ) 

α3 αf 0 q 
′ ( α3 αf 0 q 

+ 2 αv − αℓ ) 

( ξ
α3 αf 0 q 

′ 
− 1) ( ξ

α3 αf 0 q 
+ 2 αv −αℓ 

− 1) 

( ξ
α3 αf 0 q − 1) ( ξ

α3 αf 0 q 
′ + 2 αv −αℓ 

− 1) 

≈ 1 + 
1 

12 

(

αq − αq ′ 
)

( 2 αv − αℓ ) | ln ξ | 2 + O( | ln ξ | 4 ) , (29) 

which allows us to solve for αℓ . 
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∼ −0.6 (from modelling of primary-to-secondary ratios and similar 

constraints; De La Torre Luque et al. 2021 ; Hopkins et al. 2022b ; 

Korsmeier & Cuoco 2021 ), αv ∼ 0 (from the fact that these are ultra- 

relativistic), αℓ � 0.1 (from modelling spatially resolved Galactic 

γ -ray profiles at different energies; e.g. Tibaldo et al. 2015 ; Acero 

et al. 2016 ; Yang, Aharonian & Evoli 2016 ; Hopkins et al. 2022b ), 

we obtain ω κ,q − 1 ∼ 0 . 05 (1 . 4 − αq + αℓ ) | ln ξ | 2 + O( | ln ξ | 4 ) ∼

−(0 . 08 , 0 . 03) | ln ξ | 2 for q = ( n, ǫ). The ‘mean’ correction (both 

are < 0 because for these energies, most of the CR number and 

energy is biased towards the lower- p end of the ‘bin,’ where the 

ef fecti ve κ is smaller) is modest and not so important, given the (very 

large) systematic theoretical uncertainties in the ‘correct’ scaling of 

ν̄0 (Yan & Lazarian 2004 , 2008 ; Zweibel 2013 , 2017 ; Farber et al. 

2018 ; Holguin et al. 2019 ; Bustard & Zweibel 2021 ; Hopkins et al. 

2021a , b , 2022b ). What is important is the relative correction: the 

CR number flux is more strongly modified (because CR number is 

more strongly dominated by the low- p end of the bin), and the (small) 

difference here causes the spectral slope to steepen within the bin as 

CRs diffuse. 

Note that if we must still e v aluate ℓ q ′ /ℓ q to determine αℓ for 

equation ( 30 ) abo v e, then it is not necessarily more computationally 

useful than just using F q → ( v 2 0 / 3 ν
eff 
0 ,q ) ∇ ‖ ( ω ∇,q q) as we would have 

previously, but it is still useful to guide our intuition. Moreo v er, 

we can note that in the limit where the dif fusi ve term dominates 

the flux, with negligible losses, and the CR ( n, ǫ) equations are 

themselves close to steady-state (assuming also ν̄ and the source 

injection spectrum do not vary strongly with spatial location), 

then αℓ → 0. Since that is precisely the regime where it matters 

most to get this correction ‘right,’ we can assume this without 

much loss of accuracy given our other significant simplifications 

abo v e. 

2.6.3 The ‘local-steady-state’ approximation for flux corrections 

With all this in mind, if one adopts a two-moment method 

(evolving F q explicitly) with the primary goal of capturing 

the exact behaviour in the three possible limits of equa- 

tion ( 2 ) (free-streaming/weak-scattering, or near-isotropic/strong- 

scattering/dif fusi v e, or trapped/adv ectiv e/Alfv ́enic-streaming [ ̄ν → 

∞ ]), 11 then it is sufficient to adopt the ‘local-steady-state’ 

approximation for αμ in equation ( 14 ) using the appropriate 

value of αμ each term would have if it were dominant. This 

gives 

D t F q + v 2 0 
ˆ b · ∇ ·

(

D 0 ω ∇,q q 
)

= −ν∗
q 

(

F q − v st , 0 q 
)

v st , 0 ≡ −χ0 αf 0 v̄ A, 0 

ν∗
q ≡ ν̄0 ω 1 ,q [ αμ → αv − αν − αℓ ] (32) 

(with ω ∇, q from equation 20 and ω 1, q from equation 23 ). One can 

immediately verify this reduces correctly to any of the rele v ant local- 

steady-state limits abo v e. 

If one evolves a ‘one-moment’ method – e.g. evolving the CRs 

according to a single streaming + diffusion or Fokker–Planck type 

approximation (valid only in the strong-scattering limits), then we 

can approximate the limits of interest via: 

F q → −
αf 0 

3 
v̄ A, 0 q −

(

ω κ,q 
v 2 0 

3 ̄ν0 

)

∇ ‖ q (33) 

11 Ev en relativ ely sophisticated closure schemes for evolving 〈 μ2 〉 proposed 

in the literature focus primarily on the behaviour in these three limits, as 

opposed to intermediate cases; see Hopkins et al. ( 2022a ) for a re vie w. 

(with ω κ , q from equation 31 ) where αℓ in ω κ , q can be computed or 

(for even greater simplicity), approximated as ≈0 without severe loss 

of accuracy. 

3  SIMPLE  N U M E R I C A L  TESTS  

In Fig. 1 , we consider a simple illustrative numerical test of the 

proposed methods. To isolate the interesting behaviour and con- 

struct a simple, analytically tractable test problem, we consider 

transport of a power-law injection spectrum in a plane-parallel 

atmosphere, analogous to classic thin disc or leaky-box type models 

for CRs. Specifically, consider an infinitely thin source plane in the 

xy axis, in a homogeneous, stationary background (e.g. v gas = 0 , 
ˆ b = ˆ z = constant) with space-and-time-independent v̄ A = constant 

and ν̄ ∝ p 
−0 . 5 , T ∝ p and β ≈ 1 (e.g. the ultra-relativistic limit, 

though this choice has no effect on our conclusions), ignoring all non- 

spatial transport terms (e.g. catastrophic or radiative losses) except 

for injection in the source plane at a constant rate per unit area 

J 0 ≡ d N cr /d t d A d 3 p . Numerically, we integrate this on a domain 

with 10 spatial cells in the vertical direction from z = 0 (with an 

inflow/injection boundary) to z = 1 (with an outflow boundary) 

in arbitrary code units, and injection slope j inj ∝ p −4.2 similar to 

physically expected values, using the finite-volume two-moment 

method (evolving n, ǫ, F n , F ǫ) in the code GIZMO (Hopkins 2015 ; 

Hopkins & Raives 2016 ; Hopkins 2017 ; Hopkins et al. 2022b ), 12 

with the ω values determined according to the different proposed 

methods described in the text. We discretize the momentum domain 

with 10 bins o v er 2 de x (though again, giv en the simplifications 

of our problem, the dynamic range of p is not important to our 

conclusions). We set the normalization of v̄ A and ν̄ to two different 

values to compare two limits. 

First, we consider a ‘streaming-dominated’ limit, obtained by 

setting ̄ν to a very large value ( ∼ 10 6 p 
−0 . 5 in code units) with ̄v A = 1 

(and ef fecti ve dif fusion coef ficient v 2 / 3 ̄ν set to an arbitrarily small 

value), so analytically f̄ 1 → ( ˜ D μμ/ ˜ D μp ) ∂ p f̄ 0 . This has a simple 

constant-flux steady-state solution with v f̄ 1 = −v̄ A αf 0 f̄ 0 = J 0 , so 

f̄ 0 → J 0 / | αf 0 v̄ A | is spatially uniform and proportional to the injec- 

tion spectrum (i.e. αf 0 = αj inj = −4 . 2). As predicted in Section 2.6.1 , 

the injection spectrum is simply advected here, so all methods 

(including the simple bin-centred approximation) reproduce the exact 

solution in Fig. 1 in this limit. 

Second, we consider a ‘diffusion-dominated’ case, setting v̄ A = 0 

with finite ν̄ (evolved to several times the effective diffusion 

time). In steady-state now v f̄ 1 = −( v 2 / 3 ̄ν) ∂ z f̄ 0 = J 0 , so ∂ z f̄ 0 = 

−(3 ̄ν/v 2 ) J 0 = constant in space and ∝ p −0.5 . Because higher energy 

CRs have a lower ν̄, and correspondingly larger ef fecti ve dif fusi vity 

v 2 / 3 ̄ν, they escape faster and their steady-state abundance (relative 

to injection) is reduced, steepening the spectrum by one power of ν̄. 

All the numerical methods in Fig. 1 capture this effect ‘on average’ 

across bins. But for the ‘bin-centred’ method, as anticipated in 

Section 2.4 , we ef fecti vely ignore the variation of ν̄ within each 

bin (taking the bin-centred ν̄0 as constant across each bin). This 

means we very slightly overestimate the total value of ν̄ (leading 

to a small underestimate of the mean f̄ 0 , averaged over the bin), 

but more importantly the method conserves the spectral slope within 

12 We have also tested these problems implementing the 10-element discretiza- 

tion in 1D, solved via a Crank–Nicholson scheme in PYTHON using either 

the two-moment equations or (since we consider the steady-state solutions) 

directly integrating the single-moment streaming + diffusion equation in 

Section 2.6 , which gives indistinguishable results to those shown in Fig. 1 . 
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Figure 1. Numerical tests (Section 3 ) of our proposed correction terms 

for spatial transport of piece wise-po wer-law spectra. We consider a ho- 

mogeneous, 1D stratified atmosphere with a continuous injection spectrum 

j inj ∝ p −4.2 at the lower boundary and outflow from the upper boundary, 

constant streaming speed v̄ A and scattering rate ν̄ ∝ p −0 . 5 , discretized into 

10 momentum intervals, and evolved until steady-state using the numerical 

methods described in the text. We compare exact analytical steady-state solu- 

tions to numerical solutions using either (1) the ‘bin-centred’ approximation 

( ω ∇ = ω 0 = ω 1 = 0; Section 2.4 ), (2) the ‘approximate-integrated’ method 

(Section 2.5.3 ) to solve for the ω terms (given the in-code evolved values 

of n, ǫ, F n , F ǫ to calculate αν from equation 24 ), and (3) the ‘local-steady- 

state’ approximation for ω terms (Section 2.6.3 ), using the local-steady-state 

values of αμ. Top: Parameters chosen so the transport is streaming-dominated 

( ̄ν very large). We plot the steady-state spectrum compensated by p 4.2 and in 

units such that the exact solution equals unity. In the streaming-dominated 

limit, the transport speed is momentum-independent so the spectrum is simply 

advected without change in spectral slope, and the different approximations 

behav e identically. Bottom: P arameters chosen so the transport is diffusion- 

dominated ( ̄v A = 0). The ‘bin-centred’ approximation introduces well-known 

step artefacts, as a result of assuming the scattering rate and 〈 μ〉 are constant 

within each bin, which conserves the injection slope within each momentum 

bin. Both our proposed methods for including the ω terms produce the correct 

spectral slopes within bins. 

each bin, producing the ‘step’ structures seen. On the other hand, 

introducing the scalar ω correction terms as proposed in this paper, 

with either method in Fig. 1 , leads to excellent agreement with the 

exact solutions (with the slope in each bin numerically agreeing with 

the exact solution to better than ∼ 1 per cent ). 

4  APPLI CATI ONS  TO  R A D I AT I O N / N E U T R I N O  

DY NA M IC S  

It is natural to ask whether the methodology abo v e can be cross- 

applied to radiation or neutrino transport, where one can easily imag- 

ine situations in which a similar piece wise-po wer-law reconstruction 

of the radiation spectrum would be useful. 

For the sake of consistency with the large radiation/neutrino 

transport literature, in this section we will consider a different set 

of variable definitions matching the convention in those fields. Let 

ν refer to the radiation frequency (so h ν is energy, analogous to 

p for CRs), so the specific intensity I ν( n , ν, x , t) is equi v alent 

to the DF f in terms of the radiation direction unit vector n , the 

mean/isotropic intensity J ν ≡ (4 π ) −1 
∫ 

I ν d� is analogous to f̄ 0 , D ν

( ≡ (4 π J ν) −1 
∫ 

d� n ⊗ n I ν) is the Eddington tensor, c κν ρ in terms 

of the opacity κν and gas density ρ is akin to the CR scattering rate 

ν̄, q ν = d q/d ν ≡ 4 π φq J ν is defined such that for photon number 

and energy q = ( n γ , e γ ) we have corresponding φq = (1 /hν, 1), 

and F q ≡ φq c 
∫ 

d� n I ν = c 〈 n 〉 ν q ν ( 〈 n 〉 ν ≡ (4 π J ν) −1 
∫ 

d� n I ν) 

is the flux term. With these definitions, the spatial part of the first two 

moments of the non-relativistic radiation-MHD moments equations, 

as usually written in the lab frame, are (Mihalas & Mihalas 1984 ) 

∂q ν

∂t 
= −∇ · F 

q 
ν + ... (34) 

∂F 
q 
ν

∂t 
+ c 2 ∇ · ( D ν q ν) = −c κν ρ

[

F 
q 
ν − q ν v gas · ( I + D ν) 

]

+ ... (35) 

Note that the equations in the co-moving frame (to leading order 

in O( v gas /c)) are equi v alent to taking ∂ t → D t and dropping the 

v gas term abo v e, so our discussion here applies equally to both 

cases. Equation ( 34 ) is again just advection, and integrating over 

a frequency interval from ν− to ν+ , we immediately have ∂ t q = 

−∇ · F q (with q ≡
∫ ν+ 

ν− dν q ν , F q ≡
∫ ν+ 

ν− dν F 
q 
ν ), so we only need to 

consider equation ( 35 ). 

4.1 The strong-scattering and flux-limited diffusion-like limit 

In the strong-scattering ‘local-steady-state’ limit for the flux, we 

have the usual dif fusi ve approximation with D ν → I / 3, F 
q 
ν → 

(4 / 3) v gas q ν − ( c/ 3 κν ρ) ∇q ν . Integrating this, we immediately ob- 

tain: 

F 
i 
q → 

4 

3 
v i gas q − ω 

i 
r, q 

c 

3 κ0 ρ
( ∇ q ) i (36) 

ω 
i 
r, q ≡

∫ ν+ 

ν− dν κ−1 
ν φq ( ∇J ν) i 

∫ ν+ 

ν− dν κ−1 
0 φq ( ∇J ν) i 

≈
(1 + αJ + αq − αℓ,i ) 

(1 + αJ + αq − αℓ,i − ακ ) 

( ξ 1 + αJ + αq −αℓ,i −ακ − 1) 

( ξ 1 + αJ + αq −αℓ,i − 1) 
ξακ / 2 

≈ 1 −
ακ

12 

(

1 + αJ + αq − αℓ,i − ακ/ 2 
)

| ln ξ | 2 + O( | ln ξ | 4 ) , 

(37) 

where J ν ∝ ναJ , φq ∝ ναq , κν ∝ νακ , and ( ∇J ν) i = J i ν/ℓ 
i 
ν with ℓ i ν ∝ 

ναℓ,i for each gradient component. 
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We can in principle solve for each value of αℓ , i as in Section 2.6.2 

abo v e 13 ; but if we assume that either the dependence of gradient 

scale length on wavelength in the bin is small ( αℓ , i ∼ 0) or just that 

the gradient direction does not strongly depend on wavelength across 

the bin ( αℓ , x ≈ αℓ , y ≈ αℓ , z ≈ αℓ ), then we can write this in terms of 

a scalar ‘ef fecti ve’ κ , 

F q ∼
4 

3 
v gas q −

c 

3 κeff ρ
∇ q (39) 

1 

κeff 
≡

∫ ν+ 

ν− dν κ−1 
ν φq |∇J ν | 

∫ ν+ 

ν− dν φq |∇J ν | 
= 

ω r, q 

κ0 
(40) 

(i.e. just equation 37 with αℓ , i → αℓ ). 

Now if we assume J ν is blackbody-like, so |∇J ν | → 

| d J ν/ d T | |∇T | , and consider the equation for the radiation energy 

density q = e γ (so φq = 1), equation ( 40 ) becomes immediately 

recognizable as the usual Rosseland mean opacity (the |∇T | term 

factors out, being independent of ν). So essentially, we have just 

generalized this convention for (1) an arbitrary non-blackbody 

intensity, and (2) other conserved radiation quantities such as n γ
( φq = 1/ h ν, αq = −1), needed if we wish to correctly evolve the 

radiation spectrum as a piecewise power law with two degrees of 

freedom. 

4.2 The weak-scattering and M1-like limits 

Now consider cases where one wishes to evolve the flux equation ( 35 ) 

explicitly, in e.g. first-moment (M1) or variable Eddington tensor or 

other related moments-based methods. Integrating, in component 

form, we can write: 

1 

c 2 

∂F 
i 
q 

∂t 
= −

[ 

∇ ·

( 
∫ ν+ 

ν−

dν φq,ν J ν D ν

) ] i 

−

[ 
∫ ν+ 

ν−

dν κν ρ φq,ν J ν

{ 

〈 n 〉 ν −
v gas 

c 
· [ I + D ν] 

} 
] i 

≡ −ω 
i 
r, ∇,q [ ∇ · ( D 0 q) ] i 

−
κ0 ρ

c 

[

ω 
i 
r, 1 ,q F 

i 
q − ω 

i 
r, 0 ,q q 0 v gas · ( I + D 0 ) 

]

. (41) 

If we assume 〈 n 〉 i ν ∝ ναn,i (analogous to αμ for CRs), then we can 

write: 

ω 
i 
r, 1 ,q ≡

∫ ν+ 

ν− dν κν F 
q,i 
ν

∫ ν+ 

ν− dν κ0 F 
q,i 
ν

≈
(1 + αJ + αq + αn,i ) 

(1 + αJ + αq + αn,i + ακ ) 

( ξ 1 + αJ + αq + αn,i + ακ − 1) 

( ξ 1 + αJ + αq + αn,i − 1) 
ξ−ακ / 2 

≈ 1 + 
ακ

12 

(

1 + αJ + αq + αn,i + ακ/ 2 
)

| ln ξ | 2 + O( | ln ξ | 4 ) 

(42) 

13 Specifically computing ℓ i q , ℓ 
i 
q ′ and using 

ℓ i 
q ′ 

ℓ i q 
≈

α1 Jq ( α1 Jq ′ − αℓ,i ) 

α1 Jq ′ ( α1 Jq − αℓ,i ) 

( ξ
α1 Jq ′ − 1) ( ξα1 Jq −αℓ,i − 1) 

( ξα1 Jq − 1) ( ξ
α1 Jq ′ −αℓ,i − 1) 

≈ 1 −
αℓ,i 

12 

(

αq − αq ′ 
)

| ln ξ | 2 + O( | ln ξ | 4 ) (38) 

with α1 Jq ≡ 1 + αJ + αq . 

and we have an analogous consistency relation which determines αn , i 

for each component of F 
i 
q : 

� 
i 
q q ′ ≡

( 

F 
i 
q 

q v 0 

) 
/ 
( 

F 
i 
q ′ 

q ′ v 0 

) 

= 
q ′ F 

i 
q 

q F 
i 
q ′ 

≡

(

∫ ν+ 

ν− dν 〈 n 〉 i ν φq J ν

)

(

∫ ν+ 

ν− dν 〈 n 〉 i ν φq ′ J ν

)

(

∫ ν+ 

ν− dν φq ′ J ν

)

(

∫ ν+ 

ν− dν φq J ν

)

≈
(3 + αJ + αq ) 

(3 + αJ + αq ′ ) 

(3 + αJ + αq ′ + αn, i ) 

(3 + αJ + αq + αn, i ) 

×
( ξ 3 + αJ + αq ′ − 1) 

( ξ 3 + αJ + αq − 1) 

( ξ 3 + αJ + αq + αn, i − 1) 

( ξ 3 + αJ + αq ′ + αn, i − 1) 

≈ 1 + 
αn, i 

12 

(

αq − αq ′ 
)

| ln ξ | 2 + O( | ln ξ | 4 ) . (43) 

If the fluxes F q are explicitly evolved, we can then use � 
i 
q q ′ to 

determine αn , i and thus ω 
i 
r, 1 ,q , just as in our ‘exact’ and ‘inte- 

grated, approximate’ methods from Section 2.5.3 abo v e. If instead 

we wish to replace ω 
i 
r, 1 ,q with its ‘local flux steady-state’ value 

we see from Section 4.1 we would have αn , i → −( αℓ , i + ακ ) 

in ω 
i 
r, 1 ,q . 

The real challenge arises with the treatment of the Eddington tensor 

( D ν) terms in ω 
i 
r, ∇,q and ω 

i 
r, 0 ,q q 0 . For CRs, it is worth emphasizing 

that the relation we wrote in Section 2.1 , D = χ I + (1 − 3 χ ) ̂  b ⊗ ˆ b 

is not some approximate closure: it is the most general possible form 

of D for a gyrotropic DF, and depends on a single scalar degree 

of freedom 〈 μ2 〉 (and likewise, its parallel gradient ˆ b · ∇ · D intro- 

duces only a single scalar degree of freedom). Moreover, gyrotropy 

means that even for an arbitrarily anisotropic CR DF, D ∝ ˆ b ⊗ ˆ b 

depends on the magnetic field direction ˆ b , which is of course CR- 

momentum-independent. On the other hand, for radiation, D has, in 

general, fiv e independent de grees of freedom, and the ∇ · ( D ν q ν) 

term introduces ∼10 more. 14 So the problem is rather severely 

underconstrained. Moreo v er, ev en in the simplest possible highly 

anisotropic case, where the radiation at a given ν is perfectly coherent 

(free-streaming in a single direction), we have D ν ∼ 〈 n 〉 ν ⊗ 〈 n 〉 ν . But 

this (unlike ˆ b ⊗ ˆ b ) depends on an evolved property of the radiation 

flux itself ( 〈 n 〉 ν), so it can depend on ν, which means that we 

have no formal justification to neglect the variation in D ν across 

the bin. 

This is not a new problem: defining a robust ‘closure’ for D ν

is arguably the central challenge for moments-based radiation or 

neutrino-hydrodynamics schemes (see e.g. Wilson et al. 1975 ; 

Levermore 1984 ; Gnedin & Abel 2001 ; Rosdahl & Teyssier 2015 ; 

Murchiko va, Abdikamalo v & Urbatsch 2017 ; Foucart 2018 ). And 

many of the most popular numerical methods use highly approximate 

closures that only approach the exact solutions in very specific 

regimes (e.g. when I ν is nearly isotropic, or the radiation is a perfectly 

coherent 1D beam, etc.). So it is not clear if, in practice, we could 

solve for the correct ω 
i 
r, ∇,q and ω 

i 
r, 0 ,q , even if we specified exactly 

some simple functional closure relation for D ν . Thus, lacking another 

way to make progress, we will briefly consider – without justification, 

we stress – what we would obtain if we neglect the variations in D ν

across each bin. 

14 These come from the dependence of I ν on ˆ n (ray direction), and its 

(arbitrary) gradient. Since D is a symmetric 3 x 3 matrix (in 3D) normalized 

to have trace unity (as it is defined by the moments of I ν ) it has 5 degrees 

of freedom, and we have a similar number of degrees of freedom for each 

component of the vector gradient of I ν which appears in ∇ · ( D ν q ν ). 
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For the ω 
i 
r, 0 ,q term, if we neglect variation in D ν across the 

bin we can calculate it directly as ω 
i 
r, 0 ,q ≈ [(1 + αJ + αq ) / (1 + 

αJ + αq + ακ )] [( ξ 1 + αJ + αq + ακ − 1) / ( ξ 1 + αJ + αq − 1)] ξ−ακ / 2 ≈

1 + ( ακ/ 12) (1 + αJ + αq + ακ/ 2) | ln ξ | 2 + O( | ln ξ | 4 ). But at this 

level of approximation, we can also just as well take ω 
i 
r, 0 ,q → ω 

i 
r, 1 ,q , 

for the simple reason that for a non-relativistic v gas (the valid limit of 

our e xpressions), the ‘adv ection’ term in v gas is only ever important 

in the strong-scattering, tightly coupled regime, where we can 

(quite accurately) assume the ‘local-steady-state’ approximation 

from abo v e and, just like with CRs, this term reduces exactly to its 

‘bin-centred’ version, with ω 
i 
r, 0 ,q /ω 

i 
r, 1 ,q → 1. 

The ∇ · ( D ν q ν) term becomes trivial with ω 
i 
r, ∇,q → 1 if we neglect 

variations in D ν across the bin. But we caution that while simple, this 

is much less ‘safe’ an assumption than neglecting the variations for 

ω 
i 
r, 0 ,q . That is because this term is the dominant term controlling 

∂ t F q in the weak-scattering regime, which is precisely where we said 

earlier it is not al w ays safe to neglect variations in D ν with ν. But 

for many moments-based methods, that regime is also where D ν is 

estimated rather poorly. So this may not be a significant source of 

error relative to those pre-existing errors for methods like M1, but 

that remains to be tested. 

5  C O N C L U S I O N S  

We derive and test a simple improvement to numerical methods 

that dynamically evolve the CR spectrum, representing it as a 

piece wise po wer-law across momentum-space with standard ad- 

vection/diffusion behaviour in coordinate-space. Previous attempts 

to do so generally allow for smooth and exact evolution of the 

piece wise-po wer-law slopes under momentum-space operations (e.g. 

continuous and catastrophic losses, injection, etc.), but for the spatial 

terms adopted the ‘bin-centred’ approximation that leads to errors 

in the local spectral shape when CR diffusion is important (or these 

methods sacrificed conservation or consistency with the underlying 

flux equations). We show that these errors are formally second order 

in momentum-space, but they can be eliminated, allowing for smooth 

evolution of the CR spectra under diffusion, maintaining consistency 

with the underlying Vlasov equations and manifest conservation of 

CR number and energy (and current and momentum, in two-moment 

methods). 

The modification amounts to a set of three simple, scalar correction 

factors which, once computed, can be immediately applied (as 

e.g. a correction to the ‘ef fecti ve’ bin-centred dif fusion coef fi- 

cient, or to the scalar quantities whose gradients are calculated), 

which can be computed exactly entirely as a function of actual 

evolved quantities in-code (i.e. there is no need to invoke new 

assumptions, or to implicitly evolve or take gradients of a ‘finer 

grained’ DF). They require no fundamental modification to the 

numerical method adopted (and have no effect on its stability 

properties). 

The important conceptual addition is that the definitions of the con- 

served quantities and structure of the underlying equations for the DF 

impose a consistency requirement for how the mean pitch-angle 〈 μ〉 

must vary across the bin, which allows us to derive these correction 

factors. We consider both exact formulations of this constraint, and 

even simpler, approximate versions which still maintain manifest 

conservation and ensure consistency in all rele v ant limits when the 

CR flux equations are in local steady-state (e.g. on time/spatial scales 

larger than the CR scattering time/mean-free-path). We test these 

in a simple idealized problem and show the y reco v er the desired 

behaviours, with negligible difference in computational expense. All 

of the abo v e applies both to one-moment methods which evolve a 

single scalar diffusion + streaming/advection equation (or Fokker–

Planck type equation) or two-moment methods which explicitly 

evolve the CR flux. 

We also extend this idea to similar methods that evolve radiation or 

neutrino hydrodynamics (again treating the spectrum as a piecewise 

power law, attempting to simultaneously conserve both photon 

number and energy). We show that in the ‘local flux steady-state’ or 

‘single-moment’ limit (aka the adv ectiv e-diffusiv e limit for radiation 

transport), in which the intensity is close-to-isotropic, the appropriate 

correction terms can be derived and represent a generalization of 

the usual Rosseland mean opacity to arbitrary non-thermal spectra 

and other conserved quantities (e.g. photon number). Ho we ver, 

in the weak-scattering limit, the usual ambiguity in the form of 

the Eddington tensor makes the problem underdetermined. The 

key difference is that we can safely assume CRs have a close-to- 

gyrotropic DF with respect to the magnetic field direction (which is, 

of course, CR momentum-independent) – but there is no analogous 

constraint for radiation. 
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