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ABSTRACT

A popular numerical method to model the dynamics of a ‘full spectrum’ of cosmic rays (CRs), also applicable to radiation/neutrino
hydrodynamics, is to discretize the spectrum at each location/cell as a piecewise power law in ‘bins’ of momentum (or frequency)
space. This gives rise to a pair of conserved quantities (e.g. CR number and energy) that are exchanged between cells or bins,
which in turn give the update to the normalization and slope of the spectrum in each bin. While these methods can be evolved
exactly in momentum-space (e.g. considering injection, absorption, continuous losses/gains), numerical challenges arise dealing
with spatial fluxes, if the scattering rates depend on momentum. This has often been treated either by neglecting variation of
those rates ‘within the bin,” or sacrificing conservation — introducing significant errors. Here, we derive a rigorous treatment of
these terms, and show that the variation within the bin can be accounted for accurately with a simple set of scalar correction
coefficients that can be written entirely in terms of other, explicitly evolved ‘bin-integrated’ quantities. This eliminates the
relevant errors without added computational cost, has no effect on the numerical stability of the method, and retains manifest
conservation. We derive correction terms both for methods that explicitly integrate flux variables (e.g. two-moment or M1-like)
methods, as well as single-moment (advection-diffusion, FLD-like) methods, and approximate corrections valid in various

limits.
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1 INTRODUCTION

Understanding cosmic ray (CR) propagation and dynamics in the
interstellar medium (ISM) and circum/intergalactic medium remains
an unsolved problem of central importance in space plasma physics
(Zweibel 2013, 2017; Amato & Blasi 2018; Kachelrie3 & Semikoz
2019), with major implications for fields ranging from astro-
chemistry, planet, star, and galaxy formation (e.g. Chen, Bryan &
Salem 2016; Girichidis et al. 2016; Pakmor et al. 2016; Salem,
Bryan & Corlies 2016; Simpson et al. 2016; Ruszkowski, Yang &
Zweibel 2017; Wiener, Pfrommer & Oh 2017; Butsky & Quinn
2018; Farber et al. 2018; Jacob et al. 2018; Chan et al. 2019; Su et al.
2020; Hopkins et al. 2020; Ji et al. 2020, 2021; Bustard & Zweibel
2021).

In models which seek to dynamically evolve the CR population on
large scales [as opposed to either historical semi-analytical models,
which solve for the equilibrium CR distribution function (DF) in
a static analytical Galaxy model, e.g. Korsmeier & Cuoco 2016;
Evoli et al. 2017; Amato & Blasi 2018; Liu, Yao & Guo 2018,
or particle-in-cell type simulations which model the dynamics of
individual CRs], a central challenge is the high dimensionality of
the DF f(x, p, t) as a function of position x, CR momentum p,
and time 7. Recently, a number of studies (Girichidis et al. 2022;
Hanasz, Strong & Girichidis 2021; Hopkins et al. 2022b; Ogrodnik,
Hanasz & Woltaniski 2021) have addressed this by implementing
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variations of the method proposed in Girichidis et al. (2020) (with
broadly similar methods used earlier in e.g. Jun & Jones 1999;
Miniati 2001, 2007; Miniati et al. 2001; Jones & Kang 2005; Mimica
et al. 2009; Yang & Ruszkowski 2017; Winner et al. 2019 as well),
wherein the isotropic part of the DF f; is represented as a piecewise
power-law function of momentum, in ‘bins’ of p spanning some
dynamic range; one can then integrate (to arbitrary precision) bin-
to-bin fluxes of conserved CR number and energy (representing
e.g. continuous loss or gain processes) or source/sink terms (injec-
tion or catastrophic losses or secondary production) in momentum
space.

The method has many advantages. (1) Because real CR spec-
tra are smooth and power-law-like over a wide dynamic range,
these studies have shown that the spectrum over some very wide
dynamic range can be represented accurately with a relatively
small number of bins per species, imposing modest computational
and memory cost. (2) The momentum-space and coordinate-space
(advection/streaming/diffusion) operations can be operator-split,
allowing the spatial part of the equations to be integrated with
standard, well-studied and high-order numerical methods (exactly
identical to previous treatments that considered just a single CR
‘fluid’ or bin or total energy density scalar field, e.g. Salem et al.
2016; Ruszkowski et al. 2017; Butsky & Quinn 2018; Chan et al.
2019; Hopkins et al. 2020; Ji et al. 2020, 2021; Su et al. 2020;
Bustard & Zweibel 2021). (3) Conservation of number and energy
is manifest, which ensures robustness of many results even in
highly noisy conditions or in extreme injection/loss events. (4) It
is accurate and converges efficiently in momentum-space. (5) It
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trivially generalizes for methods that evolve either the ‘two-moment’
equations for the CR DF (where one evolves both the isotropic part
of the DF and its flux, or equivalently the mean CR pitch angle),
or ‘one-moment’ equations (where one assumes the flux is in local
steady-state, so evolve just the isotropic part of the DF subject to a
diffusion-+streaming equation), as well as to even-further-simplified
models (e.g. replacing the correct anisotropic diffusion with isotropic
diffusion). These and other advantages have led, for example, to the
first simulations simultaneously evolving multispecies CR spectra
alongside ‘live’ fully coupled MHD dynamics on Galactic scales
(Hopkins et al. 2022b).

However, while the momentum-space properties of this class of
piecewise-power-law methods are very well defined (and easy to
demonstrate), there is a known conceptual challenge in coordinate-
space. Specifically, given some piecewise-power-law representation
of fin a ‘bin,” the spatial flux of f should depend on momentum,
varying ‘across the bin’. But since the flux depends itself on gradients
of various moments of the DF itself, a naive attempt to integrate
or average the flux over the bin leads to expressions of the form
[ &pFlp, fIpl. ....]1 -V -GIp, fIp], ...], where F, G are some
arbitrary tensor functions. These are not just complicated, but appear
at first to require ‘sub-binning’ of f into infinitesimally small bins,
each of which has a separately computed gradient, in order to evaluate
accurately (Girichidis et al. 2020). As a result, most studies above
have adopted the ‘bin-centred’ approach, wherein one assumes that
all quantities of relevance for computing spatial fluxes are assumed
to be constant over the momentum-width of a bin. This retains
advantages (1), (2), (3), and (5) above, but leads to well-known
artefacts in the spectrum when spatial transport (e.g. diffusion)
dominates the escape time, sacrificing some of (4). Alternative
approaches have been discussed (e.g. Girichidis et al. 2022), but
(as noted by these authors) these generally sacrifice all of (2),
(3), and (5); in particular the proposed non-bin-centred methods
sacrifice conservation and consistency (they cannot be derived from
the underlying DF equations) and can potentially lead to numerical
instability or unphysical behaviours when momentum-space terms
(e.g. losses) dominate.

In this paper, we derive a consistent treatment of these terms that
resolves all of the challenges above and retains all of advantages
(1-5) above. By considering a two-moment pitch-angle expansion
of the Vlasov equation on scales large compared to CR gyro-radii,
we show that the key conceptual ingredient required to resolve these
issues is a consistent treatment of how the mean CR pitch angle
varies across a ‘bin’. But we also show that the structure of the
equations imposes consistency conditions that determine this at the
level of approximation needed for the piecewise-power-law recon-
struction. With this properly treated, we show the corrected numerical
method is structurally identical to the ‘bin-centred’ approximation
with appropriate scalar correction coefficients that are determined
entirely in terms of already-evolved numerical quantities. We further
show that the correction coefficients can be (self-consistently) even-
further simplified if either (1) only the one-moment equation for
the CRs is dynamically evolved, or (2) one only needs to capture
the exact behaviour in all relevant limits of the local-steady-state
flux equation (e.g. one is interested primarily in time-scales long
compared to CR scattering times).

While our primary motivation in this paper is focused on ap-
plications to CRs, this qualitative method, and the challenges
above, also apply in principle to analogous methods which evolve
spectra of other collisionless species (e.g. radiation or neutrinos)
as piecewise-power laws in similar fashion (e.g. Baschek et al.
1997). In this context, most ‘moment-based’ multigroup methods

Improving piecewise-power-law diffusion ~ 5883

for radiation-hydrodynamics have focused on evolving just the
radiation/neutrino energy in each ‘bin’ (e.g. Castor 2007), effectively
equivalent to representing the spectrum as piecewise-constant, rather
than a piecewise power law. Although conceptually simpler, the
piecewise-constant approach requires an order of magnitude larger
number of ‘bins’ across some frequency or energy range in order
to represent spectra with steep or dynamically evolving power-
law slopes, and sacrifices the ability to simultaneously conserve
number and energy. A method like the piecewise-power-law scheme
above for neutrinos has been discussed in e.g. Rampp & Janka
(2002) and Miiller, Janka & Dimmelmeier (2010) (their ‘simul-
taneously number-and-energy-conserving scheme,’ although it is
described in different language than we use here), but similar
conceptual difficulties (see Mezzacappa et al. 2020) have limited its
application.

2 A METHOD FOR HANDLING FLUXES OF
PIECEWISE-POWER-LAW SPECTRA

2.1 Set-up and definitions

Consider a population of CRs' with some phase-space DF f =
d N /d3x d*p, with polar momentum coordinates p = |p|, pitch angle
w=cos=p- b (where b = B/|B| is the magnetic field direction),
and phase angle ¢,. The comoving evolution equations for the spatial
or coordinate-space part of the first two p-moments of fcan be written
(Hopkins, Squire & Butsky 2022a):?

Difo=-V-wfib)+...., 1)

D, fi +vb-V (D fo) = =Dyy fi = Dyup dpfo+ ..., )

where f, = (47)™" [dpdg, " f.so fo is the isotropic part of the
DF and fi = (1) fo; DiX = 8,X +V - (Veas X) = pdy(X/p); x =
(1 —(u*)2andD=xl+(1-3x)b®b; D,, = is the pitch-
angle averaged scattering rate (at the given p and x); and D,,, =
D x pva/v in terms of the CR velocity v = B¢ and U4 = vy (V4 —
P_)/(V4 4 D) in terms of the ‘forward” and ‘backward’ scattering
coefficients vy and phase speed v, of gyro-resonant Alfvén waves
(those with wavelength ~rgy,). We stress that equations (1)—(2) are
valid for any arbitrary gyrotropic DF: different ‘closure” assumptions
relate to how (u?) is specified (see Hopkins et al. 2022a), which is
not important for our purposes.

In equations (1)—(2), the “...” refers to terms which do not propagate
CRs in coordinate space (e.g. injection & catastrophic losses D,f =,
and continuous energy loss/gain processes D, f = p~2 ap[p2 .
These can be operator-split and solved accurately with methods
like those in Section 1 (Girichidis et al. 2020, 2022; Hanasz et al.
2021; Hopkins et al. 2022b; Ogrodnik et al. 2021), which model the
spectrum as a piecewise-power law. In these methods, within some
infinitesimally small volume domain j, for each CR species s, within
some ‘bin’ m defined over a momentum interval p~ < p < p™, we

!For our purposes here, different species of CR are linearly independent so it
is sufficient to consider the DF for a single species (the total DF can then be
reconstructed by simply summing over species).

2Equation (1) formally follows from the Vlasov equation, with the standard
quasi-linear scattering terms from Schlickeiser (1989), assuming the DF is
approximately gyrotropic, expanding to leading order in O(rgyro/ Lmacro) (the
ratio of gyro radius to resolved macroscopic scales) and O(|vg,|/c) (ratio of
background MHD bulk velocities to ¢).
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assume that f; can be represented as a power law with slope « foo 1€

_ _ p @fo. jum.s

fO, j.m,s ~ (fO)O,j‘m,s ( ) 5 (3)
Po,m,s

where for analytical convenience we define py = (p™ p~)'/? as the

geometric mean momentum of the ‘bin’. It is immediately obvious
that the spatial part of equations (1)—(2) is independent for each
‘bin’ m and species s (i.e. there is no cross-term in equations 1-2
coupling different species or momenta), so we only need to consider
one such bin to completely specify the numerical method. We
therefore drop the j, m, s notation for brevity, with the understanding
that all quantities considered here can (and should) depend on s, m,
and spatial location.

For reference below we also define £ = p™/p~ as a dimensionless
‘bin width’.

2.2 Conserved quantities and the spatial flux

Given our power-law representation of f; in equation (3) with two
parameters (( fo)o and « ), we can clearly represent or evolve exactly
two independent conserved scalar quantities of the DF (and their
associated fluxes as we show below) associated with each bin. These
are typically chosen to be the CR number and (kinetic) energy, with
volumetric densities 1, €.3 We can define the density of any such
scalar quantity in the bin by

pt
qE/d3p¢>qf=/ arc p*dp d, Jo. 4
a

where for ¢ = (n, €) we have ¢, = (1, T[p]) (with T = (p*c* +
m?cHV2 —mg ¢? for rest mass my). So evolving ((foo, o) is
equivalent to evolving (n, €). Returning to equation (1), multiplying
by 47 p* dp ¢, and integrating we immediately have:

Dg=-V-F, + .. (&)

p+
FqEBqul}/ 4 p*dpv ¢, fi, (6)
-
which is a standard hyperbolic conservation equation that can be
integrated to desired accuracy, provided an expression for F,.*

Conversely, since the DF in equation (3) has two parameters which
vary in space and time: ( fo)o and & j,, in order to update both in a time-
step self-consistently in a manifestly conservative manner, we must
update both (¢, ¢') = (n, €), which requires computing both fluxes
(Fy, Fy). The updated (n, €)insome next time-step then immediately
give the new ((fy)o, o £,)- For details, see Girichidis et al. (2020).

In principle, any ‘basis function’ representation of f{(p) in the bin
with two free parameters (of which a power law is simply most
convenient, given the real shape of the CR DF) should allow us to
conserve two scalar quantities (CR number, energy) from evolving
equation (5). If we also explicitly evolve the corresponding flux
equations D,F, (derived below), then we should also conserve both

3We can freely choose to evolve the kinetic or total CR energy, since given
the CR number they are trivially related. Here and in most applications the
kinetic energy is preferable because in the non-relativistic limit, determining
the kinetic energy via subtracting the rest energy from the total energy (two
large numbers) can lead to fractionally large floating-point errors.

4We can trivially turn equation (5) into a flux equation for the volume-
integrated conserved quantities of CR number or energy (Q; = (N;, &) =
f v; d’x ¢) by integrating over some volumetric domain V; in usual finite-

volume fashion, giving d,Q; = — §5;F, - A.
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of their fluxes (i.e. the CR number and energy flux, which correspond
to the CR current and momentum density fields).

2.3 The flux evolution equation

So, taking equation (2), multiplying by 47 p?dp v ¢, and integrat-
ing, we have for the flux equation:

DF, +b-V Iy, = -Ty, - Ti, %)
p+
Ty, = / 47 p*dpv* ¢, D fo (8)
P~
. _
Loy = /p 4 pzdpvq)q Dup aa—fo
- p
p+
=/ 4 p*dp v x oy Va by fo ©)
Pp+
Lig = / 4 p2 dp ¢, DW v fi
pp+
= / 4 p*dp v v (1) ¢y fo, (10)
-

where we made use of various definitions above. Now define, for
any quantity X which might vary as a function of p, Xy = X[p = po]
(i.e. Xy is the value of X at the bin centre). We can then immediately
define the integral Z terms in the following convenient form:

Ty, =wv,viDog (11)
T,y = wo,q Vo X0 sy VA 09 (12)
Tig=wiybo Fy, (13)

which places the complicated integrals into the dimensionless func-
tions w (define by the above relations to Z). This allows us to write
the flux equation in familiar form:

N - "
D,Fy+v;b V.- (D q) = =T (F, — vl q) (14)
with the modified ‘effective’ coefficients:
D§, = wv.4 Do (15)
eff _ =
Vo.q = VoWiq (16)
o, _
Uity = = X0y Dao. (17)

lq

2.4 The bin-centred approximation

As discussed in Section 1, equation (14) has largely been evolved
according to the ‘bin-centred’ approximation, which evaluates F,
as if we had an infinitesimally narrow bin centred at p = py, i.e.
taking wv, = w1, = wo4 = 1. This has obvious advantages: (1) it
is numerically straightforward: in fact the spatial (advection4-flux)
equations for a single CR ‘bin’ become numerically exactly identical
to the ‘single-bin’ CR equations (wherein one integrates over the
entire CR spectrum and simply evolves a ‘total CR energy’); (2) it is
fairly trivially stable and robust (any integration method which can
handle the two-moment equations for single-bin CRs, or radiation,
or the one-moment diffusion + streaming equation, is trivially
numerically stable and robust here); (3) it is simple; (4) it still
retains manifest conservation: one still evolves both F, and F,/ (so
e.g. can manifestly conserve CR number and energy as desired),
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with F,/qg = Fy/q" (W,y — 1, as defined below) required for
consistency in this approximation (since we have taken the limit |p*
—p lpT+p | = 0orlné =In(pT/p~) — 0, or v () = constant
across the bin, by definition).

The problem with this approximation is that it is not consistent
with a non-trivial variation of (u) as a function of p within the
bin. Specifically, from the above, this assumes the CR drift velocity
(v () is constant over each bin width. As a result, a piecewise
power-law spectrum at injection (ignoring losses or any other effects
besides pure spatial flux) will advect conserving the local-power-
law slope a in each bin. But if ¥ is a decreasing function of
p (as physically expected), the advection speed of higher-p bins
will be faster than lower-p bins, so (for a fixed injection rate) their
equilibrium abundance will be lower, steepening the spectrum bin-to-
bin. But since the slopes within each bin are conserved by flux in this
approximation, one ends up with a spectrum that features a series
of ‘step’-like features between each bin (see e.g. Girichidis et al.
2020, 2022; Hopkins et al. 2022b; Ogrodnik et al. 2021). We stress
that these errors are usually small, and only apply when diffusive
transport is the fastest loss/escape timescape (other loss/gain terms
in these methods do modify the CR slopes, and as we show below, in
the CR streaming limit, the correct behaviour actually is equivalent to
the bin-centred approximation). Effectively, in flux-steady-state (see
Section 2.6 below) in the highly relativistic limit (the case of greatest
interest), the bin-centred fluxes are formally what we would obtain
if the diffusivity v were a piecewise-constant function of p (constant
across each bin). But of course, that is not usually the desired model.

Because as we will show below, all of the correction terms w ~~
1+ (..)|In&|* + ... deviate from unity at O(|In&|?), the error here
is formally second order in momentum-space and would converge
to some desired accuracy if we simply increased the number of bins
to make |In&| sufficiently small. But in most applications, that is
computationally prohibitive.

2.5 Towards a better approximation

To do better, we must evaluate the correction terms w for finite In &.
By definition, most of the necessary inputs (¢, fo, v) and their
dependence on p are specified. However, the challenge is that all
three  terms depend on powers of u (through f or x, D). This
introduces new variables whose dependence on p (via p) is not a
priori specified.

2.5.1 Terms which depend weakly on pitch angle

Let us begin with wy. This depends only on specified inputs as
above and D,, which depends on (u?) through x. But here we
can make use of the limiting behaviours of D: for DFs which
are near isotropic (hence (i) — 0 is small), x — 1/3 + O((1)?)
so D — /3 4+ O({u)?), while for DFs which are near maximally
anisotropic/coherently free-streaming from a source ({u) — =£1),
x = Ol{w)| — 117) so D — b@b+O([|{u)| — 11). In either
regime, the dependence on (u) is quite weak, so even if (u) varies
across the bin, it will produce very little variation in D. So long as we
do not see a very rapid transition from confinement to free-streaming
across a single bin (which we do not expect), then it is almost always
safe to neglect the variation in x and D across any reasonable spectral

bin size, i.e. take Zy , ~ Dy fp”j 47 p*dp v* ¢, fo. If we do this,
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then equation (11) immediately yields:
+ —

L dpp? vt e,
e

[y dp p? fovg &,

This can in principle be integrated numerically to arbitrary preci-
sion. But recalling that we have already parametrized the spectrum
as a piecewise power law, it is useful to parametrize other quantities

such as v and ¢, as approximate power-law functions of p over the
domain of the bin, e.g. take

_dlnX _Alnx In(X*t/X™)
T dlnplp=py Alnp  In(pt/p7)’

wv,g (18)

ax (19)
where X* = X[p = p*]. So e.g. o, = 0 exactly for ¢ = n. For
CRs with p > m; ¢, a, ~ 0 and oy ~ 1 for g = € (for p K m;c,
a, ~ 1 and a, ~ 2 for g = €), so these are close to exact
power laws regardless, and so long as the spectral bins are small
enough that there is no substantial spectral curvature within a bin
(a necessary assumption for a piecewise-power-law treatment to be
valid in the first place), approximating non-power-law behaviour with
equation (19) introduces no significant errors beyond our original
piecewise power-law approximation.’ We can then immediately
write:

(3 +Olf0 +aq) (§3+rxf0+a¢,+2a,, _ 1)

B+oap+a;+2a,)

~ 1+% (B+ay+ag+a,) P +0(MEH  (20)

with & = p*/p~ =exp (In[p*/p~]) (and the second expression above
is a series expansion in [In&|). Note that with the definition in
equation (19), £ = X /X~ for any X, so we could equivalently
write:

%-3+Otf0+°‘q+20lv — <p+>3 (E) ﬂ <v+>2 (21)
p=) \Jfo ) \¥g ) \v~

if the latter is more convenient.
With  these  assumptions, we can  note®

Xoos Va0 f;f 47 p*dpv ¢, fo, and immediately follow a

g

w ~
V.q (E3enta _ 1)

Loy ~

SMore specifically, for the various o terms that appear in this paper, fo and
(u) or fi within a bin are assumed to be exact power laws by construction, so
af, and «;, have exact values but these can (and will) vary across cells and in
time. The scattering rate v is often assumed to be an exact power-law constant
in time, but does not have to be (it could have curvature and/or vary with local
plasma properties). Of course o, = 0 identically for ¢ = n, but for g = €,
a4 is approximate (but it is fixed across all time and cells for a given bin.
Likewise for &y ). One could numerically evaluate all integrals presented here
for the relevant w terms exactly, without approximating terms such as € as
piecewise power laws; but in our numerical tests this provides no appreciable
improvement in accuracy compared to using the simpler, analytical power-law
approximations we provide.

In this expression, we also take 74 outside the integral. This depends
implicitly on p through vy as 94 = vq (V4 — V_)/(v4+ — D_). But like with
X this is almost always in one of two limits, either of which is p-independent.
As shown in Hopkins et al. (2022c¢), if extrinsic turbulence strongly dominates
CR scattering and is forward/backward symmetric in the Alfvén frame, then
4 — 0is small and constant (and the term will be unimportant regardless). If
otherwise (if e.g. self-confinement dominates or the scattering is asymmetric)
then U4 = fv4 independent of p. So we can generally safely neglect the p-
dependence of this within the bin here, especially as we later show that the
steady-state behaviour of this ‘streaming’ term reduces to the bin-centred
approximation.
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similar procedure to obtain wy:
I 25 7
L dpp*v fod,
I o
S dp p* o fod,

G+ap+ay)

I (3 T O[f(] T O{q ¥ Olv) (%.3+afo+uq _
oy

~ 1+E (B+ oy +a, +a,/2) &P+ O(Ingl*). (22)

wo,q

(S 3+le0 +agtoy

_1) —ay /2
1) §

Note that «, corresponds to b o« p*v; for the commonly adopted
phenomenological assumption in modelling Galactic and Solar
system CR observables that the diffusivity scales as « o« R® for
CR rigidity R (at energies where B ~ 1), we have o, & —4, so
those observations imply —0.7 < o, < —0.4 (Blasi & Amato 2012;
Vladimirov et al. 2012; Gaggero et al. 2015; Cummings et al. 2016;
Guo, Tian & Jin 2016; Jéhannesson et al. 2016; Korsmeier & Cuoco
2016; Evoli et al. 2017; Amato & Blasi 2018; De La Torre Luque
et al. 2021; Hopkins et al. 2022b).

2.5.2 Terms which depend strongly on pitch angle

Now consider w;,. Here, we cannot neglect the implicit pu-
dependence, because the fluxes F, are directly proportional to (u).
So make the ansatz, like above, that we can approximate () o p“*
over the (relatively narrow) width of the bin, giving:

)+ _ -

[ dpp*v (v fod,
. .

Sy dp p? o (1) v fo gy
B+oayp +a; +oa, +ay,)

T GBtap oy oy o+ )
(%.3+af0+aq+otu+otu+au -1

Wi,q =

—ay/2
(%-3+afo+aq+av+a“ _ 1) E

il
12
+0O(|In&|*. (23)

~ 14—~ B4agy +ag + o+, +a,/2) Ingf

Here, as in the expressions above and in various expressions below,
the first (explicit integral) expression is exact. The second makes the
power-law substitution, and is exact to the extent that the power-
law approximation for the quantities inside the integrand is exact
over the width of the bin.” The third is a series approximation in
|In &|, which is generally not necessary for our numerical evaluations
in a code implementation of these methods, but is convenient here
for intuition-building and understanding different limits discussed
below.

Equation (23) would allow us to evolve equation (14), except
now we have introduced a new parameter «,, which is not a priori
specified. However, it is not actually the case that &, is unconstrained.
Since our update to the DF (equation 3) requires evolving both of
a pair (¢, q') (= (n, €)) with associated fluxes (F,, F,), then by
combining the definitions of (¢, ¢’, F,, F,), one can show there is

"Technically, we have to be careful about the case where the integrand with
dp scales exactly as p~!, in which case the power-law expressions should
evaluate to In instead of those shown. But for any case where the index is not
exactly negative one this is can be solved without issue and if constructing
a numerical interpolation one can interpolate across this boundary without
divergences.
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one independent consistency relation that must be satisfied:

_ (fo Fo \_d'Fy
Yo = (qvo>/(q’vo> CqFy
B (f,ff dp p? (u)vforbq) (f;f dp p2f‘0¢q,)
(2" ap vy fosy) (J2 dpp? fody)
o Btapta) Gtapytay+a+ay)

- BHoapy+ay) G+ayp +oy +ay+ay)
(§3+af0+otqr _ 1) (E3+af0+aq+u“+a,l _ 1)

(§3+l¥f0+01q _ 1) (§3+af0+aq/+au+a,l _ 1)

1
~ 1+ - (g —ag) (aw + ) INEF+O(InEM). (24

Once again we give the exact integrals, solution making the power-
law replacement, and series approximation in turn.

This is sufficient to specify o/, and therefore w, 4, according to the
different integration methods described below.

2.5.3 Solution methods

With expressions for w, equation (14) can be numerically in-
tegrated with exactly the same numerical methods as used for
the ‘bin-centred’ method above — the w terms only amount to
a scalar renormalization of Dy, ¥y, and vy which are arbitrary
anyways from the point of view of the numerical method. The
added complication comes almost entirely from determining o,
consistently to evaluate these terms. Consider three methods to
do so:

(i) Exact: One option is to exactly update (¢, ¢’, F,, F,) subject
to the constraint W, (equation 24). One can think of this as
‘replacing’ the value of o, with that determined by W, in the
original equations for (¢, ¢’, F,, F,). While do-able in principle,
this (a) is extremely non-linear and involves inverting several
complicated and numerically stiff functions of four variables; (b)
couples the (¢, ¢', F,, F,) variables explicitly so we are forced to
update all simultaneously with a single implicit step, i.e. we cannot
operator-split as is usually desired; and (c) can sometimes lead to
non-invertible expressions if great care is not taken with numerical
errors.

(ii) Approximate, Integrated: Alternatively, if the numerical
method explicitly integrates the variables F, and F, (e.g. two-
moment methods), then we can insert the values of (¢, ¢', F,, F,)
at some point in the time-step (at the beginning of the step or ‘drifted’
to a half-step for a standard explicit method, or their exact values at
step-end for implicit integration) into equation (24) and solve for o,
from that expression, then use this value of «, in equation (14) to
calculate the update to F, and F, . This is similar to how the other
variables in equation (14) appear and is numerically straightforward
[the single numerical inversion of equation 24 for a given W,/
value is straightforward as well]. We find this works quite well.®

8Some numerical caution is still always needed. For example, if one adopts
the power-law approximations given above, then one needs to treat the
regime around certain values where some expressions would seemingly
produce divergences carefully. Specifically, this arises when the integrand
in the original exact expression takes values ~ fp" dp, so the power-
law solutions should be replaced with logarithmic solutions: for example
if 3+ ay + oy =0 in equation (24), which could numerically give a 0/0
error. For power-law indices close to these critical values we recommend
either using the exact integral solutions (ideally), or a loopkup table designed
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And in one-moment methods, we must determine the appropriate
F,, F, self-consistently and simultaneously, which we discuss
below.

(iii) ‘Local-Steady-State’ Values: A still simpler, but even more
numerically robust method is to not solve for «,, from the constraint
equation (24) exactly, but to instead adopt the value it would have for
the corresponding terms in equation (14) if the flux equation were
in local steady-state. We derive this and further define below.
This has the advantage that it is extremely robust and trivially
numerically stable (provided whatever integration method used for
the ‘bin centred’ approximation is also stable). It sacrifices manifest
consistency between equations (24) and (14) for ¢, ¢’, but we are
guaranteed that when the flux equations D,F, are close to local
steady-state (which is usually the case), the consistency relations are
satisfied.

We also note that while it is generally advisable to use the
full numerical expressions for w, the series expressions we show
(expansions in [In &) work surprisingly well for even large &, valid
to better than ~ 10 per cent for all w terms for any £ < 3, and for
some of the terms (especially in the ultra-relativistic limit) the series
expression works well up to & < 100 (assuming the underlying
terms could, in fact, be approximated as power laws reliably over
that dynamic range).

2.6 Local flux steady-state behaviours

Consider the case where the flux equations (equation 2) reach
approximate local-steady-state, i.e. |D,F,| — 0 (or | D, F, | < [v F,]).
This occurs on approximately the scattering time ~v~!, which is very
short in the Galactic ISM (from observations, v=! ~ 30 yr for ~ 1
GeV CRs; see Hopkins et al. 2022b). Thus even if we explicitly
evolve F,, we expect it to be close to this ‘local flux steady-state’
value in many regimes. Moreover, the ‘one-moment’ numerical
methods assume this is exactly true, to directly solve for F, and
insert it into equation (1) to directly obtain a diffusion-streaming
equation for the CRs (see e.g. Zweibel 2013, and references therein).
Noting that this implies the strong-scattering limit, so the CRs are
nearly isotropic (x — 1/3, D — [/3), we immediately obtain from
equation (14):
. 2

Fy— vt g — 3:7%2 Vi (0v4q) . (25)
where V| = b - V. So up to the “effective’ coefficients being slightly
modified by the w terms, this is just the usual steaming/diffusion
expression, with streaming speed vf{fq and effective anisotropic dif-
fusivity « ~ v2/3 v(e)ffl (if we assume isotropically tangled magnetic
fields on small scales, this can be further approximated as an isotropic
diffusivity Do ~ «/3).

2.6.1 The ‘Alfvénic streaming-dominated’ limit

Consider the case where the Alfvénic streaming term domi-
nates in equation (25), F, — v§", ¢ (this can occur in e.g. self-
confinement models when ¥ — 00). Then equation (24) becomes
W,y = (w04 w1,4)/(wo,q @1,4). This is solved exactly if and only
if @y - —a,, ie. the CR drift velocity vair = () v o p° is
independent of momentum (as it must be, since they are drifting,

to be interpolated over the relevant range, rather than taking the power-law
expressions directly at face value.
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by definition in this limit, at the momentum-independent streaming

speed across the bin). Inserting this into the expressions for vfffq we
immediately have:

1) a

e T s LY (26)
W ’ 3 '

In this limit, because the drift velocity is constant (across the bin),
and the gradient/D term and diffusive terms are irrelevant, we see
that we have recovered exactly the same F, that we would have in
the bin-centred approximation.

2.6.2 The diffusive or super-Alfvénic limit

Now consider the limit where the ‘diffusive’ term dominates in
equation (25), so F, — (v3/3 vé,fé) V| (wy.4 ). Note that when some
literature refers to ‘super-Alfvénic streaming,’ this still comes from
this particular term (and there is no distinction, for our purposes here).
The constraint equation then becomes W . = (w4 £y) /(w14 £y),
where

q

= —\ 27
! Vu(wv,q q) @D

Solving for «, from this constraint gives a highly non-linear
equation to be solved for a, — a, (€, /Ly, oy, g, oy, @ 0y).0 Tt
is more instructive to parametrize £, in a similar piecewise-power-
law manner: let us define V fo = fo/€; where £, = £«p) is defined
over an infinitesimally small range of p, and let us assume this
scales similarly as £, o< p* 19 If we combine this with the steady-
state expressions for F; in terms of the relevant gradients, and use
equations (28)—(29), we see that the consistency relations are satisfied
exactly for o, - —a,, + o, — oy, which we can immediately insert
in equation (23).

With these definitions and some similar algebra, it is also conve-
nient to note that we can write:

Fq —> —KlT.q V”q = — (a),(_q %) V”q (30)

o A Grapt+a,—ar)
o B+oapytoay—o+2a, —a,)
(§3+a_f0+aq7w+2wv7up _

1) —ay+a
%- vtoy /2

x (S3+afo+aq—w -1
20, —a,
~ 1+ % (B+ag +o, +ay, — o —a,/2) [In&|?
+0O( In&[*) (1)

i.e. the effective diffusivity is simply modified by a correction
factor w, 4. For 2 GeV CRs, where we have empirically typical
ay, ~ —4.7 (from direct observation; e.g. Cummings et al. 2016), «,,

91f we take a, = —ay —a, + Aa, and, for compactness, write W30y q =
3+ ap +ag, we have:

L @i @+ Aa) @0t — 1) ™0 1) (28)
Ly U3ap g (ahfoq + Aay) (thSufoq _ 1)(sa3ufoql+A0lu _ 1),

which can then be solved for Aa,,.

10We can also immediately calculate the relation between «y and Ly /Ly

by Bape @ape + 20 —a0) 0 — ™ )
Kq Ol3af0qr (0‘3%11 +2ay, —ay) (Soﬁafoq _ 1)(Sa3af0qr+2au7ut‘ -1
1
~ 1+ — (ag—ag) Qay —ap) [N +O(Ingl*, (29)

12

which allows us to solve for «y.
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~ —0.6 (from modelling of primary-to-secondary ratios and similar
constraints; De La Torre Luque et al. 2021; Hopkins et al. 2022b;
Korsmeier & Cuoco 2021), &, ~ O (from the fact that these are ultra-
relativistic), oy < 0.1 (from modelling spatially resolved Galactic
y-ray profiles at different energies; e.g. Tibaldo et al. 2015; Acero
et al. 2016; Yang, Aharonian & Evoli 2016; Hopkins et al. 2022b),
we obtain @, — 1 ~0.05(1.4 — o, + o) | InE> + O(|In&]*) ~
—(0.08, 0.03) |In&|? for ¢ = (n, €). The ‘mean’ correction (both
are <0 because for these energies, most of the CR number and
energy is biased towards the lower-p end of the ‘bin,” where the
effective « is smaller) is modest and not so important, given the (very
large) systematic theoretical uncertainties in the ‘correct’ scaling of
Vg (Yan & Lazarian 2004, 2008; Zweibel 2013, 2017; Farber et al.
2018; Holguin et al. 2019; Bustard & Zweibel 2021; Hopkins et al.
2021a, b, 2022b). What is important is the relative correction: the
CR number flux is more strongly modified (because CR number is
more strongly dominated by the low-p end of the bin), and the (small)
difference here causes the spectral slope to steepen within the bin as
CRs diffuse.

Note that if we must still evaluate £, /¢, to determine o, for
equation (30) above, then it is not necessarily more computationally
useful than justusing F, — (v}/3 vgf;) V) (@v 4 q) as we would have
previously, but it is still useful to guide our intuition. Moreover,
we can note that in the limit where the diffusive term dominates
the flux, with negligible losses, and the CR (n, €) equations are
themselves close to steady-state (assuming also ¥ and the source
injection spectrum do not vary strongly with spatial location),
then o, — 0. Since that is precisely the regime where it matters
most to get this correction ‘right,’ we can assume this without
much loss of accuracy given our other significant simplifications
above.

2.6.3 The ‘local-steady-state’ approximation for flux corrections

With all this in mind, if one adopts a two-moment method
(evolving F, explicitly) with the primary goal of capturing
the exact behaviour in the three possible limits of equa-
tion (2) (free-streaming/weak-scattering, or near-isotropic/strong-
scattering/diffusive, or trapped/advective/Alfvénic-streaming [V —
oo]),'! then it is sufficient to adopt the ‘local-steady-state’
approximation for o, in equation (14) using the appropriate
value of o, each term would have if it were dominant. This
gives

D,Fq +1)L2)f) = (Dou)v,qq) = _V; (Fq - Ust,Oq)

Vst,0 = —X0Af, VA0

U; = 1 a)l_q[O(H — o, —a, —ag] (32)

(with @y, from equation 20 and w;, from equation 23). One can
immediately verify this reduces correctly to any of the relevant local-
steady-state limits above.

If one evolves a ‘one-moment” method — e.g. evolving the CRs
according to a single streaming + diffusion or Fokker—Planck type
approximation (valid only in the strong-scattering limits), then we
can approximate the limits of interest via:

2
Fy =~ 500q — (00 22 ) Vg (33)
K 3 0" 139,

"Even relatively sophisticated closure schemes for evolving (?) proposed
in the literature focus primarily on the behaviour in these three limits, as
opposed to intermediate cases; see Hopkins et al. (2022a) for a review.
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(with ,, from equation 31) where «; in w,, can be computed or
(for even greater simplicity), approximated as ~0 without severe loss
of accuracy.

3 SIMPLE NUMERICAL TESTS

In Fig. 1, we consider a simple illustrative numerical test of the
proposed methods. To isolate the interesting behaviour and con-
struct a simple, analytically tractable test problem, we consider
transport of a power-law injection spectrum in a plane-parallel
atmosphere, analogous to classic thin disc or leaky-box type models
for CRs. Specifically, consider an infinitely thin source plane in the
Xy axis, in a homogeneous, stationary background (e.g. Vg =0,
b = % = constant) with space-and-time-independent 7, = constant
and Do p7%3, T o< p and B ~ 1 (e.g. the ultra-relativistic limit,
though this choice has no effect on our conclusions), ignoring all non-
spatial transport terms (e.g. catastrophic or radiative losses) except
for injection in the source plane at a constant rate per unit area
Jo = dN/dt dA d’p. Numerically, we integrate this on a domain
with 10 spatial cells in the vertical direction from z = 0 (with an
inflow/injection boundary) to z = 1 (with an outflow boundary)
in arbitrary code units, and injection slope jinj o p~*? similar to
physically expected values, using the finite-volume two-moment
method (evolving n, €, F,, F¢) in the code GizMO (Hopkins 2015;
Hopkins & Raives 2016; Hopkins 2017; Hopkins et al. 2022b),'?
with the w values determined according to the different proposed
methods described in the text. We discretize the momentum domain
with 10 bins over 2 dex (though again, given the simplifications
of our problem, the dynamic range of p is not important to our
conclusions). We set the normalization of v, and ¥ to two different
values to compare two limits.

First, we consider a ‘streaming-dominated’ limit, obtained by
setting ¥ to a very large value (~ 10® p~° in code units) with 1, = 1
(and effective diffusion coefficient v?/3 ¥ set to an arbitrarily small
value), so analytically f; — (D,,/D,,)d, fo. This has a simple
constant-flux steady-state solution with v fi = =¥, oy, fo = Jo, 0
fo — Jo/lay, D4l is spatially uniform and proportional to the injec-
tion spectrum (i.e.af, = o, = —4.2). As predicted in Section 2.6.1,
the injection spectrum is simply advected here, so all methods
(including the simple bin-centred approximation) reproduce the exact
solution in Fig. 1 in this limit.

Second, we consider a ‘diffusion-dominated’ case, setting v4 = 0
with finite D (evolved to several times the effective diffusion
time). In steady-state now v f; = —(v?/3 )9, fo = Jy, s0 9, fy =
—(39/v?) Jy = constant in space and o< p~%>. Because higher energy
CRs have a lower , and correspondingly larger effective diffusivity
v?/3 1, they escape faster and their steady-state abundance (relative
to injection) is reduced, steepening the spectrum by one power of .
All the numerical methods in Fig. 1 capture this effect ‘on average’
across bins. But for the ‘bin-centred’ method, as anticipated in
Section 2.4, we effectively ignore the variation of ¥ within each
bin (taking the bin-centred 7 as constant across each bin). This
means we very slightly overestimate the total value of ¥ (leading
to a small underestimate of the mean f, averaged over the bin),
but more importantly the method conserves the spectral slope within

12We have also tested these problems implementing the 10-element discretiza-
tion in 1D, solved via a Crank—Nicholson scheme in PYTHON using either
the two-moment equations or (since we consider the steady-state solutions)
directly integrating the single-moment streaming + diffusion equation in
Section 2.6, which gives indistinguishable results to those shown in Fig. 1.
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Figure 1. Numerical tests (Section 3) of our proposed correction terms
for spatial transport of piecewise-power-law spectra. We consider a ho-
mogeneous, 1D stratified atmosphere with a continuous injection spectrum
Jinj o p~*2 at the lower boundary and outflow from the upper boundary,
constant streaming speed 74 and scattering rate v o p~ -, discretized into
10 momentum intervals, and evolved until steady-state using the numerical
methods described in the text. We compare exact analytical steady-state solu-
tions to numerical solutions using either (1) the ‘bin-centred’ approximation
(wy = wyg = w1 = 0; Section 2.4), (2) the ‘approximate-integrated” method
(Section 2.5.3) to solve for the w terms (given the in-code evolved values
of n, €, F,, F¢ to calculate «, from equation 24), and (3) the ‘local-steady-
state’ approximation for w terms (Section 2.6.3), using the local-steady-state
values of . Top: Parameters chosen so the transport is streaming-dominated
(¥ very large). We plot the steady-state spectrum compensated by p*? and in
units such that the exact solution equals unity. In the streaming-dominated
limit, the transport speed is momentum-independent so the spectrum is simply
advected without change in spectral slope, and the different approximations
behave identically. Bottom: Parameters chosen so the transport is diffusion-
dominated (U4 = 0). The ‘bin-centred’ approximation introduces well-known
step artefacts, as a result of assuming the scattering rate and () are constant
within each bin, which conserves the injection slope within each momentum
bin. Both our proposed methods for including the @ terms produce the correct
spectral slopes within bins.
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each bin, producing the ‘step’ structures seen. On the other hand,
introducing the scalar w correction terms as proposed in this paper,
with either method in Fig. 1, leads to excellent agreement with the
exact solutions (with the slope in each bin numerically agreeing with
the exact solution to better than ~ 1 per cent).

4 APPLICATIONS TO RADIATION/NEUTRINO
DYNAMICS

It is natural to ask whether the methodology above can be cross-
applied to radiation or neutrino transport, where one can easily imag-
ine situations in which a similar piecewise-power-law reconstruction
of the radiation spectrum would be useful.

For the sake of consistency with the large radiation/neutrino
transport literature, in this section we will consider a different set
of variable definitions matching the convention in those fields. Let
v refer to the radiation frequency (so Av is energy, analogous to
p for CRs), so the specific intensity /,(n, v, X, t) is equivalent
to the DF f in terms of the radiation direction unit vector n, the
mean/isotropic intensity J, = (47)~" [ I, dQis analogous to fo, D,
(= @r J,)™" [d2n@nl,)is the Eddington tensor, c k, p in terms
of the opacity «, and gas density p is akin to the CR scattering rate
U, gy =dq/dv = 4m ¢, J, is defined such that for photon number
and energy g = (n,, e,) we have corresponding ¢, = (1/hv, 1),
and F, =¢,c [dQnl, =c(n),q, (n), =@x J,)"" [dQnl,)
is the flux term. With these definitions, the spatial part of the first two
moments of the non-relativistic radiation-MHD moments equations,
as usually written in the lab frame, are (Mihalas & Mihalas 1984)

aq,

—a‘i -V .F 4. (34)
) N ]

5 Te V- (Dyqy) = —ckyp [FI =gy Ve - 1+ D,)] + ... (35)

Note that the equations in the co-moving frame (to leading order
in O(vg/c)) are equivalent to taking o, — D, and dropping the
Vgus term above, so our discussion here applies equally to both
cases. Equation (34) is again just advection, and integrating over
a frequency interval from v~ to v, we immediately have 9,q =

—V.F, (withg = [ dvg,, F, = [ dvF?), 50 we only need to
consider equation (35).

4.1 The strong-scattering and flux-limited diffusion-like limit

In the strong-scattering ‘local-steady-state’ limit for the flux, we
have the usual diffusive approximation with D, — [/3, F! —
(4/3) Vgas qv — (¢/3 K, p)Vq,. Integrating this, we immediately ob-
tain:

F, = — Vi g —o (Vg (36)

a 3
[ dvi;t ¢, (V)
=7 1 .
fu, dvky ¢g (V)

(I +oay+a; —ap)
A +ay+o; —ap; —ae)
(07
~ - - (14 oy +ag —ap —a/2) g + O Ing[*),
(37

"3k p

(€1+a/+a,,—ag_,'—ot,( _ 1)

(€l+a/+aq—ag',» _ 1)

SO(,(/Z

where J, o< v, ¢, o< v¥, i, o V¥, and (V.J,) = Ji /€ with £ o
vt for each gradient component.
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We can in principle solve for each value of ¢, ; as in Section 2.6.2
above!?; but if we assume that either the dependence of gradient
scale length on wavelength in the bin is small (¢, ; ~ 0) or just that
the gradient direction does not strongly depend on wavelength across

the bin (ar¢, » ~ o,y &y, ; ~ o), then we can write this in terms of
a scalar ‘effective’ «,

4
F, ~ = Vg — ——— Vg 39)
3 3Ketfp
U+ 71
B _ Jo=dvieyt ¢y IV Wiy 40)

Keff fv”f dv e, |V, Ko

(i.e. just equation 37 with aty ; — org).

Now if we assume J, is blackbody-like, so |VJ,| —
|dJ,/dT||VT]|, and consider the equation for the radiation energy
density g = e, (so ¢, = 1), equation (40) becomes immediately
recognizable as the usual Rosseland mean opacity (the |VT7]| term
factors out, being independent of v). So essentially, we have just
generalized this convention for (1) an arbitrary non-blackbody
intensity, and (2) other conserved radiation quantities such as n,
(¢g = l/hv, oy = —1), needed if we wish to correctly evolve the
radiation spectrum as a piecewise power law with two degrees of
freedom.

4.2 The weak-scattering and M1-like limits

Now consider cases where one wishes to evolve the flux equation (35)
explicitly, in e.g. first-moment (M1) or variable Eddington tensor or
other related moments-based methods. Integrating, in component
form, we can write:

1 oF, v i
072? —|V. \/‘}7 dv¢q,v-]v[Dv

vt

- |:/ dVKvp¢q.u Jy {(n)v

= -y, [V-Doq)

Kop i i
_OT [wr,l,q Fq — Wy 0,4 90 Veas 0+ IDO)] . (41)

g“4[|1+[Dv]}i

If we assume (n)! oc v*»i (analogous to a,, for CRs), then we can
write:

fuvj dv i, FO
vt q.i
fu, dv kg Fy
(1 + oy + th + O‘mi)
(1 +aJ +atI +ani +O!,() (é§-1+a1+aq+an_l -

i
Dr1q =

1
%- Fogtagtonitoe 1)5 a2

~ 1+— (14 ay + oy + i + o, /2) N>+ O(Ingl*)

(42)
13Specifically computing E;, Z;/ and using
by g @y — ae) €190 — 1) EA — 1)
q . %lJg\%lJq L,i
O aygg (g — i) (%98 — 1) (%170 7% — 1)
&
~ - % (ag —ay) MEP +O( e (38)

With(xquz 1 + oy + oy
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and we have an analogous consistency relation which determines o, ;
for each component of F:

Fi Fi/ /Fi
(u)/ (%) =%
( [ dv )i g, Jv) ( [ dvey J.,)

vt vt
(B avmi g 1) (S dve, 2.)
Byt Gay+ay+an)
(3 + oy +O[q’) (3 +ay +aq +O‘n,i)

i
W,

(E3+W+a”/ _ 1) (§3+Otj+0lq+0‘m[ — 1)
(E}+a/+aq -1 ($3+111+0Q,f+0tm -1
~ 14 “1"; (¢ —ay) IMEP + O Ing). 43)

If the fluxes F, are explicitly evolved, we can then use \Il;q, to
determine «, ; and thus a)ﬁ’l,q, just as in our ‘exact’ and ‘inte-
grated, approximate’ methods from Section 2.5.3 above. If instead
we wish to replace o}, ¢ with its “local flux steady-state’ value
we see from Section 4.1 we would have o, ; — —(ag; + o)
in wr 1g-

The real challenge arises with the treatment of the Eddington tensor
(Dy) terms in w; v , and wr 0.4 90- For CRs, it is worth emphasizing
that the relation we wrote in Section 2.1, D= x I+ (1 =3 x)b®Db
is not some approximate closure: it is the most general possible form
of D for a gyrotropic DF, and depends on a single scalar degree
of freedom (12) (and likewise, its parallel gradient b - V - D intro-
duces only a single scalar degree of freedom). Moreover, gyrotropy
means that even for an arbitrarily amsotroplc CRDE Dxb®b
depends on the magnetic field direction b, which is of course CR-
momentum-independent. On the other hand, for radiation, D has, in
general, five independent degrees of freedom, and the V - (D, ¢,)
term introduces ~10 more.'* So the problem is rather severely
underconstrained. Moreover, even in the simplest possible highly
anisotropic case, where the radiation at a given v is perfectly coherent
(free-streaming in a single direction), we have D,, ~ (n), ® (n),. But
this (unlike b ® b) depends on an evolved property of the radiation
flux itself ((n),), so it can depend on v, which means that we
have no formal justification to neglect the variation in D, across
the bin.

This is not a new problem: defining a robust ‘closure’ for D,
is arguably the central challenge for moments-based radiation or
neutrino-hydrodynamics schemes (see e.g. Wilson et al. 1975;
Levermore 1984; Gnedin & Abel 2001; Rosdahl & Teyssier 2015;
Murchikova, Abdikamalov & Urbatsch 2017; Foucart 2018). And
many of the most popular numerical methods use highly approximate
closures that only approach the exact solutions in very specific
regimes (e.g. when /,, is nearly isotropic, or the radiation is a perfectly
coherent 1D beam, etc. ) So it is not clear if, in practice, we could
solve for the correct wy; v , and a)r 0.4+ €ven if we specified exactly
some simple functional closure relation for D,,. Thus, lacking another
way to make progress, we will briefly consider — without justification,
we stress — what we would obtain if we neglect the variations in D,
across each bin.

14These come from the dependence of I, on /i (ray direction), and its
(arbitrary) gradient. Since D is a symmetric 3x3 matrix (in 3D) normalized
to have trace unity (as it is defined by the moments of /,,) it has 5 degrees
of freedom, and we have a similar number of degrees of freedom for each
component of the vector gradient of /,, which appears in V - (D, g,).
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For the w;',o, , term, if we neglect variation in D, across the
bin we can calculate it directly as wi,().q ~ (1 4+ay +a)/(1 +
@y + oy + )] [(EFoteata — 1) /gt — 1))/~
I+ (o /12) (1 +ay + g +a,/2) | In&? + O(| In&]*). But at this
level of approximation, we can also just as well take a’l{,o,q — wi,l,q’
for the simple reason that for a non-relativistic Vg, (the valid limit of
our expressions), the ‘advection’ term in v, is only ever important
in the strong-scattering, tightly coupled regime, where we can
(quite accurately) assume the ‘local-steady-state’ approximation
from above and, just like with CRs, this term reduces exactly to its
‘bin-centred’ version, with [ /@i, — 1.

The V - (D, g,) term becomes trivial with wi,v‘ P 1 if we neglect
variations in D,, across the bin. But we caution that while simple, this
is much less ‘safe’ an assumption than neglecting the variations for
wl, 4~ That is because this term is the dominant term controlling
d,F, in the weak-scattering regime, which is precisely where we said
earlier it is notr always safe to neglect variations in D, with v. But
for many moments-based methods, that regime is also where D, is
estimated rather poorly. So this may not be a significant source of
error relative to those pre-existing errors for methods like M1, but
that remains to be tested.

5 CONCLUSIONS

We derive and test a simple improvement to numerical methods
that dynamically evolve the CR spectrum, representing it as a
piecewise power-law across momentum-space with standard ad-
vection/diffusion behaviour in coordinate-space. Previous attempts
to do so generally allow for smooth and exact evolution of the
piecewise-power-law slopes under momentum-space operations (e.g.
continuous and catastrophic losses, injection, etc.), but for the spatial
terms adopted the ‘bin-centred’ approximation that leads to errors
in the local spectral shape when CR diffusion is important (or these
methods sacrificed conservation or consistency with the underlying
flux equations). We show that these errors are formally second order
in momentum-space, but they can be eliminated, allowing for smooth
evolution of the CR spectra under diffusion, maintaining consistency
with the underlying Vlasov equations and manifest conservation of
CR number and energy (and current and momentum, in two-moment
methods).

The modification amounts to a set of three simple, scalar correction
factors which, once computed, can be immediately applied (as
e.g. a correction to the ‘effective’ bin-centred diffusion coeffi-
cient, or to the scalar quantities whose gradients are calculated),
which can be computed exactly entirely as a function of actual
evolved quantities in-code (i.e. there is no need to invoke new
assumptions, or to implicitly evolve or take gradients of a ‘finer
grained’ DF). They require no fundamental modification to the
numerical method adopted (and have no effect on its stability
properties).

The important conceptual addition is that the definitions of the con-
served quantities and structure of the underlying equations for the DF
impose a consistency requirement for how the mean pitch-angle ()
must vary across the bin, which allows us to derive these correction
factors. We consider both exact formulations of this constraint, and
even simpler, approximate versions which still maintain manifest
conservation and ensure consistency in all relevant limits when the
CR flux equations are in local steady-state (e.g. on time/spatial scales
larger than the CR scattering time/mean-free-path). We test these
in a simple idealized problem and show they recover the desired
behaviours, with negligible difference in computational expense. All
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of the above applies both to one-moment methods which evolve a
single scalar diffusion 4 streaming/advection equation (or Fokker—
Planck type equation) or two-moment methods which explicitly
evolve the CR flux.

We also extend this idea to similar methods that evolve radiation or
neutrino hydrodynamics (again treating the spectrum as a piecewise
power law, attempting to simultaneously conserve both photon
number and energy). We show that in the ‘local flux steady-state’ or
‘single-moment’ limit (aka the advective-diffusive limit for radiation
transport), in which the intensity is close-to-isotropic, the appropriate
correction terms can be derived and represent a generalization of
the usual Rosseland mean opacity to arbitrary non-thermal spectra
and other conserved quantities (e.g. photon number). However,
in the weak-scattering limit, the usual ambiguity in the form of
the Eddington tensor makes the problem underdetermined. The
key difference is that we can safely assume CRs have a close-to-
gyrotropic DF with respect to the magnetic field direction (which is,
of course, CR momentum-independent) — but there is no analogous
constraint for radiation.
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