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Abstract 

 
This paper reports the release of PATHSUM, a new software suite of state-of-the-art path 
integral methods for studying the dynamics of single or extended systems coupled to 
harmonic environments. The package includes two modules, suitable for system-bath 
problems and extended systems comprising many coupled system-bath units, and is offered 
in C++ and Fortran implementations. The system-bath module offers the recently 
developed small matrix path integral (SMatPI) and the well-established iterative quasi-
adiabatic propagator path integral (iQuAPI) method for iteration of the reduced density 
matrix of the system. In the SMatPI module the dynamics within the entanglement interval 
can be computed using QuAPI, the blip sum, time evolving matrix product operators 
(TEMPO) or the quantum-classical path integral (QCPI) method. These methods have 
distinct convergence characteristics and their combination allows a user to access a variety 
of regimes. The extended system module provides the user with two algorithms of the 
modular path integral (MPI) method applicable to quantum spin chains or excitonic 
molecular aggregates. An overview of the methods and code structure is provided along 
with guidance on method selection and representative examples.  
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I. Introduction 
 The quest for understanding the intricate pathways of complex processes dominated by quantum 
effects has sparked intense efforts toward developing simulation algorithms. Many processes of interest 
involve two or more coupled electronic or spin states that interact with a large number of nuclei in a finite-
temperature statistical ensemble. A variety of theoretical treatments have been developed, which by 
utilizing convenient but often severe assumptions and approximations are capable of capturing some 
important quantum dynamical effects in large chemical and biological environments and which have proven 
extremely valuable in chemistry. For example, Redfield theory1,2 has led to the fundamental understanding 
of spin relaxation and energy transfer in the weak coupling limit. Surface hopping algorithms3-5 have been 
widely used in proton-coupled electron transfer processes.6 Quasiclassical methods, such the Wigner 
method,7,8 which is alternatively known as the linearized semiclassical initial value representation9-11 (LSC-
IVR) and has also been derived by linearizing the path integral expression12), forward-backward 
semiclassical dynamics13,14 (FBSD), and path integral Liouville dynamics15,16 (PILD) capture important 
nuclear quantum effects and are suitable for large-scale molecular dynamics simulations. However, because 
of the major assumptions they involve, such methods are not suitable for resolving some of the most 
intriguing questions that surround electron, proton, or energy transfer, as well as coupled spin dynamics.  

The full solution of the time-dependent Schrödinger equation remains prohibitively expensive, as 
the manipulation and storage of wavefunctions requires resources that formally scale exponentially with 
the number of degrees of freedom. In addition, accounting for thermal effects requires an unrealistically 
large number of separate wavefunction-based calculations. Among wavefunction-based schemes, the 
multiconfiguration time-dependent Hartree (MCTDH) method17-19 along with its multilayer extension20 has 
shown impressive success on molecular systems. The main advantage of the MCTDH approach is its ability 
to also treat anharmonic bath degrees of freedom. However, wavefunction-based methods are naturally 
suited to zero-temperature properties, and their extension to finite temperature by summing a large number 
of microcanonical results is computationally prohibitive when the environment includes a large number of 
low-frequency modes. Methods based on matrix product states,21,22 such as the density matrix 
renormalization group23,24 (DMRG), can be highly efficient for extended systems, but their cost increases 
rapidly with the size of each unit.  
 The path integral formulation of quantum mechanics25,26 provides an alternative starting point, 
which is appealing because it does not require the use of wavefunctions. Further, the path integral offers an 
intuitive, classical-like picture, where paths carry interfering phases that are responsible for quantum 
coherence and its destruction. The classical limit emerges naturally and elegantly from this formulation.27 
In spite of its appeal, numerical evaluation of the real-time path integral (for dynamical processes) requires 
the summation of astronomical numbers of terms, and the use of Monte Carlo methods is plagued by a “sign 
problem” that arises from the highly oscillatory quantum mechanical phase.28,29 

By replacing the time parameter by i −  (where B1/ k T = ), the path integral also leads to a 
powerful formulation of quantum statistical mechanics,30 offering a transparent view of quantum 
delocalization through the quantum-classical isomorphism.31 The imaginary-time path integral does not 
suffer from a sign problem (except in the case of identical fermions) and has led to the development of 
efficient simulation methods for highly complex systems that employ Monte Carlo or molecular dynamics 
sampling.32-34 Further, the imaginary-time path integral forms an excellent basis for the development of 
efficient dynamical approximations, such as centroid molecular dynamics35 (CMD) and ring polymer 
molecular dynamics36,37 (RPMD). The rigorous connection between the fully quantum mechanical result 
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and the RPMD approximation has recently become clear through the development of Matsubara 
dynamics.38,39  
 The system-bath Hamiltonian, where the system of interest is coupled to a large number of 
harmonic degrees of freedom, provides a convenient and relatively simple model for investigating the 
effects of condensed phase environments on the dynamics of a small system, but also allows a realistic and 
accurate description of a variety of processes. This is so because the harmonic bath can comprise molecular 
vibrations at the normal mode level, lattice phonons, and also in many cases can mimic the collective effects 
of complex environments through Gaussian response.40-42 The path integral formulation offers a unique 
advantage in the case of system-bath Hamiltonians because harmonic bath degrees of freedom can be 
integrated out analytically at any temperature, replacing all variables associated with the bath by an 
influence functional.43 However, the cost of this enormous simplification is the introduction of temporal 
nonlocality in the path integral expression for the system, in a way analogous to the presence of memory in 
the generalized Langevin equation.44 This nonlocality prevents the stepwise evaluation of the path integral 
by matrix-vector multiplication techniques commonly employed in the absence of coupling to a bath,45,46 
appearing to require the summation of a number of terms that grows exponentially with propagation time. 
Early attempts to sample these terms by Monte Carlo methods were met with limited success. However, in 
the special case of a harmonic bath described by a spectral density of the Drude form, the hierarchical 
equations of motion (HEOM) method47 allows efficient simulation of system-bath dynamics.  Extension to 
more general situations requires a decomposition of the spectral density into Drude-type components,48 but 
since the algorithm scales exponentially with respect to the number of such terms, this approach is not 
practical for simulating processes in structured environments.   

Stable, numerically exact real-time path integral methods, based on the full evaluation of the 
system-bath path integral by quadrature49-54 (thus circumventing the Monte Carlo sign problem) emerged 
in the early 1990s and became known as the quasi-adiabatic propagator path integral (QuAPI). To remedy 
the numerical issues encountered by directly attempting to evaluate Feynman’s expression, QuAPI exploits 
the finite energy span of dynamical relevance to construct smooth propagators that are free of the highly 
oscillatory phase,49,55 employs a physically motivated partitioning of the Hamiltonian that allows sizable 
time steps,49 and introduces system-specific discrete variable representations50 of the influence functional 
that minimize the number of grid points. Further, QuAPI removes the exponential scaling with the number 
of path integral time steps by taking advantage of the finite span of memory induced by macroscopic 
environments to decompose the path sum into a series of successive tensor-based steps that are evaluated 
by quadrature.52-54 The QuAPI methodology, along with many additional improvements and extensions by 
our group and several others,56-69 has enabled the fully quantum mechanical investigation of a variety of 
processes.  
 During the last decade, a number of further developments in real-time path integral methodology 
led to new, powerful tools for system-bath simulation. The blip representation70 achieves an exponential 
reduction of the number of path integral variables and is now used in practically all path integral algorithms. 
Further, the blip-summed path integral (BSPI or BlipSum) offers a systematic filtering tool, as multi-blip 
paths make negligible contributions, and exploits the structure of the influence functional to sum the 
majority of terms by inexpensive procedures, resulting in dramatic savings in some regimes. The time-
evolving matrix product operator (TEMPO) representation of the QuAPI expression,71-75 based on the 
structure of the influence functional, brings the path amplitude in matrix product state (MPS) form, 
employing singular value decomposition (SVD) to prevent the exponential growth of the matrices, offering 
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a powerful algorithm for some regimes. Very recent work showed analytically that the path integral can be 
decomposed into small matrices of minimal size, eliminating the need for QuAPI tensors. The resulting 
small matrix path integral76-78 (SMatPI) reduces the cost to that of a single QuAPI step, and the replacement 
of tensors by small matrices allows the treatment of systems with many states. 
 Further, the path integral formulation leads to a rigorous and consistent mixed quantum-classical 
treatment that does not encounter the well-known issues5 encountered when Newtonian trajectories are 
combined with wavefunctions. The quantum-classical path integral79-81 (QCPI) captures the interaction 
between the system and its environment through phases along classical trajectories and can be used for 
simulating nonadiabatic processes such as charge and proton transfer in solution or biological 
environments, without any ad hoc assumptions. The QCPI expression becomes fully quantum mechanical 
and exact in the case of a harmonic bath, offering an additional approach to system-bath dynamics which 
has some distinct advantages in some regimes.  
 Last, a modular path integral (MPI) algorithm82-86 has been developed for extended systems, 
composed of many system-bath units in a one-dimensional arrangement with mostly spatially local 
couplings. In this case the path integral is evaluated by summing the variables of each unit after linking 
them to those of its neighbor and including the relevant influence functional factors. The MPI algorithm 
gives rise to linear scaling with system size and may be used for simulating energy transfer in long 
molecular aggregates with Frenkel exciton interactions or one-dimensional arrangements of spins coupled 
to local molecular vibrations, where the total number of states coupled to harmonic baths exceeds by far 
the capabilities of other methods. 
 These numerically exact, fully quantum mechanical algorithms offer powerful tools for simulating 
the dynamics of system-bath (and extended) Hamiltonians. In combination, these methods provide the 
needed flexibility for treating a variety of processes in diverse parameter regimes, which are not accessible 
to any single approach. In addition to many investigations that have been carried out with these methods, 
recent work reported simulations of spin chain dynamics,87 molecular polaritons88,89 and energy transfer in 
large molecular aggregates,90,91 the FMO complex,92,93 the B850 light harvesting ring94,95 and the 24-
bacteriochlorophyll LH2 complex.96,97  

In this paper we describe PATHSUM, our new software suite in C++ and Fortran, which implements 
these fully quantum mechanical real-time path integral methods. There are two broad modules in this 
package: System-Bath and Extended-System, which differ in the scope of problems that they address and 
in the methods they utilize. The System-Bath module implements the SMatPI and i-QuAPI methodologies 
for iterative evaluation of the RDM beyond memory. (We use the term i-QuAPI to explicitly refer to the 
iterative algorithm, and reserve the term QuAPI for calculations within the entangled memory length.) The 
system can be coupled to common as well as local baths, and interactions within the system can have 
arbitrary values. Although i-QuAPI is provided, we advise the user to utilize the SMatPI method whenever 
possible due its significant advantages. When using the SMatPI method of iteration, the user is free to 
choose among QuAPI, BlipSum, TEMPO and QCPI to compute the dynamics within the entangled memory 
interval. The Extended-System module offers methods for systems that are too large to be handled with the 
System-Bath module, such as extended chains of spin-bath units or coupled molecular aggregates 
characterized by nearest neighbor interactions. Within this module the code implements the MPI method 
which has two available algorithms, depending on whether the interactions between neighboring units are 
diagonal (such as in the Ising Hamiltonian) or of a general form (i.e., in the Heisenberg or Frenkel 
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Hamiltonians) in the system basis. While the QCPI method is generally applicable to anharmonic 
environments, all methods in the PATHSUM package are restricted to harmonic baths. 

 In section II we provide an overview of the theoretical framework, describing the system-bath 
Hamiltonian and that of extended systems, the relevant parameters and the observables. In section III we 
summarize the various methods implemented in the code. The structure of the code, a concise description 
of the online resources available with the package, and information about its dependencies on commonly 
used libraries, are described in section IV. In section V we summarize the convergence parameters and the 
scaling of the methods, offering some guidance on how to select among the available options. In section VI 
we give six tutorial examples, illustrating some of the possibilities of this package, and encourage the reader 
to try out other alternative choices of methods across the different regimes encountered in condensed phase 
dynamics (e.g. weak vs. strong dissipation, or low vs. high temperature, as well as small vs. large systems). 
In section VII we present some concluding remarks.  
 
 
II. Theoretical Framework 

 The PATHSUM code is currently applicable to Hamiltonians of the system-bath form, or to extended 
systems composed of multiple coupled system-bath units. In this section we review the types of 
Hamiltonians along with important terminology, introduce our notation, and describe the required input and 
the produced dynamical quantities. 
 
(a) System-Bath Hamiltonian 

 In general, the system-bath Hamiltonian has the form 
 

0 sb
ˆ ˆ ˆH H H= +                                                                   (2.1) 

 
where 0H  is the Hamiltonian of the adiabatically renormalized system49 and the second term describes the 
interaction between the system and the harmonic bath degrees of freedom. The system may be described 
by a continuous coordinate s through a potential function, or by a collection of discrete states. Continuous 
systems can be converted to discrete ones by using a discrete variable representation (DVR).50,98,99 Thus, 
regardless of its original form, the system Hamiltonian is treated as a matrix of n basis states 

, 1, ,n  = , which (within the n-state subspace) are eigenstates of the system coordinate operator ŝ
.  

The system states may couple to a common (e.g. phonon) bath and/or to multiple local harmonic 
environments100 (for example, the normal mode vibrations of each molecule in a molecular aggregate). In 
the case of a common bath, the system coordinate operator is expressed in the form 
 

1

ˆ
n

s   


  
=

=                                                                (2.2) 

 
where   are position-like parameters for the system and the system-bath coupling is 
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where   is the (finite or infinite) number of bath degrees of freedom. Eq. (2.3) may also be expressed in 
terms of the discrete system states as 
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 
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The bath degrees of freedom may be specified by the individual frequencies i  and coupling constants ic  
or by a continuous spectral density function,101 
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2

2
1

2( )
v
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i

i i

cJ
m


   

 =

= −


                                                      (2.5) 

 
where   is a characteristic distance parameter of the system (e.g., 1n   = − ).  

In different situations, for example in a simulation of energy transfer in a molecular aggregate 
within the Frenkel exciton framework,102,103 the system consists of the singly excited electronic states of the 
aggregate and (some or all of) the bath modes represent the intramolecular vibrations of each monomer 
within the normal mode approximation, which couple to the ground and excited electronic states of the 
particular unit. Within the singly-excited Frenkel subspace the ground state does not participate in the 
dynamics, thus the normal modes of a monomer constitute a local bath that couples to the corresponding 
system state. The system-bath coupling has the form 
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where  
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are the vibrational components of the ground and excited states. In this case the parameter e g

     = −  
characterizes the pair of ground and excited electronic states of monomer   and the coupling constants are 
obtained from the corresponding Huang-Rhys factors iS   through the relation 

 
3 22i i ic m S    =  .                                                           (2.8) 

 
The Hamiltonian for local baths and also for more complex cases of correlated baths can be described by a 
system-bath expression in vector form, with the coupling terms being given by100,104 
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T

1

ˆ ˆi i
i



=

−  q C s                                                                     (2.9) 

 
where the system coordinate and position parameters have been replaced by n-component vectors, i.e., 
 

1

ˆ
n

  


 
=

=s σ .                                                            (2.10) 

 
(b)  Extended systems comprising many system-bath units with local couplings 

 The second class of Hamiltonians involves extended systems, composed of d system-bath units, 
each with one or more quantum states, in a locally one-dimensional arrangement (which could be a 
branched chain, a cyclic structure, or may have a more complex topology). If each system comprises a 
single state (e.g. the excited state of a chromophore), the composite structure is described by a system-bath 
Hamiltonian of d states with local baths. In this case the need for alternative approaches arises when d 
exceeds the system size treatable by the available system-bath methods. On the other hand, if each system 
has 1n   states, the composite Hamiltonian involves dn  states. The important case of spin-½ molecular 
units with 2n = , which gives rise to quantum Ising and the more general Heisenberg models coupled to 
dissipative environments, leads to a system of 2d  states. Clearly, simulating the dynamics of such system-
bath Hamiltonians is limited to a handful of spins.  
 Rather than considering the total number of states as a very large system coupled to local baths, a 
more profitable approach is to treat each system-bath unit separately, then couple the units. If the couplings 
between units are mostly local, fully quantum mechanical calculations are possible using the MPI 
methodology,82-86 which offers linear scaling with d. The PATHSUM code currently treats chains of two-
state systems interacting with local baths and connected by nearest-neighbor coupling terms according to 
the Hamiltonian 
 

1 1 1

0 1 1 1
1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
d d d d

x x x y y z z
x y zH J J J       

   

      
− − −

+ + +

= = = =

= −  − − −                                  (2.11) 
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                                                      (2.12) 

 
are the three Pauli spin operators. Setting 0x yJ J= =  one obtains the quantum Ising chain, while the choice 

/ 2,  0x y zJ J J J= = =  gives the Frenkel exciton Hamiltonian102,103 with coupling J .  
 

(c)  Input parameters and observables  
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Continuous systems are specified in terms of the particle mass, a one-dimensional potential 
function provided by the user, and the spectral density of the (common) bath. PATHSUM immediately 
converts a continuous system to a discrete Hamiltonians that involves a specified number n of DVR and 
proceeds to apply the discrete system procedures.  

The following input is required to specify the system-bath and extended system-bath Hamiltonians: 
• The number n of system states. 
• The n n  matrix of the system Hamiltonian 0H . 
• For a system coupled to a common bath, the system coordinates 1, , n  . 
• For a common bath, the   pairs ,i ic  or the spectral density function ( )J   on a fine frequency grid 

(or both). 
• For local baths, the set of   pairs ,i ic   for each monomer or the set of n spectral density functions 

( )J   (or both). 
• The reciprocal temperature, B1/ k T = . 
• In the case of extended systems, the TLS frequency and the three coupling parameters , ,x y zJ J J  between 

adjacent TLS units. 
The system-bath module computes the 2 2n n  reduced density matrix (RDM) of the system,  
 

0 0 0

ˆ ˆ( 0) / /
b bˆTr

N N N

N iHt iHte e
     
       + + − −

−=                                         (2.13) 

 
at time values N t , where t  is the path integral time step, for a system initial condition specified by 0



. Here b̂  is the Boltzmann operator of the bath in equilibrium with one of the system states. In the case of 
a common bath, shifting the system coordinate values such that 0 =  places the bath in equilibrium with 
state  . For local environments, the bath is placed in equilibrium with the ground state by setting g 0 =  
and with the excited state   by setting e 0 = .  
 In the case of an extended system, the code gives the RDM of a particular TLS, traced with respect 
to all other TLS units.  
 
 
III. Review of PATHSUM Methods 

A.  QuAPI 

The QuAPI method involves two components: the discretization of the path integral and the 
iteration that gives rise to linear scaling with the number of propagation steps.  

The QuAPI discretization employs the physically motivated quasi-adiabatic propagator partitioning 
of the time evolution operator49 and an optimal discretization of continuous potentials on a DVR grid.50,98,99  
The RDM is expressed in the form 

 

0 1 1 0 1 0
1 1

( 0)

1 1
N N N N

N

n n
N K K F

        
 

         
−

 
− = =

=                                               (3.1) 

 
where 

1k k
K

  
+

 is the short-time propagator of the system and 
1 0N

F
      is the QuAPI-discretized influence 

functional43 at the given temperature, given by 
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 = =

− − −
  


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The coefficients k k    are computed from the spectral density function.54 In the simplest QuAPI algorithm, 
the sum in Eq. (3.1) involves 2Nn  terms from each initial condition, i.e. a total of 2 2Nn +  terms if all initial 
conditions are of interest, and is performed without additional simplifications besides (optionally) path 
filtering (i.e. dropping paths that are anticipated to make negligible contributions). The QuAPI sum is fully 
parallelized in the PATHSUM code. 
 
 

 
Fig. 1.  Schematic illustration of the couplings among path integral variables and the i-QuAPI decomposition of the path 

integral for a system coupled to a harmonic bath. (a) Couplings in the absence of a bath. Only nearest-neighbor 
couplings are present in this case. (b) Coupling to a bath introduces non-nearest-neighbor couplings. Those 
connecting points separated by more than 3L =  path integral time steps are shown as dashed lines.  (c) Influence 
functional couplings from a single path integral variable for a memory equal to 3L =  path integral time steps. 
(d) Path segments spanning the memory length for 3L =  are shown as colored rectangles. The tensor 
decomposition for continued propagation connects each of these segments to those in the adjacent array after 
including the influence functional couplings shown in panel (c). (e) Termination of the i-QuAPI algorithm for 
propagation to 4N =  time steps. 
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The i-QuAPI algorithm employs a tensor decomposition of Eq. (3.1),52,53 

 

1 1

( 1) ( )
, , , , , ,

1
k L k k L k k L k

k

n
k kR T R

     


     
+ + + + −



+

=

=                                                     (3.3) 

 
where T is a tensor that contains the short time propagators and influence functional couplings that connect 
the path integral variables of the tensors ( )kR  and ( 1)k+R  within the memory length encoded in the influence 
functional. The tensor multiplication is repeated until the desired time is reached, giving rise to linear 
scaling with the number of time steps. The tensor ( )kR  has 2Ln  elements and each step in Eq. (3.3) involves 

2 2Ln +  operations. Once converged with respect to the time steps and the memory length included, the i-
QuAPI propagation yields the fully quantum mechanical and numerically exact result for the RDM of the 
system-bath Hamiltonian.54,105 The algorithm is illustrated in Figure 1. The i-QuAPI methodology has also 
been applied to time correlation functions.106 The i-QuAPI code runs on a single processor. 
 We emphasize that finite memory requires a truly macroscopic environment with a continuous 
spectral density. Baths consisting of a moderate number of discrete modes cannot be treated by iterative 
path integral algorithms. (However, if a bath comprises a dense manifold of coupled modes over a broad 
frequency range, the resulting memory can be finite for practical purposes. This is discussed again in 
connection with the QCPI method.) 
 
B.  BlipSum 

 The blip representation70 performs a change of the path integral variables to 
 

 ( )
1,
2k k k k k k          

     

+ − + − = − = + .   (3.4) 

 
Time points with 0k   are ‘blips’, while those with 0k =  are the ‘sojourns’.107 In the blip 
representation, the influence functional of Eq. (3.2) has the form 
 

 ( )
0 0

1exp Re 2 Im
k k k

N k

k k k k
k k

i      
  



   

 = =

 
−   + 
 

  .  (3.5) 

 
The outer sum in this expression contains all forward-backward path pairs with 0,1,2,b N=  blips. 
Further, the blip-blip interaction gives rise to a decaying exponential, implying that forward-backward path 
pairs with many blips make vanishing contributions to the path sum.70 The damping effect of the blip-blip 
interaction is most pronounced when the system-bath coupling is strong and at high temperatures. Under 
such favorable conditions, converged results can be obtained for tens or even hundreds of time steps, such 
that results for the entire period of interest may be obtained without resorting to iterative methods.70  
 Another very attractive advantage of the blip representation is the ability to evaluate the inner 
(sojourn) sum through a series of iterative matrix-vector multiplications. This is a consequence of the 
structure of the influence functional, which involves only blip-blip and blip-sojourn interactions (see Figure 
2). If all blips (i.e. all path integral terms) are included, the blip sum requires ( )2 1

N
n n− +  operations from 
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each initial condition, which (at least for small values of n) implies a much lower cost compared to the path 
sum in the original QuAPI representation that involves 2Nn  terms. The BlipSum component is fully 
parallelized.  
 

 

Fig. 2.  Schematic illustration of influence functional interactions for two forward-backward path 
configurations with (a) a single blip at 1 3k =  and (b) two blips at 1 23, 15k k= = . Red and blue lines 
show the coordinates of the forward and backward TLS paths. Black vertical bars indicate the time 
grid.  Solid and dashed curves indicate blip-blip and blip-sojourn interactions, respectively. Adapted 
from Ref. 70.  

 
 An iterative, tensor-based version of BSPI has been developed,108 which uses a fixed number of 
blips within the memory interval and thus enables propagation for long times. The PATHSUM code does not 
include an implementation of the iterative blip sum algorithm, as iteration is more efficient through the 
SMatPI decomposition. In that case the blip sum provides a systematic and efficient algorithm for 
generating the results required to construct the SMatPI matrices, which are used to propagate the RDM for 
long times.  
 The blip representation is used in all system-bath methods employed in PATHSUM (with the 
exception of the original QuAPI algorithm), providing significant gains in terms of storage and speed.  

 
C. TEMPO 

 The influence functional in the QuAPI tensor has the structure of a matrix product operator71 and 
the amplitude of a forward-backward path pair can be written in the form of a matrix product state21 (MPS), 
 

 
max maxmax

01
01

1 0 1 1 0 0
1 01 1 1

N
N

N N N
N

A S S S
 

 

       
  

 

  
−

= = =

=    (3.6) 

 

where 1

1

k

k k
S

 


+

+

 are rectangular matrices and k  are “bond indices”.21 In the exact representation of Eq. (3.6) 
the bond dimensions increase exponentially with the time index k, following the growth of the number of 
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paths, thus 2 12N
N n += . However, the paths contain a great deal of redundant information. Singular value 

decomposition (SVD) offers an efficient mathematical tool for removing redundancy, and its use often 
reduces the values of the bond indices to manageable values by discarding components with singular values 
smaller than a cutoff SVD .71 The TEMPO method relies on SVD compression and also makes use of the 
blip representation to reduce storage.  

The cost of the TEMPO algorithm71 is dominated by the SVD operation in each step, which scales 
as ( )

3max
k . In some regimes, for example with weak-to-moderate system-bath coupling, the bond 

dimensions can remain manageable up to fairly long times, offering an efficient alternative to methods 
based on the explicit generation of paths.72-74 The TEMPO algorithm does not appear to be parallelizable. 
 
D.  QCPI 

 Unlike the previous methods, the QCPI algorithm79-81 is not restricted to harmonic baths, and thus 
can be used in simulations of nonadiabatic dynamics in solution or biological environments. Here we review 
the QCPI algorithm for Hamiltonians of the system-bath type, for which it provides numerically exact 
results. In this case the RDM is calculated from the expression109 
 

( )
( )1 0

0 1 1 0
1 1

, ,( 0)
0 0 0 0

1 1

,
i

N N

N N N
N

n n
N d d W G G e   

     
 


  

−

     
−

 
−



= =

=   q p q p                       (3.7) 

 
where 0 0,q p  denote the coordinates and momenta of the bath degrees of freedom at 0t = , which serve as 
initial conditions of analytically available classical trajectories, ( )0 0,W q p  is the bath Wigner phase space 
distribution,7 

1k k
G

  
−

 is the short-time propagator for a time-dependent system Hamiltonian augmented by 
the system-bath interaction along a chosen reference trajectory,110 and   is the net forward-backward 
action that remains after the action of the reference trajectory has been subtracted (and included through 
the augmented system propagators). This phase contains all dynamical effects arising from the “back-
reaction” (the trajectory state hops following a system path109,111) which are responsible for quantum 
interference as well as decoherence112 and produces the imaginary part of the (properly discretized) 
influence functional, thus it can be included in ways analogous to those described earlier. The QCPI 
expression provides another fully quantum mechanical alternative to the dynamics of system-bath 
Hamiltonians. 
 The main advantage of the QCPI formulation is the inclusion of the most important part of the 
phase arising from the system-bath interaction in the effective system propagators 

1k k
G

  
−

, which are treated 
exactly for any value of the path integral time step. Thus, the path integral discretization needs to properly 
account for the remaining phase (which is associated with the quantum mechanical component of 
decoherence,112  and slightly more elaborate procedures113 are able to capture even a portion of that phase 
into system propagators). As a result, the QCPI expression converges with larger time steps and shorter 
memory compared to the QuAPI expression, Eq. (3.1). Further, the QCPI expression can be cast in the blip 
form,109 which offers all the benefits described in part B. The phase space integral is evaluated using Monte 
Carlo techniques to select MCm  trajectory initial conditions. Because of the full quadrature evaluation of 
the integrals associated with the system variables, the QCPI algorithm does not encounter a sign problem.79 
The QCPI algorithm is fully parallelized by distributing trajectory initial conditions.  
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An iterative tensor-based decomposition of the QCPI expression has been developed.79,113 Further, 
recent work114 showed that the QCPI tensors can be eliminated by using a small matrix procedure for 
iteration. Effectively, QCPI results are used to generate SMatPI matrices (see the next subsection) and 
iteration is performed at the SMatPI cost. In favorable regimes of strong system-bath coupling, low-
frequency baths and high temperature, which are challenging to QuAPI, the cost of Monte Carlo integral 
evaluation is offset by the gain offered by the use of a larger time step and shorter memory within the QCPI 
framework.115 

In order to implement QCPI, baths described by continuous spectral densities must be discretized. 
An efficient “logarithmic” discretization of spectral densities is available,42,116 which produces the desired 
number of discrete frequencies and coupling constants, placing the frequencies such that each mode carries 
the same reorganization energy (see Figure 3). As a result, the logarithmic discretization allows 
convergence of dynamical methods with fewer modes in comparison to spectral density discretization on a 
fixed interval. The number of discrete modes required for convergence increases with increasing 
propagation time.  
 

 

 
Fig. 3.  Logarithmic discretization of the spectral density into modes that carry the same reorganization energy. 

Adapted from Ref. 116. 
 
 

E.  SMatPI 

 The SMatPI algorithm76,77 is an analytically derived iterative decomposition of the QuAPI 
expression that replaces the QuAPI tensors by small matrices whose size is minimal, equal to that of the 
RDM. It retains the full entanglement of the path integral variables within intervals of length maxr t , where 

maxr  is the entanglement parameter which often is equal to the memory length. Figure 4 illustrates the 
SMatPI decomposition. At times exceeding the entanglement interval the RDM is obtained from the sum 
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The SMatPI matrices ( )NmM  have fixed dimensions 2 2n n . These matrices are obtained by evaluating Eq. 
(3.1) by one of the available non-iterative methods. This process involves four full-memory, full-
entanglement RDM evaluations of time length maxr t , which can be combined and evaluated 
simultaneously. 

 

 
Fig. 4.   (a) Schematic illustration of the influence functional factors and matrix decomposition for the 

case of two-step memory ( max 2r = ). The path integral time step is equal to the length of a square.  
Each shaded region corresponds to the area included in an influence functional factor. Triangles 
correspond to ( )kkF  and solid-shaded squares correspond to ( )kkF



. The blue group corresponds 
to the factors included in (10 )M , the orange regions corresponds to those included in ( 21)M , the 
yellow rectangle corresponds to ( 20 )M , the saturated green regions correspond to (32 )M , and the 
pale green square shows (31)M .  Hatched squares and rectangles correspond to ( 2 , ) 1k kF + −  
factors.  Top: decomposition of ( 20)U . Bottom: decomposition of (30)U . Adapted from Ref. 77 
(b) Influence functional factors included beyond the entanglement interval through the extended 
memory procedure. Adapted from Ref. 78. 

 
 Once the SMatPI matrices have been computed, iteration involves maxr  small matrix multiplications 
for each propagation step, i.e. the total cost of each step is 3

maxn r . This makes the SMatPI algorithm much 
faster than i-QuAPI, which scales as 2 2Ln + . Perhaps most importantly, the SMatPI matrices require 
negligible storage in comparison to i-QuAPI tensors or the large TEMPO matrices, allowing application to 
multistate systems. Further, in many cases96 the entanglement of path integral variables decays faster than 
the memory length, i.e. maxr L . In such situations residual memory of arbitrary length can be included 
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without an increase in computational effort.78 This process is illustrated in Fig. 4. We often refer to memory 
exceeding the entanglement length as “extended” memory. The SMatPI algorithm has also been extended 
to Hamiltonians that include time-dependent fields.117 

In addition to the path integral time step, the SMatPI algorithm employs two convergence 
parameters, the entanglement (or entangled memory) length maxr  and the extended memory length L. 
Almost the entire cost of a calculation is associated with the full RDM calculations required to construct 
the SMatPI matrices. Consequently, parallelization of the calculations within the entanglement interval is 
very desirable, whenever possible. Once the SMatPI matrices have been constructed, iterative evaluation 
of Eq. (3.8) involves sequential matrix multiplications, which is extremely fast and is performed on a single 
processor.  The following methods are available for the calculations within the entanglement interval: 

1. QuAPI 
As explained earlier, the cost of the non-iterative QuAPI procedure for constructing the full RDM up to the 
time maxr t  scales as max2 2rn + . A variety of filtering and coarse-graining methods56,57,60,63-65,68,118 can reduce 
this cost, but PATHSUM currently implements only the crudest filtering in the QuAPI module by dropping 
paths whose bare amplitude, combined with nearest-neighbor influence functional couplings, is smaller 
than a threshold  . This threshold is often set to 0, but can be useful in very demanding calculations which 
can benefit from path elimination. The QuAPI path sum unit is fully parallelized with respect to the system 
paths.  

2. BlipSum 
The convergence parameters of the BlipSum component are the time step and the number b of blips. If all 
blips are included ( max 1b r= + ), the cost scales as ( ) max 12 1

r
n n

+

− + . Under strongly damped conditions (low-
frequency baths with a large reorganization energy and a relatively high temperature) the number of blips 
can be small, i.e. maxb r  and sometimes maxb r , which leads to high efficiency. The BlipSum code is 
parallelized by distributing the blip configurations to multiple processors.  

3. TEMPO 
In some regimes (primarily weak-to-moderate dissipation) the TEMPO algorithm in the blip representation 
offers an efficient approach for generating results within the entanglement length, which can be used to 
construct SMatPI matrices. The cost is associated with the SVD procedures and is given by the third power 
of the maximum bond dimension, making the TEMPO algorithm attractive for systems with a small number 
of states. The TEMPO algorithm is not parallelizable.  

The C++ module implements TEMPO by calling the ITensor libraries119 to perform the MPO-MPS 
operations. These libraries are optimized and can minimize bond dimensions by performing multiple 
“sweeps”.120 The Fortran module does not utilize tensor libraries to perform the MPO-MPS procedure. 
Instead, it applies each influence functional factor and performs tensor compression by calling a standard 
SVD subroutine available in the LAPACK/BLAS libraries. Because of the different algorithms employed 
in these components the cutoff values SVD  generally are quite different in the C++ and Fortran modules.  

4. QCPI 
The PATHSUM code implements the QCPI expression in the form of the efficient BlipSum algorithm within 
the entanglement length. If all blips are retained, the cost scales as ( ) max 12 1

r
n n

+

− +  multiplied by the number 
of trajectory initial conditions. However, since QCPI affords larger time steps and shorter memory, the 
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value of maxr  tends to be considerably smaller compared to the value allowed by QuAPI-based expressions. 
The code is parallelized by distributing trajectory initial conditions.  
F. MPI 

 The MPI algorithm82-85 is ideally suited to extended systems composed of locally interacting 
segments with a one-dimensional topology, such as stacked molecular aggregates with Frenkel exciton 
interactions or chains of molecules containing interacting spins. Each molecular unit has one or more 
quantum (electronic or spin) states that couple to a large number of intramolecular normal mode vibrations 
that constitute the bath.  
 

 
Fig. 5.  Diagrammatic illustration of the MPI algorithm. The states of each unit are coupled to a bath at a finite 

temperature. The vertices represent the path integral variables and the dashed lines indicate couplings 
between units. The factorization of the MPI algorithm is also shown on the right. Top (adapted from 
reference 83): Ising chain, where the coupling between adjacent monomers is diagonal in the system basis. 
The path integral variables of each unit are indicated with different colors in this panel. Bottom: 
Molecular aggregate with non-diagonal Frenkel exciton couplings. Edge units are not shown in the MPI 
diagram.  

 

 The MPI algorithm constructs the discretized Feynman paths in the space of the quantum states of 
each unit and links them to those of the adjacent unit after augmenting their amplitudes by influence 
functional factors arising from the local bath.85 Once the linking is complete, the paths of the treated 
monomer are discarded and the process is repeated with the next pair of molecular units. The sequential 
nature of the MPI algorithm implies linear scaling of computational cost with aggregate size. A factorization 
of the MPI linking procedure86 allows cost that scales as ( )2 2 2 2logN N

nnd n n+ +  to the leading order, where 
n is the number of states of each unit and d is the number of units, providing efficiency similar to that of 
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the fast Fourier transform (FFT) algorithm. The MPI algorithm was originally derived for diagonal 
interactions between units82,83 (e.g., those of the Ising model) and has been extended to general forms 
including nondiagonal couplings between monomers84 (as in the Frenkel and Heisenberg models) without 
a significant increase of computational cost. A SMatPI-based iterative decomposition of MPI was recently 
developed,121,122 which eliminates the path storage requirements, extending calculations to long times. The 
PATHSUM code currently implements the non-iterative MPI algorithm for TLS-bath units, coupled through 
operators that are diagonal or non-diagonal in the basis of system states.  

 

IV. Code structure  

 The PATHSUM code is available upon free registration at 
https://makrigroup.web.illinois.edu/pathsum/. A comprehensive PDF manual containing installation 
instructions and a documentation of the package is provided and is also available online. The C++ package 
depends on the LAPACK, BLAS, Armadillo and ITensor libraries,119 while the Fortran package requires 
only the LAPACK and BLAS libraries. Several components of this code are embarrassingly parallelizable 
and utilize the “reduce” and “gather” algorithms from the message passing interface framework. (Note that 
we only refer to the modular path integral as MPI and always write the full form of “message passing 
interface”.) 

The central module or driver of the PATHSUM code reads the necessary input files that contain the 
various parameters and is where the user specifies which general approach is to be used. The same module 
performs some preliminary operations on the system Hamiltonian (such as discretizing a continuous system 
and computing the system propagator elements), calculates the influence functional coefficients, and prints 
the results computed in the peripheral modules. 

 

 
 

Fig. 6.  Structure of the PATHSUM code. The MPI diagonal module is suitable to Ising spin chains, while the 
general module can be used to treat Heisenberg and Frenkel exciton Hamiltonians.  

 

https://makrigroup.web.illinois.edu/pathsum/
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The primary method choices consist of i-QuAPI, SMatPI and MPI. If the SMatPI option is selected, 

the user must choose among QuAPI, BlipSum, TEMPO and QCPI for the calculations within the 
entanglement interval. If the propagation length is set equal to the entanglement/full memory interval, i.e., 

maxN r L= = , the code produces full-memory results without resorting to iteration. If the MPI option is 
chosen, the user must specify the form of the Hamiltonian (diagonal for Ising spin chains or general for 
Heisenberg spin chains and Frenkel exciton aggregates). The overall structure of the PATHSUM code is 
illustrated in Figure 6.  

Once the choice for the method is made, all necessary parameters for the calculation are passed on 
to a peripheral module of the code where the path sum is computed. For SMatPI, calculations within the 
entanglement interval are performed entirely in the peripheral modules. Depending on the method chosen 
in combination with SMatPI iteration (i.e., QuAPI, BlipSum, TEMPO or QCPI), such calculations are 
distributed across processors or are not parallelized. For example, calculations involving the SMatPI-
QuAPI, SMatPI-BlipSum and SMatPI-QCPI combinations are distributed across as many available 
processors as possible with respect to the system paths, blip configurations and the trajectory initial 
conditions, respectively. The TEMPO-SMatPI alternative does not enable parallelization. Once the results 
within memory are obtained using the chosen combination, they are summed or averaged (using the 
“reduce” feature of the message passing interface framework for parallelized calculations), before being 
communicated back to the central module where the SMatPI matrices are computed and the results to long 
times are computed using the SMatPI method.  

For the i-QuAPI and MPI choices, the entire set of results for all time points are directly obtained 
in the respective peripheral module before they are communicated back to the driver for printing. 
Additionally, the MPI method also allows parallelization with respect to the number of time points at which 
results are obtained. Each separate time point is a different calculation and the results for all time points are 
collated from different processors using the “gather” algorithm of the message passing interface framework.  

 
 

V.  Choosing among methods 

No method is suitable for all problems. Having a broad selection of methods that work in 
complementary regimes allows sufficient flexibility so that converged results can be obtained for many 
processes of interest. Since all methods provided in PATHSUM are fully quantum mechanical and 
numerically exact, the only consideration in choosing a method is the computational cost, i.e. how rapidly 
a calculation will converge and how much array storage is required for execution.  

 The method-specific input parameters (which are to be varied until convergence is reached) are 
summarized in Table 1. In addition, the table gives the scaling of the storage and CPU requirements of each 
method and specifies whether or not each algorithm can be parallelized. We note that within the SMatPI 
module parallelization is relevant only to the operations within the entanglement interval, where most of 
the CPU time is spent. Once the SMatPI matrices have been constructed, propagation by matrix 
multiplication is extremely efficient and is performed on a single processor. In the last column we attempt 
to summarize the favorable regimes where (based on theoretical considerations and our experience) a 
method should be advantageous and relatively efficient.  
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Table 1.  Summary of methods in PATHSUM along with their convergence parameters, storage and cost scaling, and a summary 
of favorable regimes for each method. The symbol n indicates the number of system states, t  is the path itegral time 
step, N is the number of propagation steps desired,   is the path acceptance threshold, maxr  is the entangled memory 
(or entanglement) length, L is the extended memory length, b is the number of blips placed over all time points 
including 0k = , and SVD  is the SVD cutoff parameter. The scaling of QuAPI, BlipSum and QCPI (either their full 
memory versions or within the SMatPI implementation) is given for 0 = . The scaling of TEMPO assumes nonzero 
SVD cutoff parameter. If SVD 0 = , the TEMPO bond dimension is equal to 2 2

max
Nn +=  (or max2 2

max
rn +=  in the 

SMatPI implementation). 
 

 

method parameters storage cost scaling parallelization favorable regimes 

full-memory QuAPI t ,   2n  2Nn  yes small N and/or n 

i-QuAPI max,t r L =  max2rn  max2 2rNn +  no 
high-frequency bath, 
weak/moderate 
dissipation 

full-memory BlipSum ,t b  2n  ( )2 1
N

n n− +  yes 
strong dissipation, low-
frequency bath, high 
temperature 

full-memory TEMPO SVD  2 2 †
maxn   4 3

maxNn   no 
small n, 
weak/moderate 
dissipation 

full-memory QCPI max MC, , ,t r L m  =  2n  2
MC

Nm n  yes 
strong dissipation, low-
frequency bath, high 
temperature 

SMatPI with QuAPI max, ,t r L ,   4
maxr n  max2 2rn +  yes (QuAPI)  

moderately large n, 
intermediate/high 
frequency bath, 
weak/moderate 
dissipation 

SMatPI with BlipSum max, , ,t r L b  4
maxr n  ( ) max2

max 1
r

r n n− +  yes (BlipSum) 
strong dissipation, low-
frequency bath, high 
temperature 

SMatPI with TEMPO 
 max SVD, , ,t r L   2 2 †

max maxr n   4 3
max maxr n   no 

small n, 
weak/moderate 
dissipation 

SMatPI with QCPI max MC, , , , ,t r L m    4
maxr n  max2 2

MC
rm n +  yes (QCPI) 

strong dissipation, low-
frequency bath, high 
temperature 

MPI ,t   2Nn  ( )2 2logN N
nn n n  yes 

extended system with 
very large total number 
of states 

† The pre-compressed matrices utilized in the calculation have bond dimensions given by the max value of the previous influence 
functional application multiplied by 2n , resulting in temporary matrices that are larger than those listed in the table. 
 
 
VI. Examples 

 In this section we show some representative examples that illustrate the use of the PATHSUM code 
with a variety of methods. The reader is encouraged to also browse the online documentation of PATHSUM 
for additional details on the examples that follow. The documentation provides additional step-by-step 
guidance on how to converge system-bath calculations. Solely based on convenience, all examples 
presented below use Ohmic spectral densities of the form 
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( ) c
2

2J e  
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

−
=


                                                            (5.1) 

 

where c  is the cutoff frequency and the Kondo parameter   is a dimensionless measure of the system-
bath coupling. Note that the PATHSUM code is not limited to the form of the spectral density. The user is 
free to provide any suitable function (which should decay to zero at high frequencies) or any number of 
discrete modes.  
 Examples 1-4 employ two-level systems (TLS, 2n = ) with the following Hamiltonian, 
 

0H




−  
=  

−  − 
.                                                             (5.2) 

 
where 2   is the tunneling splitting and   is the asymmetry parameter. 
 

Example 1: SMatPI with QuAPI or TEMPO input; asymmetric TLS with weak dissipation 

As a first example we use a mildly asymmetric TLS with 1=  and 1 = , coupled to a (common) 
Ohmic bath with parameters c 7.5 =   and 0.1 = . We set the two TLS coordinates 1 1 = , 2 1 = − , 
therefore 2 = , and choose the inverse temperature 5 =  . We select the SMatPI method with QuAPI 
input for the calculations within the entanglement interval. 

Figure 7a shows the population of state 1 as a function of time, obtained from SMatPI calculations 
with the following combinations of time step and entangled memory length ( maxL r= ): max0.6, 2t r = , 

max0.4, 3t r = = , max0.3, 4t r = = , max0.2, 6t r = = , max0.15, 8t r = =  and max0.1, 12t r = = , where the 
total memory length is fixed at 1.2 time units. It is clear that the largest time step that leads to well converged 
results is 0.2t = . We therefore continue with this time step and vary the number of steps within memory. 
Fig. 7b shows the results with max 2,4,6,8,10,14r L= = . The results are very well converged with 0.2t =  
and max 10r L= = .   

Next, we demonstrate the use of PATHSUM with TEMPO as the method for the calculations within 
the entanglement length. In this case convergence should be checked with respect to the SVD cutoff 
parameter as well, which determines the bond dimensions of the matrices. Fig. 7c shows see that the 
SMatPI+TEMPO results (obtained with the C++ package that uses the ITensor library119) are fully 
converged with SVD cutoff 610− .  

The parameters of this example (weak dissipation and low temperature) are far from the optimal 
regime for rapid convergence of the blip series, and the maximum number of blips ( max 1b r= + , for all path 
integral variables at max0,1, ,k r= ) must be included for convergence. Nevertheless, the BlipSum module 
always offers an excellent alternative because of its superior scaling. Table 2 shows that even though 
BlipSum results with max 1b r +  oscillate wildly and do not appear to converge, they become identical to 
those with the QuAPI module once all blips have been included.  
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Fig. 7.   Convergence of System-Bath calculation that use SMatPI with QuAPI input with respect to the path 
integral timestep (left) and the memory (middle). We show results for an asymmetric TLS coupled 
to a fast Ohmic bath at a low temperature. Converged results are obtained with 0.2t =  and 

max 10r L= = . The right panel shows convergence with TEMPO input.   
 

 
 
Table 2.  Comparison of SMatPI+BlipSum results at 2,4t =  and 6 obtained with different b values against SMatPI+QuAPI with 

max 10r L= =  and 0.2t = , with the parameters of example 1 (a regime unfavorable to BlipSum).  
 

Method 2t =  4t =  6t =  

BlipSum, 2b =  0.32604 0.39808 0.43204 

BlipSum, 4b =  0.35634 0.29596 0.41741 

BlipSum, 6b =  0.45034 0.26784 0.32872 

BlipSum, 8b =  0.54658 0.06798 0.28337 

BlipSum, 9b =  0.57486 – 0.01805 0.17567 

BlipSum, 10b =  0.57486 0.96078 0.99397 

BlipSum, 11b =  0.57486 0.31921 0.20019 

QuAPI 0.57486 0.31921 0.20019 

 

 

Example 2:  SMatPI with BlipSum and TEMPO; asymmetric TLS with strong dissipation 

The next example employs a strongly asymmetric TLS described by Eq. (5.2) with 1=  and 5 =

. We set the system coordinates to 1 0 = , 2 2 =  ( 2 = ), describing a bath equilibrated with respect to 
state 1 (the “donor” in a charge transfer reaction). The TLS is strongly coupled to a common slow bath with 

c 2 =  and 4 =  at a high temperature, 0.1 = . Equilibration requires propagation for approximately 600 
time steps. This combination of parameters requires a small time step and long memory, which are 
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challenging to older methods. SMatPI results obtained with max 10r L= =  do not approach the correct 
equilibrium value. Previous work showed that the blip series converges very rapidly in this case, and well 
converged results were obtained using the iterative blip sum algorithm108 with 0.075t =  and 3b =  with 

max 50r L= = . Here we show that these results are easily and conveniently obtained using SMatPI. In Figure 
8 we show converged SMatPI+BlipSum results with max 50, 3r L b= = = . With the present parameters, the 
entanglement length can be considerably shorter than the memory, so the SMatPI results with 

max 20, 100, 4r L b= = =  are indistinguishable. We also show max 20r = , 100L =  SMatPI results obtained 
with TEMPO input. The parameters of this example are challenging to TEMPO, but reaching the 
entanglement length max 20r =  is feasible (although more expensive than BlipSum). While obtaining 
TEMPO results over the entire propagation time or even the full memory length 50 100L = −  would be 
difficult, SMatPI enables efficient iteration as well as the inclusion of important residual memory, which 
leads to nearly converged results. (Note that small errors can be seen, resulting from SVD truncation in 
TEMPO.) i-QuAPI calculations with the same memory produce results identical to those obtained with 
SMatPI but are 600 times more expensive. Similarly, a standalone TEMPO calculation which employs 
memory iteration analogous to i-QuAPI would be 600 times more expensive than the SMatPI+TEMPO 
calculation shown here. 
 
 
 

 
 

Fig. 8.  System-bath results with various for an asymmetric TLS-bath system characterized by parameters 
of Example 1. The three panels show: (left) population of the donor state, (middle) real part of the 
coherence, and (right) imaginary part of the coherence, respectively. The blue and red curves are 
nearly identical. 

 
 
Example 3: SMatPI with QuAPI, BlipSum or QCPI input; symmetric TLS with strong dissipation 

This example uses a symmetric TLS with Hamiltonian of Eq. (5.2), where 1=  and 0 = , again 
placing the system coordinates at 0 and 2  ( 2 = ). In the present case the TLS is strongly coupled to an 
even slower common bath, with c =  and 2 = , but is now at an intermediate temperature, 1 = . 
This combination of parameters again generates long memory, which becomes challenging for the 
standalone i-QuAPI and TEMPO methods. Earlier work78 obtained converged results SMatPI results using 
QUAPI input with max0.25, 18t r = =  and extended memory 100L = . 
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Figure 9 presents SMatPI results max 18, 100r L= =  combined with QuAPI, BlipSum or QCPI input. 
If the BlipSum method is used instead of QuAPI to generate the SMatPI matrices, convergence is reached 
at 7b =  (with the same time step 0.25t = ). Because of the lower temperature, more blips are required for 
converging BSPI calculations compared to Example 2, but since maxb r , the BlipSum calculation is again 
much faster than QuAPI. Moreover, we recently showed that alternatively, if QCPI input is used, identical 
results are obtained (within the small Monte Carlo error from 15000 trajectory initial conditions) with a 
much smaller entanglement length and overall memory, max0.25, 7, 80t r L = = = . This advantage stems 
from the fact that QCPI incorporates the classical part of the memory exactly into the system propagator. 
Thus, the effective memory to be captured in the PATHSUM calculation is only that corresponding to the 
quantum memory, which is much shorter at this temperature. We also show a few unconverged results 
obtained with a smaller entanglement length in the SMatPI+QuAPI calculation, and with an insufficient 
number of  blips.  

 

 

  
Fig. 9.  Population of the donor state for a TLS coupled strongly to a slow Ohmic bath at intermediate 

temperatures (parameters are mentioned in the text). We show converged results obtained using the 
SMatPI+QuAPI, QMatPI+BlipSum and SMatPI+QCPI methods.  

 
 
Example 4: SMatPI with BlipSum input; localization transition in a symmetric TLS 

 Next, we demonstrate the ability of the SMatPI algorithm to reproduce the localization transition 
of a symmetric TLS coupled to an Ohmic bath at zero temperature.107 We use again 1=  with 1 1 = , 

2 1 = −  and choose a strongly coupled Ohmic bath characterized by 1.5 =  and c 10 =   at an inverse 
temperature 50 = , which is practically equal to zero. The SMatPI results converged easily with 

0.05t =  and max 18L r= = . Because of the relatively large value of the entanglement parameter, the 
BlipSum component is more efficient than QuAPI. In spite of the strongly dissipative conditions, this 
regime is highly quantum mechanical, thus all blips ( max 1b r= + ) must be included. Earlier expensive 
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calculations with the standalone TEMPO method obtained converged results with a very large memory 
parameter.72 

Figure 10 shows the population of state 1 as a function of time. Following a small drop over a very 
short time interval, the population stabilizes at a value that is constant to four decimal places over a 
propagation interval of 30 t . Unconverged results (obtained with shorter memory or inadequate number 
of blips) lead to sloped population curves.  

 
 

 
Fig. 10.  Population of state 1 in a symmetric TLS coupled to an Ohmic bath with 1.5 =  and c 10 =   at a 

temperature almost equal to zero. Converged SMatPI+BlipSum show the localization of the TLS.  

 
 

Example 5: SMatPI with QuAPI input, 20-state system with local baths 

We now move to multistate systems and present a calculation on a system with 20n =  states 
(“sites”) described by the tight-binding Hamiltonian with nearest-neighbor couplings, 
 

0

0 0
0 0

0 0 0

H

−  
 
−  =
 
 
 

                                                                 (5.3) 

 

where 1= . Each site represents a singly excited electronic states of a molecular aggregate and is coupled 
to its own local Ohmic bath with c 5 =  and 0.1 =  at an intermediate temperature, 5 = . While the 
System-Bath module does not pose any restrictions on the system Hamiltonian, in this example we use a 
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tight binding Hamiltonian with identical site energies and nearest-neighbor coupling parameter equal to 1−
. The system coordinates are set at 0 and 2 for each state, which ensures that each local bath is equilibrated 
with respect to the ground state of the state it is coupled to.100 This corresponds to a Franck Condon initial 
excitation to the chosen initially excited state of the system. The reorganization energy between ground and 
excited state of each monomer is equal to  . The calculation converges with max0.25, 4t r L = = =  using 
the SMatPI algorithm with QuAPI input (see the inset of Figure 10). The converged populations of several 
of the 20 states of the system are shown in Fig. 11.  
  

 
 

Fig. 11.  Top: Populations of several states for a 20-level system coupled to identical local Ohmic baths at 
an intermediate temperature (see parameters mentioned in the text) obtained using the 
SMATPI+QuAPI method. We also show the convergence of the population of monomer 1 with 
respect to the path integral timestep (comparison of red and blue curves) and memory (cyan, red, 
orange and black curves) in the inset. Bottom: Four important coherences (left: real parts, right: 
imaginary parts). Only converged results obtained using the SMatPI+QuAPI method are shown.  

 



26 
 

Since the System-Bath module of PATHSUM calculates the entire RDM at all times, the user may 
simultaneously examine the coherences (off-diagonal elements of the RDM) between the different system 
states as well. Recent work123 has shown that coherences carry important dynamical information. For 
example, the instantaneous rate of change of a population is given by the sum of coherences that involve 
the given state and all other states, weighted by Hamiltonian coupling elements.124  The visualization of the 
entire RDM through coherence maps123 (spatial snapshots of the RDM) can be used to infer the kinetic 
pathways in the system-bath dynamics.125 In Figure 11 we also show the real and imaginary parts of four 
coherences.  

 
 
Example 6: MPI for Ising chain of 10 spins coupled to Ohmic baths 

Last, we study a chain of 10n =  TLSs with Ising-type nearest neighbor couplings according to the 
Hamiltonian of Eq. (2.11) with 1=  and  z 0.2J = −  . Each TLS is additionally coupled to an Ohmic bath 
(all Ohmic baths are assumed to be identical) with c 5 =  and 0.3 =  at an intermediate temperature 1 =

,  and the system coordinates for each TLS are kept at +1 and 1− . We seek z ( )t  for the first TLS in the 
chain (on either side, due to symmetry). The total number of states in the system alone is 210, taking this 
calculation beyond the scope of system-bath methods, thus the MPI algorithm needs to be used. 
 
 

 

   Fig. 12.  ( )z t for the first in a chain of 10 TLSs, each coupled to a (local) Ohmic bath. We show 
the convergence with respect to N from an MPI calculation using the diagonal algorithm.  

 
 

MPI calculations use a plotting grid of fixed time separation (set by the user). In this case, we 
choose the time grid with an interval of 0.2 units over the range up to 8 time units (i.e. 41 time values). The 
only convergence parameter that the user needs to set is N , the number of path integral time steps to be 
used in each MPI calculation. In Figure 12 we vary N  in different calculations to test convergence. Since 
the value of N  is fixed, the results obtained at different time points use a different path integral time step 
given by /t N , where t  is a time value. Therefore, results at shorter times are always very accurate. Fig. 
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12 shows that results obtained with 4N =  develop small errors early on and exhibit a spurious population 
growth after 5t ). Results obtained with 6N =  only show such behavior after 7t . Increasing N to 8 
and to 10, leads to results that are converged over the time interval shown in the figure. 
 

 
VII. Concluding Remarks 

In this paper we reported the release of PATHSUM, a new software suite that implements fully 
quantum mechanical real-time path integral algorithms to study the dynamics of (multi-)system-bath 
Hamiltonians. The package has been built to be equally useful to the non-expert looking to run state-of-the-
art computations that are relevant to the quantum dynamics of chemical and biological processes such as 
electron/proton/energy transfer or spin dynamics, without having to write their own code. The package has 
two modules, a System-Bath module that deals with a single system coupled to one common or many local 
baths, and an Extended-System module that addresses the problem of many quantum systems in an 
molecular aggregate coupled to their own harmonic environments. For each method that is available in the 
two modules of our package, we provide a concise but complete overview in this paper to guide the new 
user, as well as detailed references to aid the more inquisitive reader. We illustrate the use of our software 
through six tutorial examples across the two modules and provide insights regarding the comparative 
advantages of the different methods whenever possible. We also emphasize the complementarity of 
different methodologies available in PATHSUM, thus providing the user with access to different regimes of 
condensed phase quantum dynamics. 

 We encourage users to embrace the PATHSUM suite and help us improve it through their valuable 
feedback, as we continue to build different functionalities and methods into this package, as and when they 
are developed in the years to come. As the field of exact quantum dynamics keeps becoming increasingly 
viable and valuable in the research of our times, we hope this suite of exact path integral methods will help 
users gain new insights into the dynamics of open quantum systems. 
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