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Abstract. The Cumulative constraint is one of the most important
global constraints, as it naturally arises in a variety of problems related to
scheduling with limited resources. Devising fast propagation algorithms
that run at every node of the search tree is critical to enable the reso-
lution of a wide range of applications. Since its introduction, numerous
propagation algorithms have been proposed, providing different tradeoffs
between computational complexity and filtering power.
Motivated by the impressive computational power that modern GPUs
provide, this paper explores the use of GPUs to speed up the propaga-
tion of the Cumulative constraint. The paper describes the development
of a GPU-driven propagation algorithm, motivates the design choices,
and provides solutions for several design challenges. The implementa-
tion is evaluated in comparison with state-of-the-art constraint solvers
on different benchmarks from the literature. The results suggest that
GPU-accelerated constraint propagators can be competitive by provid-
ing strong filtering in a reasonable amount of time.
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1 Introduction

Industrial scheduling problems are derivatives of the so-called “Resource Con-
strained Project Scheduling Problem” (briefly, RCPSP) in which one must order
non-preemptible activities of fixed duration to minimize the makespan, i.e., the
project duration. Activities use a fixed amount of resources to execute and each
resource has a fixed capacity. Unsurprisingly, industrial scheduling readily ben-
efits from any improvements to solve the classic RCPSP problem.

The last three decades witnessed the development of multiple techniques
to prune the search tree of such an NP-hard problem [16,3]. The most promi-
nent techniques are Edge-Finding [33,29], Time-Tabling [26], Not-First/Not-Last
[33,40], and Energetic-Reasoning [28]. Edge-Finding was developed for cumu-
lative instances through a series of contributions and it deduces precedences
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between activities that must be satisfied in time O(n2k) [29] where n is the
number of activities and k is the number of distinct capacity requirements of the
activities. Time-Tabling focuses on resource usage profile. Several techniques
based on line-sweep methods were proposed with an O(n2) [17] solution that
separates profile building and inference phases. The core of the inference mech-
anism rests on the ability to deduce, from the mandatory part of the profile,
whether an activity must be postponed or not. Not-First/Not-Last performs an
orthogonal pruning with respect to the other approaches by deducing unfeasible
precedences between activities in time O(n2 log n) [39] using a Θ-tree data struc-
ture. Energetic-Reasoning calculates the resource usage in specific time intervals
to check and adjust the activities so that there is no over-consumption. Its stan-
dard algorithm has O(n3) time complexity, that can be reduced to O(n2 log n)
[36] by using Monge matrices.

In practice, most CP solvers employ Edge-Finding or Time-Tabling tech-
niques that exhibit a lower time complexity at each node of the search tree,
despite the strength of the filtering one might benefit from with Energetic-
Reasoning. This paper revisits this design decision and considers the use of an
Energetic-Reasoning propagator in a CP solver. Specifically, the paper advocates
that the high computational complexity cost at each fixpoint can be mitigated
with the use of a Graphics Processing Unit (GPU) and deliver, overall, faster
computation times, or better solutions within a given time horizon. The fun-
damental assumption is that the energetic filtering rule is easily parallelized on
this class of hardware and that the benefits from the derived filtering can be
significant.

This paper is organized as follows. Section 2 offers some general background.
Section 3 discusses the design of the proposed solution. Section 4 discusses empir-
ical results that pitch a GPU-based Energetic-Reasoning against multiple solvers
using Edge-Finding and Time-Tabling techniques. Section 5 concludes the paper.

2 Background

This section establishes the required background knowledge on Constraint Sat-
isfaction and Optimization [2,37], Cumulative Scheduling [6,3] and General-
Purpose computing on Graphics Processing Units (GPGPU) [38,10].

2.1 Constraint Satisfaction/Optimization Problem

A Constraint Satisfaction Problem (CSP) is a triple P = ⟨V,D,C⟩, where V =
{V1, . . . , Vn} is a finite set of variables, D = {D1, . . . , Dn} is the set of finite
domains, and C is a collection of constraints on variables in V . Each constraint
c ∈ C, defined over a set of variables vars(c) = {Vi1 , . . . , Vim} ⊆ V , defines a
relation on Di1 ×· · ·×Dim , namely c ⊆ Di1 ×· · ·×Dim . A solution of ⟨V,D,C⟩
is an assignment σ : V →

⋃n
i=1 Di such that:

• σ(Vi) ∈ Di for each i = 1, . . . , n
• ∀ c ∈ C then ⟨σ(Vi1), . . . , σ(Vim)⟩ ∈ c, where vars(c) = {Vi1 , . . . , Vim}.
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The set of solutions for the CSP ⟨V,D,C⟩ is denoted S(⟨V,D,C⟩). Given a CSP
⟨V,D,C⟩, a constraint solver searches for one or more solutions. A solver alter-
nates two types of steps: (1) constraint propagation and (2) non-deterministic
choice. The latter is used to select the next variable to be assigned and to select
non-deterministically a value to be given to such a variable (drawn from its cur-
rent domain). Constraint propagation uses the constraints to prune the domain
of the variables, removing values that provably do not belong to a solution.

The propagation algorithm uses a queue to schedule the constraints that
must be reconsidered when the domain of a variable changes. Namely, whenever
the domain of a variable x ∈ vars(c) for some c ∈ C changes, the constraint
c is added to the queue. The filtering algorithms of a constraint that shrinks
domains enforces a level of consistency, such as domain consistency [37]. An m-
ary constraint c on the variables vars(c) = {Vi1 , . . . , Vim} is domain consistent
if ∀ j ∈ {1, . . . ,m} the following holds:

∀aj ∈ Dij : ∃a1 ∈ Di1 · · · ∃aj−1 ∈ Dij−1
∃aj+1 ∈ Dij+1

· · · ∃am ∈ Dim : (a1, . . . , am) ∈ c

A CSP is domain consistent if all constraints in C are domain consistent. For
binary constraints (i.e., m = 2) domain consistency is known as arc consistency.
Without loss of generality, a Constraint Optimization Problem is specified with
⟨V,D,C, f⟩ where ⟨V,D,C⟩ is a CSP and f : D1 × · · · ×Dn → R is an objective
function to be minimized. The goal is to find a solution of ⟨V,D,C⟩

σ∗ = argmin
σ∈S(⟨V,D,C⟩)

f(σ)

that minimizes f(σ(V1), · · · , σ(Vn)).

2.2 Cumulative

The Cumulative constraint is one of the most used constraints in CP. It makes
it easy to model and solve a variety of real-world problems, contributing to the
success of CP in scheduling applications.

In detail, it models the Cumulative Scheduling Problem (CuSP): given a set
A of activities that use a resource of capacity u and where the goal is to schedule
the activities so that the last activity finishes as soon as possible and no more
than u units of the resources are used at any time. Formally, each activity a ∈ A
is defined by its start time sa, its processing time pa and, its resource usage ha.
The end time of activity a is ea = sa + pa and the problem is defined as follows:

minimize max
a∈A

(ea)

subject to
∑

{a :a∈A, sa≤ t<ea}

ha ≤ u t ∈ N

Since its introduction in [1], the Cumulative constraint has been the subject of
many studies to improve its efficiency. The result is a collection of propagation al-
gorithms with different trade-offs between filtering capability and computational
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Fig. 1: Left shift and right shift for the activity a with respect to [t1, t2).

complexity. Such algorithms are commonly classified by the filtering technique
they employ: Time-Tabling, Edge-Finding, Not-First/Not-Last, and Energetic-
Reasoning. A complete description of these approaches is out of the scope of this
work, interested readers can refer to [6]. This section describes the core ideas that
characterize each method and points to the relevant literature for details.

Edge-Finding. This approach considers subsets of activities, determining if an
activity must start before or end after the rest. It was introduced in [33],
corrected in [29] and improved in different ways in [47,48,24,35,20].

Time-Table. This method consists of computing the minimal resource usage
at every time and adjusting the starting time of the activities so that there
is no over-consumption of the resource. It first appeared in [26] and was
successively refined in [7,27,17].

Not-First/Not-Last. This approach considers subsets of activities and deter-
mines whenever an activity cannot be the first/last to be executed. Intro-
duced in [33], it was corrected in [40] and improved in [39,23,22].

Energetic-Reasoning. This method checks some critical time intervals and ad-
justs the starting time of the activities so that there is no over-consumption of
the resource. Introduced in [28], it was refined and improved in [4,13,45,36,46].

Energetic-Reasoning is one of the strongest propagators for the Cumulative con-
straint, dominating both the Time-Table and Edge-Finding approaches [6]. Such
filtering examines O(n2) time intervals for a total complexity of O(n3), too costly
to be used in practice [13,36,46].

Preliminaries Before proceeding to formalize the Energetic-Reasoning, we in-
troduce some notation: [t1, t2) denotes an open time interval. The lower and
upper bounds of (the domain of) a variable x are denoted by x and x, respec-
tively. Given a time interval [t1, t2) and an activity a, their minimal intersection
is MI (a, t1, t2) = min(LS (a, t1, t2),RS (a, t1, t2)) where LS and RS are the left
shift and right shift (see Figure 1):

LS (a, t1, t2) = max(0,min(ea, t2)−max(sa, t1))

RS (a, t1, t2) = max(0,min(ea, t2)−max(sa, t1))
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foreach [t1, t2) ∈ RI do
w =

∑
a∈A ha ·MI (a, t1, t2)

if w < c · (t2 − t1) then
foreach a ∈ A do

r = c · (t2 − t1)− w + ha ·MI (a, t1, t2)
if r < ha · LS(a, t1, t2) then

sa = max(sa, t2 − r
ha

)

if r < ha · RS(a, t1, t2) then
ea = min(ea, t1 +

r
ha

)

else
Fail

Algorithm 1: Energetic-Reasoning propagation algorithm.

The Energetic-Reasoning propagator considers the intervals whose extremes
are related to the beginning/end of an action [4,13]. We define the set of relevant
intervals as

RI =
⋃

(i,j)∈A×A

O(i, j)

where:

O(i, j) = {[t1, t2) : t1 < t2, t1 ∈ O1(i), t2 ∈ O2(j)} ∪
{[t1, t2) : t1 < t2, t1 ∈ O1(i), t2 ∈ O3(j, O1(i))} ∪
{[t1, t2) : t1 < t2, t1 ∈ O3(i, O2(j)), t2 ∈ O2(j)}

and O1(a) = {sa, sa}, O2(a) = {ea, ea}, O3(a, T ) = {sa + ea − t : t ∈ T}. The
consistency condition of is:

∀[t1, t2) ∈ RI :
∑
a∈A

ha ·MI (a, t1, t2) ≤ u · (t2 − t1)

From such condition one adjusts the start time of activities to prevent over-usage
as listed in Algorithm 1. Note that it could be worth to consider a set O(i, j)
only if si or sj changed in the current propagation phase. The rational of this
heuristics is to avoid to check consistent intervals and despite that it makes the
filtering weaker, it proved to be effective for the sequential implementation (see
Section 4).

2.3 GPUs and CUDA

Modern Graphical Processing Units (GPUs) are massively parallel architectures
where thousands of computing units can process large amounts of data. Such
power allows for the solution of problems that are out of reach with contempo-
rary multi-core CPU technology. Recent research shows that the use of GPUs can
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Fig. 2: High level GPU architecture.

be beneficial for speeding up basic Computational Logic tasks. See, among many,
[12,11] for SAT, [14,15] for ASP, and [44] for CP. However, accessing the compu-
tational power offered by GPUs demands specific techniques and algorithms that
proficiently exploit the peculiarities of the GPU architecture. To support devel-
opers and researchers, NVIDIA introduced CUDA (Computing Unified Device
Architecture) [34], a C/C++ Application Programming Interface (API) that al-
lows to ignore the underlying graphical concepts in favor of parallel computing
concepts. A typical CUDA program is composed of parts executed by the CPU,
the host, and parts designed to be executed on the GPU, the device. The host
parts contain instructions for data movement and computation offloading, while
the device parts contain the code that performs the computation.

A current NVIDIA GPU contains up to one hundred Streaming Multiproces-
sors (SM), each containing up to one hundred computational units called CUDA
Cores (see Figure 2). The main GPU memory is called global memory, and it
can be tens of GB large. Between global memory and SMs there is a L2 cache of
a few MB. Finally, each SM is equipped with some tens of KB of fast memory
used as L1 cache and/or scratchpad memory, in which case it is referred to as
shared memory.

The CUDA computational model is defined as Single-Instruction Multiple-
Thread (SIMT). In this model, each thread executes the same C/C++ function,
named kernel, and uses its unique index to identify the data fragments to fetch
or the control flow. The case where different threads take different control flows
is called thread divergence, and it is handled by executing the threads one after
the other. Such a behavior may cause serious performance degradation. From
a programmer’s perspective, threads are logically grouped in blocks and blocks
are organized in a grid. Blocks are dispatched to the Streaming Multiprocessors,
that run the threads using their CUDA Cores. Threads in the same block can
share data using the shared memory, while threads of different blocks can only
share data through the global memory.
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include "cumulative.mzn";

include "minicpp.mzn";

...

int: m; % Number of resources

set of int: RESOURCE = 1..m;

...

constraint forall(r in RESOURCE)

(cumulative (...) ::gpu );

...

Listing 1.1: MiniZinc annotation to use the GPU-accelerated propagator.

To take full advantage of GPU architecture, one has to adhere to specific
programming directives to distribute the workload among the cores, avoid thread
divergence and optimize memory accesses. This usually involves exploiting the
shared memory to reduce costly global memory accesses.

3 Design and Implementation

This section describes the process of developing a constraint solver which sup-
ports the GPU-accelerated propagation of Cumulative. The first part is about
the constraint solver and can be used to estimate the effort necessary to integrate
our ideas into an existing solver. The second part focuses on a GPU-accelerated
propagator and can be useful to evaluate how effectively other propagators can
be parallelized.

Solver The exploitation of a GPU-based propagator within a solver has some
caveats. The first is that the solver is open-source because intimate modifications
of internals might be needed. Second, it is preferable that the solver is written
in C/C++ to facilitate the interaction with CUDA. Finally, it is convenient
that the solver supports the MiniZinc language so that the GPU-accelerated
propagator is easily accessible by the community.

We choose to work with MiniCP [30] because it is open-source and it is rea-
sonably simple to modify thanks to the comprehensive documentation and the
straightforward mapping between its architecture and the theory. In particu-
lar we used MiniCPP [19], a C++ implementation of MiniCP. The integration
of the GPU-accelerated propagator is the same as any other propagator, but
it requires modifying the build process to properly handle CUDA code. The
addition of a FlatZinc frontend [42], few variable/value selection heuristics and
some constraints were sufficient to obtain a solver compatible with MiniZinc [41].
To provide a simple mechanism to use the GPU-accelerated propagator, we in-
troduced a new MiniZinc annotation. Specifically, a constraint annotated with
::gpu is enforced using the GPU-accelerated propagator in place of the CPU
implementation (see Listing 1.1).
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Propagator The GPU can be used to enhance constraints propagation according
to two strategies: speed-up the fastest algorithms, or lower the computational
price of strong filtering algorithms. The first strategy has different downsides:
offloading to a GPU introduces an overhead that may overshadow the speed-up,
and it may not be obvious to parallelize the best (sequential) algorithm because
of its data structures. On the contrary, strong filtering algorithms may expose
enough parallelizable work to make it convenient to offload the computation,
but it may still be too slow to be beneficial.

Let us consider prior implementations proposed for Edge-Finding, Time-
Tabling, etc. to single out the most promising one for GPU parallelization. We
evaluate them based on the data structures they use, preferring plain data struc-
tures since pointer chasing (i.e., a sequence of irregular memory accesses follow-
ing chains of pointers) is quite harmful on a GPU. The Time-Table propagator,
as proposed in [17], seems to be a good candidate since other implementations
are impeded by the use of heap data structures. Among the Edge-Finding prop-
agators found in the literature, the most promising are those proposed in [29,24],
as other approaches heavily rely on linked data-structures (trees, queues, lists)
and involve pointer chasing. All the Not-First/Not-Last approaches are equally
dependent on linked data-structures. The standard Energetic-Reasoning [4] is
a strong filtering candidate which uses only array-like data structure. We de-
cided to base our GPU-accelerated propagator on Energetic-Reasoning for both
its GPU-friendly data structures, and because on typical instances and with
“enough” GPU cores, it is possible to generate and check all the O(n2) intervals
in parallel, reducing the running time from O(n3) to O(n).

3.1 Parallelization

This section describes and motivates the developing of a parallel Energetic-
Reasoning propagator. The first part introduces the notions of occupancy and
latency, two fundamental concepts of GPU computing. The second part details
how we parallelized the filtering algorithm, while the final part is about overhead
reduction.

Performance considerations Propagators are called thousands of times and run
for a few milliseconds. To derive a speedup, a GPU-accelerated propagator must
maximize occupancy and minimize latency.

Occupancy refers to how many and how effectively GPU cores are used. A
good algorithm uses fine-grain parallelism to engage many GPU cores, and relies
on cache-friendly data structures to mitigate memory stalls. Latency refers to
the time used to transfer data –and control– to the GPU as well as the time to
retrieve results and recover control back to the CPU. Such operations are very
expensive, so it is crucial to minimize both their duration and frequency.

Data layout It is convenient to specify how data is organized on the GPU. All
the data are stored in the global memory using dynamically allocated and stat-
ically sized vectors. Such vectors are triples (p, s, c), where p is a pointer to the
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propagationFailed = False
initStartingTimesFromDomains(S)
memcpyCpuToGpu([propagationFailed , S]) /* Asynchronous API */

calcIntervalsKernel(S, RI ) /* Asynchronous launch */

updateBoundsKernel(S, RI , propagationFailed) /* Asynchronous launch */

memcpyGpuToCpu([propagationFailed , S]) /* Asynchronous API */

waitGpu()
if ¬propagationFailed then

updateDomains(S)
else

fail()

Algorithm 2: Pseudocode of the parallel Energetic-Reasoning propagator.

allocated memory block, s is the current size, and c is the maximum capacity.
This representation does not rely on links of pointers and can be allocated when
the constraint is created. Specifically, four vectors are kept in the GPU mem-
ory: P containing the processing time of activities, H containing the resource
usage of activities, RI 4 containing the relevant intervals (pairs of integers), and
S containing pairs of integers representing the earlier/latest starting time of
activities.

Parallel algorithm The parallelization of Algorithm 1 begins with the parallel
computation of RI . A GPU kernel named calcIntervalsKernel calculates and
merges the sets O(i, j) of each (i, j) ∈ A×A. Then, the outer loop is parallelized
by a kernel named updateBoundsKernel that processes the intervals [t1, t2) ∈ RI .
The resulting parallel propagator is listed in Algorithm 2 and available in the
gpu branch of [41] .

Let #SM be the number of Streaming Multiprocessors, and #CS be the num-
ber of CUDA Cores per Streaming Multiprocessors. We maximize the occupancy
of calcIntervalsKernel by running it with #SM blocks, each of #CS threads so

that each thread is responsible for about |A×A|
#SM ·#CS pairs of activities. In details,

each thread generates some elements of RI in shared memory and stores them
in RI , that is in global memory. To store the elements, each thread first reserves
enough space in RI and then writes the elements. The reservation is done with
a single atomic increment on the size of the vector. Such increment is the only
point where threads might be serialized. The occupancy of updateBoundsKernel
is maximized by launching it with #SM blocks, each of #CS threads so that

each thread is responsible for about |RI |
#SM ·#CS intervals (see Figure 3). To retain

correctness, each update of S must be atomic. Because of the massive number of
threads concurrently accessing S, such atomic operations, if performed on global
memory, would cause contention and slow down. Shared memory can be used
instead by creating a copy S′ of S for each block to reduce contention. Once all
threads complete their computations, S is updated using S′. Naturally, updates

4 From now on we will use RI to refer both to the set and to the relative vector.



10 F. Tardivo et al.

Fig. 3: Sequential (top) vs parallel (bottom) processing of RI .

of S′s are still atomic, but since their scopes are single blocks, different blocks
do not interfere.

Overhead reduction The first step to reduce the overhead is to minimize the vol-
ume of data transferred to/from the GPU. Since vectors P and H are constant,
it suffices to copy them to the GPU when the constraint is posted. The only
data that the host has to communicate to the GPU is the vector S, while it has
to retrieve both the updated S and the Boolean propagationFailed . A possibility
consists in using CUDA Unified Memory to exchange data between CPU and
GPU. In this case, the CUDA runtime autonomously copies the data between
host and device through a paging mechanism that, unfortunately, introduces a
not negligible overhead. Hence, we packed S and propagationFailed into a struc-
ture and explicitly copy it to/from the GPU as a single block of data when
needed. In Figure 4 such transfers are represented in cyan and magenta.

Another source of overhead originates from CUDA asynchronous calls. The
bottom part of Figure 4 illustrates on a timeline the latency one experiences when
multiple such calls occur. The alternative is to use CUDA Graphs to organize
all kernel launches and memory operations in a dependency graph in such a way
that they can be launched by means of a single API call.

Fig. 4: Propagation with (top) and without (bottom) the use of CUDA Graph.
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A final note is about the possibility to offload the propagation of multiple
constraints at the same time. Parallel constraint propagation on GPU is pos-
sible and we are currently exploring it. Further investigation on such topic is
warranted, and will be the subject of future work.

4 Experiments

This section presents the result of a comparison between the GPU-accelerated
propagator, the CPU implementation and state-of-the-art solvers on different
sets of instances from the literature. Moreover, it shows the benefits of the
heuristics introduced in Section 2.2. We used the RCPSP as a benchmark. It
is a generalization of CuPS with multiple resources and precedences between
activities. In CP it is usually modeled with multiple Cumulative and linear con-
straints. Hence, it is particularly well-suited to evaluate the performance of a
Cumulative propagator. The evaluation considered three established sets of in-
stances, for a total of 299 instances:

PSPLib. Introduced in [25], it is the most popular benchmark for RCPSP. It
contains synthetic instances of 30, 60, 90, and 120 activities. Instances are
classified by their generation parameters, for a total of 204 classes, each of
10 instances. To have a reasonable benchmark time, we considered only the
first instance of each class.

BL. Introduced in [5], it is part of a study about solving highly disjunctive
and highly cumulative instances. It contains 40 highly cumulative synthetic
instances, with 20 and 25 activities.

Pack. Introduced in [8], it is part of a study that uses sharp makespan’s lower
bounds to solve the RCPSP. It contains 55 highly cumulative synthetic in-
stances, with 17 to 35 activities.

For a detailed description of the benchmarks, the reader can refer to [3]. Both the
model and instances are from the MinZinc Benchmark Suite [32] and make use of
smallest as variable selection heuristics. The model, instances and benchmark
scripts are available at [43]. The system used in the experiments is equipped with
an Intel Core i7-10700K, 32GB of RAM, and a NVIDIA GeForce RTX 3080. It
runs Ubuntu 22.04 with CUDA 11.8.

The solvers included in the comparison are the top two open-source not-LCG
(Lazy Clause Generation) solvers of the MiniZinc Challenge 2022 [31]: Jacop
[21], and Gecode [18]. We focused on open-source solvers because MiniCPP is
open-source, and on not-LCG solvers because we wanted to assess the specific
benefits of parallelizing the propagator. However, there is nothing that precludes
the use of GPU-accelerated propagators in a LCG solver. Note that neither
Jacop nor Gecode provide Energetic-Reasoning propagators, so we compared
ours with their Time-Tabling and Edge-Finding propagators. Since it is not
possible to select a specific propagator from the MiniZinc model, we did it by
modifying the source code of Jacop (version 4.9.0) and Gecode (version 6.3.0).
We called such solvers Jacop-TT, Jacop-EF, Gecode-TT, and Gecode-EF, while
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MiniCPP-ER and MiniCPP-ER-GPU stand for MiniCPP using the sequential and
the GPU-accelerated Energetic-Reasoning propagators, respectively.

4.1 Results and Analysis

To give an effective and concise presentation, we focus on the instances for which
a reasonable comparison of the solvers is possible. Namely, to be selected, an
instance must satisfy one of the following criteria:

1. It has been solved by at least one solver, and at least half of the solvers had
spent more than 10 seconds on the search. In this way, we rule out easier
instances.

2. It was not solved by any solver and at least half of the solvers reported a
solution after 10 seconds. This way we filter out instances for which there is
not enough information on the progress of the search.

With 30 minutes timeout, these criteria select 31 instances in category 1 and 50
in category 2.

Category 1 The results of the instances in category 1 are illustrated in Figure 5
and summarized in Table 2. The plots use logarithmic scale on the time axis,
while each entry of the table is the sum of the corresponding statistic among all
the instances. Overall, MiniCPP-ER-GPU results are compelling. It is the only ap-
proach that completed the search for all the instances and has the smallest total
search time. The BL benchmark offers a direct comparison between MiniCPP-ER

and MiniCPP-ER-GPU since both solved all its instances. In this case the GPU-
accelerated solver is an order of magnitude faster. For the highly cumulative
BL and Pack, Energetic-Reasoning leads to a smaller search tree that translates
in a smaller search time only for MiniCPP-ER-GPU. For the PSPLib instances,
Energetic-Reasoning leads to bigger search trees and Jacop-TT results the fastest
solver. A similar outcome was observed in [9].

Category 2 The results of the instances in category 2 are reported in Table 3.
The number of optimally solved instances is replaced with the number of so-
lutions and the search time with the Area Under the Curve (AUC). There are
no instances of BL for category 2. The numbers confirm what was observed for
category 1: MiniCPP-ER-GPU is the best solver for the Pack benchmark, having
the smaller AUC and the bigger number of solutions, while Jacop-TT is the best
on the PSPLib instances. Naturally, it remains possible to add Time-Tabling
propagators alongside the Energetic-Reasoning propagators to get an additional
boost, yet this remains a topic for future research.

To analyze the effects of the heuristics proposed at the end of Section 2.2 we
implemented it in MiniCPP-ER*/MiniCPP-ER*-GPU, and test them on all the 299
instances. The results are summarized in Table 1. It reports the aggregate statis-
tics of the instances optimally solved by all the Energetic-Reasoning implemen-
tations within the timeout of 30 minutes. The heuristics leads to an increment
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of the search tree size of less than 1% in the worst case (i.e., PSPLib), while
improving the search time of the CPU implementation by at least 2.85 times
(i.e. Pack). On the contrary, the GPU-accelerated implementation is barely af-
fected, with a slowdown of less than 0.1%. That confirms the effectiveness of the
parallelization and shows the penalty incurred in having thread divergence.

5 Conclusions

This paper revisited cumulative scheduling and offered a GPU-based implemen-
tation of the Energetic-Reasoning propagator. Energetic-Reasoning, while hav-
ing one of the strongest filtering power, has often been sidelined because of its
prohibitive runtime. The advent of GPU computing offers massive parallelism
that opens the door to reconsider such design decisions and make this stronger
contender viable. This paper reviewed Energetic-Reasoning and detailed key con-
siderations for its implementation on GPUs. The empirical evaluation demon-
strated that this is a worthwhile technique that is competitive, scales well and,
should be part of CP toolkits.
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Benchmark Solver Optimal Time (s) Nodes (M) Failures (M) Depth

BL

MiniCPP-ER 9 3072 3.31 1.10 349
MiniCPP-ER* 9 985 3.32 1.11 353

MiniCPP-ER-GPU 9 228 3.31 1.10 349
MiniCPP-ER*-GPU 9 237 3.32 1.11 353

Pack

MiniCPP-ER 3 2277 2.17 0.72 147
MiniCPP-ER* 3 799 2.19 0.73 147

MiniCPP-ER-GPU 3 148 2.17 0.72 147
MiniCPP-ER*-GPU 3 159 2.19 0.73 147

PSPLib

MiniCPP-ER 6 2138 0.26 0.09 558
MiniCPP-ER* 6 535 0.30 0.10 566

MiniCPP-ER-GPU 6 28 0.26 0.09 558
MiniCPP-ER*-GPU 6 30 0.30 0.10 566

Table 1: Aggregate statistics for the proposed Energetic-Reasoning heuristics.
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Benchmark Solver Optimal Time (s) Nodes (M) Failures (M) Depth

BL

Gecode-TT 15 8436 297.55 148.78 799
Gecode-EF 0 30600 187.34 93.67 791
Jacop-TT 13 11551 2307.47 1153.74 1123
Jacop-EF 17 1022 22.76 11.38 787
MiniCPP-ER 17 3163 3.46 1.15 605

MiniCPP-ER-GPU 17 233 3.46 1.15 605

Pack

Gecode-TT 2 7812 222.34 111.17 308
Gecode-EF 0 10800 40.62 20.31 272
Jacop-TT 0 10782 2458.11 1229.05 814
Jacop-EF 3 7219 177.93 88.97 463

MiniCPP-ER 3 7674 5.37 1.79 286
MiniCPP-ER-GPU 6 2509 23.76 7.92 307

PSPLib

Gecode-TT 4 8085 137.33 68.66 507
Gecode-EF 0 14400 32.12 16.06 564
Jacop-TT 8 404 34.01 17.00 502
Jacop-EF 8 3506 33.40 16.70 496

MiniCPP-ER 3 10049 11.97 3.99 485
MiniCPP-ER-GPU 8 3142 43.88 14.63 492

Table 2: Aggregate statistics for the instances in category 1.

Benchmark Solver Solutions AUC (K) Nodes (M) Failures (M) Depth

Pack

Gecode-TT 41 16.99 493.47 246.74 520
Gecode-EF 0 1157.40 60.17 30.09 458
Jacop-TT 38 17.88 4112.02 2056.01 1646
Jacop-EF 41 14.01 343.27 171.63 978
MiniCPP-ER 28 45.66 14.22 4.74 669

MiniCPP-ER-GPU 45 10.62 238.52 79.51 806

PSPLib

Gecode-TT 344 146.02 443.49 221.74 7613
Gecode-EF 4 11176.49 25.44 12.72 9739
Jacop-TT 412 22.70 4960.48 2480.23 6570
Jacop-EF 382 84.48 861.81 430.90 5918
MiniCPP-ER 312 213.83 7.15 2.38 4744

MiniCPP-ER-GPU 389 76.45 354.61 118.20 5549

Table 3: Aggregate statistics for the instances in category 2.
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Fig. 5: Search time (in seconds) for all the instances in category 1.
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